JPS5976593A - Treatment of chemical washing waste liquor containing edta - Google Patents

Treatment of chemical washing waste liquor containing edta

Info

Publication number
JPS5976593A
JPS5976593A JP18524282A JP18524282A JPS5976593A JP S5976593 A JPS5976593 A JP S5976593A JP 18524282 A JP18524282 A JP 18524282A JP 18524282 A JP18524282 A JP 18524282A JP S5976593 A JPS5976593 A JP S5976593A
Authority
JP
Japan
Prior art keywords
edta
crystals
cod
liquid
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18524282A
Other languages
Japanese (ja)
Other versions
JPS6134875B2 (en
Inventor
Atsuo Miyazaki
宮崎 厚生
Yukio Aisaka
逢坂 幸男
Hidetomo Suzuki
英友 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP18524282A priority Critical patent/JPS5976593A/en
Publication of JPS5976593A publication Critical patent/JPS5976593A/en
Publication of JPS6134875B2 publication Critical patent/JPS6134875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To carry out efficiently EDTA recovery and COD reduction in waste liquid by adjusting pH to the specified value after adding alkali in the titled waste liquid to remove heavy metals, separating EDTA crystals by adding acid, and reducing the COD by an oxidizing agent. CONSTITUTION:Chemical washing waste liquor 1' contg. EDTA is introduced to a separation and treatment tank 1, and the pH is adjusted to >=10, preferably >=12 by adding alkali 5 such as sodium hydroxide, sodium sulfide to precipitate and to separate heavy metals contg. iron ions, copper ions and the like. The separated liquid is introduced to a reaction tank 2, and the pH is controlled to 3.0-10, preferably 1.8-1.4 by adding inorg. acid 6 such as sulfuric acid or the like under stirring. After allowed to stand for about 30-60min, the crystals of EDTA are formed, separated, and recovered in a separator 3. The separated liquid is further introduced to a decomposition tank 4 and the pH is regulated to the proper value by adding an oxidizing agent 7 and the COD is reduced by the COD treatment.

Description

【発明の詳細な説明】 本発明は化学洗浄廃液の処理方法、特にエチレンジアミ
ン四酢酸(以下、rEDTAJと略す。)と結合した重
金属イオンを含む化学洗浄廃液の処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating chemical cleaning waste liquid, and particularly to a method for treating chemical cleaning waste liquid containing heavy metal ions combined with ethylenediaminetetraacetic acid (hereinafter abbreviated as rEDTAJ).

EDTAはキレート洗浄剤としてボイラ、熱交換器、配
管等のスケール除去に広く用いられている。
EDTA is widely used as a chelate cleaning agent to remove scale from boilers, heat exchangers, piping, etc.

この洗浄廃液中ばは洗浄過程でEDTAと結合した多量
の重金属イオンと高濃度のCODを含み、従来から効率
的な廃液処理方法の開発が求められていた。
This cleaning waste liquid contains a large amount of heavy metal ions combined with EDTA during the cleaning process and a high concentration of COD, and there has been a demand for the development of an efficient waste liquid treatment method.

本発明者は鋭意研究の結果、廃液中からEDTAを回収
して再利用を図ると共に、廃液中のCODを低減させる
効率的な廃液処理を見い出したものである。
As a result of intensive research, the inventor of the present invention has discovered an efficient waste liquid treatment that recovers and reuses EDTA from waste liquid and reduces COD in the waste liquid.

即ち、本発明はFJDTAと結合した重金属イオンを含
む化学洗浄廃液の処理方法において1.該廃液にアルカ
リを添加してp)〜110以上で重金属イオンを沈殿分
離させる第1工程、前記第1工程の分離液に酸を添加し
てEl)TAの結晶を生成させ、該結晶を分離、回収す
る第2工程、および前記結晶を分離した分離液に酸化剤
を添加してCODを低減化させる第3工程とからなるこ
とを特徴とするEDTAを含む化学洗浄廃液の処理方法
である。
That is, the present invention provides a method for treating chemical cleaning waste liquid containing heavy metal ions combined with FJDTA. A first step of adding an alkali to the waste liquid to precipitate and separate heavy metal ions at p) ~ 110 or higher, adding an acid to the separated liquid of the first step to generate El) TA crystals, and separating the crystals. , a second step of recovering the crystals, and a third step of adding an oxidizing agent to the separated liquid from which the crystals have been separated to reduce COD.

以下に本発明の処理方法について詳述する。The processing method of the present invention will be explained in detail below.

本発明の処理方法は、まず、廃液にアルカリを添加して
EDTAとキレートしている重金属イオン−i EI)
TAから分離させる。該分離工程においては、苛性ソー
ダなどのアルカリ剤を注入して液のpHを10以上にす
る必要があるが銘イオン、ニッケルイオンを含有する場
合にはp+(12以上、望ましく(lipl−112,
5にする。また鉄(1)イオンを含有する場合は空気な
どで曝気することにより酸化し鉄(n)イオンにするこ
とが好ましい。これは鉄(1)イオンであればpH12
,5以上にすることを要するが、予め鉄([1)イオン
にしておけばpH12でよく、つ−まり加えるアルカリ
剤の量が少な(てすみ経済的であるからである。
In the treatment method of the present invention, first, an alkali is added to the waste liquid to chelate heavy metal ions with EDTA (EI).
Separate from TA. In the separation process, it is necessary to inject an alkaline agent such as caustic soda to make the pH of the liquid 10 or more, but if it contains nickel ions, p+ (12 or more, preferably (lipl-112,
Make it 5. Further, when iron (1) ions are contained, it is preferable to oxidize them into iron (n) ions by aeration with air or the like. If this is iron(1) ion, the pH is 12.
, 5 or more, but if the iron ([1) ion is made in advance, the pH can be set to 12, which means that the amount of alkali agent added is small (this is because it is economical).

なお、鉄(■)イオンを酸化する手段d:どのような方
法でも適用可能(例えば酸化剤を用いる等)であるが、
空気を用いて曝気するのが簡便であり経済的である。
Note that the means d for oxidizing iron (■) ions: Any method can be applied (for example, using an oxidizing agent), but
Aeration using air is simple and economical.

廃液にアンモニアを包む場合には、銅イオンやニッケル
イオンはpi(12,5でも解離できない。これを解離
させるにはpH14以上にしなければならない。
When enclosing ammonia in waste liquid, copper ions and nickel ions cannot be dissociated even at pi(12.5). To dissociate them, the pH must be 14 or higher.

従って、銅イオンについてはアルカリとして硫化ソータ
゛、硫化アンモンなどの硫化アルカリを銅イオンの1.
0〜165当量加えることにより硫化銅として分離する
ことができる。この場合の液のpHはアルカリ性であれ
ばよいから使用するアルカリ剤の隼が節約でき経済的で
ある。
Therefore, for copper ions, sulfide alkalis such as sulfide sorter and ammonium sulfide are used as alkalis.
By adding 0 to 165 equivalents, it can be separated as copper sulfide. In this case, the pH of the solution only needs to be alkaline, so the amount of alkaline agent used can be saved and it is economical.

なお、アルカリの種類としては苛性ソーダ、硫化アルカ
リの他に消石灰、苛性カリなどでも使用可能である。
As for the type of alkali, in addition to caustic soda and alkali sulfide, slaked lime and caustic potash can also be used.

次に、第1工程で重金属イオンを沈殿分離させた分離液
に酸を添加してEDTAの結晶を生成させ該結晶を分離
、回収する。該E D T Aの結晶生成時の液の最適
pH域はEDTAの濃度によって幅が認められるが、p
H3,0〜1.0がよく、好ましくはpH1,8〜1.
4がよい。これはpH3,0以上又はpH1,0以ドで
はE DT Aの結晶生成速度が遅いからである。
Next, an acid is added to the separated liquid in which heavy metal ions have been precipitated and separated in the first step to generate EDTA crystals, and the crystals are separated and recovered. The optimum pH range of the solution during crystal formation of EDTA varies depending on the concentration of EDTA, but
H3.0-1.0 is good, preferably pH1.8-1.0.
4 is good. This is because the crystal formation rate of E DT A is slow at pH 3.0 or higher or pH 1.0 or higher.

なお、この処理工程でEDTAと重金属イオンがキレー
トしているとEDTAの結晶生成が起らない。
Note that if EDTA and heavy metal ions are chelated in this treatment step, EDTA crystal formation will not occur.

従って、前記第1工程におけるEDTAと重金属イオン
の分離が不充分であると、それに相当する分だけEDT
Aの回収率が低下することになる1、また、一部の重金
属イオンは結晶に取り込まれてしまう。
Therefore, if the separation of EDTA and heavy metal ions in the first step is insufficient, EDT will be removed by a corresponding amount.
1, the recovery rate of A will decrease, and some heavy metal ions will be incorporated into the crystals.

特に、銅イオンの場合は、その量の5−〜■0%が結晶
に取り込1れ、回収したEDTAの純度を著しく低下さ
せ、再利用に際しても不都合である。かよう顛、本発明
においては第−処理工程で重金属イオンの分離を完全に
行う必要がある。
In particular, in the case of copper ions, 5-0% of the amount is incorporated into the crystals, which significantly reduces the purity of the recovered EDTA and is inconvenient for reuse. Therefore, in the present invention, it is necessary to completely separate heavy metal ions in the first treatment step.

結晶反応槽では結晶生成のだめに所定の滞留時間を要す
るが、その時間は10分以上が好′ましい。
In the crystal reaction tank, a predetermined residence time is required for crystal formation to occur, and this time is preferably 10 minutes or more.

これは反応時間即ち液の滞留時間と結晶生成率の関係を
調べてみると反応時間5分では回収率80〜85%、反
応時間10分では回収率90〜95チであり、反応時間
10分程度壕では回収率が直線的に高するが、これを越
えると回収率の増加はゆるやかとなシ実用的でなくなる
からである。しかし、EDTAの回収率を更に高めるこ
とが要求される場合には、液の滞留時間を長くすればよ
いととは云うまでもない。
This is because when we examine the relationship between the reaction time, that is, the residence time of the liquid, and the crystal formation rate, we find that with a reaction time of 5 minutes, the recovery rate is 80-85%, and with a reaction time of 10 minutes, the recovery rate is 90-95%. This is because the recovery rate increases linearly in a deep trench, but beyond this point the increase in recovery rate becomes too gradual and becomes impractical. However, if it is required to further increase the recovery rate of EDTA, it goes without saying that it is sufficient to lengthen the residence time of the liquid.

また、EDTAはCOD成分の一つであることから、後
段の第3工程でのCOD酸化工程での負相を軽減するた
めに、EDTAの結晶分離装置内で30〜60分の滞留
時間を与えることによって結晶化を促進させるとより効
果的である。
In addition, since EDTA is one of the COD components, in order to reduce the negative phase in the COD oxidation step in the third step, EDTA is given a residence time of 30 to 60 minutes in the crystal separation device. It is more effective to promote crystallization by

以ドに本発明の一実施態様を図面に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.

廃液1′を重金属イオン分離処理槽]に受は人、れだの
ち、重金属分離薬品として苛性ソーダなどのア四ノ)l
)剤5を注入し空気などによりよく攪拌してpHIQ以
−に、重重しくけpH12以上にする。1次に、アイモ
ニアを含有している廃液で銅イオンを含む場合には、硫
化アルカリを銅の量の1〜1.5倍当量を加え、銅イメ
ンを分離する。また鉄(1)(オン含有の廃液について
は、予め空気などで攪拌、酸化し鉄(11)イオンにす
る。ここで分離される重金属イオンは水酸化物あるいは
硫化物のような不溶性のものとなり沈でんするが、この
場合、高分子凝集剤等の助剤を添加することは分離効果
を助長する。
The waste liquid 1' is transferred to a heavy metal ion separation treatment tank] for human and human life, and for heavy metal separation chemicals such as caustic soda.
) Agent 5 is injected, stirred well with air, etc., and made to a pH of 12 or higher using a heavy weight. First, when the waste liquid contains copper ions, an alkali sulfide equivalent of 1 to 1.5 times the amount of copper is added to separate copper ions. In addition, waste liquid containing iron (1) (on) is stirred and oxidized with air in advance to form iron (11) ions.The heavy metal ions separated here are insoluble ones such as hydroxides or sulfides. However, in this case, adding an auxiliary agent such as a polymer flocculant promotes the separation effect.

沈でん分離後、移送ポンプ11で移送管8を経由してE
l)TA結晶反応槽2へ、さらに移送管9を通じて5′
J離装置3へ、移送管10を通じて酸化分解槽4へと連
続的に移送し、分離処理槽1の分離液を処J!lする。
After sediment separation, the transfer pump 11 passes the transfer pipe 8 to E.
l) 5′ to the TA crystal reaction tank 2 and further through the transfer pipe 9
The separated liquid in the separation treatment tank 1 is continuously transferred to the J! I do it.

まだ、分離処理槽1で発生する沈でん物は、脱水器等に
より処理し、その脱離液も同じルートで結晶を回収す乙
However, the sediment generated in separation treatment tank 1 will be treated with a dehydrator, etc., and the crystals will be recovered from the separated liquid using the same route.

結晶反応槽2から酸化分解槽4までのフローは高低差を
与えることによる自然流下法で行うことも可能で、ポン
プ等の動力を節約することができる。
The flow from the crystal reaction tank 2 to the oxidation decomposition tank 4 can also be carried out by a gravity flow method by providing a difference in height, and the power of pumps and the like can be saved.

移送管8による移送の途中で、液中の盾濁物(以下、S
Sと言う)を除去するためjツ過槽を設置することも良
い。寸た、廃液1′中に暦食抑制剤などの他の吸着性の
有機物質が含1れている場合には、f材を兼ねて活性炭
カラムを設置することにより、回収EDTAの汚染や、
第3工程の酸化分解工程の薬品量の低減化、処理時間の
短縮もH+J能となる。
During the transfer through the transfer pipe 8, shield turbidity (hereinafter referred to as S) in the liquid
It is also a good idea to install a filter tank to remove S. In addition, if the waste liquid 1' contains other adsorbent organic substances such as eclipse inhibitors, installing an activated carbon column that also serves as an f material will prevent contamination of the recovered EDTA.
Reducing the amount of chemicals and shortening the treatment time in the third oxidative decomposition step also contributes to H+J performance.

結晶反応槽2では攪拌を与えなから酸6を加えpH3,
0〜1.0の範囲になるよってするが、pH1,8〜1
.4 が望ましい。ここに用いる酸は硫酸、塩酸などの
無機酸である。結晶反応槽2での反応時間は15分程度
でも良いが、30分〜60分間の滞留時間を設けること
が望ましい。
In crystallization reactor 2, without stirring, add acid 6 to pH 3.
It depends on the range of 0 to 1.0, but the pH is 1.8 to 1.
.. 4 is desirable. The acid used here is an inorganic acid such as sulfuric acid or hydrochloric acid. The reaction time in the crystal reaction tank 2 may be about 15 minutes, but it is desirable to provide a residence time of 30 to 60 minutes.

分離装置3でE DT Aの結晶を分1ii[fシ、、
分離液は移送管10を通して酸化分解槽4へ移送するが
、分離装置3で30分以上の滞留を与えることで結晶は
さらに成長し、溶解しているED’I’Aの濃度を低「
させることができる。
Separator 3 separates the crystals of EDT A into 1ii[f].
The separated liquid is transferred to the oxidation decomposition tank 4 through the transfer pipe 10, but by allowing it to stay in the separation device 3 for 30 minutes or more, the crystals grow further, reducing the concentration of dissolved ED'I'A.
can be done.

酸化分解槽4では、適正なpHにて酸化剤7を加えてC
OI)処理を行い低減化する。ここで消費する酸化剤7
の量は溶解しているEl)’I’Aなどの濃度に比例す
る。
In the oxidation decomposition tank 4, an oxidizing agent 7 is added at an appropriate pH and C
OI) processing to reduce the amount. Oxidizing agent consumed here7
The amount of is proportional to the concentration of dissolved El)'I'A, etc.

分離装置3で分離されだED T Aの結晶は、水洗に
より夾雑水分除くことによって簡単に純度の高い結晶と
して回収することかできる。E IJ ’l’ Aの回
収率、純度については実施例1,2に示す如く充分再利
用=J能な良好のものであった。
The EDTA crystals separated by the separator 3 can be easily recovered as highly pure crystals by removing contaminant water by washing with water. As shown in Examples 1 and 2, the recovery rate and purity of E IJ 'l' A were good enough to allow sufficient reuse.

以」−のように本発明は、EDTAと結合した重金属イ
オンを含む廃液からEDTAを効率よく回収して、その
r1利用を図ることができると共に、該廃液のCODを
低減化させることができる効果があり、本発明により化
学洗浄廃液の効率的な処理が可能となった。
As described above, the present invention has the effect of efficiently recovering EDTA from a waste liquid containing heavy metal ions combined with EDTA, making it possible to use the r1, and reducing the COD of the waste liquid. The present invention has made it possible to efficiently treat chemical cleaning waste liquid.

次に、本発明の実施例について記す。Next, examples of the present invention will be described.

実施例−1 被処理液の組成は、次表のとおりである。Example-1 The composition of the liquid to be treated is shown in the following table.

EDTA濃度 :40% □ 1゜ ナトリウ馴オフ  1    072%□ Feイオン       60001’)I)mCuイ
オ”         50F’jppm1)f(16
,8 COD   l  3500()ppm液量  :10
を 上記組成の液を空気で攪拌しながら消石灰を1507投
入し充分酸化したところpH12,2となった。
EDTA concentration: 40% □ 1゜ Sodium acclimatization off 1 072% □ Fe ion 60001')I) mCu ion"50F'jppm1) f(16
,8 COD l 3500()ppm Liquid amount: 10
While agitating the solution with air, slaked lime of 150% was added to sufficiently oxidize the solution, resulting in a pH of 12.2.

これて高分子凝集剤10 ppmを添加し沈でんを分離
したところ上澄液は無色透明となり、水引は次のとおり
であった。
When 10 ppm of a polymer flocculant was added and the precipitate was separated, the supernatant liquid became clear and colorless, and the water content was as follows.

この液を第1工程の処理液とし、35条の塩酸を比例注
入しながら反応槽で30分滞留時間を15え、連続処理
した。このときの液のpHは〕75であり、白色のIε
D i’ Aの結晶が生じ、分離装置でこの結晶を分1
’:!8 Lだ。分1liB装置内では30分間の滞留
時間を与えた○ 反応槽出口の液に5Aの1紙を用いて結晶を完全にf1
過し、そのP液のCODを測定したところ、1200p
pmであった。まだ分離装置出口の液のCOD値は52
0 ppmであった。
This solution was used as the treatment solution in the first step, and was continuously treated in a reaction tank for 30 minutes with a residence time of 15 minutes while proportionately injecting 35 portions of hydrochloric acid. The pH of the liquid at this time was 75, and the white Iε
Crystals of D i' A are formed, and these crystals are divided into 1 portion using a separation device.
':! It's 8L. A residence time of 30 minutes was given in the 1liB apparatus. ○ A piece of 5A paper was used to completely remove the crystals from the liquid at the outlet of the reaction tank.
When the COD of the P solution was measured, it was found to be 1200p.
It was pm. The COD value of the liquid at the outlet of the separator is still 52.
It was 0 ppm.

次に鉄イオ7 ’、C200ppm添加しpH3〜3−
5にて過酸化水素にて酸化分解したところ、CODは4
日後に6.2 ppmとなった。
Next, add 200 ppm of iron 7' and C to pH 3-3-
When oxidatively decomposed with hydrogen peroxide in step 5, the COD was 4.
After a few days, it became 6.2 ppm.

ここで分離回収したgl)TAを1.54の純水(1/
As/m)で水洗した3、水洗水の水質は次表に示す値
であったので水洗を止め、E I)T Aを乾燥してそ
の重量を測定し7たところ、389?であった。このE
DTA中の不純物とl> I)T Aの純度を測定した
ところ次表のようであった。
Here, the separated and collected gl) TA was mixed with 1.54% pure water (1/
The water quality of the washing water was as shown in the table below, so the washing was stopped, E I) T A was dried and its weight was measured, and it was found to be 389? Met. This E
Impurities in DTA and l> I) When the purity of TA was measured, it was as shown in the following table.

この値よシ、EDTAの回収車を次の計算式から求める
ことができる。
Based on this value, the number of EDTA collection vehicles can be calculated using the following formula.

10〜X0.040 実施例−2 被処理液の組成は次表のとおりである。10~X0.040 Example-2 The composition of the liquid to be treated is shown in the table below.

」1記の液を空気で攪拌酸化を行iながら苛性ソーダ7
502全投入し攪拌したところ p!−412,5とな
った。これに硫化ソーダ55Fを投入し攪拌すると。
While stirring and oxidizing the solution in step 1 with air, mix it with caustic soda 7.
When all 502 was added and stirred, p! -412.5. Add 55F of soda sulfide to this and stir.

pLI 12.6となり黒色の沈でん物の発生が認めら
れた。
pLI was 12.6, and the occurrence of black precipitate was observed.

これに高分子凝集剤101)I)mを添加し沈でんを分
離したところ、」−澄液の水質は次のとおりであった。
When a polymer flocculant 101)I)m was added to this and the precipitate was separated, the water quality of the clear liquid was as follows.

pr−i  i 12.に の分IWt液を活性炭カラムを通したところ、SSは認
められず、インヒビターに由来する発泡も消失していた
pr-i i 12. When the IWt solution was passed through an activated carbon column, no SS was observed and the foaming caused by the inhibitor had disappeared.

この液を第1工程の処理液とし、75チの硫酸を廃液に
比例注入しながら反応槽で30分滞留時間を力え連続式
に処理した。このときの液のpHは162であり、白色
の結晶が生じ、分離装置で分離した。
This liquid was used as the treatment liquid in the first step, and was continuously treated in a reaction tank for 30 minutes while proportionally injecting 75 sulfuric acid into the waste liquid. The pH of the liquid at this time was 162, and white crystals were formed, which were separated using a separator.

分離装置では30分間の滞留全力えた。The separator had a retention capacity of 30 minutes.

反応槽出口の液を1紙を用いて結晶を完全に濾過し、そ
の′P液のC0I)を測定したところ2200 ppm
であった。分離装置出口の液を同様に処J!+!、 L
だlHi液のCODば1600 ppmであり、これに
硫酸第二鉄を鉄イオンとして500 ppm添加し、p
H3〜3.5にて過酸化水素にて酸化分解したところ、
CODは次第に低ドし5日後にCOD 8.7 ppm
  となった。
The crystals were completely filtered from the liquid at the outlet of the reaction tank using a piece of paper, and the 'P liquid COI) was measured and found to be 2200 ppm.
Met. Treat the liquid at the outlet of the separator in the same way. +! , L
The COD of the stock solution was 1600 ppm, and 500 ppm of ferric sulfate as iron ions was added to it.
When oxidatively decomposed with hydrogen peroxide at H3-3.5,
COD gradually decreased to 8.7 ppm after 5 days.
It became.

ここで回収されたEDTAの容積は3tであった。The volume of EDTA recovered here was 3 tons.

これを1μs//crnの純水で水洗し/こところ、5
1の水洗量で流出水洗水の水質が次表の値を丞し/この
でを測定したところ118(lであった。このE I)
i’ A中の不純物とE D TAの純度を測定したと
ころ、次のような結果となった。
Wash this with pure water of 1μs//crn/Kotokoro, 5
The water quality of the flushing water was lower than the value in the table below at the amount of water washed at 1. When measured, it was 118 (l. This E I)
When the impurities in i'A and the purity of EDTA were measured, the following results were obtained.

N’a−”   115 ppm この値よりEDTAの回収率を次の計算式から求めるこ
とができる。
N'a-'' 115 ppm From this value, the recovery rate of EDTA can be calculated from the following formula.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施jン駿様を示すフローシートで
ある。 丁・廃液、1・・分Xtt処丹槽、2・・・結晶反応槽
、3・・・分t;11装置、4・・1衰化分解槽、5・
−・アルカリ剤、6・酸、7・・・酸化剤、8,9.1
0・・移送管、11・・移送ポンプ。
The drawing is a flow sheet showing one implementation of the present invention. Waste liquid, 1... min.
-・alkali agent, 6・acid, 7・oxidizing agent, 8,9.1
0...Transfer pipe, 11...Transfer pump.

Claims (1)

【特許請求の範囲】 コ1.  エチレンジアミン四酢酸(以ド、r−EDT
A」と略す。)と結合した重金属イオンを含む化学洗浄
廃液の処理方法において、 a) 該廃液にアルカリを添加してpH10以上で重金
属イオンを沈殿分離させる$1工程、b) 前記第1工
程の分離液に酸を添加してEl)TAの結晶を生成させ
、該結晶を分離、回収する第2工程、 C) および前記結晶を分離した分離液に酸化剤を添加
してCODを低減させる第3工程、とからなることを特
徴とするEDTAを含む化学洗浄廃液の処理方法。 2 前記廃液が、EDTAと結合した重金属イオンとし
て、少なくとも鉄イオン又は銅イオンを含むものである
特許請求の範囲第1項記載の方法。 3 前記鉄イオンが鉄(1)イオンである場合は予め酸
化した後、アルカリを添加する特許請求の範囲第2項記
載の方法。 4、 前記第1工程で添加されるアルカリが、硫化アル
カリである特許請求の範囲!′31項記載の方法。 5、 前記第2工程における前記酸の添加量を、酸添加
後の液のpHが30〜1.0、好ましくは1.8〜1.
4になるように設定する特許請求の範囲第1項記載の方
法。
[Claims] C1. Ethylenediaminetetraacetic acid (r-EDT)
Abbreviated as "A". ) A method for treating a chemical cleaning waste solution containing heavy metal ions combined with a chemical cleaning waste solution comprising: a) a $1 step in which an alkali is added to the waste solution to precipitate and separate the heavy metal ions at a pH of 10 or more; b) an acid is added to the separated solution from the first step. C) A second step of adding El) to produce TA crystals, and separating and recovering the crystals; C) A third step of adding an oxidizing agent to the separated liquid from which the crystals have been separated to reduce COD. A method for treating chemical cleaning waste liquid containing EDTA, characterized by comprising: 2. The method according to claim 1, wherein the waste liquid contains at least iron ions or copper ions as heavy metal ions combined with EDTA. 3. The method according to claim 2, wherein when the iron ions are iron(1) ions, they are oxidized in advance and then an alkali is added. 4. The claim that the alkali added in the first step is an alkali sulfide! 'The method described in item 31. 5. The amount of the acid added in the second step is such that the pH of the solution after addition of the acid is 30 to 1.0, preferably 1.8 to 1.0.
4. The method according to claim 1, wherein the method is set to be 4.
JP18524282A 1982-10-21 1982-10-21 Treatment of chemical washing waste liquor containing edta Granted JPS5976593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524282A JPS5976593A (en) 1982-10-21 1982-10-21 Treatment of chemical washing waste liquor containing edta

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18524282A JPS5976593A (en) 1982-10-21 1982-10-21 Treatment of chemical washing waste liquor containing edta

Publications (2)

Publication Number Publication Date
JPS5976593A true JPS5976593A (en) 1984-05-01
JPS6134875B2 JPS6134875B2 (en) 1986-08-09

Family

ID=16167370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524282A Granted JPS5976593A (en) 1982-10-21 1982-10-21 Treatment of chemical washing waste liquor containing edta

Country Status (1)

Country Link
JP (1) JPS5976593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210681A (en) * 1999-01-21 2000-08-02 United States Enrichment Corp Method of removing metal from cleaning liquid
CN112960829A (en) * 2021-02-20 2021-06-15 成都明天高新产业有限责任公司 Process for treating copper-containing wastewater generated in production of printed circuit boards

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449902Y2 (en) * 1989-04-13 1992-11-25
JPH0379650U (en) * 1989-12-05 1991-08-14
JPH0633821Y2 (en) * 1990-09-03 1994-09-07 タイトン株式会社 Holder for hanging scallop aquaculture
CN104418400B (en) * 2013-08-20 2017-02-08 天津大学 Iron-based nano-alloy and application thereof in adsorption of cesium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027310A (en) * 1973-07-14 1975-03-20
JPS5067726A (en) * 1973-10-22 1975-06-06
JPS5163555A (en) * 1974-11-29 1976-06-02 Teikoku Hormone Mfg Co Ltd JUKINZOKUSAKUENSUIYOEKINO SHORIHOHO
JPS529941A (en) * 1975-07-11 1977-01-25 Bii Esu Konkuriito Kk Holding device for transportation of bridge* etc*
JPS5243453A (en) * 1975-10-02 1977-04-05 Furuno Electric Co Ltd Ultrasonic detector
JPS52135879A (en) * 1976-05-11 1977-11-14 Kurita Water Ind Ltd Treatment of chemical washing waste liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027310A (en) * 1973-07-14 1975-03-20
JPS5067726A (en) * 1973-10-22 1975-06-06
JPS5163555A (en) * 1974-11-29 1976-06-02 Teikoku Hormone Mfg Co Ltd JUKINZOKUSAKUENSUIYOEKINO SHORIHOHO
JPS529941A (en) * 1975-07-11 1977-01-25 Bii Esu Konkuriito Kk Holding device for transportation of bridge* etc*
JPS5243453A (en) * 1975-10-02 1977-04-05 Furuno Electric Co Ltd Ultrasonic detector
JPS52135879A (en) * 1976-05-11 1977-11-14 Kurita Water Ind Ltd Treatment of chemical washing waste liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210681A (en) * 1999-01-21 2000-08-02 United States Enrichment Corp Method of removing metal from cleaning liquid
CN112960829A (en) * 2021-02-20 2021-06-15 成都明天高新产业有限责任公司 Process for treating copper-containing wastewater generated in production of printed circuit boards

Also Published As

Publication number Publication date
JPS6134875B2 (en) 1986-08-09

Similar Documents

Publication Publication Date Title
JP4947640B2 (en) Waste acid solution treatment method
WO2012033077A1 (en) Method of treating copper etching waste liquor
CZ291141B6 (en) Method for anaerobic removal of a sulfur compound from waste water
JP2012224901A (en) Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
JP2506032B2 (en) Wastewater treatment method
USH1852H (en) Waste treatment of metal plating solutions
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JPS5976593A (en) Treatment of chemical washing waste liquor containing edta
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
JPS5834197B2 (en) High speed inosyoriho
JPS6211634B2 (en)
JP2000153284A (en) Treatment of cyan by ozone
JPS59222292A (en) Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate
CN108996752B (en) Method for recovering low-concentration nickel from nickel extraction waste water
KR19980702743A (en) Ammonia Metal Solution Recirculation Method
KR19990027070A (en) Biological denitrification of wastewater and simultaneous treatment of high concentration hydrofluoric acid, lead and nitric acid
KR100206485B1 (en) Thiocyanide removal form coke oven wash water
JPH0483592A (en) Treatment of waste chemical washing solution
JP3913843B2 (en) Coagulation sedimentation processing equipment
JPH0369515A (en) Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steel
RU2213064C1 (en) Method of recovering ethylenediaminetetraacetic acid from spent washing solution in power station steam generators
JP3195514B2 (en) Coagulation settling equipment
US5951954A (en) Method for manufacturing clear brine fluids from impure zinc feedstock
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JPS5836695A (en) Treatment of waste liquid of chemical washing