JP2012224901A - Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same - Google Patents
Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same Download PDFInfo
- Publication number
- JP2012224901A JP2012224901A JP2011092554A JP2011092554A JP2012224901A JP 2012224901 A JP2012224901 A JP 2012224901A JP 2011092554 A JP2011092554 A JP 2011092554A JP 2011092554 A JP2011092554 A JP 2011092554A JP 2012224901 A JP2012224901 A JP 2012224901A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- waste liquid
- containing acidic
- acidic waste
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 239
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 213
- 239000010949 copper Substances 0.000 title claims abstract description 208
- 239000002699 waste material Substances 0.000 title claims abstract description 208
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 206
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000006243 chemical reaction Methods 0.000 claims abstract description 70
- 239000007800 oxidant agent Substances 0.000 claims abstract description 69
- 239000000243 solution Substances 0.000 claims abstract description 52
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000005751 Copper oxide Substances 0.000 claims abstract description 36
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 36
- 239000000725 suspension Substances 0.000 claims abstract description 36
- 239000012670 alkaline solution Substances 0.000 claims abstract description 32
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 26
- 230000001590 oxidative effect Effects 0.000 claims abstract description 14
- 238000011084 recovery Methods 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims description 75
- 239000007787 solid Substances 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 230000001186 cumulative effect Effects 0.000 claims description 10
- 230000003472 neutralizing effect Effects 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000005530 etching Methods 0.000 abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 32
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 abstract description 10
- 238000007747 plating Methods 0.000 abstract description 6
- 239000011889 copper foil Substances 0.000 abstract description 5
- 239000011343 solid material Substances 0.000 abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 90
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 27
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 23
- 229910001431 copper ion Inorganic materials 0.000 description 23
- 239000006228 supernatant Substances 0.000 description 16
- 239000010802 sludge Substances 0.000 description 14
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 13
- 239000005750 Copper hydroxide Substances 0.000 description 13
- 229910001956 copper hydroxide Inorganic materials 0.000 description 13
- 238000000926 separation method Methods 0.000 description 12
- 238000004062 sedimentation Methods 0.000 description 11
- 238000003756 stirring Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229960003280 cupric chloride Drugs 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011172 small scale experimental method Methods 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、銅含有酸性廃液の処理・回収方法に関し、更に詳細には、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液など、高濃度銅イオンを含有する銅含有酸性廃液を中和処理することで、溶液中から銅を除去し、これを回収する方法及びそのための装置に関する。 The present invention relates to a method for treating and recovering a copper-containing acidic waste liquid, and more specifically, for example, an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant, or a plating bath liquid in electrolytic copper foil production. Copper is removed from the solution by neutralizing copper-containing acidic waste liquid containing high-concentration copper ions, such as renewed waste liquid and etching waste liquid generated by the roughening treatment of the substrate surface in the lamination process of multilayer printed circuit board production. , A method for recovering the same, and an apparatus therefor.
銅イオンを高濃度で含有する酸性の廃液(以下、「銅含有酸性廃液」という)としては、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液等が知られている。これらの廃液は、銅濃度が5〜20質量%(以下、単に「%」で示す)程度と高い一方で、共存する塩素イオンや硫酸イオンの濃度も、通常5〜30%と高い。 As an acidic waste liquid containing copper ions at a high concentration (hereinafter referred to as “copper-containing acidic waste liquid”), an etching waste liquid produced when etching a copper printed circuit board with a cupric chloride etchant, or in electrolytic copper foil production A renewal waste solution of a plating bath, a waste solution of etching generated by a roughening process of a substrate surface in a lamination process of multilayer printed circuit board production, and the like are known. These waste liquids have a high copper concentration of about 5 to 20% by mass (hereinafter simply referred to as “%”), while the concentration of coexisting chlorine ions and sulfate ions is also usually high at 5 to 30%.
このような銅含有酸性廃液を対象にした銅の回収処理方法としては、イオン化傾向の差を利用し、例えば鉄スクラップと反応させて金属銅を析出させて回収する方法が一部で行われているが、この方法では廃液からの銅回収率が低いという問題がある。また、銅イオンとの反応により溶出した鉄イオンと残留した銅イオンが含まれる廃液が残るため、この廃液の処理が別途必要になり、効率的な処理方法とは言いがたい。 As a copper recovery treatment method for such a copper-containing acidic waste liquid, a method of using a difference in ionization tendency, for example, reacting with iron scrap to deposit and recovering metallic copper is performed in part. However, this method has a problem that the copper recovery rate from the waste liquid is low. Further, since a waste liquid containing iron ions eluted by the reaction with copper ions and residual copper ions remains, it is necessary to separately treat the waste liquid, which is not an efficient treatment method.
ところで、本発明者らは先に、銅含有酸性廃液と酸化剤を混合した後、アルカリ溶液に添加することで、酸化銅を効率よく回収できる方法を見出し、特許出願した(特許文献1)。この方法によれば、銅含有酸性廃液と酸化剤の混合液をアルカリ溶液中に滴下することで、酸化銅を主成分とする固形物が得られる。これは、銅含有酸性廃液を酸化剤と共に、少量ずつアルカリ剤に混合することで、適切な希釈効果を得ながら銅含有酸性廃液を中和し、銅含有酸性廃液に含まれる銅イオンを酸化し、酸化銅とすることができるためである。 By the way, the present inventors previously found out a method for efficiently recovering copper oxide by mixing a copper-containing acidic waste liquid and an oxidizing agent and then adding it to an alkaline solution, and filed a patent application (Patent Document 1). According to this method, the solid substance which has a copper oxide as a main component is obtained by dripping the liquid mixture of a copper containing acidic waste liquid and an oxidizing agent in an alkaline solution. This is because the copper-containing acidic waste liquid is mixed with the oxidizing agent together with the oxidizing agent little by little to neutralize the copper-containing acidic waste liquid while obtaining an appropriate dilution effect, and oxidize the copper ions contained in the copper-containing acidic waste liquid. This is because copper oxide can be used.
ここで、特許文献1の方式は、回収した酸化銅の再利用に重点を置いた方式であり、高純度の酸化銅を回収できる特長がある。しかし、この方式では、生成した固形成分の沈降分離性にやや難があり、固液分離のための沈殿槽を大きくしなければならないものであった。また、固液分離の際に、上澄液側に生成した固形成分の一部が残留し、処理水水質の悪化が起こりうる場合があった。高純度の酸化銅の回収が求められる場合の廃液処理設備として運用する場合には、これに対応した設備はやむを得ないが、余り高純度の酸化銅の回収まで求めない場合には、設備が過大になるという問題がある。
Here, the method of
従って、高純度の回収酸化銅の必要がない場合の銅含有酸性廃液の廃液処理においては、銅含有酸性廃液を中和処理すると同時に、良好な水質の処理水と取り扱いやすい銅含有汚泥を得ることができる簡易な銅含有酸性廃液の処理方法の提供が求められている。 Therefore, in the waste liquid treatment of copper-containing acidic waste liquid when there is no need for high-purity recovered copper oxide, neutralize the copper-containing acidic waste liquid, and at the same time, obtain treated water with good water quality and easy-to-handle copper-containing sludge There is a need to provide a simple treatment method for copper-containing acidic waste liquid that can be used.
本発明は、上記実情に鑑みなされたものであり、塩化銅含有エッチング廃液や電解銅箔メッキ浴の更新廃液、多層プリント基板表面の粗化処理でのエッチング廃液などの銅含有酸性廃液を、過大、複雑な設備を要することなく処理し、同時に良好な水質の処理水が得られる処理方法及び装置を提供することをその課題とするものである。 The present invention has been made in view of the above circumstances, and copper-containing acidic waste liquid such as copper chloride-containing etching waste liquid, electrolytic copper foil plating bath renewal waste liquid, etching waste liquid in the roughening treatment of the multilayer printed circuit board surface, etc. It is an object of the present invention to provide a treatment method and apparatus that can perform treatment without requiring complicated facilities and at the same time obtain treated water with good water quality.
本発明者らは、処理対象液である銅イオンを高濃度で含有する酸性廃液と酸化剤とを混合した後、アルカリ溶液に少量ずつ、注加、混合することで、銅含有酸性廃液中の含まれる銅イオンを酸化銅まで酸化し、沈降させる上記特許文献1の方法について、改良研究を行っていたところ、ある程度まで銅含有酸性廃液と酸化剤の混合液の注加操作を繰り返した後に、銅含有酸性廃液のみをアルカリ溶液に注加することで、意外にも沈降性の良好なスラッジを得ることができ、上澄液への微細な浮遊物の残留や、銅イオン量が抑制された良好な処理水が得られることを見出し、本発明を完成した。
The present inventors mixed an acidic waste liquid containing a high concentration of copper ions, which is a liquid to be treated, and an oxidizing agent, and then added and mixed little by little into an alkaline solution, thereby adding a copper-containing acidic waste liquid in the copper-containing acidic waste liquid. About the method of the above-mentioned
すなわち本発明は、銅含有酸性廃液を、当該銅含有酸性廃液に対して中和当量以上のアルカリ性溶液中に注加、混合して、酸化銅を主成分とする固形物を含有する懸濁液を生成させ、当該懸濁液中から当該固形物を分離する銅含有酸性廃液の中和および銅の回収方法であって、
(1)反応開始時から、銅含有酸性廃液のアルカリ性溶液に対する全注加量の70ない
し90%までは、銅含有酸性廃液と酸化剤とを混合してからアルカリ性溶液中に注
加、混合し、
(2)銅含有酸性廃液の全注加量が上記量を越えた後は、酸化剤を用いず銅含有酸性廃液
をアルカリ性溶液中に注加、混合する
ことを特徴とする銅含有酸性廃液の中和および銅の回収方法である。
That is, the present invention is a suspension containing a solid containing copper oxide as a main component by adding and mixing a copper-containing acidic waste liquid into an alkaline solution having a neutralization equivalent or more with respect to the copper-containing acidic waste liquid. A method for neutralizing a copper-containing acidic waste liquid and separating copper from the suspension to recover the copper,
(1) From the start of the reaction, the copper-containing acidic waste liquid and the oxidizing agent are mixed for 70 to 90% of the total amount added to the alkaline solution of the copper-containing acidic waste liquid, and then poured into the alkaline solution and mixed. And
(2) After the total amount of the copper-containing acidic waste liquid exceeds the above amount, the copper-containing acidic waste liquid is characterized by adding and mixing the copper-containing acidic waste liquid into the alkaline solution without using an oxidizing agent. Neutralization and copper recovery method.
また本発明は、銅含有酸性廃液と酸化剤供給手段からの酸化剤とを混合する混合槽と、該混合槽で得られた銅含有酸性廃液と酸化剤の混合液を、アルカリ剤が供給された混合反応槽に供給する手段と、該混合液とアルカリ剤を混合し、アルカリ性懸濁席を生成する混合反応槽とを含む銅含有酸性廃液の処理装置であって、
更に、銅含有酸性廃液の積算注加量を計量する手段、および
該銅含有酸性廃液の積算注加量に応じ、酸化剤の供給を制御する手段
を備えたことを特徴とする、銅含有酸性廃液の中和、回収処理装置である。
Further, the present invention provides a mixing tank for mixing the copper-containing acidic waste liquid and the oxidizing agent from the oxidizing agent supply means, and the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent obtained in the mixing tank is supplied with an alkaline agent. A copper-containing acidic waste liquid treatment apparatus comprising: a means for supplying to the mixed reaction tank; and a mixed reaction tank for mixing the mixed liquid and the alkaline agent to generate an alkaline suspension.
The copper-containing acidic waste liquid further comprises means for measuring the cumulative amount of the copper-containing acidic waste liquid, and means for controlling the supply of the oxidizing agent according to the cumulative amount of the copper-containing acidic waste liquid. Waste liquid neutralization and recovery treatment equipment.
更に本発明は、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、酸化剤の注加手段および混合手段を有し、銅含有酸性廃液と酸化剤の混合液がアルカリ性水溶液と反応してアルカリ性懸濁液を生成する第一の混合反応槽と;
第一の混合反応槽と連通し、銅含有酸性廃液の注加手段および混合手段を有すると共に、第一の混合反応槽からのアルカリ性懸濁液剤を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた銅含有酸性廃液の中和、回収処理装置である。
Furthermore, the present invention has a supplying means for alkaline aqueous solution, a pouring means for copper-containing acidic waste liquid, a pouring means for oxidizing agent and a mixing means, and the mixed liquid of copper-containing acidic waste liquid and oxidizing agent reacts with the alkaline aqueous solution. A first mixing reactor that produces an alkaline suspension;
The copper-containing acidic waste liquid is communicated with the first mixing reaction tank, and has an addition means and a mixing means for the copper-containing acidic waste liquid, and contains the alkaline suspension from the first mixing reaction tank, A copper-containing acidic waste liquid neutralization / recovery treatment apparatus comprising a second mixing reaction tank for reacting the alkaline suspension.
本発明によれば、これまでの処理技術では複塩の生成などにより処理が困難であった、銅イオンの含有濃度が5〜20%という高濃度の銅含有酸性廃液を希釈することなく、直接処理することができる。また、生成物は酸化銅を含むため沈降性や脱水性が良好であり、水酸化銅を生成させる方法と比較して取扱が容易である。更に、処理水も、浮遊物質や銅イオンの少ない良好な水質なものである。 According to the present invention, it is difficult to treat with conventional treatment techniques due to the generation of double salts, etc., without diluting the copper-containing acidic waste liquid with a high concentration of copper ions of 5 to 20%. Can be processed. In addition, since the product contains copper oxide, the sedimentation and dehydrating properties are good, and the handling is easy as compared with the method of producing copper hydroxide. Furthermore, the treated water also has good water quality with less suspended matter and copper ions.
更に、本発明方法で得られる回収物は、単純な水酸化物沈殿方式と比較して含水率が低いため、汚泥排出量を低減することが可能となる。また、回収物は酸化銅を主体とする化合物のため、脱水後は、回収物を銅精錬の原料として利用することも容易である。 Furthermore, since the recovered product obtained by the method of the present invention has a low water content compared to a simple hydroxide precipitation method, it is possible to reduce sludge discharge. Moreover, since the recovered material is a compound mainly composed of copper oxide, it is easy to use the recovered material as a raw material for copper refining after dehydration.
本発明の銅含有酸性廃液からの銅の回収方法(以下、「本発明方法」という)による処理プロセスでは、処理銅含有酸性廃液の中和当量に対して過剰量のアルカリ性溶液が供給された混合反応槽中に、銅含有酸性廃液を、最初からの大部分は酸化剤と共に、最後の一部は酸化剤なしで、それぞれ徐々に注加するというものである。 In the treatment process by the method for recovering copper from the copper-containing acidic waste liquid of the present invention (hereinafter referred to as “method of the present invention”), a mixture in which an excessive amount of alkaline solution is supplied relative to the neutralization equivalent of the treated copper-containing acidic waste liquid In the reaction vessel, the copper-containing acidic waste liquid is gradually added with the oxidant mostly from the beginning and without the oxidant in the last part.
より詳しくは、銅含有酸性廃液の注加に当たっては、最初からの大部分は酸化剤との混合液として、当該混合反応槽中に注加、混合し、酸化銅を主成分とする微粒子が懸濁するアルカリ性懸濁液(以下、「アルカリ性懸濁液」と略称する)を生成させる。そして、所定量の銅含有酸性廃液の注加が終了した後の残りの一部は、酸化剤の供給を停止し、銅含有酸性廃液を当該混合反応槽中に注加、混合し、酸化銅と水酸化銅を主成分とする固形物を析出させる。 In more detail, when adding the copper-containing acidic waste liquid, most of the mixture from the beginning is poured into and mixed in the mixing reaction tank as a mixed liquid with an oxidizing agent, and fine particles mainly composed of copper oxide are suspended. A cloudy alkaline suspension (hereinafter abbreviated as “alkaline suspension”) is produced. The remaining part after the addition of the predetermined amount of copper-containing acidic waste liquid is stopped, the supply of the oxidizing agent is stopped, the copper-containing acidic waste liquid is poured into the mixing reaction tank, and the copper oxide is mixed. And a solid mainly composed of copper hydroxide is precipitated.
本発明方法においては、基本的に銅含有酸性廃液とアルカリ性溶液の中和を、中和点よりアルカリ側で実施することが重要である。従って、本発明方法を実施するには、アルカリ性溶液が過剰の状態、例えば、中和量に対して1.2倍程度過剰な状態で中和を行うことが必要であり、アルカリ性水溶液中に、銅含有酸性廃液(および酸化剤)を徐々に、十分に撹拌しつつ加えていく必要がある。また、反応中は常にアルカリ性溶液が中和当量より過剰にあることが必要である。 In the method of the present invention, it is important to neutralize the copper-containing acidic waste liquid and the alkaline solution basically on the alkali side from the neutralization point. Therefore, in order to carry out the method of the present invention, it is necessary to carry out neutralization with an alkaline solution in an excess state, for example, an excess of about 1.2 times the neutralization amount. It is necessary to add the copper-containing acidic waste liquid (and the oxidizing agent) gradually and with sufficient stirring. In addition, it is necessary that the alkaline solution is always in excess of the neutralization equivalent during the reaction.
また、本発明において重要なことは、銅含有酸性廃液の注加を、途中で銅含有酸性廃液と酸化剤との混合物としての供給から、銅含有酸性廃液単独での供給に切り替えることである。 Moreover, what is important in the present invention is to switch the supply of the copper-containing acidic waste liquid from the supply as a mixture of the copper-containing acidic waste liquid and the oxidizing agent to the supply of the copper-containing acidic waste liquid alone.
すなわち、処理すべき銅含有酸性廃液の積算注入量が、全注入量の70ないし90%となるまで(以下、この時点を「切替時点」ということがある)は、酸化剤と共にアルカリ性水溶液中に注加し、この量を超えた時点からは、酸化剤を使用せず、銅含有酸性廃液だけを注加することが好ましい。 That is, until the cumulative injection amount of the copper-containing acidic waste liquid to be treated reaches 70 to 90% of the total injection amount (hereinafter, this time point may be referred to as “switching time point”), it is placed in the alkaline aqueous solution together with the oxidizing agent. It is preferable to add only the copper-containing acidic waste liquid without using the oxidizing agent from the time when the amount exceeds this amount.
銅含有酸性廃液だけの注入の開始が上記切替時点より早すぎる場合は、固形物中の酸化銅の割合が低く、水酸化銅の割合が増加し、スラッジの沈降性の悪化やスラッジ含水率が増加する。逆に、銅含有酸性廃液だけの注入が切替時点より遅い場合は、スラッジの沈降性は良いものの、固形物を除去した処理水中の懸濁物や、銅イオンが増えたりする問題が生じることがある。 If the start of the injection of only the copper-containing acidic waste liquid is too early than the switching point, the ratio of copper oxide in the solid matter is low, the ratio of copper hydroxide increases, the sludge sedimentation deteriorates and the sludge moisture content increases. To increase. On the other hand, when the injection of only the copper-containing acidic waste liquid is later than the switching point, the sludge settles well, but there may be a problem that the suspension in the treated water from which solids have been removed and the copper ions increase. is there.
従って、本発明方法を実施するに当たっては、処理する銅含有酸性廃液や、使用するアルカリ性溶液、酸化剤に応じて予め実験を行い、銅含有酸性廃液単独での供給に切り替える適切なタイミング(切替時点)を調べておくことが好ましい。 Therefore, in carrying out the method of the present invention, an appropriate timing (switching time point) for switching to the supply of the copper-containing acidic waste liquid alone is performed in advance according to the copper-containing acidic waste liquid to be treated, the alkaline solution to be used, and the oxidizing agent. ) Is preferred.
本発明方法で処理対象となる銅含有酸性廃液としては、銅をイオン状態で含有する酸性廃液であり、銅含有酸性廃液中の銅イオン濃度や、陰イオン濃度は特に制約されない。本発明方法で特に好適に処理できる銅含有酸性廃液の具体例として、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液など、銅イオン濃度及び塩素イオン濃度、硫酸イオン濃度等陰イオン濃度の高い廃液が挙げられる。 The copper-containing acidic waste liquid to be treated by the method of the present invention is an acidic waste liquid containing copper in an ionic state, and the copper ion concentration and the anion concentration in the copper-containing acidic waste liquid are not particularly limited. As a specific example of the copper-containing acidic waste liquid that can be particularly suitably treated by the method of the present invention, an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant, or a renewed waste liquid of a plating bath liquid in electrolytic copper foil production, Examples include a waste liquid having a high anion concentration such as a copper ion concentration, a chlorine ion concentration, and a sulfate ion concentration, such as an etching waste solution generated in a roughening process of a substrate surface in a lamination process of multilayer printed circuit board production.
また、本発明方法で利用される酸化剤としては、2価の銅イオンを酸化できるものであれば、特に制約されず、種々の酸化剤を利用することができる。しかしながら、溶液として取り扱えることや、反応後に水以外の成分が残らないことから、本発明においては、酸化剤として過酸化水素やオゾン水などが適している。これらの酸化剤の中でも、過酸化水素は特別な発生装置が不要で、取り扱いが容易なことから、本用途には特に適している。酸化剤として過酸化水素を用いる場合の濃度は特に限定されないが、例えば、市販で入手が容易な30%程度の過酸化水素水が挙げられる。また、酸化剤としてオゾン水を用いる場合、オゾン水に代えて、気体オゾンを直接銅含有酸性廃液に吹き込んでもよい。 The oxidizing agent used in the method of the present invention is not particularly limited as long as it can oxidize divalent copper ions, and various oxidizing agents can be used. However, since it can be handled as a solution and no components other than water remain after the reaction, hydrogen peroxide, ozone water, or the like is suitable as the oxidizing agent in the present invention. Among these oxidizing agents, hydrogen peroxide is particularly suitable for this application because it does not require a special generator and is easy to handle. The concentration in the case of using hydrogen peroxide as the oxidizing agent is not particularly limited, and for example, a commercially available hydrogen peroxide solution of about 30% is easily available. When ozone water is used as the oxidant, gaseous ozone may be directly blown into the copper-containing acidic waste liquid instead of ozone water.
更に、本発明方法でのアルカリ性溶液の調製に利用されるアルカリ剤としては、種々のアルカリ剤を使用することができ、その形態としては、固体状でも液体状でもよい。しかし、具体的なアルカリ剤の選定は、銅含有酸性廃液中に共存する可能性がある陰イオンと沈降性の塩を形成しないアルカリ金属の水酸化物が適当である。一方、使用するアルカリ剤量は、処理する銅含有酸性廃液の銅イオン濃度、陰イオン濃度および液量によって決定される。従って、予め小スケールの実験で、処理すべき銅含有酸性廃液を中和するのに必要なアルカリ剤量を予め求め、実際の処理では、この結果を元に必要なアルカリ剤量を決めると良い。 Furthermore, various alkaline agents can be used as the alkaline agent used for preparing the alkaline solution in the method of the present invention, and the form thereof may be solid or liquid. However, for the selection of a specific alkaline agent, an alkali metal hydroxide that does not form a sedimentary salt with an anion that may coexist in the copper-containing acidic waste liquid is appropriate. On the other hand, the amount of the alkaline agent to be used is determined by the copper ion concentration, the anion concentration and the liquid amount of the copper-containing acidic waste liquid to be treated. Therefore, in a small-scale experiment, the amount of alkali agent necessary to neutralize the copper-containing acidic waste liquid to be treated is obtained in advance, and in actual treatment, the amount of alkali agent required may be determined based on this result. .
なお、アルカリ剤として固体状のアルカリを使用する場合は、廃液量の増加を抑制できる利点がある。固体状のアルカリ剤を用いる場合、固体状のアルカリ剤を水等で予め溶解させてから混合反応槽に供給しても良く、混合反応槽内に固体状のまま供給して混合反応槽で溶解させても良い。更に、固体状のアルカリ剤を溶解させる水としては後記する固液分離により固形物から分離された分離液、分離された固形物の洗浄処理で生じた洗浄処理排水等を用いることもできる。一方、アルカリ剤としてアルカリ性溶液を用いる場合は、使用するアルカリ剤量の制御が容易である点や、薬剤の補充が容易、溶解操作が不要であるなどの取り扱い面での利点がある。 In addition, when using a solid alkali as an alkali agent, there exists an advantage which can suppress the increase in the amount of waste liquids. When a solid alkaline agent is used, the solid alkaline agent may be dissolved in water or the like before being supplied to the mixing reaction tank, or supplied as a solid in the mixing reaction tank and dissolved in the mixing reaction tank. You may let them. Furthermore, as the water for dissolving the solid alkaline agent, a separation liquid separated from the solid by solid-liquid separation described later, a washing waste water generated by the washing treatment of the separated solid, and the like can also be used. On the other hand, when an alkaline solution is used as the alkaline agent, there are advantages in terms of handling such as easy control of the amount of alkaline agent used, easy replenishment of chemicals, and no dissolution operation.
本発明方法では、アルカリ剤として比較的安価で入手が容易なことから水酸化ナトリウムが好ましい。水酸化ナトリウムを用いる場合は、フレーク状、粒状等固体や溶液を利用できる。水酸化ナトリウム溶液を用いる場合は、濃度は特に限定されないが、例えば、25%程度の濃度の水酸化ナトリウム溶液が利用できる。 In the method of the present invention, sodium hydroxide is preferred because it is relatively inexpensive and easily available as an alkaline agent. When sodium hydroxide is used, a solid or solution such as flakes or granules can be used. In the case of using a sodium hydroxide solution, the concentration is not particularly limited. For example, a sodium hydroxide solution having a concentration of about 25% can be used.
以上まとめた形態を踏まえ、酸化剤として過酸化水素溶液を、アルカリ性溶液として水酸化ナトリウム溶液を用いる場合を例にとり、銅含有酸性廃液である銅エッチング廃液の処理を以下に説明する。 Based on the form summarized above, the case of using a hydrogen peroxide solution as the oxidant and a sodium hydroxide solution as the alkaline solution will be described as an example, and the treatment of the copper etching waste liquid which is a copper-containing acidic waste liquid will be described below.
本発明方法による処理プロセスにおいては、まず、処理すべき銅エッチング廃液の中和当量を超える量の水酸化ナトリウム水溶液を準備する。そして、混合反応槽中にこの水酸化ナトリウム溶液を入れ、この中に過酸化水素を加えた銅エッチング廃液を少量づつ注加して行く。そして、銅エッチング廃液の積算の注加量が、全銅エッチング廃液量の70ないし90%に達した時点(切替時点)で、銅エッチング廃液のみを水酸化ナトリウム溶液に注加する。 In the treatment process according to the method of the present invention, first, an aqueous sodium hydroxide solution in an amount exceeding the neutralization equivalent of the copper etching waste solution to be treated is prepared. And this sodium hydroxide solution is put into a mixing reaction tank, and the copper etching waste liquid which added hydrogen peroxide in this is poured little by little. Then, when the cumulative amount of the copper etching waste liquid reaches 70 to 90% of the total copper etching waste liquid amount (switching point), only the copper etching waste liquid is poured into the sodium hydroxide solution.
切替時点前での銅エッチング廃液に対する過酸化水素溶液の量は、銅エッチング廃液中の銅イオンが酸化される量であれば特に制約はないが、一般には、混合後の銅エッチング廃液中の銅のモル比と、酸化剤のモル比が、1.2ないし2倍程度となる量であることが好ましい。またこれらを混合した混合液の、混合反応槽内の水酸化ナトリウム溶液への注加は、連続的でも間欠的もかまわないが、混合液と水酸化ナトリウム液を十分に混合させるためには間欠的に行うことが好ましい。こうすることで、混合液中の銅イオンから酸化銅への反応が、混合液を水酸化ナトリウム溶液に注加し、中和する際に速やかに進む。混合液を注加する方法としては、例えば、混合反応槽に滴下する方法や配管を通して液中に供給する方法等が適用可能である。 The amount of the hydrogen peroxide solution with respect to the copper etching waste liquid before the switching point is not particularly limited as long as the copper ions in the copper etching waste liquid are oxidized, but generally, the copper in the copper etching waste liquid after mixing is not limited. It is preferable that the molar ratio of the oxidizer and the molar ratio of the oxidizing agent be an amount that is about 1.2 to 2 times. In addition, the mixed liquid mixture may be continuously or intermittently added to the sodium hydroxide solution in the mixing reaction tank. However, in order to sufficiently mix the mixed liquid and the sodium hydroxide liquid, the mixed liquid is intermittent. Preferably. By carrying out like this, reaction from the copper ion in a liquid mixture to copper oxide advances rapidly, when pouring a liquid mixture into a sodium hydroxide solution and neutralizing. As a method of pouring the mixed liquid, for example, a method of dropping into a mixed reaction tank or a method of supplying the mixed liquid into the liquid through piping is applicable.
一方、水酸化ナトリウム溶液の注加方法としては、混合反応槽に到達する前に上記混合液と混ざらないよう供給する以外は、特に限定されず、例えば、混合反応槽に滴下する方法や少量を連続的に注入する方法等が挙げられる。 On the other hand, the method of pouring the sodium hydroxide solution is not particularly limited except that it is supplied so as not to be mixed with the mixed solution before reaching the mixed reaction tank. The method of injecting continuously is mentioned.
次に、銅エッチング廃液の積算の注加量が、切替時点に達した後は、過酸化水素を添加せず、銅エッチング廃液のみを、水酸化ナトリウム溶液に注加する。この反応では、酸化剤がない状態で銅エッチング廃液が水酸化ナトリウム溶液に注加されることになるので、銅エッチング廃液中の銅イオンは、酸化銅に完全に酸化されず一部が水酸化銅として残留する。この水酸化銅は、大量に存在すると水で膨潤し、取り扱いにくい汚泥となるが、本発明方法のように、少量存在する場合では、これが微細な浮遊物質を取り込むことで、固液分離を促進し、得られる処理水の性状が改善するのである。 Next, after the cumulative amount of the copper etching waste liquid reaches the switching point, hydrogen peroxide is not added, and only the copper etching waste liquid is poured into the sodium hydroxide solution. In this reaction, the copper etching waste solution is poured into the sodium hydroxide solution in the absence of an oxidant, so that the copper ions in the copper etching waste solution are not completely oxidized to copper oxide and partly hydroxylated. It remains as copper. If this copper hydroxide is present in a large amount, it swells with water and becomes sludge that is difficult to handle. However, when present in a small amount as in the method of the present invention, this facilitates solid-liquid separation by incorporating fine suspended solids. As a result, the properties of the treated water obtained are improved.
なお、反応中に、銅エッチング廃液の注加量が、混合反応槽内の水酸化ナトリウム溶液の中和当量を超えると、混合反応槽内の懸濁液のpHが7未満となり、銅がCu2+の形態で再溶解し、処理水中の銅濃度が上昇する。そして、銅エッチング廃液(銅含有酸性廃液)からの銅の除去・回収が目的である本発明では、このような現象は好ましいことでないので、銅含有酸性廃液の注加、混合に当たり、反応系内において、一時的にでもまた部分的にでもpHが中和点より酸性側にならないよう管理することも重要である。具体的には、反応中、混合反応槽のpHを測定し、反応中の液のpHを7以上、好ましくは8以上を維持するよう管理することで、銅がCu2+の形態で再溶解することを抑制することが望ましい。 During the reaction, if the amount of the copper etching waste solution exceeds the neutralization equivalent of the sodium hydroxide solution in the mixing reaction tank, the pH of the suspension in the mixing reaction tank becomes less than 7, and the copper is Cu. It dissolves again in the form of 2+ and the copper concentration in the treated water increases. In the present invention, which is intended to remove and recover copper from the copper etching waste liquid (copper-containing acidic waste liquid), such a phenomenon is not preferable. Therefore, in the addition and mixing of the copper-containing acidic waste liquid, It is also important to control the pH so that it does not become acidic from the neutralization point, either temporarily or partially. Specifically, during the reaction, the pH of the mixed reaction tank is measured, and the pH of the liquid during the reaction is controlled to maintain 7 or more, preferably 8 or more, so that copper is redissolved in the form of Cu 2+. It is desirable to suppress this.
本発明方法では、銅含有酸性廃液の注加操作において、酸化剤の添加の有無を使い分けることで、酸化銅を主成分とする回収物と、酸化銅に加え、一部水酸化銅が含まれる回収物を得ることが重要である。例えば、銅含有酸性廃液の積算の注加量が少ない時点で酸化剤の添加を停止すると、膨潤しやすい水酸化銅の生成量が多くなり、結果として、回収物の取扱が困難になる。従って、酸化剤の添加は、注加操作の後半、具体的には前記の切替時点で停止することで、微細な浮遊物を取り込むのに十分な量の水酸化銅が生成するよう管理することが望ましい。 In the method of the present invention, in the operation of pouring the copper-containing acidic waste liquid, by selectively using the presence or absence of the addition of the oxidizing agent, in addition to the recovered material mainly composed of copper oxide and copper oxide, some copper hydroxide is included. It is important to obtain a collection. For example, if the addition of the oxidizing agent is stopped when the cumulative amount of the copper-containing acidic waste liquid is small, the amount of copper hydroxide that easily swells increases, and as a result, it becomes difficult to handle the recovered material. Therefore, the addition of the oxidant should be stopped in the second half of the pouring operation, specifically at the time of switching, so that an amount of copper hydroxide sufficient to take in fine suspended matters is generated. Is desirable.
以上のようにして混合反応槽での反応終了後、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を引き抜き、これを固形物(主に酸化銅)と、分離液(上澄液)に固液分離する。固液分離には、公知の手段、例えば、ろ過分離、遠心分離、沈降分離等が適用可能である。こうすることにより、資源として再利用可能な酸化銅を主成分とする固形物と、懸濁物や銅イオンの含量の少ない分離液を得ることができる。 After completion of the reaction in the mixing reaction tank as described above, an alkaline suspension containing a solid material mainly composed of copper oxide is drawn out, and this is separated into a solid material (mainly copper oxide) and a separated liquid (supernatant). Liquid). For the solid-liquid separation, known means such as filtration separation, centrifugation, sedimentation separation, etc. can be applied. By carrying out like this, the solid which has copper oxide as a main component which can be reused as a resource, and the separated liquid with little content of a suspension and a copper ion can be obtained.
上記本発明方法の実施は、一般には、反応混合槽が1槽である装置を用い、この中にアルカリ性溶液を入れた後、最初は銅含有酸性廃液と酸化剤の混合物を加えたものを徐々に注加し、十分に攪拌して酸化銅を主成分とする回収物を生成させ、切替時点以後は、銅含有酸性廃液のみを加えて酸化銅と水酸化銅を含む沈殿物を生成させることで実施されるが、以下の図3に示すような、2つの混合槽を有する装置を用い、最初の混合槽には銅含有酸性廃液と酸化剤の混合物を加え、2番目の混合槽では、銅含有酸性廃液のみを加えるようにしても良い。 In general, the method of the present invention is carried out using an apparatus having one reaction mixing tank, and after the alkaline solution is put therein, the mixture of the acid waste liquid containing copper and the oxidizing agent is added gradually. And then thoroughly agitate to produce a recovered product mainly composed of copper oxide. After the switching point, only a copper-containing acidic waste liquid is added to produce a precipitate containing copper oxide and copper hydroxide. However, using a device having two mixing tanks as shown in FIG. 3 below, a mixture of copper-containing acidic waste liquid and an oxidizing agent is added to the first mixing tank, and in the second mixing tank, Only the copper-containing acidic waste liquid may be added.
図3は、本発明法に使用し得る、混合槽を2つ有する装置の一例を模式的に示した図面である。図3中、1は銅含有酸性廃液、2は酸化剤、3はアルカリ性水溶液、4はアルカリ性懸濁液、5は酸化銅ケーキ、6は上澄液を示し、11は混合槽、12は第一混合反応槽、13は脱水装置、14は制御装置、15は銅含有酸性廃液供給ポンプ、16は酸化剤供給ポンプ、17は第二混合反応槽、18は液移送ポンプをそれぞれ示す。 FIG. 3 is a drawing schematically showing an example of an apparatus having two mixing vessels that can be used in the method of the present invention. In FIG. 3, 1 is a copper-containing acidic waste liquid, 2 is an oxidizing agent, 3 is an alkaline aqueous solution, 4 is an alkaline suspension, 5 is a copper oxide cake, 6 is a supernatant, 11 is a mixing tank, 12 is the first One mixing reaction tank, 13 is a dehydrating device, 14 is a control device, 15 is a copper-containing acidic waste liquid supply pump, 16 is an oxidizing agent supply pump, 17 is a second mixing reaction tank, and 18 is a liquid transfer pump.
図3の装置においては、銅含有酸性廃液1と酸化剤2は、混合槽11にて混合後、アルカリ性水溶液3が供給された第一混合反応槽12に少量ずつ注加される。注加の際、銅含有酸性廃液1と酸化剤2の注加量は、制御装置14にて積算される。制御装置14は、銅含有酸性廃液1の注加量が反応開始時から、アルカリ性溶液3に対する銅含有酸性廃液1の全注加量の70ない90%までは、銅含有酸性廃液1と酸化剤2の混合液が第一混合反応槽12に注加されるように制御する。また、制御装置14は、銅含有酸性廃液の全注加量が上記量を越えた後、一旦、注加操作を中断し、液移送ポンプ18を運転し、混合反応槽12内のアルカリ性懸濁液4を第二混合反応槽17に移送する制御を行う。第二混合反応槽17に供給されたアルカリ性懸濁液4には、その後、残りの銅含有酸性廃液1が注加され、反応が完結する。反応終了後、アルカリ性懸濁液4は脱水装置13に移送され、固液分離後、酸化銅ケーキ5が回収される。
In the apparatus of FIG. 3, the copper-containing
一般に、水酸化銅は高濃度で存在すると、含水率が高く、難脱水性のスラッジとなることが知られている。しかしながら、本発明のように既に固形物(酸化銅粒子)が多く含まれる懸濁液中において、これが少量存在すればその凝集作用によって、この固形物を凝集させて酸化銅粒子を粗大化させ、固液分離性を改善する。 In general, it is known that when copper hydroxide is present at a high concentration, the moisture content is high and it becomes a hardly dewatering sludge. However, in a suspension already containing a large amount of solids (copper oxide particles) as in the present invention, if present in a small amount, the agglomeration action causes the solids to agglomerate and coarsen the copper oxide particles, Improve solid-liquid separation.
本発明は、このような原理に基づき、銅含有酸性廃液とアルカリ性溶液の中和反応中において意識的に酸化剤の供給を制御することで、少量の水酸化銅を生成させ、効率の良い銅の回収と、処理性の高い上澄液を得ることを可能としたのである。 Based on such a principle, the present invention consciously controls the supply of an oxidant during the neutralization reaction between the copper-containing acidic waste liquid and the alkaline solution, thereby generating a small amount of copper hydroxide, thereby improving the efficiency of copper. It was possible to obtain a supernatant liquid with high recoverability and high processability.
次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.
実 施 例 1
実施例1では、処理終了(反応終了)時点の混合反応槽pHを7以上とするため、使用した25%水酸化ナトリウムをpH7に中和するのに必要な銅エッチング廃液量に対し、銅エッチング廃液の積算の注加量が0.95当量となる量を混合反応槽に供給することとした。また、水酸化ナトリウム溶液を中和するために必要な銅エッチング廃液量の0.8当量までの注加操作では、銅エッチング廃液と過酸化水素溶液の混合液を8回に分けて水酸化ナトリウム溶液に間欠的に注加した。注加後の休止時間は3分に設定した。
Example 1
In Example 1, in order to set the mixed reaction tank pH at the end of the treatment (reaction) to 7 or more, the amount of copper etching waste liquid required to neutralize the 25% sodium hydroxide used to
さらに、0.9当量までの注加操作(分注9回目)と0.95当量までの注加操作(注加10回目)では、過酸化水素水を添加せず、銅エッチング廃液のみを水酸化ナトリウム溶液に注加し反応を終了した。 Furthermore, in the pouring operation up to 0.9 equivalent (9th time of dispensing) and the pouring operation up to 0.95 equivalent (10th time of pouring), hydrogen peroxide solution is not added and only the copper etching waste solution is water. The reaction was terminated by pouring into the sodium oxide solution.
<予備試験>
処理の前に、処理予定の銅エッチング廃液量に対する必要最低限の25%水酸化ナトリウム溶液量を求めるため、小スケールで中和処理を行った。25%水酸化ナトリウム溶液に銅エッチング廃液を少量ずつ添加し、銅エッチング廃液の添加量に対するpHを測定したところ、図1のような中和曲線が得られた。図1より1mLの25%水酸化ナトリウム溶液を中和してpH7とするための銅エッチング廃液量を求めると(図1中の太線)約1.15mLであった。この結果より、本実施例で使用する銅エッチング廃液と25%水酸化ナトリウム溶液量を混合してpH7とするための混合比率は、容積比で1.15:1であるとした。
<Preliminary test>
Prior to the treatment, neutralization treatment was performed on a small scale in order to obtain the minimum amount of 25% sodium hydroxide solution relative to the amount of copper etching waste liquid to be treated. When the copper etching waste solution was added to the 25% sodium hydroxide solution little by little and the pH with respect to the added amount of the copper etching waste solution was measured, a neutralization curve as shown in FIG. 1 was obtained. From FIG. 1, the amount of copper etching waste solution for neutralizing 1 mL of 25% sodium hydroxide solution to pH 7 (thick line in FIG. 1) was about 1.15 mL. From this result, the mixing ratio for mixing the copper etching waste solution used in this example with the amount of 25% sodium hydroxide solution to
<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を478mL添加し、マグネティックスターラーで撹拌した。次に、別のビーカーに銅エッチング廃液55mLと30%過酸化水素溶液12.6mLを混合し、3分間撹拌して混合液とした。
<Processing operations>
478 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and stirred with a magnetic stirrer. Next, 55 mL of copper etching waste solution and 12.6 mL of 30% hydrogen peroxide solution were mixed in another beaker and stirred for 3 minutes to obtain a mixed solution.
銅エッチング廃液と過酸化水素溶液の混合液の全量を、水酸化ナトリウム溶液が入ったビーカーに3分かけて添加した。この注加の間、2Lビーカーは系内のpHが均一になるように撹拌した。銅エッチング廃液と過酸化水素溶液の混合液の注加終了後も、ビーカーの撹拌を続けた。前の注加から3分経過後、別のビーカーで調製した銅エッチング廃液55mLと、過酸化水素溶液12.6mLの混合液を、2リットルビーカーに注加し、3分間の放置を行った。この操作は計8回繰り返した。この操作中、2リットルビーカーは常時攪拌した。 The total amount of the mixture of the copper etching waste liquid and the hydrogen peroxide solution was added to the beaker containing the sodium hydroxide solution over 3 minutes. During this addition, the 2 L beaker was stirred so that the pH in the system was uniform. The stirring of the beaker was continued even after the pouring of the mixed liquid of the copper etching waste liquid and the hydrogen peroxide solution was completed. After 3 minutes from the previous addition, 55 mL of copper etching waste solution prepared in another beaker and 12.6 mL of hydrogen peroxide solution were added to a 2 liter beaker and left for 3 minutes. This operation was repeated a total of 8 times. During this operation, the 2 liter beaker was constantly stirred.
注加操作を8回終了した後、9回目の注加操作では、銅エッチング廃液55mLのみを、ビーカーに3分間かけて注加し、注加終了後に3分間撹拌放置した。次に、10回目の注加操作では、銅エッチング廃液27.5mLをビーカーに3分間かけて注加し、その後30分間撹拌を継続した後、反応を終了した。 After the pouring operation was completed 8 times, in the ninth pouring operation, only 55 mL of the copper etching waste liquid was poured into the beaker over 3 minutes, and the mixture was left stirring for 3 minutes after the pouring operation was completed. Next, in the tenth pouring operation, 27.5 mL of the copper etching waste liquid was poured into the beaker over 3 minutes, and then the stirring was continued for 30 minutes, after which the reaction was terminated.
以上の操作より、黒色の固形物を含む懸濁液が生成した。この懸濁液から、遠心分離機を用い固形物を分離した。得られた固形物を乾燥し、粉末X線回折法で評価したところ、酸化銅が主成分であることを確認した(図2)。 Through the above operation, a suspension containing a black solid was produced. Solids were separated from this suspension using a centrifuge. When the obtained solid was dried and evaluated by powder X-ray diffraction, it was confirmed that copper oxide was the main component (FIG. 2).
なお、本発明の作用機序は、混合の最終段階で銅エッチング廃液に過酸化水素溶液を加えず水酸化ナトリウム溶液中に注加することで、水酸化銅の生成を許容し、この水酸化銅がそれ以前に生成した酸化銅が主成分の生成物の沈澱剤として作用するというものである。従って、注加操作7回目以降(注加全量の70%以降)で銅エッチング廃液のみをアルカリ性溶液に混合すれば、生成する量は別として水酸化銅を含む生成物が生成し、実施例と同じ効果が得られことは明らかである。 The action mechanism of the present invention allows the formation of copper hydroxide by adding the hydrogen peroxide solution to the copper etching waste solution in the sodium hydroxide solution without adding it to the copper etching waste solution at the final stage of mixing. The copper oxide previously formed by copper acts as a precipitant for the main product. Therefore, if only the copper etching waste liquid is mixed with the alkaline solution after the seventh injection operation (after 70% of the total injection amount), a product containing copper hydroxide is generated apart from the amount generated. It is clear that the same effect can be obtained.
比 較 例 1
<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を478mL添加し、マグネティックスターラーで撹拌した。次に、別のビーカーに実施例1と同じ銅エッチング廃液55mLと30%過酸化水素溶液12.6mLを混合し、3分間撹拌して混合液とした。
Comparative Example 1
<Processing operations>
478 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and stirred with a magnetic stirrer. Next, 55 mL of the same copper etching waste solution as in Example 1 and 12.6 mL of 30% hydrogen peroxide solution were mixed in another beaker and stirred for 3 minutes to obtain a mixed solution.
銅エッチング廃液と過酸化水素溶液の混合液の全量を、水酸化ナトリウム溶液が入ったビーカーに3分かけて添加した。この注加の間、2Lビーカーは系内のpHが均一になるように撹拌した。銅エッチング廃液と過酸化水素溶液の混合液の注加終了後も、ビーカーの撹拌を続けた。前の注加から3分経過後、別のビーカーで調製した銅エッチング廃液55mLと、過酸化水素溶液を12.6mLの混合液を、2リットルビーカーへ注加し、次いで3分間の攪拌放置を行った。この操作は計9回繰り返した。 The total amount of the mixture of the copper etching waste liquid and the hydrogen peroxide solution was added to the beaker containing the sodium hydroxide solution over 3 minutes. During this addition, the 2 L beaker was stirred so that the pH in the system was uniform. The stirring of the beaker was continued even after the pouring of the mixed liquid of the copper etching waste liquid and the hydrogen peroxide solution was completed. After 3 minutes from the previous addition, 55 mL of the copper etching waste solution prepared in another beaker and 12.6 mL of the hydrogen peroxide solution were added to the 2 liter beaker, and then left for 3 minutes with stirring. went. This operation was repeated a total of 9 times.
10回目の注加操作では、銅エッチング廃液27.5mLと過酸化水素水6.3mLを混合、3分間撹拌した。次に、この混合液をビーカーに3分間かけて注加し、その後30分間撹拌を継続した後反応を終了した。以上の操作より、黒色の固形物を含む懸濁液が生成した。この懸濁液から、遠心分離機を用い固形物を分離した。 In the tenth pouring operation, 27.5 mL of copper etching waste solution and 6.3 mL of hydrogen peroxide solution were mixed and stirred for 3 minutes. Next, this mixed solution was poured into a beaker over 3 minutes, and then the stirring was continued for 30 minutes, and then the reaction was completed. Through the above operation, a suspension containing a black solid was produced. Solids were separated from this suspension using a centrifuge.
比 較 例 2
<処理操作>
比較例2では、過酸化水素水を使用せずに塩化銅エッチング廃液の中和を試みた。2リットルのビーカーに25%水酸化ナトリウム溶液を478mL添加し、マグネティックスターラーで撹拌した。次に、銅エッチング廃液55mLを水酸化ナトリウム溶液が入ったビーカーに3分かけて添加した。この注加の間、濃青色の膨潤した汚泥状の固形物が析出した。この注加操作を9回繰り返し、10回目には、塩化銅エッチング廃液27.5mLを注加した。注加操作の間、生成した濃青色の汚泥状の物質は、徐々に水色の膨潤した汚泥状の固形物に変化した。この汚泥状の物質はビーカーを満たし、撹拌が困難な状態になった。また、反応終了後に放置しても上澄液が分離せず、水酸化銅や複塩(CuCl2・3Cu(OH)2)を主成分とする含水率の高い汚泥が生成した。
Comparative Example 2
<Processing operation>
In Comparative Example 2, neutralization of the copper chloride etching waste liquid was attempted without using hydrogen peroxide. 478 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and stirred with a magnetic stirrer. Next, 55 mL of copper etching waste liquid was added to the beaker containing the sodium hydroxide solution over 3 minutes. During this addition, a deep blue swollen sludge-like solid precipitated. This pouring operation was repeated 9 times, and in the 10th time, 27.5 mL of copper chloride etching waste liquid was added. During the pouring operation, the dark blue sludge material produced gradually changed to a light blue swollen sludge solid. This sludge-like substance filled the beaker and became difficult to stir. In addition, even when the reaction was allowed to stand after completion of the reaction, the supernatant liquid was not separated, and sludge having a high water content mainly composed of copper hydroxide and double salt (CuCl 2 .3Cu (OH) 2 ) was generated.
試 験 例
実施例及び比較例で得られた各スラリーについて、汚泥の沈降性、上澄水の濁度およびSS、上澄水中銅濃度を測定した。この結果を表1に示す。
Test Example For each of the slurries obtained in Examples and Comparative Examples, sludge sedimentation, turbidity and SS of the supernatant water, and copper concentration of the supernatant water were measured. The results are shown in Table 1.
この結果から明らかなように、実施例1のスラリーは、比較例1のものと比較して、やや汚泥の沈降性が劣ったものの、上澄水の濁度やSS、残留した銅濃度が低く、良好な上澄水が得られるものであった。なお、比較例2では膨潤した汚泥状の物質が生成したため、固液分離操作が行えず、上澄水の濁度およびSS、上澄水中の銅濃度は測定できなかった。 As is apparent from this result, the slurry of Example 1 was slightly inferior in sludge sedimentation compared to that of Comparative Example 1, but the turbidity and SS of the supernatant water, and the residual copper concentration were low. Good supernatant water was obtained. In Comparative Example 2, since a swollen sludge-like substance was generated, the solid-liquid separation operation could not be performed, and the turbidity and SS of the supernatant water and the copper concentration in the supernatant water could not be measured.
以上の結果より、分注操作の後半で酸化剤の添加を停止し、銅含有酸性廃液のみをアルカリ剤に添加することで、沈降性の良好な固形物を回収しつつ、良好な上澄水も得られることが示された。 From the above results, by stopping the addition of the oxidizing agent in the latter half of the dispensing operation and adding only the copper-containing acidic waste liquid to the alkaline agent, while collecting solids with good sedimentation, good supernatant water is also obtained. It was shown to be obtained.
本発明方法によれば、これまでの処理技術では複塩の生成などにより処理が困難であった、銅イオンの含有濃度が5〜20%という高濃度の銅含有酸性廃液を希釈することなく、直接処理することができる。また、本発明方法で得られる回収物は、酸化銅の含量が多いため、単純な水酸化物沈殿方式と比較して含水率が低く、沈降、分離性が良く、容易に酸化銅を主体とする固形物を回収することもできる。 According to the method of the present invention, it is difficult to treat with conventional treatment techniques due to the formation of double salts, etc., without diluting a high concentration copper-containing acidic waste liquid with a copper ion content concentration of 5 to 20%, Can be processed directly. In addition, since the recovered product obtained by the method of the present invention has a high content of copper oxide, it has a low water content compared to a simple hydroxide precipitation method, has good sedimentation and separability, and is easily composed mainly of copper oxide. It is also possible to recover the solid matter.
従って、本発明方法は、高濃度で銅を含有するエッチング廃液、めっき更新廃液などの酸性廃液の処理方法として、有用なものである。 Therefore, the method of the present invention is useful as a method for treating acidic waste liquid such as etching waste liquid and plating renewal waste liquid containing copper at a high concentration.
1:銅含有酸性廃液
2:酸化剤
3:アルカリ性水溶液
4:アルカリ性懸濁液
5:酸化銅ケーキ
6:上澄液
11:混合槽
12:(第一)混合反応槽
13:脱水装置
14:制御装置
15:銅含有酸性廃液供給ポンプ
16:酸化剤供給ポンプ
17:第2混合反応槽
1: Copper-containing acidic waste liquid 2: Oxidizing agent 3: Alkaline aqueous solution 4: Alkaline suspension 5: Copper oxide cake 6: Supernatant liquid 11: Mixing tank 12: (First) mixing reaction tank 13: Dehydration device 14: Control Apparatus 15: Copper-containing acidic waste liquid supply pump 16: Oxidant supply pump 17: Second mixed reaction tank
本発明者らは、処理対象液である銅イオンを高濃度で含有する酸性廃液と酸化剤とを混合した後、アルカリ溶液に少量ずつ、注加、混合することで、銅含有酸性廃液中に含まれる銅イオンを酸化銅まで酸化し、沈降させる上記特許文献1の方法について、改良研究を行っていたところ、ある程度まで銅含有酸性廃液と酸化剤の混合液の注加操作を繰り返した後に、銅含有酸性廃液のみをアルカリ溶液に注加することで、意外にも沈降性の良好なスラッジを得ることができ、上澄液への微細な浮遊物の残留や、銅イオン量が抑制された良好な処理水が得られることを見出し、本発明を完成した。
The present inventors have, after mixing with the acidic waste liquid containing copper ions is processed liquid at a high concentration and an oxidizing agent, in small portions in an alkaline solution, pouring, by mixing, in the copper-containing acidic waste liquid About the method of the above-mentioned
また本発明は、銅含有酸性廃液と酸化剤供給手段からの酸化剤とを混合する混合槽と、該混合槽で得られた銅含有酸性廃液と酸化剤の混合液を、アルカリ剤が供給された混合反応槽に供給する手段と、該混合液とアルカリ剤を混合し、アルカリ性懸濁液を生成する混合反応槽とを含む銅含有酸性廃液の処理装置であって、
更に、銅含有酸性廃液の積算注加量を計量する手段、および
該銅含有酸性廃液の積算注加量に応じ、酸化剤の供給を制御する手段
を備えたことを特徴とする、銅含有酸性廃液の中和、回収処理装置である。
Further, the present invention provides a mixing tank for mixing the copper-containing acidic waste liquid and the oxidizing agent from the oxidizing agent supply means, and the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent obtained in the mixing tank is supplied with an alkaline agent. means for supplying to the mixing reaction tank was, by mixing the mixture and an alkaline agent, a processing apparatus of the copper-containing acidic waste liquid containing a mixed reaction vessel to produce an alkaline suspension solution,
The copper-containing acidic waste liquid further comprises means for measuring the cumulative amount of the copper-containing acidic waste liquid, and means for controlling the supply of the oxidizing agent according to the cumulative amount of the copper-containing acidic waste liquid. Waste liquid neutralization and recovery treatment equipment.
更に本発明は、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、酸化剤の注加手段および混合手段を有し、銅含有酸性廃液と酸化剤の混合液がアルカリ性水溶液と反応してアルカリ性懸濁液を生成する第一の混合反応槽と;
第一の混合反応槽と連通し、銅含有酸性廃液の注加手段および混合手段を有すると共に、第一の混合反応槽からのアルカリ性懸濁液を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた銅含有酸性廃液の中和、回収処理装置である。
Furthermore, the present invention has a supplying means for alkaline aqueous solution, a pouring means for copper-containing acidic waste liquid, a pouring means for oxidizing agent and a mixing means, and the mixed liquid of copper-containing acidic waste liquid and oxidizing agent reacts with the alkaline aqueous solution. A first mixing reactor that produces an alkaline suspension;
The copper-containing acidic waste liquid is communicated with the first mixing reaction tank, and has an addition means and a mixing means for the copper-containing acidic waste liquid, and contains an alkaline suspension from the first mixing reaction tank. A copper-containing acidic waste liquid neutralization / recovery treatment apparatus comprising a second mixing reaction tank for reacting the alkaline suspension.
1:銅含有酸性廃液
2:酸化剤
3:アルカリ性水溶液
4:アルカリ性懸濁液
5:酸化銅ケーキ
6:上澄液
11:混合槽
12:(第一)混合反応槽
13:脱水装置
14:制御装置
15:銅含有酸性廃液供給ポンプ
16:酸化剤供給ポンプ
17:第2混合反応槽
18:液移送ポンプ
1: Copper-containing acidic waste liquid 2: Oxidizing agent 3: Alkaline aqueous solution 4: Alkaline suspension 5: Copper oxide cake 6: Supernatant liquid 11: Mixing tank 12: (First) mixing reaction tank 13: Dehydration device 14: Control Apparatus 15: Copper-containing acidic waste liquid supply pump 16: Oxidant supply pump 17: Second mixed reaction tank
18: Liquid transfer pump
Claims (5)
(1)反応開始時から、銅含有酸性廃液のアルカリ性溶液に対する全注加量の70ない
し90%までは、銅含有酸性廃液と酸化剤とを混合してからアルカリ性溶液中に注
加、混合し、
(2)銅含有酸性廃液の全注加量が上記量を越えた後は、酸化剤を用いず銅含有酸性廃液
をアルカリ性溶液中に注加、混合する
ことを特徴とする銅含有酸性廃液の中和および銅の回収方法。 The copper-containing acidic waste liquid is poured into an alkaline solution having a neutralization equivalent or more with respect to the copper-containing acidic waste liquid, and mixed to produce a suspension containing a solid containing copper oxide as a main component. A method for neutralizing copper-containing acidic waste liquid for separating the solid matter from a suspension and recovering copper,
(1) From the start of the reaction, the copper-containing acidic waste liquid and the oxidizing agent are mixed for 70 to 90% of the total amount added to the alkaline solution of the copper-containing acidic waste liquid, and then poured into the alkaline solution and mixed. And
(2) After the total amount of the copper-containing acidic waste liquid exceeds the above amount, the copper-containing acidic waste liquid is characterized by adding and mixing the copper-containing acidic waste liquid into the alkaline solution without using an oxidizing agent. Neutralization and copper recovery method.
更に、銅含有酸性廃液の積算注加量を計量する手段、および
該銅含有酸性廃液の積算注加量に応じ、酸化剤の供給を制御する手段
を備えたことを特徴とする、銅含有酸性廃液の中和、回収処理装置。 A mixing tank for mixing the copper-containing acidic waste liquid and the oxidizing agent from the oxidizing agent supply means, and the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent obtained in the mixing tank into the mixing reaction tank supplied with the alkaline agent A copper-containing acidic waste liquid treatment apparatus comprising: means for supplying; and a mixed reaction tank for mixing the mixed solution and an alkaline agent to generate an alkaline suspension,
The copper-containing acidic waste liquid further comprises means for measuring the cumulative amount of the copper-containing acidic waste liquid, and means for controlling the supply of the oxidizing agent according to the cumulative amount of the copper-containing acidic waste liquid. Waste liquid neutralization and recovery processing equipment.
第一の混合反応槽と連通し、銅含有酸性廃液の注加手段および混合手段を有すると共に、第一の混合反応槽からのアルカリ性懸濁液剤を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた銅含有酸性廃液の中和、回収処理装置。
There are means for supplying alkaline aqueous solution, means for adding copper-containing acidic waste liquid, means for adding oxidizing agent and means for mixing, and the mixture of copper-containing acidic waste liquid and oxidizing agent reacts with the aqueous alkaline solution to form an alkaline suspension. A first mixing reactor to produce;
The copper-containing acidic waste liquid is communicated with the first mixing reaction tank, and has an addition means and a mixing means for the copper-containing acidic waste liquid, and contains the alkaline suspension from the first mixing reaction tank, An apparatus for neutralizing and recovering a copper-containing acidic waste liquid comprising a second mixing reaction tank for reacting the alkaline suspension.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092554A JP5808131B2 (en) | 2011-04-19 | 2011-04-19 | Process and recovery method for copper-containing acidic waste liquid and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092554A JP5808131B2 (en) | 2011-04-19 | 2011-04-19 | Process and recovery method for copper-containing acidic waste liquid and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012224901A true JP2012224901A (en) | 2012-11-15 |
JP5808131B2 JP5808131B2 (en) | 2015-11-10 |
Family
ID=47275393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011092554A Active JP5808131B2 (en) | 2011-04-19 | 2011-04-19 | Process and recovery method for copper-containing acidic waste liquid and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5808131B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087942A (en) * | 2014-07-24 | 2014-10-08 | 广西新天德能源有限公司 | Etching waste liquid treatment equipment |
CN106011469A (en) * | 2016-06-29 | 2016-10-12 | 攀钢集团攀枝花钢钒有限公司 | Continuous vanadium precipitation method for high-concentration vanadium solution |
CN106041122A (en) * | 2016-07-13 | 2016-10-26 | 许勤峰 | Method for preparing nanometre copper-catalyzed slurry by virtue of PCB acidic waste liquid |
CN106077700A (en) * | 2016-07-13 | 2016-11-09 | 许勤峰 | A kind of method utilizing circuit board waste liquid to prepare Nanometer Copper catalysis slurry |
CN112811659A (en) * | 2020-12-30 | 2021-05-18 | 悦虎晶芯电路(苏州)股份有限公司 | Copper-containing waste liquid recovery treatment device and treatment method thereof |
CN112919672A (en) * | 2021-01-25 | 2021-06-08 | 湖北林泰环境科技有限公司 | Method for preparing high-purity copper powder and ferrous chloride water purifying agent by using waste acidic etching solution |
CN114162848A (en) * | 2021-06-02 | 2022-03-11 | 王水平 | Method for preparing copper oxide by indirectly treating waste acidic etching solution |
CN114920343A (en) * | 2022-05-05 | 2022-08-19 | 深圳市臻鼎环保科技有限公司 | Reduction treatment method for printing ink residues and sludge in PCB industry |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007083179A (en) * | 2005-09-22 | 2007-04-05 | Kurita Water Ind Ltd | Treatment method and apparatus for copper particle-containing water |
JP2009167462A (en) * | 2008-01-15 | 2009-07-30 | Ebara Corp | Method for recovering copper from copper-containing acid waste liquid, and device therefor |
-
2011
- 2011-04-19 JP JP2011092554A patent/JP5808131B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007083179A (en) * | 2005-09-22 | 2007-04-05 | Kurita Water Ind Ltd | Treatment method and apparatus for copper particle-containing water |
JP2009167462A (en) * | 2008-01-15 | 2009-07-30 | Ebara Corp | Method for recovering copper from copper-containing acid waste liquid, and device therefor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087942A (en) * | 2014-07-24 | 2014-10-08 | 广西新天德能源有限公司 | Etching waste liquid treatment equipment |
CN106011469A (en) * | 2016-06-29 | 2016-10-12 | 攀钢集团攀枝花钢钒有限公司 | Continuous vanadium precipitation method for high-concentration vanadium solution |
CN106041122A (en) * | 2016-07-13 | 2016-10-26 | 许勤峰 | Method for preparing nanometre copper-catalyzed slurry by virtue of PCB acidic waste liquid |
CN106077700A (en) * | 2016-07-13 | 2016-11-09 | 许勤峰 | A kind of method utilizing circuit board waste liquid to prepare Nanometer Copper catalysis slurry |
CN112811659A (en) * | 2020-12-30 | 2021-05-18 | 悦虎晶芯电路(苏州)股份有限公司 | Copper-containing waste liquid recovery treatment device and treatment method thereof |
CN112919672A (en) * | 2021-01-25 | 2021-06-08 | 湖北林泰环境科技有限公司 | Method for preparing high-purity copper powder and ferrous chloride water purifying agent by using waste acidic etching solution |
CN114162848A (en) * | 2021-06-02 | 2022-03-11 | 王水平 | Method for preparing copper oxide by indirectly treating waste acidic etching solution |
CN114920343A (en) * | 2022-05-05 | 2022-08-19 | 深圳市臻鼎环保科技有限公司 | Reduction treatment method for printing ink residues and sludge in PCB industry |
Also Published As
Publication number | Publication date |
---|---|
JP5808131B2 (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5808131B2 (en) | Process and recovery method for copper-containing acidic waste liquid and apparatus therefor | |
US9243307B2 (en) | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance | |
JP5102157B2 (en) | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid | |
JP5431998B2 (en) | Method and apparatus for recovering copper from acidic waste liquid containing copper | |
JP5307478B2 (en) | Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid | |
JP6511040B2 (en) | Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution | |
JP5215111B2 (en) | Method and apparatus for recovering copper from acidic waste liquid containing copper | |
JP2018079439A (en) | Method and device for treating waste water containing sulfuric acid, fluorine and heavy metal ion | |
WO2013176111A1 (en) | Processing method and apparatus for copper chloride-containing acidic waste liquids | |
JP5808132B2 (en) | Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor | |
WO2007113926A1 (en) | Method of purifying copper salt solution, purification apparatus and copper salt solution | |
JP2017136539A (en) | Method for treating blast furnace drain water | |
JP5965213B2 (en) | Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid | |
JPS5834197B2 (en) | High speed inosyoriho | |
JP2014012880A (en) | Method for disposing electroless copper plating waste solution, and device for the same | |
JP2007237054A (en) | Method of recycling multicomponent metal plating waste liquid sludge | |
JP4399529B2 (en) | Treatment method of electroless plating waste liquid | |
JP2002255550A (en) | Method and apparatus for recovering copper as precipitate from etching waste liquid containing copper chloride | |
JP5693992B2 (en) | Method for recovering dissolved iron from wastewater containing various metal ions | |
JP3788782B2 (en) | Method for removing and recovering copper by treating waste water and chemicals used therefor | |
JP4142874B2 (en) | Method for recovering metal from neutralized sludge or neutralized slurry | |
JP4767444B2 (en) | Wastewater treatment method to reduce chlorine content in treated sludge | |
JP4121064B2 (en) | Method for removing and recovering copper by treating waste water and chemicals used therefor | |
JP2006231265A (en) | Method for treating sewage by waste acid | |
JP2002256353A (en) | Method and apparatus for recovering zinc in acid spent solution as precipitate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5808131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |