JPS6211634B2 - - Google Patents

Info

Publication number
JPS6211634B2
JPS6211634B2 JP9284480A JP9284480A JPS6211634B2 JP S6211634 B2 JPS6211634 B2 JP S6211634B2 JP 9284480 A JP9284480 A JP 9284480A JP 9284480 A JP9284480 A JP 9284480A JP S6211634 B2 JPS6211634 B2 JP S6211634B2
Authority
JP
Japan
Prior art keywords
ozone
added
treatment method
cod
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9284480A
Other languages
Japanese (ja)
Other versions
JPS5719088A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP9284480A priority Critical patent/JPS5719088A/en
Publication of JPS5719088A publication Critical patent/JPS5719088A/en
Publication of JPS6211634B2 publication Critical patent/JPS6211634B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿などの有機性廃水の生物処理水
に残留する難性物分解性COD成分、色度成分
や、産業廃水中の難生物分解性COD成分、色度
成分の化学酸化法に関するものである。 一般にオゾン酸化法は周知の如く、色度は効果
的に除去できる反面、COD成分を効果的に除去
できない。 一方、最近オゾン酸化法の代替手段として、過
酸化水素(H2O2)と鉄塩をPH3〜4の酸性条件下
で作用せしめる方法、いわゆるフエントン酸化法
が検討されている。このように従来COD含有廃
水をオゾン酸化後、活性炭吸着したり、フエント
ン酸化後活性炭吸着を行なう方法は良く知られて
いたが、フエントン法がオゾン酸化法の代替手
段、対立的手段として考えられていたため、フエ
ントン法がオゾン酸化法よりはCOD除去に効果
的ではあるが、やはりCOD成分を充分除去でき
ずかなりのCOD成分がフエントン酸化後も残留
し、まだ十分満足するものには至らないという問
題点があつた。 本発明は、このような従来の化学酸化法の
COD除去の限界を打破することが可能な、効果
的な処理方法を提供することを目的とするもので
ある。 本発明は、COD含有廃水をオゾン処理したの
ちオゾン処理水に少なくとも金属イオン物質又は
金属イオンを水溶液中で解離しうる物質と過酸化
水素を添加して撹拌したのち、アルカリ剤を添加
し、固液分離するとともに、固液分離されたスラ
ツジを、前記オゾン処理工程に添加することを特
徴とするCOD含有廃水の処理方法で、オゾン酸
化法でフエントン酸化法を合理的に結合させ、フ
エントン酸化後生成するFe(OH)3などの金属水
酸化物をオゾン酸化工程の触媒として再利用する
ものである。 即ち、本発明はオゾン酸化後のCOD成分がフ
エントン酸化を受けやすいこと、およびフエント
ン酸化後生成するFe(OH)3、Al(OH)3、Cu
(OH)3などの金属水酸化物がオゾン酸化の触媒効
果を有することを知見して完成されたものであ
る。 本発明の一実施態様を第1図を参照しながら説
明すれば、COD含有廃水1は、オゾン酸化塔2
に流入し、オゾン含有ガス3と接触したのち管4
から撹拌槽5に流入させる。この撹拌槽5におい
ては硫酸第1鉄FeSO4などの鉄塩6と過酸化水素
(H2O2)7が添加され、PH2〜4の酸性条件下で
所定時間(通常数時間)撹拌されたのち、中和槽
8にて、アルカリ剤9が添加され中和されたの
ち、高分子凝集剤10によつてフロツク形成さ
れ、沈澱池11にてSSが分離され処理水12と
沈殿スラツジ13となる。 しかして、この沈澱スラツジ13(Fe(OH)3
が主体である)の一部は返送管14を経由してオ
ゾン酸化塔2にリサイクルされ、オゾン酸化の触
媒として再利用される。 また、前記管4からのオゾン処理水に硫酸、塩
酸、硝酸などの鉱酸16を添加して水酸化鉄を溶
解したのちH2O2を添加する方法を採用すれば、
新品の鉄塩の添加を不要にできるか、大幅に添加
量を節減できることが認められた。尚オゾン酸化
のPH条件を2〜4の範囲で行う場合は鉱酸16は
必要ない。また第2図のように、前記沈澱スラツ
ジ13に酸15を撹拌槽18で添加するようにし
て返送管14′で前記オゾン酸化塔2にリサイク
ルしてもよい。 またオゾン酸化塔2の排ガス17中にはオゾン
が含有しているので、これをH2O2が添加された
撹拌槽5に導入するとオゾンとH2O2の併有処理
ができるので極めて好ましい。 なお、本発明ではフエントン法として知られる
鉄塩とH2O2のほかにも公知のアルミ、Cu、Mn、
Co、Ni、VとH2O2の併用法も採用できることは
当然であるが、実用的にはコストの安い鉄塩と
H2O2とが採用される。また金属イオンを水溶液
中で解離し得る物質としては鉄、銅、アルミ、マ
ンガン、コバルト、ニツケル、バナジウムの塩、
水酸化物、酸化物、単体金属を単独又は複数くみ
あわせて使用できる。要するに添加する物質の種
類には関係なく、水溶液中でこれらのイオンを解
離し得るものであればよく、場合によつては金属
イオン物質の形態でもその目的を達することがで
きる。 さらに前記中和槽8に添加するアルカリ剤9と
しては、カ性ソーダ(NaOH)消石灰(Ca
(OH)2)よりも水酸化マグネシウム(Mg
(OH)2)、酸化マグネシウム(MgO)のようにマ
グネシウム系アルカリ剤又は炭酸カルシウムのほ
うが、はるかに、濃縮性のよい緻密な沈殿スラツ
ジ13が得られることが認められた。 以上述べたように、本発明はオゾン酸化法とフ
エントン酸化法を合理的に結合し、フエントン酸
化後生成するFe(OH)3やAl(OH)3やCu(OH)3
をオゾン酸化の触媒に再利用するので、従来のオ
ゾン酸化法やフエントン酸化法よりもCODが効
果的に除去できると共に、COD除去に要する薬
品の添加を大巾に削減でき著しい省資源化が可能
となり、難生物分解性COD成分、色度成分の化
学酸化の高級処理工程を設ける場合でも、COD
負荷色度負荷が低くなり、高級処理工程の建設
費、維持費が低減される利益がある。 次に本発明の実施例を述べる。 比較例 1 (従来法:オゾン酸化法) し尿を無希釈で生物学的硝化脱窒素処理を行つ
た生物処理水に、塩化第2鉄を1500mg/添加
し、最適PH5.5の条件で、凝集沈殿処理を行つて
得た処理水の水質は下表のとおりであつた。
The present invention relates to a chemical oxidation method for refractory COD components and chromaticity components remaining in biologically treated organic wastewater such as human waste, and refractory COD components and chromaticity components in industrial wastewater. It is. As is generally known, the ozone oxidation method can effectively remove chromaticity, but cannot effectively remove COD components. On the other hand, recently, as an alternative to the ozone oxidation method, the so-called Fuenton oxidation method, which is a method in which hydrogen peroxide (H 2 O 2 ) and iron salt are allowed to act under acidic conditions of pH 3 to 4, has been studied. In this way, conventional methods such as ozone oxidation of COD-containing wastewater followed by activated carbon adsorption, and Fuenton oxidation followed by activated carbon adsorption are well known, but the Fuenton method has not been considered as an alternative or an alternative method to the ozone oxidation method. Therefore, although the Fuenton method is more effective in removing COD than the ozone oxidation method, it still cannot remove COD components sufficiently and a considerable amount of COD components remain even after Fuenton oxidation, so the problem is that it is still not fully satisfactory. The dot was hot. The present invention overcomes such conventional chemical oxidation methods.
The purpose is to provide an effective treatment method that can overcome the limitations of COD removal. The present invention involves ozonating COD-containing wastewater, adding at least a metal ion substance or a substance capable of dissociating metal ions in an aqueous solution, and hydrogen peroxide to the ozonated water, stirring the mixture, and then adding an alkaline agent to solidify the ozone-treated water. A method for treating COD-containing wastewater, which is characterized by liquid separation and adding the solid-liquid separated sludge to the ozone treatment step, which rationally combines the ozone oxidation method with the Fenton oxidation method, The generated metal hydroxides such as Fe(OH) 3 are reused as catalysts in the ozone oxidation process. That is, the present invention focuses on the fact that COD components after ozone oxidation are susceptible to Fenton oxidation, and that Fe(OH) 3 , Al(OH) 3 , and Cu produced after Fenton oxidation are
It was completed after discovering that metal hydroxides such as (OH) 3 have a catalytic effect on ozone oxidation. One embodiment of the present invention will be described with reference to FIG.
After coming into contact with the ozone-containing gas 3, the pipe 4
from there into the stirring tank 5. In this stirring tank 5, an iron salt 6 such as ferrous sulfate FeSO 4 and hydrogen peroxide (H 2 O 2 ) 7 were added and stirred for a predetermined period of time (usually several hours) under acidic conditions of pH 2 to 4. After that, in the neutralization tank 8, an alkaline agent 9 is added and neutralized, and then a floc is formed by the polymer flocculant 10, and the SS is separated in the settling tank 11 to form treated water 12 and settled sludge 13. Become. However, this precipitated sludge 13 (Fe(OH) 3
A part of the ozone oxidation tower 2 is recycled via the return pipe 14 to the ozone oxidation tower 2, where it is reused as a catalyst for ozone oxidation. Alternatively, if a method is adopted in which a mineral acid 16 such as sulfuric acid, hydrochloric acid, or nitric acid is added to the ozonated water from the pipe 4 to dissolve iron hydroxide, then H 2 O 2 is added.
It was confirmed that the addition of new iron salt could be made unnecessary or the amount added could be significantly reduced. Note that mineral acid 16 is not required when ozone oxidation is carried out under pH conditions in the range of 2 to 4. Alternatively, as shown in FIG. 2, acid 15 may be added to the precipitated sludge 13 in a stirring tank 18 and then recycled to the ozone oxidation tower 2 via a return pipe 14'. Furthermore, since ozone is contained in the exhaust gas 17 of the ozone oxidation tower 2, it is extremely preferable to introduce this into the stirring tank 5 to which H 2 O 2 has been added, since it is possible to simultaneously process ozone and H 2 O 2 . . In addition, in the present invention, in addition to iron salt and H 2 O 2 known as the Fuenton method, known aluminum, Cu, Mn,
It is natural that a combination of Co, Ni, V and H 2 O 2 can be used, but in practical terms it is better to use iron salts, which are cheaper.
H 2 O 2 is used. Substances that can dissociate metal ions in aqueous solutions include salts of iron, copper, aluminum, manganese, cobalt, nickel, and vanadium;
Hydroxides, oxides, and single metals can be used alone or in combination. In short, it does not matter what kind of substance is added, as long as it can dissociate these ions in an aqueous solution, and in some cases, the purpose can be achieved even in the form of a metal ion substance. Further, as the alkaline agent 9 added to the neutralization tank 8, caustic soda (NaOH), slaked lime (Ca
(OH) 2 ) than magnesium hydroxide (Mg
(OH) 2 ), a magnesium-based alkaline agent such as magnesium oxide (MgO), or calcium carbonate was found to yield a dense precipitated sludge 13 with much better concentration. As described above, the present invention rationally combines the ozone oxidation method and the Fuenton oxidation method, and eliminates the Fe(OH) 3 , Al(OH) 3 , and Cu(OH) 3 produced after the Fuenton oxidation.
Since it is reused as a catalyst for ozone oxidation, COD can be removed more effectively than the conventional ozone oxidation method or Fuenton oxidation method, and the addition of chemicals required for COD removal can be greatly reduced, resulting in significant resource savings. Therefore, even if an advanced treatment process for chemical oxidation of difficult-to-biodegradable COD components and chromaticity components is provided, COD
There is an advantage that the load chromaticity load is lowered, and the construction cost and maintenance cost of high-grade processing steps are reduced. Next, examples of the present invention will be described. Comparative Example 1 (Conventional method: ozone oxidation method) Ferric chloride was added at 1500 mg/day to biologically treated water that had been subjected to biological nitrification and denitrification treatment without diluting human waste, and flocculated under conditions of optimal pH 5.5. The quality of the treated water obtained through the precipitation treatment was as shown in the table below.

【表】 この凝集沈澱処理水を原水として、気泡塔内で
回分式のオゾン曝気処理を行つた結果、オゾン添
加量(mgO3/)とオゾン酸化処理水のCODは
第3図曲線aであり、色度は完全に除去された
が、CODを74mg/以下にすることはできなか
つた。 比較例 2 (従来法:フエントン法) 比較例1の原水と同一の原水(水質は前記表の
とおり)を対象として、フエントン酸化を行つ
た。鉄塩としては硫酸第1鉄(FeSO4)を採用
し、添加量は1000mg/(Fe2+として)一定と
し、過酸化水素(H2O2)の添加量を200〜1000
mg/の範囲で変化させCOD除去効果を調べ
た。またアルカリ剤としてはMg(OH)2を使用し
た。なお反応時のPHは最適PH3.5、反応時間は24
時間として、反応時間が不足しないようにした。
この結果を第3図曲線bを示す。 第3図からフエントン酸化法では、オゾン酸化
法よりはCODがよく除去されているが、41mg/
以下にすることはできないことがわかる。 なお、曲線bは残留H2O2でCODを補正した有
機物に起因するCODを示しているものである。 実施例 (本発明方法) 比較例1、2と同一の原水を対象として、ま
ず、オゾン酸化を後続するフエントン酸化後生成
した水酸化第2鉄(Fe(OH)3)を主体とするス
ラツジ約2000〜3000ppmの共有下でオゾン添加
量500mg/で行つたのち、フエントン酸化をオ
ゾン処理水に対して行つた。フエントン酸化は次
の条件で行つた。 Fe2+注入率 1000mg/ H2O2注入率 300mg/および500mg/ PH 3.5 反応時間 24時間 この結果を第4図に示す。 第4図と第3図aの比較からFe(OH)3の触媒
効果が認められ、第3図bとの比較から、オゾン
処理を行つたのち、フエントン酸化すると、処理
水CODMoが10mg/にまで低下することが認め
られた。
[Table] As a result of performing batch ozone aeration treatment in a bubble column using this coagulation-sedimentation treated water as raw water, the amount of ozone added (mgO 3 /) and the COD of the ozone oxidation treated water are shown in curve a in Figure 3. Although the chromaticity was completely removed, it was not possible to reduce the COD below 74 mg/. Comparative Example 2 (Conventional method: Fuenton method) The same raw water as the raw water in Comparative Example 1 (water quality is as shown in the table above) was subjected to Fuenton oxidation. Ferrous sulfate (FeSO 4 ) was used as the iron salt, the amount added was constant at 1000 mg/(as Fe 2+ ), and the amount of hydrogen peroxide (H 2 O 2 ) added was varied from 200 to 1000 mg/(as Fe 2+ ).
The COD removal effect was investigated by changing the amount in mg/. Moreover, Mg(OH) 2 was used as an alkali agent. The optimum pH during the reaction is 3.5, and the reaction time is 24
In terms of time, we made sure that reaction time would not be insufficient.
This result is shown as curve b in Figure 3. Figure 3 shows that the Fuenton oxidation method removes COD better than the ozone oxidation method, but only 41mg/
It turns out that you can't do the following. Note that the curve b shows the COD caused by organic matter, which is corrected using residual H 2 O 2 . Example (method of the present invention) Using the same raw water as in Comparative Examples 1 and 2, first, a sludge mainly consisting of ferric hydroxide (Fe(OH) 3 ) produced after Fenton oxidation followed by ozone oxidation was prepared. Fuenton oxidation was carried out on the ozonated water after the addition of 500 mg of ozone with a co-existence of 2000 to 3000 ppm. Fenton oxidation was performed under the following conditions. Fe 2+ injection rate 1000 mg/H 2 O 2 injection rate 300 mg/and 500 mg/PH 3.5 Reaction time 24 hours The results are shown in FIG. Comparison of Fig. 4 and Fig. 3a shows the catalytic effect of Fe(OH) 3 , and comparison with Fig. 3b shows that when Fuenton oxidation is performed after ozone treatment, the COD Mo of the treated water is 10mg/ It was observed that the temperature decreased to .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様の系統説明図、
第2図は他の実施態様の系統説明図、第3図及び
第4図は処理水COD量と薬剤添加量の関係線図
で、第3図は従来法第4図は本発明法のものであ
る。 1……廃水、2……オゾン酸化塔、3……オゾ
ン含有ガス、4……管、5……撹拌槽、6……鉄
塩、7……過酸化水素、8……中和槽、9……ア
ルカリ剤、10……高分子凝集剤、11……沈澱
池、12……処理水、13……沈殿スラツジ、1
4,14′……返送管、15……酸、16……鉱
酸、17……排ガス、18……撹拌槽。
FIG. 1 is a system explanatory diagram of an embodiment of the method of the present invention,
Figure 2 is a system explanatory diagram of another embodiment, Figures 3 and 4 are relationship diagrams between the amount of COD in treated water and the amount of chemical added, Figure 3 is for the conventional method, and Figure 4 is for the method of the present invention. It is. 1... Waste water, 2... Ozone oxidation tower, 3... Ozone-containing gas, 4... Pipe, 5... Stirring tank, 6... Iron salt, 7... Hydrogen peroxide, 8... Neutralization tank, 9... Alkaline agent, 10... Polymer flocculant, 11... Sedimentation tank, 12... Treated water, 13... Sedimentation sludge, 1
4, 14'... Return pipe, 15... Acid, 16... Mineral acid, 17... Exhaust gas, 18... Stirring tank.

Claims (1)

【特許請求の範囲】 1 COD含有廃水をオゾン処理工程にて処理し
たのち、該オゾン処理水に金属イオンを水溶液中
で解離し得る物質と過酸化水素を添加撹拌したの
ち、アルカリ剤を添加し固液分離工程にて分離
し、該分離されたスラツジを前記オゾン処理工程
に添加して処理することを特徴とするCOD含有
廃水の処理方法。 2 前記オゾン処理水に鉱酸を添加したのち前記
過酸化水素を添加して処理する特許請求の範囲第
1項記載の処理方法。 3 前記オゾン処理工程における排オゾンを前記
過酸化水素とともに添加して処理する特許請求の
範囲第1項又は第2項記載の処理方法。 4 前記水溶液中で金属イオンを解離し得る物質
として鉄、アルミニウム、銅、ニツケル、マンガ
ン又はコバルトの塩、酸化物、水酸化物、単体金
属のうち少なくとも一つを使用する特許請求の範
囲第1項、第2項又は第3項記載の処理方法。 5 前記中和工程がアルカリ剤としてマグネシウ
ム系アルカリ剤又は炭酸カルシウムを使用するも
のである特許請求の範囲第1項、第2項、第3項
又は第4項記載の処理方法。 6 前記オゾン処理水の酸化工程がPH2〜4の酸
性条件下で行われるものである特許請求の範囲第
2項、第3項、第4項又は第5項記載の処理方
法。
[Claims] 1. After treating COD-containing wastewater in an ozonation process, a substance capable of dissociating metal ions in an aqueous solution and hydrogen peroxide are added to the ozonated water and stirred, and then an alkali agent is added. A method for treating COD-containing wastewater, which comprises separating the sludge in a solid-liquid separation step and adding the separated sludge to the ozone treatment step. 2. The treatment method according to claim 1, wherein the ozonated water is treated by adding a mineral acid and then adding the hydrogen peroxide. 3. The treatment method according to claim 1 or 2, wherein exhaust ozone in the ozone treatment step is added together with the hydrogen peroxide. 4. Claim 1 in which at least one of iron, aluminum, copper, nickel, manganese, or cobalt salts, oxides, hydroxides, and elemental metals is used as the substance capable of dissociating metal ions in the aqueous solution. The treatment method described in Section 2, Section 2, or Section 3. 5. The treatment method according to claim 1, 2, 3, or 4, wherein the neutralization step uses a magnesium-based alkali agent or calcium carbonate as the alkali agent. 6. The treatment method according to claim 2, 3, 4, or 5, wherein the oxidation step of the ozonated water is performed under acidic conditions of pH 2 to 4.
JP9284480A 1980-07-08 1980-07-08 Disposal of cod-contng. waste water Granted JPS5719088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284480A JPS5719088A (en) 1980-07-08 1980-07-08 Disposal of cod-contng. waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284480A JPS5719088A (en) 1980-07-08 1980-07-08 Disposal of cod-contng. waste water

Publications (2)

Publication Number Publication Date
JPS5719088A JPS5719088A (en) 1982-02-01
JPS6211634B2 true JPS6211634B2 (en) 1987-03-13

Family

ID=14065736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284480A Granted JPS5719088A (en) 1980-07-08 1980-07-08 Disposal of cod-contng. waste water

Country Status (1)

Country Link
JP (1) JPS5719088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method
CN110156144A (en) * 2018-03-30 2019-08-23 铜仁学院 A method of strengthening ozone oxidation using ferrate and removes organic pollutants

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699914B1 (en) * 1992-12-28 1995-05-12 Degremont Reactor for optimized ozonation of water intended for human consumption.
BR9307833A (en) * 1993-04-01 1996-02-06 Solvay Interox Gmbh Oxidative chemical process for purification of overloaded wastewater
DE19618074A1 (en) * 1996-03-04 1997-09-11 Ind Tech Res Inst Waste liquor treatment to reduce chemical oxygen demand
CN102070263B (en) * 2010-11-25 2012-07-04 杭州诚洁环保有限公司 Coking phenol cyanogen sewage treating method
CN103979735B (en) * 2014-05-21 2015-07-22 青岛中通臭氧科技有限公司 Process and device for treating refractory industrial wastewater
CN105396590A (en) * 2015-11-03 2016-03-16 同济大学 Method for preparing ozonation catalyst by scrap iron surface modifying, and application of ozonation catalyst
CN106348560B (en) * 2016-08-19 2019-03-15 陕西鼎益源投资有限公司 A kind of ozone-hydroxyl radical free radical joint catalysis oxidation sludge conditioning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496077A (en) * 2014-12-22 2015-04-08 同济大学 Deep scrap iron catalytic ozonation wastewater treatment method
CN110156144A (en) * 2018-03-30 2019-08-23 铜仁学院 A method of strengthening ozone oxidation using ferrate and removes organic pollutants

Also Published As

Publication number Publication date
JPS5719088A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
CN105293775A (en) Method adopting combined technology of pre-oxidation and coagulating sedimentation to process wastewater containing thallium and ammonia-nitrogen
JP4662059B2 (en) Purification process for steel manufacturing wastewater
CN107162276B (en) Chromium removal method for ferric trichloride etching waste liquid
JP2683991B2 (en) Dyeing wastewater treatment method
CN110799461A (en) Wastewater treatment method for removing chemical oxygen demand
CN110668613A (en) Deep treatment method for gold hydrometallurgy cyanide-containing wastewater
JPS6211634B2 (en)
CN110981013A (en) Method for treating waste liquid after extraction of thiamine
CN110759540B (en) Treatment method of chemical nickel plating waste liquid
JP2002030352A (en) Method for recovering valuable metal from metal- containing waste water
US6936177B2 (en) Method for removing metal from wastewater
JPS5834197B2 (en) High speed inosyoriho
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP5003058B2 (en) Decolorization treatment method for colored beverage drainage
JPS6339308B2 (en)
JP2621090B2 (en) Advanced wastewater treatment method
JPS6216153B2 (en)
JP4531958B2 (en) Treatment method of waste water containing hydrazine
JPS6339307B2 (en)
EP0723938A2 (en) Method for treating water
CN112759134B (en) Recycling treatment method of coal chemical membrane filtration concentrated solution
JPH091162A (en) High degree treating method for waste water and catalyst for oxidation treatment of waste water
KR800000190B1 (en) Treating method for waste plating-water
JPS591118B2 (en) How to treat organic wastewater
JPS6339309B2 (en)