JP5431998B2 - Method and apparatus for recovering copper from acidic waste liquid containing copper - Google Patents
Method and apparatus for recovering copper from acidic waste liquid containing copper Download PDFInfo
- Publication number
- JP5431998B2 JP5431998B2 JP2010035035A JP2010035035A JP5431998B2 JP 5431998 B2 JP5431998 B2 JP 5431998B2 JP 2010035035 A JP2010035035 A JP 2010035035A JP 2010035035 A JP2010035035 A JP 2010035035A JP 5431998 B2 JP5431998 B2 JP 5431998B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- waste liquid
- mixed
- acidic waste
- containing acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 293
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 240
- 239000010949 copper Substances 0.000 title claims description 237
- 229910052802 copper Inorganic materials 0.000 title claims description 236
- 239000002699 waste material Substances 0.000 title claims description 196
- 230000002378 acidificating effect Effects 0.000 title claims description 153
- 238000000034 method Methods 0.000 title claims description 63
- 238000006243 chemical reaction Methods 0.000 claims description 160
- 238000002156 mixing Methods 0.000 claims description 74
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 73
- 239000005751 Copper oxide Substances 0.000 claims description 72
- 229910000431 copper oxide Inorganic materials 0.000 claims description 72
- 239000007800 oxidant agent Substances 0.000 claims description 67
- 239000003795 chemical substances by application Substances 0.000 claims description 58
- 239000000725 suspension Substances 0.000 claims description 47
- 239000012670 alkaline solution Substances 0.000 claims description 41
- 239000007787 solid Substances 0.000 claims description 36
- 239000011259 mixed solution Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 238000000926 separation method Methods 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000001590 oxidative effect Effects 0.000 claims description 16
- 239000003513 alkali Substances 0.000 claims description 15
- 230000003472 neutralizing effect Effects 0.000 claims description 15
- 238000011084 recovery Methods 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 239000011343 solid material Substances 0.000 claims description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 99
- 239000000243 solution Substances 0.000 description 59
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 40
- 238000005530 etching Methods 0.000 description 36
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 26
- 239000000460 chlorine Substances 0.000 description 26
- 229910052801 chlorine Inorganic materials 0.000 description 26
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 20
- 229910001431 copper ion Inorganic materials 0.000 description 19
- 238000007747 plating Methods 0.000 description 16
- 238000003756 stirring Methods 0.000 description 13
- 238000012546 transfer Methods 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 10
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 9
- 238000006386 neutralization reaction Methods 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000284 resting effect Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 229960003280 cupric chloride Drugs 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000012066 reaction slurry Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- 229940045803 cuprous chloride Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000011172 small scale experimental method Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液などの銅イオンを含有する銅含有酸性廃液を処理して銅を回収する方法及び装置に関するものである。 The present invention treats a copper-containing acidic waste liquid containing copper ions, such as an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant and a plating bath liquid renewal waste liquid in the production of electrolytic copper foil. The present invention relates to a method and apparatus for recovering copper.
銅イオンを高濃度で含有する酸性の廃液(以下、「銅含有酸性廃液」という)としては、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液などが知られている。これらの廃液は、銅濃度が5〜20質量%(以下、単に「%」で示す)程度と高い一方で、共存する塩化物イオンや硫酸イオンの濃度も通常5〜30%と高い。 As an acidic waste liquid containing copper ions at a high concentration (hereinafter referred to as “copper-containing acidic waste liquid”), an etching waste liquid produced when etching a copper printed circuit board with a cupric chloride etchant, or in electrolytic copper foil production A renewal waste solution of a plating bath is known. These waste liquids have a high copper concentration of about 5 to 20% by mass (hereinafter simply referred to as “%”), while the concentration of coexisting chloride ions and sulfate ions is usually as high as 5 to 30%.
このような銅含有酸性廃液を対象にした銅の回収処理としては、イオン化傾向の差を利用し、例えば鉄スクラップと反応させて金属銅を析出させて回収する方法が一部で行われているが、この方法では廃液からの銅回収率が低い。また、銅イオンとの反応により溶出した鉄イオンと残留した銅イオンが含まれる廃液が残るため、この廃液の処理が別途必要になり効率的な処理方法とは言いがたい。 As a copper recovery process for such a copper-containing acidic waste liquid, a method of using a difference in ionization tendency, for example, reacting with iron scrap to deposit and recovering metallic copper is performed in part. However, this method has a low copper recovery rate from the waste liquid. Further, since a waste liquid containing iron ions eluted by the reaction with copper ions and residual copper ions remains, it is difficult to say that this waste liquid needs to be treated separately and is an efficient treatment method.
また、一般的な方法として、水酸化ナトリウムなどのアルカリ性物質を添加することにより重金属類を水酸化物として沈殿除去する処理方法が知られているが、この方法は、生成する水酸化銅スラッジの含水率が高く量も多いため、銅イオンの含有濃度が高い銅含有酸性廃液の処理には適さない。 Further, as a general method, there is known a treatment method in which heavy metals are precipitated and removed as a hydroxide by adding an alkaline substance such as sodium hydroxide. Since the water content is high and the amount is large, it is not suitable for the treatment of copper-containing acidic waste liquid having a high copper ion concentration.
ところで、本発明者らは特許文献1において、銅含有酸性廃液と酸化剤を混合した後、アルカリ溶液に添加することで、酸化銅を製造・回収できる方法を開示した。この方法によれば、銅含有酸性廃液と酸化剤の混合液をアルカリ溶液に滴下することで、複塩を含まない酸化銅が製造できる。これは、適切な希釈効果を得ながら銅含有酸性廃液を中和・酸化できるためである。 By the way, the present inventors disclosed in Patent Document 1 a method capable of producing and recovering copper oxide by mixing a copper-containing acidic waste liquid and an oxidant and then adding the mixture to an alkaline solution. According to this method, the copper oxide which does not contain a double salt can be manufactured by dripping the liquid mixture of a copper containing acidic waste liquid and an oxidizing agent to an alkaline solution. This is because the copper-containing acidic waste liquid can be neutralized and oxidized while obtaining an appropriate dilution effect.
上記特許文献1の方法で得られた酸化銅は、要求される純度が比較的低い酸化銅の用途であればそのまま再利用することも可能であるが、例えば、プリント基板の銅めっき浴液の原料等に再利用する場合には、問題があった。 The copper oxide obtained by the method of Patent Document 1 can be reused as it is if the required purity of the copper oxide is relatively low. For example, a copper plating bath solution of a printed circuit board can be reused. There was a problem when reusing it as a raw material.
すなわち、プリント基板の銅めっき浴液の原料に用いられる酸化銅の塩素含有率は、銅めっき浴液の塩化物イオン濃度がめっき状態に影響するため低いことが望ましいが、特許文献1の方法を用い酸化銅を製造した場合には塩素含有率が約400mg−Cl/kg−CuOとやや高く、銅めっき浴液の原料等として再利用するためには、更に純度を向上させるため反応工程の工夫や別途純度を向上させる工程が必要であった。 That is, the chlorine content of the copper oxide used as a raw material for the copper plating bath solution of the printed circuit board is preferably low because the chloride ion concentration of the copper plating bath solution affects the plating state. When copper oxide is used, the chlorine content is a little as high as about 400 mg-Cl / kg-CuO. In order to recycle it as a raw material for copper plating baths, the reaction process is devised to further improve the purity. In addition, a separate process for improving the purity is required.
従って、銅含有酸性廃液を処理して、回収した酸化銅を銅めっき浴液の原料等として再利用するリサイクルを成立させるためには、銅含有酸性廃液の処理設備と製造酸化銅の純度向上設備が必要となり、全体の設備が複雑になるという問題点があった。 Therefore, in order to establish recycling that treats the copper-containing acidic waste liquid and reuses the recovered copper oxide as a raw material for the copper plating bath liquid, the equipment for treating the copper-containing acidic waste liquid and the equipment for improving the purity of the produced copper oxide Is necessary, and the entire facility is complicated.
本発明は、これまで産業廃棄物として処分されていた塩化銅含有エッチング廃液や電解銅箔メッキ浴の更新廃液などの銅含有酸性廃液を複雑な設備を要することなく処理し、銅含有酸性廃液から塩素含有率が低い酸化銅を回収するための方法及び装置を提供することを課題とするものである。 The present invention treats copper-containing acidic waste liquids, such as copper chloride-containing etching waste liquids and electrolytic copper foil plating bath renewal waste liquids, which have been disposed of as industrial waste, without complicated equipment, and from copper-containing acidic waste liquids. It is an object of the present invention to provide a method and an apparatus for recovering copper oxide having a low chlorine content.
本発明者らは、処理対象液である銅イオンを高濃度で含有する酸性廃液と酸化剤とを混合した後、所定のpH域になるよう管理しつつアルカリ溶液に注加、混合する際に、所定の時点を超えた以降は、混合反応槽中への当該混合液の注加を間欠的に行いつつ、その注加の休止時間を延長することで、生成する酸化銅の塩素含有率を低減できることを見出し、本発明を完成した。 The present inventors mixed an acidic waste liquid containing a high concentration of copper ions, which is a liquid to be treated, and an oxidizing agent, and then poured and mixed the mixture into an alkaline solution while managing it to be in a predetermined pH range. Then, after exceeding the predetermined time point, while intermittently adding the liquid mixture into the mixing reaction tank, extending the downtime of the addition, the chlorine content of the copper oxide to be generated is increased. The present invention has been completed by finding out that it can be reduced.
すなわち、本発明は次の内容を含むものである。
(1)所定量のアルカリ性溶液が供給された混合反応槽中に、当該混合反応槽中の液のpHが一時的にでも9以下に下がらないよう管理しつつ、銅含有酸性廃液と酸化剤との混合液を、当該混合反応槽中に注加、混合し、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を生成させ、当該アルカリ性懸濁液中から当該固形物を分離する銅の回収方法であって、
当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量を超えた時点において、混合反応槽中への当該混合液の注加を間欠的に行いつつ、注加の休止時間を10分以上とすることを特徴とする銅含有酸性廃液からの銅回収方法。
That is, the present invention includes the following contents.
(1) In a mixed reaction tank to which a predetermined amount of alkaline solution is supplied, while controlling so that the pH of the liquid in the mixed reaction tank does not temporarily drop to 9 or less, the copper-containing acidic waste liquid and the oxidizing agent The mixed liquid is poured and mixed in the mixing reaction tank to produce an alkaline suspension containing a solid material mainly composed of copper oxide, and the solid material is separated from the alkaline suspension. A method for recovering copper,
When the added amount of the mixed liquid exceeds at least 0.5 equivalent of the amount of copper-containing acidic waste liquid necessary for neutralizing the alkaline solution in the mixed reaction tank, the mixed liquid is poured into the mixed reaction tank. A method for recovering copper from a copper-containing acidic waste liquid, characterized in that the pause time for pouring is 10 minutes or longer while intermittently performing.
(2)当該混合液の添加を、終止間欠的に行い、かつ、当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量を超えた場合の注加の休止時間を、当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量までの注加の休止時間の3倍以上とすることを特徴とする上記(1)記載の銅含有酸性廃液からの銅の回収方法。 (2) Addition of the liquid mixture is performed intermittently, and the amount of the liquid mixture added is 0.5 equivalent of the amount of copper-containing acidic waste liquid required to neutralize the alkaline solution in the mixing reaction tank. In the case of exceeding the addition pause time, the addition amount of the liquid mixture is equal to the addition pause time of up to 0.5 equivalent of the copper-containing acidic waste liquid amount necessary for neutralizing the alkaline solution in the mixing reaction tank. The method for recovering copper from the copper-containing acidic waste liquid according to the above (1), characterized in that it is 3 times or more.
(3)当該混合液の添加を、終止間欠的に行い、かつ、混合反応槽のpHが、混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量に相当する銅含有酸性廃液を添加した状態におけるpHよりも低くなった後においては、当該混合液の注加の休止時間を、pHが低くなるまでの混合液の注加の休止時間の3倍以上とすることを特徴とする上記(1)記載の銅含有酸性廃液からの銅の回収方法。 (3) Addition of the liquid mixture is intermittently performed, and the pH of the mixed reaction tank is adjusted to 0.5 equivalent of the amount of copper-containing acidic waste liquid necessary for neutralizing the alkaline solution in the mixed reaction tank. After lower than the pH in the state where the corresponding copper-containing acidic waste liquid is added, the suspension time for pouring the mixture is more than 3 times the suspension time for pouring the mixture until the pH is lowered The method for recovering copper from the copper-containing acidic waste liquid as described in (1) above.
(4)混合反応槽中の懸濁液のpHの管理を、銅含有酸性廃液と酸化剤との混合液及び/またはアルカリ剤の注加により行う上記(1)ないし(3)の何れかに記載の銅含有酸性廃液からの銅の回収方法。 (4) In any one of the above (1) to (3), the pH of the suspension in the mixing reaction tank is controlled by adding a mixed liquid of copper-containing acidic waste liquid and an oxidizing agent and / or an alkaline agent. A method for recovering copper from the described copper-containing acidic waste liquid.
(5)銅含有酸性廃液と酸化剤の混合液をアルカリ性溶液が供給された混合反応槽に滴下または配管を通じて供給することを特徴とする上記(1)ないし(4)の何れかに記載の銅含有酸性廃液からの銅回収の方法。 (5) The copper according to any one of (1) to (4) above, wherein a mixed liquid of copper-containing acidic waste liquid and an oxidizing agent is supplied to a mixed reaction tank supplied with an alkaline solution dropwise or through a pipe. Method for recovering copper from contained acidic waste liquid.
(6)銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
銅含有酸性廃液の総注加量を測定する手段、
及び銅含有酸性廃液の総注加量に応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。
(6) Means for mixing copper-containing acidic waste liquid and oxidizing agent, means for adding a mixed liquid of copper-containing acidic waste liquid and oxidizing agent to a mixing reaction tank, an alkali agent being supplied, A mixed reaction tank for producing an alkaline suspension containing copper oxide by the reaction of an alkaline agent, and a solid liquid for recovering copper oxide from the alkaline suspension containing copper oxide drawn from the mixed reaction tank in communication with the mixed reaction tank A separation device,
Furthermore,
Means for measuring the total amount of copper-containing acidic waste liquid;
And means for controlling the addition of the mixed liquid according to the total amount of the copper-containing acidic waste liquid,
A facility for recovering copper from a copper-containing acidic waste liquid.
(7)銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
銅含有酸性廃液と酸化剤の該混合液の注加回数を数える手段、
及び注加回数に応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。
(7) Means for mixing copper-containing acidic waste liquid and oxidizing agent, means for pouring a mixed liquid of copper-containing acidic waste liquid and oxidizing agent into a mixing reaction tank, an alkali agent being supplied, A mixed reaction tank for producing an alkaline suspension containing copper oxide by the reaction of an alkaline agent, and a solid liquid for recovering copper oxide from the alkaline suspension containing copper oxide drawn from the mixed reaction tank in communication with the mixed reaction tank A separation device,
Furthermore,
Means for counting the number of times the mixed liquid of copper-containing acidic waste liquid and oxidizing agent is added;
And means for controlling the addition of the mixture according to the number of times of injection,
A facility for recovering copper from a copper-containing acidic waste liquid.
(8)銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽、及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
該混合反応槽のpHを測定するための手段、
及び該混合槽のpHに応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。
(8) Means for mixing the copper-containing acidic waste liquid and the oxidizing agent, means for pouring the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent into the mixing reaction tank, an alkaline agent being supplied, A mixed reaction vessel for producing an alkaline suspension containing copper oxide by the reaction of an alkaline agent, and a solid reaction vessel for recovering copper oxide from the alkaline suspension containing copper oxide that communicates with the mixed reaction vessel and is extracted from the mixed reaction vessel. A liquid separator,
Furthermore,
Means for measuring the pH of the mixing reactor;
And means for controlling the addition of the mixed solution according to the pH of the mixing tank,
A facility for recovering copper from a copper-containing acidic waste liquid.
本発明によれば、これまでの処理技術では複塩の生成などにより処理が困難であった、銅イオンの含有濃度が5〜20%という高濃度の銅含有酸性廃液を希釈することなく直接処理することができ、しかも、塩素含有率の低い酸化銅として回収することができる。 According to the present invention, direct treatment without diluting a high-concentration copper-containing acidic waste liquid having a copper ion content concentration of 5 to 20%, which has been difficult to process by the generation of double salts, etc. with conventional treatment techniques. Moreover, it can be recovered as copper oxide having a low chlorine content.
また、通常、反応に供するアルカリ溶液や銅含有酸性廃液は、それらの液温が高い場合に反応が良好に進み、製造した酸化銅の塩素含有率が低くなる傾向があるので、アルカリ溶液や銅含有酸性廃液をあらかじめ加温することがあるが、本発明によれば、アルカリ溶液や銅含有酸性廃液をあらかじめ加温することは特に必要無く、常温で反応を開始することができるため、特別な加温設備が不要となる。 In addition, alkaline solutions and copper-containing acidic waste liquids that are usually used for the reaction tend to react well when the liquid temperature is high, and the chlorine content of the produced copper oxide tends to be low. The acidic waste liquid may be pre-warmed, but according to the present invention, it is not particularly necessary to pre-warm the alkaline solution or the copper-containing acidic waste liquid, and the reaction can be started at room temperature. No heating equipment is required.
更に、本発明方法で得られる酸化銅は、上記の通り塩素含有率が低く、銅めっき浴液の原料としてそのまま使用できるため、めっき工場内に本発明にかかる装置を設置すれば工場内での銅の再利用が可能となり、省資源に寄与する。また、高濃度の銅含有酸性廃液を外部に排出する必要が無くなるため、廃棄物削減にも寄与する。 Furthermore, since the copper oxide obtained by the method of the present invention has a low chlorine content as described above and can be used as it is as a raw material for the copper plating bath solution, if the apparatus according to the present invention is installed in the plating factory, Copper can be reused, contributing to resource conservation. Moreover, since it becomes unnecessary to discharge | emit the high concentration copper containing acid waste liquid outside, it contributes also to waste reduction.
本発明の銅含有酸性廃液からの銅の回収方法(以下、「本発明方法」という)による処理プロセスでは、所定量のアルカリ性溶液が供給された混合反応槽中に、当該混合反応槽中の液のpHが一時的にでも9以下に下がらないよう管理しつつ、銅含有酸性廃液と酸化剤との混合液を、当該混合反応槽中に注加、混合し、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を生成させる。この時、混合反応槽への銅含有酸性廃液と酸化剤の混合液の注加量が、混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量を超えた時点において、混合反応槽中への当該混合液の注加を間欠的に行うことが必要であり、この場合の注加の休止時間を10分以上とすることが必要である。この混合液の注加量が、混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量を超えた時点において、混合反応槽中への当該混合液の注加の休止時間を10分以上とする理由を以下に述べる。銅含有酸性廃液の注加量が0.5当量までは、塩素含有率の低い酸化銅が生成するが、銅含有酸性廃液の注加量が0.5当量を超えた後には、注加の休止時間を3分とったとしても、塩素含有率が高い酸化銅(約200mg−Cl/kg−CuO)しか生成しない。これに対し、銅含有酸性廃液の注加量が0.5当量を超えた後に、混合液の注加の休止時間を10分以上とした所、生成する酸化銅の塩素含有率が低減(約100mg−Cl/kg−CuO)できることを見いだしたからある。 In the treatment process by the method for recovering copper from the copper-containing acidic waste liquid of the present invention (hereinafter referred to as “the method of the present invention”), the liquid in the mixed reaction tank is fed into the mixed reaction tank to which a predetermined amount of alkaline solution is supplied. While the pH of the liquid is temporarily controlled so that it does not drop below 9 or less, a mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is poured into the mixed reaction tank and mixed to obtain a solid mainly composed of copper oxide. An alkaline suspension containing the product is produced. At this time, the amount of the copper-containing acidic waste liquid and the oxidizing liquid mixture added to the mixed reaction tank is at least 0.5 equivalent of the amount of copper-containing acidic waste liquid necessary to neutralize the alkaline solution in the mixed reaction tank. When it exceeds, it is necessary to intermittently pour the mixed liquid into the mixing reaction tank, and in this case, it is necessary to make the pouring pause time 10 minutes or longer. When the amount of this mixed liquid added exceeds at least 0.5 equivalent of the amount of copper-containing acidic waste liquid required to neutralize the alkaline solution in the mixed reaction tank, the mixed liquid is added to the mixed reaction tank. The reason why the additional pause time is 10 minutes or more will be described below. Copper oxide with a low chlorine content is produced up to 0.5 equivalent of the copper-containing acidic waste liquid, but after the copper-containing acidic waste liquid exceeds 0.5 equivalent, Even if the rest time is 3 minutes, only copper oxide having a high chlorine content (about 200 mg-Cl / kg-CuO) is produced. On the other hand, after the addition amount of the copper-containing acidic waste liquid exceeds 0.5 equivalents, the chlorine content of the copper oxide to be produced is reduced (about 10 minutes) when the suspension time of addition of the mixed liquid is set to 10 minutes or more. (100 mg-Cl / kg-CuO).
本発明方法で処理対象となる銅含有酸性廃液としては、銅をイオン状態で含有する酸性廃液であれば、これに含まれる銅イオン濃度や、アニオン濃度に特に制約されない。本発明方法で特に好適に処理できる銅含有酸性廃液の具体例としては、例えば、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液など、銅イオン濃度及び塩化物イオン濃度、硫酸イオン濃度等の高い廃液が挙げられる。 The copper-containing acidic waste liquid to be treated by the method of the present invention is not particularly limited by the copper ion concentration and the anion concentration contained therein, as long as it is an acidic waste liquid containing copper in an ionic state. Specific examples of the copper-containing acidic waste liquid that can be particularly preferably treated by the method of the present invention include, for example, an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant, and a plating bath liquid in the production of electrolytic copper foil. Examples include renewed waste liquids such as high copper ion concentration, chloride ion concentration, and sulfate ion concentration.
また、本発明方法で利用される酸化剤としては、2価の銅イオンを酸化できるものであれば、特に制約されず、種々の酸化剤を利用することができる。しかしながら、溶液として取り扱えることや、反応後に水以外の成分が残らないことから、本発明においては、酸化剤として過酸化水素やオゾン水などが適している。これらの酸化剤の中でも、過酸化水素は特別な発生装置が不要で、取り扱いが容易なことから、本用途には特に適している。酸化剤として過酸化水素を用いる場合の濃度は特に限定されないが、例えば、市販で入手が容易な30%程度の過酸化水素水が挙げられる。また、酸化剤としてオゾン水を用いる場合、オゾン水に代えて、気体オゾンを直接銅含有酸性廃液に吹き込んでもよい。 The oxidizing agent used in the method of the present invention is not particularly limited as long as it can oxidize divalent copper ions, and various oxidizing agents can be used. However, since it can be handled as a solution and no components other than water remain after the reaction, hydrogen peroxide, ozone water, or the like is suitable as the oxidizing agent in the present invention. Among these oxidizing agents, hydrogen peroxide is particularly suitable for this application because it does not require a special generator and is easy to handle. The concentration in the case of using hydrogen peroxide as the oxidizing agent is not particularly limited, and for example, a commercially available hydrogen peroxide solution of about 30% is easily available. When ozone water is used as the oxidant, gaseous ozone may be directly blown into the copper-containing acidic waste liquid instead of ozone water.
更に、本発明方法で利用されるアルカリ性溶液としては、アルカリ剤を含有させた溶液であれば特に制限されない。このアルカリ性溶液に利用されるアルカリ剤としては、種々のアルカリ剤の何れも使用することができ、その形態としては、固体状でも液体状でもよい。具体的なアルカリ剤の選定には、溶液中に共存する可能性がある陰イオンと沈降性の塩を形成しないアルカリ金属の水酸化物が適当である。一方、アルカリ性溶液量は、処理する銅含有酸性廃液量によって決定される。即ち、予め小スケールの実験で、混合すると中和する銅含有酸性廃液とアルカリ性溶液の比率を決める。実際の処理では、この比率を元に必要なアルカリ性溶液量を決めると良い。 Furthermore, the alkaline solution used in the method of the present invention is not particularly limited as long as it is a solution containing an alkaline agent. As the alkaline agent used in the alkaline solution, any of various alkaline agents can be used, and the form thereof may be solid or liquid. For the selection of a specific alkali agent, an alkali metal hydroxide that does not form a sedimentary salt with an anion that may coexist in the solution is suitable. On the other hand, the amount of alkaline solution is determined by the amount of copper-containing acidic waste liquid to be processed. That is, in a small-scale experiment, the ratio of the copper-containing acidic waste solution and the alkaline solution that are neutralized when mixed is determined. In actual processing, it is preferable to determine the amount of alkaline solution required based on this ratio.
アルカリ剤として固体状のアルカリを使用する場合は、廃液量の増加を抑制できる利点がある。また、固体状のアルカリ剤を用いる場合、固体状のアルカリ剤を水等で予め溶解させてから混合反応槽に供給しても良く、混合反応槽内に固体状のまま供給して混合反応槽で溶解させても良い。更に、固体状のアルカリ剤を溶解させる水としては後記する固液分離により固形物から分離された分離液、分離された固形物の洗浄処理で生じた洗浄処理排水等を用いることもできる。 When a solid alkali is used as the alkali agent, there is an advantage that an increase in the amount of waste liquid can be suppressed. When a solid alkaline agent is used, the solid alkaline agent may be preliminarily dissolved in water or the like and then supplied to the mixing reaction tank. It may be dissolved with. Furthermore, as the water for dissolving the solid alkaline agent, a separation liquid separated from the solid by solid-liquid separation described later, a washing waste water generated by the washing treatment of the separated solid, and the like can also be used.
本発明方法では、アルカリ剤として比較的安価で入手が容易なことから水酸化ナトリウムが好ましい。水酸化ナトリウムを用いる場合は、フレーク状、粒状等固体や溶液を利用できる。水酸化ナトリウム溶液を用いる場合は、濃度は特に限定されないが、例えば、25%程度の濃度の水酸化ナトリウム溶液が利用できる。 In the method of the present invention, sodium hydroxide is preferred because it is relatively inexpensive and easily available as an alkaline agent. When sodium hydroxide is used, a solid or solution such as flakes or granules can be used. In the case of using a sodium hydroxide solution, the concentration is not particularly limited. For example, a sodium hydroxide solution having a concentration of about 25% can be used.
以上まとめた形態を踏まえ、酸化剤として過酸化水素溶液を、アルカリ性溶液として水酸化ナトリウム溶液を用いる場合を例にとり、銅含有酸性廃液と過酸化水素溶液を混合し、この混合液(以下、単に「混合液」ということもある)を水酸化ナトリウム溶液に注加する反応を以下に説明する。 Based on the form summarized above, the case where a hydrogen peroxide solution is used as an oxidizing agent and a sodium hydroxide solution is used as an alkaline solution is taken as an example, and a copper-containing acidic waste solution and a hydrogen peroxide solution are mixed. The reaction of adding “mixed solution” to the sodium hydroxide solution will be described below.
本発明方法による処理プロセスにおいては、まず、銅含有酸性廃液と過酸化水素溶液とを混合させ、この混合液を水酸化ナトリウム溶液に注加し、pHが9を下回らないように反応させるという添加順序および管理が重要である。 In the treatment process according to the method of the present invention, first, the copper-containing acidic waste solution and the hydrogen peroxide solution are mixed, and this mixture solution is added to the sodium hydroxide solution to react so that the pH does not fall below 9. Order and management are important.
銅含有酸性廃液に第一銅イオンが含有される場合には、水酸化ナトリウム溶液と接触させる前に過酸化水素溶液と混合することで、過酸化水素の酸化作用により第一銅イオンが第二銅イオンに酸化されるため、水酸化ナトリウム溶液と接触しても塩化第一銅(CuCl)などの第一銅塩の析出を回避できる。 When cuprous ions are contained in the copper-containing acidic waste liquid, mixing with the hydrogen peroxide solution before bringing it into contact with the sodium hydroxide solution results in the cuprous ions being oxidized by the oxidizing action of the hydrogen peroxide. Since it is oxidized to copper ions, precipitation of cuprous salts such as cuprous chloride (CuCl) can be avoided even in contact with a sodium hydroxide solution.
本発明方法において、銅含有酸性廃液と過酸化水素溶液を混合し、銅イオンと過酸化水素とを反応させるために必要な時間は、混合する両者の濃度にもよるが、両者が高濃度の場合は、酸化反応は速やかに進行するので、5〜20秒間程度でも酸化反応が十分に進行する。 In the method of the present invention, the time required for mixing the copper-containing acidic waste liquid and the hydrogen peroxide solution and reacting the copper ions with hydrogen peroxide depends on the concentration of both, but both are high in concentration. In this case, since the oxidation reaction proceeds promptly, the oxidation reaction proceeds sufficiently even for about 5 to 20 seconds.
一方で、銅含有酸性廃液と過酸化水素溶液を混合すると、過酸化水素の分解反応が進行する。その分解反応は、両者を混合後約60秒経過した時点から顕在化し、7分間〜10分間経過後には顕著な発泡を伴いながら激しく進行する。混合する両者の濃度にもよるが、例えば、銅含有酸性廃液中の銅イオンに対し、モル量で2倍量の過酸化水素を含む過酸化水素溶液と混合した場合、過酸化水素の分解に伴う発泡は20分間経過後には減少し、25分間経過後には僅かなものになり、この時点で水酸化ナトリウム溶液に注加した場合には酸化剤が分解しているため、酸化銅よりも水酸化銅を多く含む沈殿物が生成する。 On the other hand, when the copper-containing acidic waste liquid and the hydrogen peroxide solution are mixed, the decomposition reaction of hydrogen peroxide proceeds. The decomposition reaction becomes apparent from the time when about 60 seconds have passed after mixing the both, and proceeds violently with remarkable foaming after 7 to 10 minutes. Although it depends on the concentration of both, for example, when mixed with a hydrogen peroxide solution containing hydrogen peroxide twice the molar amount with respect to copper ions in the copper-containing acidic waste liquid, decomposition of hydrogen peroxide The accompanying foaming decreases after 20 minutes and becomes slight after 25 minutes. When added to the sodium hydroxide solution at this point, the oxidizing agent is decomposed, so water is more than copper oxide. A precipitate containing a large amount of copper oxide is formed.
以上のことから、銅含有酸性廃液と過酸化水素溶液との混合・反応時間として、5秒間〜20分間程度、望ましくは20秒間〜7分間程度の時間を取ることが好ましい。 From the above, it is preferable to take about 5 seconds to 20 minutes, preferably about 20 seconds to 7 minutes, as the mixing / reaction time of the copper-containing acidic waste liquid and the hydrogen peroxide solution.
銅含有酸性廃液と過酸化水素溶液を混合した混合液の、混合反応槽内の水酸化ナトリウム溶液への注加は、連続的でも間欠的もかまわないが、好ましくは間欠的に行う。こうすることで、混合液中の第二銅イオンの酸化銅への反応が、混合液を水酸化ナトリウム溶液に注加し、中和する際に速やかに進む。混合液を注加する方法としては、例えば、混合反応槽に滴下する方法や配管を通して液中に供給する方法等が適用可能である。 The mixture liquid obtained by mixing the copper-containing acidic waste liquid and the hydrogen peroxide solution may be continuously or intermittently added to the sodium hydroxide solution in the mixing reaction tank, but is preferably intermittently performed. By carrying out like this, reaction to the copper oxide of the cupric ion in a liquid mixture advances rapidly, when pouring a liquid mixture into a sodium hydroxide solution and neutralizing. As a method of pouring the mixed liquid, for example, a method of dropping into a mixed reaction tank or a method of supplying the mixed liquid into the liquid through piping is applicable.
一方、水酸化ナトリウム溶液の注加方法としては、混合反応槽に到達する前に上記混合液と混ざらないよう供給する以外は、特に限定されず、例えば、混合反応槽に滴下する方法や少量を連続的に注入する方法等が挙げられる。なお、水酸化ナトリウム溶液は加熱せずに混合反応槽に注加することができる。 On the other hand, the method of pouring the sodium hydroxide solution is not particularly limited except that it is supplied so as not to be mixed with the mixed solution before reaching the mixed reaction tank. The method of injecting continuously is mentioned. The sodium hydroxide solution can be poured into the mixing reaction tank without heating.
次に、銅含有酸性廃液と過酸化水素溶液との混合液と水酸化ナトリウム溶液との反応について説明する。ここで、複塩の生成を回避するためには、イオンとしての銅濃度が希薄な条件下で反応させることが必要である。また、銅イオンの酸化反応を速やかに進行させるためには、酸化剤の反応性が高くなるアルカリ性条件下で反応させることが望ましいため、混合反応槽中の液のpHは一時的にでも9以下に下がらないようする。好ましくは11.5に管理する必要がある。このpHを管理する方法としては、例えば、混合反応槽へ銅含有酸性廃液と酸化剤との混合液の注加を少量ずつ行う方法及び/またはアルカリ剤の注加により管理する方法等が挙げられる。 Next, the reaction between the mixed solution of the copper-containing acidic waste liquid and the hydrogen peroxide solution and the sodium hydroxide solution will be described. Here, in order to avoid the formation of a double salt, it is necessary to carry out the reaction under conditions where the copper concentration as ions is dilute. Moreover, in order to advance the oxidation reaction of copper ions quickly, it is desirable to carry out the reaction under alkaline conditions where the reactivity of the oxidizing agent is high. Therefore, the pH of the liquid in the mixed reaction tank is temporarily 9 or less. Do not go down. It is necessary to manage to 11.5 preferably. Examples of the method for controlling the pH include a method in which a mixed solution of a copper-containing acidic waste liquid and an oxidizing agent is poured into a mixed reaction tank little by little and / or a method in which the mixture is managed by adding an alkali agent. .
上記のようにして混合反応槽中の液のpHが管理された状態で、銅含有酸性廃液と酸化剤との混合液を、当該混合反応槽中に注加、混合し、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を生成させ、当該アルカリ性懸濁液中から当該固形物を分離することにより銅を回収することができるのであるが、更に以下のごとく処理することで、塩素イオンの含量が少ない酸化銅を主成分とする固形物が得られるのである。 In the state where the pH of the liquid in the mixed reaction tank is controlled as described above, the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is poured into the mixed reaction tank and mixed, and copper oxide is the main component. It is possible to recover the copper by producing an alkaline suspension containing the solid matter and separating the solid matter from the alkaline suspension, but by further processing as follows: A solid material mainly composed of copper oxide having a low chloride ion content is obtained.
本発明方法は、上記回収において、混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量を超えた時点において、混合反応槽中への当該混合液の注加を間欠的に行いつつ、その注加の休止時間を10分以上、好ましくは30分とするものである。これにより生成した酸化銅の塩素含有率を低減させることができる。ここで混合液の間欠的な注加とは、混合液の注加と、その休止を交互に行うものである。また、混合液の間欠的な注加を行っている際、混合反応槽の撹拌は連続的に行うことが望ましい。 The method of the present invention, in the above recovery, in the mixed reaction tank when the added amount of the mixed liquid exceeds at least 0.5 equivalent of the amount of copper-containing acidic waste liquid necessary for neutralizing the alkaline solution in the mixed reaction tank. While the liquid mixture is intermittently added to the liquid, the pouring pause time is 10 minutes or longer, preferably 30 minutes. Thereby, the chlorine content rate of the produced copper oxide can be reduced. Here, the intermittent pouring of the mixed liquid is to alternately pour the mixed liquid and pause the mixed liquid. In addition, when the mixed solution is intermittently poured, it is desirable to continuously stir the mixed reaction tank.
なお、混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量となるまでは、混合液の注加量が水酸化ナトリウム溶液に対し十分少なければ、適切な希釈効果を得ながら銅含有酸性廃液が中和・酸化されるので、その注加方法は特に限定されず、連続的な注加であっても、または間欠的な注加であってもよいが、好ましくは間欠的な注加である。この間欠的な注加の条件としては、例えば、注加を3分とし、休止時間を3分とする条件が挙げられる。 In addition, until the addition amount of the mixed solution reaches at least 0.5 equivalent of the amount of copper-containing acidic waste solution necessary for neutralizing the alkaline solution in the mixing reaction tank, the amount of the mixed solution added to the sodium hydroxide solution On the other hand, if the amount is small enough, the copper-containing acidic waste liquid is neutralized and oxidized while obtaining an appropriate dilution effect.Therefore, the pouring method is not particularly limited, and it may be continuous or intermittent. May be added, but intermittent injection is preferred. Examples of the intermittent pouring condition include a condition in which the pouring is 3 minutes and the rest time is 3 minutes.
注加の休止時間は、混合液の添加量、反応混合層のpH、混合液の添加回数等を元に設定することができ、例えば、次のようして決めることができる。すなわち、混合液の添加を終止間欠的に行いつつ、当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量までの注加の休止時間を、3分とし、0.5当量を超えた場合の注加の休止時間を、上記銅含有酸性廃液量の0.5当量までの注加の休止時間の3倍以上、好ましくは10倍とすればよい。 The pause time for pouring can be set based on the addition amount of the mixed solution, the pH of the reaction mixture layer, the number of times of addition of the mixed solution, etc., and can be determined, for example, as follows. That is, while the addition of the mixed solution is intermittently performed, the addition amount of the mixed solution is added up to 0.5 equivalent of the amount of copper-containing acidic waste solution necessary for neutralizing the alkaline solution in the mixing reaction tank. The suspension time is 3 minutes, and the addition pause time when the equivalent exceeds 0.5 equivalents is at least three times the addition pause time up to 0.5 equivalents of the copper-containing acidic waste liquid amount, preferably 10 Just double it.
より具体的な態様の一つとしては、混合液の添加を終止間欠的に行う方法であって、混合反応槽に供給したアルカリ性溶液を中和する銅含有酸性廃液量の0.5当量に相当する量を添加するまでは、混合液の注加の時間間隔(休止時間)を3分とし、0.5当量を超えた後は、混合液の注加の時間間隔(休止時間)を10分以上、好ましくは30分とする方法が挙げられる。なお、混合液の注加にかかる時間は3分とする。ここで、0.5当量を境界として、混合液の注加の休止時間を長くした理由を以下に述べる。後述する比較例の結果で示されるように、注加の休止時間を3分として0.5当量相当まで混合液を注加すると、塩素含有率100mg−Cl/kg−CuO未満の酸化銅が製造できる。しかし更に、0.8当量相当まで注加の休止時間を3分とした場合(実施例の対照系列)、塩素含有率が200mg−Cl/kg−CuO程度まで増加してしまった。これに対し、0.5当量を境界に、0.5当量まで注加の休止時間を3分とし、0.5当量を超えて0.8当量まで注加の休止時間を30分とした場合(実施例のRun3)では、塩素含有率を100mg−Cl/kg−CuO未満まで改善することができた。これらの知見をまとめると、混合反応槽に供給したアルカリ性溶液量に対し、これを中和する銅含有酸性廃液量が0.5当量を超えた場合の注加の休止時間を0.5当量までの注加の休止時間よりも長くすることが、回収酸化銅の塩素含有率低減に有効であると判断されたのである。 One of the more specific embodiments is a method of intermittently adding the mixed solution, corresponding to 0.5 equivalent of the amount of copper-containing acidic waste liquid that neutralizes the alkaline solution supplied to the mixed reaction tank. Until the amount to be added is added, the mixing time interval (resting time) of the mixed solution is 3 minutes, and after exceeding 0.5 equivalent, the mixing time interval (resting time) of the mixed solution is 10 minutes. As mentioned above, Preferably the method of setting it as 30 minutes is mentioned. The time required for pouring the mixed solution is 3 minutes. Here, the reason why the suspension time for pouring the mixed liquid is increased with 0.5 equivalent as a boundary will be described below. As shown in the results of the comparative example described later, when the mixed solution is poured up to the equivalent of 0.5 equivalent with the pouring pause time being 3 minutes, a copper oxide having a chlorine content of less than 100 mg-Cl / kg-CuO is produced. it can. However, the chlorine content increased to about 200 mg-Cl / kg-CuO when the quiescent time of addition to 0.8 equivalent was set to 3 minutes (control series of Examples). On the other hand, when 0.5 eq is used as a boundary, the pause time for addition to 0.5 equivalent is 3 minutes, and when the pause time for addition is more than 0.5 equivalent to 0.8 equivalent is 30 minutes (Run 3 in Example) was able to improve the chlorine content to less than 100 mg-Cl / kg-CuO. Summarizing these findings, the suspension time of pouring when the amount of the acidic waste liquid containing copper that neutralizes the amount of alkaline solution supplied to the mixing reaction tank exceeds 0.5 equivalents is reduced to 0.5 equivalents. Therefore, it was determined that making it longer than the suspension time of the addition was effective in reducing the chlorine content of the recovered copper oxide.
また、別の態様の注加の休止時間の設定方法は次の通りである。混合液の添加を終止間欠的に行う方法であって、混合反応槽のpHが、混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量に相当する銅含有酸性廃液を添加した状態におけるpHよりも低くなった後においては、当該混合液の注加の休止時間を、pHが低くなるまでの混合液の注加の休止時間の3倍以上、好ましくは10倍とする方法である。
なお、混合反応槽のpHが、混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量に相当する銅含有酸性廃液を添加した状態でのpHより高い場合には注加の休止時間を3分とすればよい。
Moreover, the setting method of the additional pause time of another aspect is as follows. A method in which the addition of the mixed solution is intermittently stopped, and the pH of the mixed reaction tank is equivalent to 0.5 equivalent of the copper-containing acidic waste liquid amount necessary for neutralizing the alkaline solution in the mixed reaction tank After being lower than the pH in the state where the acidic waste liquid is added, the suspension time for pouring the mixture is more than 3 times the suspension time for pouring the mixture until the pH is lowered, preferably This is a method of 10 times.
In addition, when the pH of the mixed reaction tank is higher than the pH in the state of adding the copper-containing acidic waste liquid corresponding to 0.5 equivalent of the copper-containing acidic waste liquid amount necessary for neutralizing the alkaline solution in the mixed reaction tank In this case, the pause time for addition may be 3 minutes.
この態様において、銅含有酸性廃液を0.5当量添加した状態でのアルカリ剤溶液のpHは、具体的には以下の方法で決めることができる。即ち、あらかじめ小スケールでの実験において、使用するアルカリ性溶液に銅含有酸性廃液を添加し、中和曲線を測定する。ここから、銅含有酸性廃液を0.5当量注加した場合のアルカリ性溶液のpHを求め、このpHを休止時間の設定の目安とするとよい。 In this embodiment, the pH of the alkaline agent solution in a state where 0.5 equivalent of the copper-containing acidic waste liquid is added can be specifically determined by the following method. That is, in an experiment on a small scale in advance, a copper-containing acidic waste liquid is added to the alkaline solution to be used, and a neutralization curve is measured. From here, the pH of the alkaline solution when 0.5 equivalent of the copper-containing acidic waste liquid is added is obtained, and this pH may be used as a guideline for setting the rest time.
また更に、別の態様の休止時間の設定方法としては、上記混合液の添加量および混合反応槽のpHは、混合液の注加回数に対応しているので、これを目安に混合液の注加の休止時間を設定する方法を挙げることもできる。 Furthermore, as another method for setting the rest time, the amount of the mixed solution added and the pH of the mixed reaction tank correspond to the number of times the mixed solution is added. A method for setting an additional pause time can also be mentioned.
なお、何れの休止時間の設定方法でも、注加回数が少ないと1回あたりの混合液すなわち銅含有酸性廃液の注加量が増加し、混合反応槽のアルカリ性溶液と混合した時の希釈効果が小さくなる。この場合、混合液中の銅イオンが酸化銅まで酸化されず、水酸化銅が生成する可能性があり、事前に小スケールでの実験などで適切な注加回数を決めることが好ましい。 In any setting method of the pause time, when the number of times of pouring is small, the amount of the mixed liquid, that is, the copper-containing acidic waste liquid is increased, and the dilution effect when mixed with the alkaline solution in the mixing reaction tank is increased. Get smaller. In this case, there is a possibility that copper ions in the mixed solution are not oxidized to copper oxide and copper hydroxide is generated, and it is preferable to determine an appropriate number of times of injection in advance through experiments on a small scale.
本発明方法においては、処理の終了は酸化銅を主成分とする固形物が生成さえされていれば、どの時点でも特に問題はないが、当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の0.5当量以上、好ましくは0.8当量となる量である。銅含有酸性廃液が0.5当量未満の添加量で反応を停止させた場合は、塩素含有率の低い酸化銅を回収できるが、反応スラリーの上澄液が高pHであるため、溶解性の銅が残留したり、必要なアルカリ剤溶液量が増加する。一方、銅含有酸性廃液を0.8当量を超えて添加した場合、反応スラリーの上澄液のpHが7に近くなるため、アルカリ剤溶液を有効に活用できるが、回収酸化銅の塩素含有率が高くなるという問題点がある。 In the method of the present invention, the completion of the treatment is not particularly problematic at any point as long as a solid mainly composed of copper oxide is generated. However, the amount of the mixed solution added is not limited to the alkaline solution in the mixing reaction tank. The amount is 0.5 equivalent or more, preferably 0.8 equivalent of the amount of copper-containing acidic waste liquid required for neutralization. When the reaction is stopped with an addition amount of less than 0.5 equivalent of the copper-containing acidic waste liquid, copper oxide having a low chlorine content can be recovered, but since the supernatant of the reaction slurry has a high pH, Copper remains or the amount of alkaline agent solution required increases. On the other hand, when the copper-containing acidic waste liquid exceeds 0.8 equivalent, the pH of the supernatant of the reaction slurry is close to 7, so that the alkaline agent solution can be used effectively, but the chlorine content of the recovered copper oxide There is a problem that becomes high.
なお、処理の終了時、混合反応槽中の液のpHは、pH9〜11.5の間にすることが望ましい。これは、pHが7未満ではCu2+が生成し、pHが11.5を超えるとCuO2 2−等のイオン状の銅が生成するため、いずれも混合反応槽内の溶液中の銅イオン濃度が高くなり、このような状態では、精製した酸化銅を固液分離した後の分離液の銅濃度も高くなるので、銅の回収率が悪化することや、分離液から銅を除去する処理が更に必要となるためである。また、pHが9より低いと回収酸化銅の塩素含有率が高くなり、再利用する際には別途精製操作が必要となる。このように混合反応槽内の溶液を銅イオン濃度が低い状態を維持することで、これによる希釈効果が得られ、複塩の生成を回避して酸化剤による銅イオンからの酸化銅の生成反応を良好に維持、進行することができる。従って、効率良く酸化銅を析出させることが可能となる。 At the end of the treatment, the pH of the liquid in the mixing reaction tank is desirably between pH 9 and 11.5. This is because Cu 2+ is produced when the pH is less than 7, and ionic copper such as CuO 2 2− is produced when the pH exceeds 11.5. Therefore, both have a copper ion concentration in the solution in the mixed reaction tank. In such a state, the copper concentration of the separated liquid after solid-liquid separation of the purified copper oxide also increases, so that the copper recovery rate deteriorates and the process of removing copper from the separated liquid This is because it is further required. On the other hand, if the pH is lower than 9, the chlorine content of the recovered copper oxide becomes high, and a separate refining operation is required for reuse. Thus, by maintaining the solution in the mixed reaction tank in a state where the copper ion concentration is low, a dilution effect by this can be obtained, and the formation reaction of copper oxide from copper ions by the oxidizing agent by avoiding the formation of double salts Can be maintained and progressed well. Therefore, it becomes possible to deposit copper oxide efficiently.
混合反応槽での反応終了後、必要により休止時間と同程度の時間撹拌を行った後、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を引き抜き、これを固形物(主に酸化銅)と、分離液に固液分離する。固液分離には、例えば、ろ過分離、遠心分離、沈降分離等が適用可能である。 After completion of the reaction in the mixing reaction tank, if necessary, stirring is performed for the same amount of time as the resting time. Then, an alkaline suspension containing a solid material containing copper oxide as a main component is drawn out, and the solid suspension (mainly Solid-liquid separation into copper oxide) and separated liquid. For solid-liquid separation, for example, filtration separation, centrifugation, sedimentation separation, etc. can be applied.
アルカリ性懸濁液から分離された固形物は、当該固形物中にはアルカリ性懸濁液中に含有されるアルカリ剤と、中和反応により生じた高濃度の塩類も共存しているので、再利用を目的とした固形物の回収に際しては、塩類を洗い流し、回収物の純度を上げるため、水洗等の洗浄処理を複数回繰り返して精製固形物として回収することが好ましい。前記洗浄処理に用いられる処理水としては、塩類含有量が少ない清澄な水、例えば水道水や工業用水等が挙げられる。 The solids separated from the alkaline suspension are reused because the solids coexist with the alkaline agent contained in the alkaline suspension and the high-concentration salts produced by the neutralization reaction. In order to recover the solid material for the purpose of the above, it is preferable to recover the purified solid material by repeating washing treatment such as water washing a plurality of times in order to wash away salts and increase the purity of the recovered material. The treated water used for the washing treatment includes clear water having a low salt content, such as tap water and industrial water.
こうして得られる精製固形物は酸化銅を少なくとも95%以上、一般には98%以上含有するものである。また、反応条件が適切に設定されていれば、この精製固形物の塩素含有率は100mg−Cl/kg−CuO未満まで低減できる。 The purified solid thus obtained contains at least 95% or more, generally 98% or more of copper oxide. Moreover, if the reaction conditions are set appropriately, the chlorine content of the purified solid can be reduced to less than 100 mg-Cl / kg-CuO.
以上説明した本発明方法を実施することにより銅含有酸性廃液から酸化銅を主成分とし、かつ塩素イオン含量が低減された固形分を生成させ、回収することができる。 By carrying out the method of the present invention described above, it is possible to generate and recover a solid content mainly composed of copper oxide and having a reduced chloride ion content from the copper-containing acidic waste liquid.
次に図面を参照し、本発明を実施するために使用する装置を説明する。
図1は、本発明を実施する場合の銅の回収装置の一様態を示す系統図である。図中、1は銅含有酸性廃液処理設備、2は混合反応槽、3は混合槽、4は固液分離装置、5は固形物精製装置、6は精製スラリー移送ポンプ、7は分離液移送ポンプ、8は洗浄排水移送ポンプ、9はpH計、10は撹拌機、11、12は三方弁、13は銅含有酸性廃液供給配管、14は酸化剤供給配管、15はアルカリ剤供給配管、16は撹拌機、17はバルブ18、バルブ19およびバルブ20を制御する制御器、18は銅含有酸性廃液と酸化剤の混合液の供給を制御するバルブ、19は銅含有酸性廃液の供給を制御するバルブ、20は酸化剤の供給を制御するバルブ、21はアルカリ剤の供給を制御するバルブ、22はバルブ21を制御する制御器、23は銅含有酸性廃液貯留槽、24は酸化剤貯留槽、25はアルカリ剤貯留槽をそれぞれ示す。
Next, an apparatus used for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of a copper recovery apparatus when the present invention is carried out. In the figure, 1 is a copper-containing acidic waste liquid treatment facility, 2 is a mixing reaction tank, 3 is a mixing tank, 4 is a solid-liquid separation apparatus, 5 is a solids purification apparatus, 6 is a purification slurry transfer pump, and 7 is a separation liquid transfer pump. , 8 is a washing drainage transfer pump, 9 is a pH meter, 10 is a stirrer, 11 and 12 are three-way valves, 13 is a copper-containing acidic waste liquid supply pipe, 14 is an oxidant supply pipe, 15 is an alkaline agent supply pipe, and 16 is Stirrer 17 is a controller for controlling valves 18, 19 and 20, 18 is a valve for controlling the supply of a mixed liquid of copper-containing acidic waste liquid and oxidizing agent, and 19 is a valve for controlling the supply of copper-containing acidic waste liquid. , 20 is a valve for controlling the supply of the oxidizing agent, 21 is a valve for controlling the supply of the alkaline agent, 22 is a controller for controlling the valve 21, 23 is a copper-containing acidic waste liquid storage tank, 24 is an oxidizing agent storage tank, 25 Has an alkaline agent storage tank Show.
図1に示す銅の回収設備において、最初にバルブ21を開け、アルカリ剤貯留槽25からアルカリ剤供給配管15を通してアルカリ剤を所定量、混合反応槽2に供給し、その中にアルカリ性溶液を準備する。一方、反応槽3では、バルブ19と20を開け、反応槽3に銅含有酸性廃液貯留槽23および酸化剤貯留槽24から銅含有酸性廃液と酸化剤を供給する。反応槽3では、銅含有酸性廃液と酸化剤を所定時間混合した後、バルブ18を開け、攪拌機10でアルカリ性溶液が撹拌された状態の混合反応槽2に銅含有酸性廃液と酸化剤の混合液を供給する。この時、混合反応槽2ではpHをpH計9で測定し、pHが低下した場合、pH9以上を維持するように、制御器22で制御することによりバルブ21を開けてアルカリ剤をアルカリ剤貯留槽25からアルカリ剤供給配管15を通して混合反応槽2へ供給する。 In the copper recovery facility shown in FIG. 1, the valve 21 is first opened, a predetermined amount of alkaline agent is supplied from the alkaline agent storage tank 25 through the alkaline agent supply pipe 15 to the mixed reaction tank 2, and an alkaline solution is prepared therein. To do. On the other hand, in the reaction tank 3, the valves 19 and 20 are opened, and the copper-containing acidic waste liquid and the oxidizing agent are supplied to the reaction tank 3 from the copper-containing acidic waste liquid storage tank 23 and the oxidizing agent storage tank 24. In the reaction tank 3, after mixing the copper-containing acidic waste liquid and the oxidant for a predetermined time, the valve 18 is opened, and the mixed reaction tank 2 in which the alkaline solution is stirred by the stirrer 10 is added to the mixed liquid of the copper-containing acidic waste liquid and the oxidant. Supply. At this time, in the mixed reaction tank 2, the pH is measured with the pH meter 9, and when the pH drops, the valve 21 is opened by controlling with the controller 22 so as to maintain the pH 9 or higher, and the alkaline agent is stored in the alkaline agent. The mixed reaction tank 2 is supplied from the tank 25 through the alkaline agent supply pipe 15.
また、銅含有酸性廃液と酸化剤の混合液の注加量は、銅含有酸性廃液の供給配管に備えた流量計(図示せず)での流量や、注加回数から、制御器17で制御する。そして、反応槽3へ銅含有酸性廃液や酸化剤を供給する時間間隔や、銅含有酸性廃液と酸化剤の混合液を混合反応槽2に供給する時間隔隔は、バルブ18、19および20を開閉することにより制御器17で制御する。また、各バルブの代わりに流量可変のポンプを利用して、銅含有酸性廃液と酸化剤の混合液の注加を制御することも可能である。この場合、ポンプ流量を、混合液のアルカリ剤による希釈効果が得られる状態を維持できる流量に設定することで、銅含有酸性廃液と酸化剤の混合液を連続的に注加することも可能である。 Further, the amount of the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is controlled by the controller 17 from the flow rate (not shown) provided in the supply pipe for the copper-containing acidic waste liquid and the number of times of injection. To do. Then, the time interval for supplying the copper-containing acidic waste liquid and the oxidizing agent to the reaction tank 3 and the time interval for supplying the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent to the mixing reaction tank 2 are as follows. It is controlled by the controller 17 by opening and closing. It is also possible to control the addition of the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent by using a variable flow rate pump instead of each valve. In this case, it is possible to continuously add the mixed liquid of copper-containing acidic waste liquid and oxidizing agent by setting the pump flow rate to a flow rate that can maintain a state in which the dilution effect of the mixed solution by the alkaline agent is obtained. is there.
反応は、銅含有酸性廃液と酸化剤の混合液の注加を所定回数繰り返し、最後の注加の後、休止時間を経て終了する。終了後、混合反応槽2内の酸化銅を含むアルカリ性懸濁液は、分離液移送ポンプ7により固液分離装置4に送られ、固形物と上澄液に分離される。上澄液は溶解性の銅濃度が低いため、単純な中和処理を行った後、工場の総合排水処理設備など処理することで下水道や公共水域に放流される。また、上澄液にはアルカリ剤が残留しているので、ポンプ7を用い、再び混合反応槽2に供給することで、アルカリ剤を有効活用することも可能である。一方、固液分離装置4からの固形物は、固形物精製装置5に送られ洗浄される。さらに固液分離され、精製物として回収される。 The reaction is repeated a predetermined number of times with the addition of the copper-containing acidic waste liquid and the oxidizing agent mixture, and after the final addition, the reaction is terminated after a pause. After completion, the alkaline suspension containing copper oxide in the mixed reaction tank 2 is sent to the solid-liquid separation device 4 by the separation liquid transfer pump 7 and separated into a solid and a supernatant. Since the supernatant liquid has a low concentration of soluble copper, it is discharged into sewers and public water areas after simple neutralization and then treated as a general wastewater treatment facility in the factory. Moreover, since the alkali agent remains in the supernatant, it is possible to effectively utilize the alkali agent by supplying the mixture 7 again to the mixing reaction tank 2 using the pump 7. On the other hand, the solid matter from the solid-liquid separation device 4 is sent to the solid matter purification device 5 and washed. Further, it is separated into solid and liquid and recovered as a purified product.
図2は、本発明の別の実施形態を実施する場合の銅の回収装置の一様態を示す系統図である。図中、1は銅含有酸性廃液処理設備、2は混合反応槽、3は混合槽、4は固液分離装置、5は固形物精製装置、6は精製スラリー移送ポンプ、7は分離液移送ポンプ、8は洗浄排水移送ポンプ、9はpH計、10は撹拌機、11、12は三方弁、13は銅含有酸性廃液供給配管、14は酸化剤供給配管、15はアルカリ剤供給配管、16は撹拌機、18は銅含有酸性廃液と酸化剤の混合液の供給を制御するバルブ、19は銅含有酸性廃液の供給を制御するバルブ、20は酸化剤の供給を制御するバルブ、21はアルカリ剤の供給を制御するバルブ、23は銅含有酸性廃液貯留槽、24は酸化剤貯留槽、25はアルカリ剤貯留槽、26はバルブ18、バルブ19、バルブ20およびバルブ21を制御する制御器をそれぞれ示す。 FIG. 2 is a system diagram showing an embodiment of a copper recovery apparatus when another embodiment of the present invention is implemented. In the figure, 1 is a copper-containing acidic waste liquid treatment facility, 2 is a mixing reaction tank, 3 is a mixing tank, 4 is a solid-liquid separation apparatus, 5 is a solids purification apparatus, 6 is a purification slurry transfer pump, and 7 is a separation liquid transfer pump. , 8 is a washing drainage transfer pump, 9 is a pH meter, 10 is a stirrer, 11 and 12 are three-way valves, 13 is a copper-containing acidic waste liquid supply pipe, 14 is an oxidant supply pipe, 15 is an alkaline agent supply pipe, and 16 is A stirrer, 18 is a valve for controlling the supply of a mixed liquid of copper-containing acidic waste liquid and oxidizing agent, 19 is a valve for controlling the supply of copper-containing acidic waste liquid, 20 is a valve for controlling the supply of oxidizing agent, and 21 is an alkaline agent. , 23 is a copper-containing acidic waste liquid storage tank, 24 is an oxidant storage tank, 25 is an alkaline agent storage tank, 26 is a controller that controls the valves 18, 19, 20, and 21. Show.
図2に示す銅の回収設備において、最初にバルブ21を開け、アルカリ剤貯留槽25からアルカリ剤供給配管15を通してアルカリ剤を所定量、混合反応槽2に供給し、その中にアルカリ性溶液を準備する。一方、反応槽3では、バルブ19と20を開け、反応槽3に銅含有酸性廃液貯留槽23および酸化剤貯留槽24から銅含有酸性廃液と酸化剤を供給する。反応槽3では、銅含有酸性廃液と酸化剤を所定時間混合した後、バルブ18を開け、攪拌機10でアルカリ性溶液が撹拌された状態の混合反応槽2に銅含有酸性廃液と酸化剤の混合液を供給する。同時に、混合反応槽2のpHをpH計9で測定し、pHが低下した場合、pH9以上を維持するように、制御器23で制御することによりバルブ21を開けてアルカリ剤をアルカリ剤貯留槽25からアルカリ剤供給配管15を通して混合反応槽2へ供給する。 In the copper recovery facility shown in FIG. 2, the valve 21 is first opened, a predetermined amount of alkaline agent is supplied from the alkaline agent storage tank 25 through the alkaline agent supply pipe 15 to the mixed reaction tank 2, and an alkaline solution is prepared therein. To do. On the other hand, in the reaction tank 3, the valves 19 and 20 are opened, and the copper-containing acidic waste liquid and the oxidizing agent are supplied to the reaction tank 3 from the copper-containing acidic waste liquid storage tank 23 and the oxidizing agent storage tank 24. In the reaction tank 3, after mixing the copper-containing acidic waste liquid and the oxidant for a predetermined time, the valve 18 is opened, and the mixed reaction tank 2 in which the alkaline solution is stirred by the stirrer 10 is added to the mixed liquid of the copper-containing acidic waste liquid and the oxidant. Supply. At the same time, the pH of the mixed reaction tank 2 is measured by the pH meter 9, and when the pH is lowered, the valve 23 is opened by controlling with the controller 23 so as to maintain the pH 9 or higher, and the alkali agent is stored in the alkali agent storage tank. 25 is supplied to the mixing reaction tank 2 through the alkaline agent supply pipe 15.
また、銅含有酸性廃液と酸化剤の混合液を供給した後に、混合反応槽2のpHをpH計9で測定する。このpHの測定結果に応じて、反応槽3へ銅含有酸性廃液や酸化剤を供給する時間間隔や、銅含有酸性廃液と酸化剤の混合液を混合反応槽に2供給する時間間隔を、バルブ18、19および20を開閉することにより制御器17で制御する。 Further, after supplying the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent, the pH of the mixed reaction tank 2 is measured with the pH meter 9. Depending on the measurement result of this pH, the time interval for supplying the copper-containing acidic waste liquid and oxidant to the reaction tank 3 and the time interval for supplying the mixed liquid of copper-containing acidic waste liquid and oxidant to the mixing reaction tank 2 The controller 17 is controlled by opening and closing 18, 19, and 20.
反応は、銅含有酸性廃液と酸化剤の混合液の注加を所定回数繰り返し、最後の注加の後、休止時間を経て終了する。反応終了後、混合反応槽2内の酸化銅を含むアルカリ性懸濁液は分離液移送ポンプ7により固液分離装置4に送られ、固形物と上澄液に分離される。このうち、上澄液はアルカリ剤が残留しているので、ポンプ7を用い、再び混合反応槽2に供給することで、アルカリ剤を有効活用することも可能である。一方、固液分離装置4からの固形物は、固形物精製装置5に送られ洗浄される。さらに固液分離され、精製物として回収される。 The reaction is repeated a predetermined number of times with the addition of the copper-containing acidic waste liquid and the oxidizing agent mixture, and after the final addition, the reaction is terminated after a pause. After completion of the reaction, the alkaline suspension containing copper oxide in the mixed reaction tank 2 is sent to the solid-liquid separation device 4 by the separation liquid transfer pump 7 and separated into a solid and a supernatant. Among these, since the alkaline agent remains in the supernatant, the alkaline agent can be effectively utilized by supplying the mixed reaction tank 2 again using the pump 7. On the other hand, the solid matter from the solid-liquid separation device 4 is sent to the solid matter purification device 5 and washed. Further, it is separated into solid and liquid and recovered as a purified product.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例になんら限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.
実 施 例 1
銅エッチング廃液からの銅の回収:
銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じた61Lの銅エッチング廃液(pH:1.2、銅イオン濃度:137g/L、塩化物イオン濃度:257g/L:以下、これを「銅エッチング廃液」という)の処理を図1に示す装置で実施した。なお、酸化剤として30%過酸化水素溶液、アルカリ剤として25%水酸化ナトリウム溶液を用いた。
Example 1
Recovery of copper from copper etch effluent:
61 L of copper etching waste solution (pH: 1.2, copper ion concentration: 137 g / L, chloride ion concentration: 257 g / L: hereinafter referred to as this was generated when etching a copper printed board with a cupric chloride etchant. The treatment of “copper etching waste liquid”) was carried out with the apparatus shown in FIG. A 30% hydrogen peroxide solution was used as the oxidizing agent, and a 25% sodium hydroxide solution was used as the alkaline agent.
実施例1では、処理終了(反応終了)時点の混合反応槽pHを9以上とするため、25%水酸化ナトリウムをpH7に中和するのに必要な銅エッチング廃液量(1当量)に対し、0.8当量の銅エッチング廃液を混合反応槽に供給することとし、銅エッチング廃液と過酸化水素溶液の混合液を8回に分けて水酸化ナトリウム溶液に間欠的に注加した。注加後の休止時間は最初の5回(0.5当量に相当)までは各Run共3分、5回目から7回目まではRun1は10分、Run2は20分、Run3は30分に設定した。さらに、各Runとも8回目(0.8当量に相当)を注加し反応を終了した。反応終了後、各Runともそのまま30分間撹拌を継続した。また、混合液の注加にかかる時間は、各Run共3分とした(例として、図3にRun3における注加の時間間隔を示す)。なお、比較のため、注加後の休止時間を3分で固定した対照系列でも処理を行い、回収した酸化銅の塩素含有率を比較・評価した。 In Example 1, in order to set the mixing reaction tank pH at the end of the treatment (reaction end) to 9 or more, the copper etching waste liquid amount (1 equivalent) necessary for neutralizing 25% sodium hydroxide to pH 7 is as follows. 0.8 equivalent copper etching waste solution was supplied to the mixing reaction vessel, and the mixed solution of the copper etching waste solution and the hydrogen peroxide solution was added to the sodium hydroxide solution intermittently in 8 times. The rest period after injection is set to 3 minutes for each Run until the first 5 times (corresponding to 0.5 equivalents), 10 minutes for Run 1 from the 5th to 7th time, 20 minutes for Run 2, and 30 minutes for Run 3 did. Further, the eighth run (corresponding to 0.8 equivalent) was added to each Run to complete the reaction. After completion of the reaction, each Run was continuously stirred for 30 minutes. In addition, the time required for pouring the mixed solution was set to 3 minutes for each Run (for example, FIG. 3 shows the time interval for pouring in Run 3). For comparison, the control series in which the rest time after pouring was fixed at 3 minutes was also processed, and the chlorine content of the recovered copper oxide was compared and evaluated.
<装置>
容量370Lの混合反応槽2に、撹拌機10とpH計9を設置した。また、本試験装置での、混合槽3の有効容積は10Lであった。pH計9では混合反応槽2内の液のpHを測定する機能が備えられている。なお、本試験装置にはpH9以上に維持する制御が備えられているが、実際の処理ではpHは常時11.5以上に維持されていた。撹拌機10は、反応終了間際には酸化銅を含む高粘度の懸濁液を撹拌する必要があるため、リボン型の撹拌機を採用した。
<Device>
A stirrer 10 and a pH meter 9 were installed in the mixing reaction tank 2 having a capacity of 370 L. Moreover, the effective volume of the mixing tank 3 in this test apparatus was 10L. The pH meter 9 has a function of measuring the pH of the liquid in the mixed reaction tank 2. In addition, although this test apparatus was equipped with control which maintains pH9 or more, in actual processing, pH was always maintained at 11.5 or more. The stirrer 10 is a ribbon stirrer because it is necessary to stir a high-viscosity suspension containing copper oxide just before the end of the reaction.
<予備試験>
処理の前に、処理予定の銅エッチング廃液量に対する必要最低限の25%水酸化ナトリウム溶液量を求めるため、小スケールで中和処理を行った。25%水酸化ナトリウム溶液に銅エッチング廃液を少量ずつ添加し、銅エッチング廃液の添加量に対するpHを測定したところ、図4のような中和曲線が得られた。図4より1mLの25%水酸化ナトリウム溶液を中和してpH7とするための銅エッチング廃液量を求めると(図4中の太線)約1.15mLであった。この結果より、本実施例で使用する銅エッチング廃液と25%水酸化ナトリウム溶液量を混合してpH7とするための混合比率は、容積比で1.15:1であった。
<Preliminary test>
Prior to the treatment, neutralization treatment was performed on a small scale in order to obtain the minimum amount of 25% sodium hydroxide solution relative to the amount of copper etching waste liquid to be treated. When the copper etching waste solution was added to the 25% sodium hydroxide solution little by little and the pH with respect to the added amount of the copper etching waste solution was measured, a neutralization curve as shown in FIG. 4 was obtained. From FIG. 4, the amount of the copper etching waste solution for neutralizing 1 mL of 25% sodium hydroxide solution to pH 7 (thick line in FIG. 4) was about 1.15 mL. From this result, the mixing ratio for mixing the copper etching waste solution used in this example with the amount of 25% sodium hydroxide solution to pH 7 was 1.15: 1 in volume ratio.
<処理操作>
処理に先立ち、混合反応槽2内を撹拌するために必要最低限の液量を確保するため、水道水を混合反応槽2に88L供給した。その後、撹拌機10の運転を開始するとともに、アルカリ剤供給配管15より25%水酸化ナトリウム溶液68Lを混合反応槽2に注加した。水酸化ナトリウム注加後も混合反応槽2内を撹拌した所、溶液のpHは14、液温は約25℃であった。
<Processing operation>
Prior to the treatment, 88 L of tap water was supplied to the mixing reaction tank 2 in order to secure the minimum amount of liquid necessary for stirring the inside of the mixing reaction tank 2. Thereafter, the operation of the agitator 10 was started, and a 25% sodium hydroxide solution 68 L was poured into the mixed reaction tank 2 from the alkaline agent supply pipe 15. After the sodium hydroxide was added, the inside of the mixing reaction tank 2 was stirred, and the pH of the solution was 14 and the liquid temperature was about 25 ° C.
次に、無加温の銅エッチング廃液7.6Lを混合槽3に供給した。また、同時に30%過酸化水素溶液2.5Lを混合槽3に供給した。銅エッチング廃液と過酸化水素溶液を混合槽3に供給後、撹拌機16により3分間撹拌し混合した。 Next, 7.6 L of unheated copper etching waste liquid was supplied to the mixing tank 3. At the same time, 2.5 L of a 30% hydrogen peroxide solution was supplied to the mixing tank 3. After supplying the copper etching waste liquid and the hydrogen peroxide solution to the mixing tank 3, the mixture was stirred for 3 minutes by the stirrer 16 and mixed.
撹拌終了後、銅エッチング廃液と過酸化水素溶液の混合液10.1Lを混合反応槽2に注加した。混合液は、3分かけて混合反応槽2に注加した。この注加の間、混合反応槽2内は系内のpHが均一になるように撹拌した。銅エッチング廃液と過酸化水素溶液の混合液の注加終了後は、混合反応槽2の撹拌を、各系列とも3分間継続した。撹拌終了後、銅エッチング廃液を7.6L、過酸化水素溶液を2.5L混合し、混合反応槽2に注加する操作を計5回繰り返した。注加操作を5回終了した時点での、銅エッチング廃液の供給量は合計38L、過酸化水素溶液の供給量は合計12.5Lであった。また、混合反応槽2のpHは、約13.4であった。 After completion of the stirring, 10.1 L of a mixed liquid of copper etching waste liquid and hydrogen peroxide solution was poured into the mixed reaction tank 2. The mixed solution was poured into the mixing reaction tank 2 over 3 minutes. During this addition, the mixing reaction tank 2 was stirred so that the pH in the system was uniform. After completion of the addition of the mixed liquid of the copper etching waste liquid and the hydrogen peroxide solution, stirring of the mixed reaction tank 2 was continued for 3 minutes in each series. After completion of the stirring, 7.6 L of copper etching waste liquid and 2.5 L of hydrogen peroxide solution were mixed and poured into the mixing reaction tank 2 for a total of 5 times. When the pouring operation was completed five times, the supply amount of the copper etching waste liquid was 38 L in total, and the supply amount of the hydrogen peroxide solution was 12.5 L in total. Moreover, the pH of the mixing reaction tank 2 was about 13.4.
注加操作を5回終了した後、注加操作の休止時間を対照系列は3分、Run1は10分、Run2は20分、Run3は30分とし、休止時間中も撹拌を継続した。その後、銅エッチング廃液を7.6L、過酸化水素溶液を2.5L混合し、混合反応槽2に注加・休止する操作を計3回繰り返し、反応を終了した。反応終了後、さらに30分撹拌を継続した時点での、銅エッチング廃液の供給量は合計60.8L、過酸化水素溶液の供給量は合計20Lであった。また、混合反応槽2内の液のpHは約11.5、反応スラリーの温度は34℃であった。 After the pouring operation was completed five times, the resting time of the pouring operation was 3 minutes for the control series, 10 minutes for Run1, 20 minutes for Run2, and 30 minutes for Run3, and stirring was continued during the resting time. Thereafter, 7.6 L of copper etching waste liquid and 2.5 L of hydrogen peroxide solution were mixed, and the operation of pouring and pausing into the mixing reaction tank 2 was repeated three times in total to complete the reaction. When the stirring was continued for 30 minutes after the completion of the reaction, the total supply amount of the copper etching waste liquid was 60.8 L, and the total supply amount of the hydrogen peroxide solution was 20 L. Moreover, the pH of the liquid in the mixing reaction tank 2 was about 11.5, and the temperature of the reaction slurry was 34 ° C.
この後直ちに、生成した酸化銅を主成分とする固形物を含む懸濁液(以下、「懸濁液」という)の一部を混合反応槽2の下部から移送ポンプ6で抜き出し、懸濁液を固液分離装置4で固液分離した所、ろ液と黒色のスラッジが得られた。 Immediately after this, a part of the suspension containing the solid matter mainly composed of copper oxide (hereinafter referred to as “suspension”) is extracted from the lower part of the mixing reaction tank 2 by the transfer pump 6, and the suspension The solid and the liquid were separated by the solid-liquid separation device 4, and a filtrate and black sludge were obtained.
得られた黒色スラッジを、水洗・乾燥し、粉末X線回折法で評価したところ、酸化銅が主成分であることを確認した(図5)。また、塩素含有率と注加の休止時間との関係を表1に示した。 The obtained black sludge was washed with water, dried, and evaluated by powder X-ray diffractometry. As a result, it was confirmed that copper oxide was the main component (FIG. 5). Table 1 shows the relationship between the chlorine content and the suspending time.
表1より、注加1〜5回目までの休止時間を3分、注加5〜8回目までの休止時間を30分としたRun3では、塩素含有率が100mg−Cl/kg−CuO未満に低下した。以上の結果より、注加間隔を注加回数に応じて延長することで、銅めっき浴液の原料として再利用できる品質の酸化銅が製造できた。なお、ろ液の溶解性銅濃度は1mg/L未満であり、中和処理のみで放流が可能な水質であった。一方、注加の休止時間を注加1〜8回目まで3分とした対照系列は、塩素含有率が高く、約200mg−Cl/kg−CuOであった。 From Table 1, in Run3 where the rest time from the 1st to 5th injection was 3 minutes and the rest time from the 5th to 8th injection was 30 minutes, the chlorine content decreased to less than 100 mg-Cl / kg-CuO did. From the above results, it was possible to produce copper oxide of quality that can be reused as a raw material for the copper plating bath by extending the pouring interval according to the number of times of pouring. In addition, the soluble copper density | concentration of the filtrate was less than 1 mg / L, and it was the water quality which can be discharged | emitted only by the neutralization process. On the other hand, the control series in which the suspending time of the pouring was 3 minutes from the pouring to the 1st to 8th pouring had a high chlorine content and was about 200 mg-Cl / kg-CuO.
実 施 例 2
実施例2では、ラボスケール試験において、反応終点pHを実施例1より高くした場合の、回収した酸化銅の塩素含有率を評価した。
Example 2
In Example 2, in the lab scale test, the chlorine content of the recovered copper oxide when the reaction end point pH was higher than that in Example 1 was evaluated.
試験操作は、最初にビーカーに25%水酸化ナトリウム溶液1000mLを入れ、撹拌した。次に、撹拌状態のまま、銅エッチング廃液115mLと30%過酸化水素水54mLを混合し、この混合液を3分かけて、水酸化ナトリウム溶液に注加した。注加終了後、次の注加開始まで、注加操作を3分間休止した。一連の操作の間、ビーカー内の混合液は常時撹拌した。この注加・攪拌を1セットとした。 In the test operation, first, 1000 mL of 25% sodium hydroxide solution was placed in a beaker and stirred. Next, 115 mL of the copper etching waste solution and 54 mL of 30% hydrogen peroxide solution were mixed while stirring, and this mixture was poured into the sodium hydroxide solution over 3 minutes. After the end of pouring, the pouring operation was suspended for 3 minutes until the start of the next pouring. During the series of operations, the mixed solution in the beaker was constantly stirred. This addition / stirring was made into one set.
この後、銅エッチング廃液と過酸化水素水の混合液を水酸化ナトリウム溶液に注加・攪拌操作を5セット繰り返した。この時、銅エッチング廃液の合計処理量は577mLであり、ビーカーに用意した水酸化ナトリウム溶液を中和する銅エッチング廃液量の0.5当量に相当する。反応終了後、さらに30分間撹拌を継続した。その後、生成した酸化銅を主成分とする固形物を含む懸濁液のpHを測定したところ13.1であった。この懸濁液を固液分離し、黒色のスラッジを回収した。さらに黒色のスラッジを水洗・乾燥し、黒褐色の酸化銅を回収した。 Thereafter, the copper etching waste solution and the hydrogen peroxide solution were poured into the sodium hydroxide solution and the stirring operation was repeated 5 sets. At this time, the total processing amount of the copper etching waste liquid is 577 mL, which corresponds to 0.5 equivalent of the copper etching waste liquid amount for neutralizing the sodium hydroxide solution prepared in the beaker. After completion of the reaction, stirring was continued for another 30 minutes. Then, when pH of the suspension containing the solid substance which has the produced | generated copper oxide as a main component was measured, it was 13.1. This suspension was subjected to solid-liquid separation, and black sludge was recovered. Further, the black sludge was washed with water and dried to recover black brown copper oxide.
回収した酸化銅の塩素含有率を測定したところ、98mg−Cl/kg−CuOであり、銅メッキ浴液の原料として再利用できる品質の酸化銅が製造できた。しかし、実施例2は、銅エッチング廃液を処理するために必要な25%水酸化ナトリウム溶液量が、実施例1の約1.6倍必要となるため、アルカリ剤使用量が増えることになる。一方、反応終了後の懸濁液から酸化銅スラッジを回収した後は、実施例1と比較して高アルカリ(pH13以上)の上澄液が残り、アルカリ剤が有効に活用されていなかった。また、この上澄液の溶解性銅濃度は約25mg/Lであり、放流するためには中和処理に加えて銅の除去が必要であった。そのため、懸濁液の反応終点pHは12以下である方が好ましいことが分かった。 When the chlorine content of the recovered copper oxide was measured, it was 98 mg-Cl / kg-CuO, and it was possible to produce copper oxide of a quality that could be reused as a raw material for the copper plating bath. However, in Example 2, the amount of the 25% sodium hydroxide solution necessary for treating the copper etching waste liquid is about 1.6 times that in Example 1, so that the amount of the alkaline agent used is increased. On the other hand, after recovering the copper oxide sludge from the suspension after the completion of the reaction, a supernatant of high alkali (pH 13 or more) remained as compared with Example 1, and the alkali agent was not effectively utilized. Moreover, the soluble copper concentration of this supernatant was about 25 mg / L, and it was necessary to remove copper in addition to the neutralization treatment in order to discharge it. Therefore, it was found that the reaction end point pH of the suspension is preferably 12 or less.
以上、水酸化ナトリウム溶液に、常温で、銅エッチング廃液と過酸化水素水溶液の混合液を間欠的に注加する際に、注加の時間間隔を延長することで、銅エッチング廃液から塩素含有率が低い酸化銅を回収・製造できた。 As described above, when a mixed solution of copper etching waste liquid and aqueous hydrogen peroxide solution is intermittently added to a sodium hydroxide solution at room temperature, the chlorine content rate from the copper etching waste liquid is extended by extending the time interval of the addition. Was able to recover and produce low copper oxide.
本発明によれば、エッチング廃液や電解めっき浴の更新廃液などの銅を高濃度で含有する酸性銅廃液中の銅を、複塩の生成を回避しながら効率良く水に不溶性の酸化物として分離回収することが可能であり、かつ回収された酸化銅を主成分とする銅固形物は、めっき材料等として再利用可能なものである。 According to the present invention, copper in acidic copper waste liquid containing a high concentration of copper, such as etching waste liquid and electrolytic plating bath renewal waste liquid, is efficiently separated as an insoluble oxide in water while avoiding the formation of double salts. The copper solid material that can be recovered and contains the recovered copper oxide as a main component is reusable as a plating material or the like.
従って本発明は、エッチング工業やめっき工業において、経済的な酸性銅廃液からの銅の回収方法として利用可能なものである。 Therefore, the present invention can be used as an economical method for recovering copper from an acidic copper waste solution in the etching industry and the plating industry.
1:銅含有酸性廃液処理設備
2:混合反応槽
3:混合槽
4:固液分離装置
5:固形物精製装置
6:精製スラリー移送ポンプ
7:分離液移送ポンプ
8:洗浄排水移送ポンプ
9:pH計
10:撹拌機
11、12:三方弁
13:銅含有酸性廃液供給配管
14:酸化剤供給配管
15:アルカリ剤供給配管
16:撹拌機
17:バルブ18、バルブ19およびバルブ20を制御する制御器
18:銅含有酸性廃液と酸化剤の混合液の供給を制御するバルブ
19:銅含有酸性廃液の供給を制御するバルブ
20:酸化剤の供給を制御するバルブ
21:アルカリ剤の供給を制御するバルブ
22:バルブ21を制御する制御器
23:銅含有酸性廃液貯留槽
24:酸化剤貯留槽
25:アルカリ剤貯留槽
26:バルブ18、バルブ19、バルブ20およびバルブ21を制御する制御器
1: Copper-containing acidic waste liquid treatment facility 2: Mixing reaction tank 3: Mixing tank 4: Solid-liquid separation device 5: Solid matter purification device 6: Purification slurry transfer pump 7: Separation liquid transfer pump 8: Washing wastewater transfer pump 9: pH Total 10: Stirrer 11, 12: Three-way valve 13: Copper-containing acidic waste liquid supply pipe 14: Oxidant supply pipe 15: Alkaline agent supply pipe 16: Stirrer 17: Controller for controlling the valves 18, 19 and 20 18: Valve for controlling the supply of the mixed liquid of copper-containing acidic waste liquid and oxidizing agent 19: Valve for controlling the supply of copper-containing acidic waste liquid 20: Valve for controlling the supply of oxidizing agent 21: Valve for controlling the supply of alkaline agent 22: Controller 21 for controlling valve 21: Copper-containing acidic waste liquid storage tank 24: Oxidant storage tank 25: Alkaline agent storage tank 26: Valve 18, valve 19, valve 20 and valve 21 are controlled Controller
Claims (8)
当該混合液の添加量が混合反応槽のアルカリ性溶液を中和するために必要な銅含有酸性廃液量の少なくとも0.5当量を超えた時点において、混合反応槽中への当該混合液の注加を間欠的に行いつつ、注加の休止時間を10分以上とすることを特徴とする銅含有酸性廃液からの銅の回収方法。 In a mixed reaction tank to which a predetermined amount of alkaline solution is supplied, a mixed liquid of a copper-containing acidic waste liquid and an oxidant is managed so that the pH of the liquid in the mixed reaction tank is not temporarily lowered to 9 or less. Is poured into the mixing reaction vessel and mixed to produce an alkaline suspension containing a solid material mainly composed of copper oxide, and the solid is separated from the alkaline suspension. A method,
When the added amount of the mixed liquid exceeds at least 0.5 equivalent of the amount of copper-containing acidic waste liquid necessary for neutralizing the alkaline solution in the mixed reaction tank, the mixed liquid is poured into the mixed reaction tank. A method for recovering copper from a copper-containing acidic waste liquid, characterized in that the pause time for pouring is 10 minutes or longer while intermittently performing the step.
銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
銅含有酸性廃液の総注加量を測定する手段、
及び銅含有酸性廃液の総注加量に応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。 An apparatus for carrying out the method for recovering copper from the copper-containing acidic waste liquid according to any one of claims 1 to 5,
Means for mixing copper-containing acidic waste liquid and oxidizing agent, means for pouring a mixed liquid of copper-containing acidic waste liquid and oxidizing agent into a mixing reaction tank, an alkali agent is supplied, and the mixed liquid and the alkaline agent are added. A mixed reaction tank for producing an alkaline suspension containing copper oxide by a reaction, and a solid-liquid separation apparatus for collecting copper oxide from an alkaline suspension containing copper oxide that is communicated with the mixed reaction tank and drawn out from the mixed reaction tank There,
Furthermore,
Means for measuring the total amount of copper-containing acidic waste liquid;
And means for controlling the addition of the mixed liquid according to the total amount of the copper-containing acidic waste liquid,
A facility for recovering copper from a copper-containing acidic waste liquid.
銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
銅含有酸性廃液と酸化剤の該混合液の注加回数を数える手段、
及び注加回数に応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。 An apparatus for carrying out the method for recovering copper from the copper-containing acidic waste liquid according to any one of claims 1 to 5,
Means for mixing copper-containing acidic waste liquid and oxidizing agent, means for pouring a mixed liquid of copper-containing acidic waste liquid and oxidizing agent into a mixing reaction tank, an alkali agent is supplied, and the mixed liquid and the alkaline agent are added. A mixed reaction tank for producing an alkaline suspension containing copper oxide by a reaction, and a solid-liquid separation apparatus for collecting copper oxide from an alkaline suspension containing copper oxide that is communicated with the mixed reaction tank and drawn out from the mixed reaction tank There,
Furthermore,
Means for counting the number of times the mixed liquid of copper-containing acidic waste liquid and oxidizing agent is added;
And means for controlling the addition of the mixture according to the number of times of injection,
A facility for recovering copper from a copper-containing acidic waste liquid.
銅含有酸性廃液と酸化剤を混合する手段、銅含有酸性廃液と酸化剤の混合液を混合反応槽へ注加する手段、アルカリ剤が供給され、注加された該混合液と該アルカリ剤の反応により酸化銅を含むアルカリ性懸濁液を生成する混合反応槽、及び該混合反応槽と連通し該混合反応槽より引き抜いた酸化銅を含むアルカリ性懸濁液から酸化銅を回収する固液分離装置であって、
更に、
該混合反応槽のpHを測定するための手段、
及び該混合槽のpHに応じて、該混合液の注加を制御する手段、
を備えることを特徴とする銅含有酸性廃液からの銅の回収設備。
An apparatus for carrying out the method for recovering copper from the copper-containing acidic waste liquid according to any one of claims 1 to 5,
Means for mixing copper-containing acidic waste liquid and oxidizing agent, means for pouring a mixed liquid of copper-containing acidic waste liquid and oxidizing agent into a mixing reaction tank, an alkali agent is supplied, and the mixed liquid and the alkaline agent are added. A mixed reaction tank for producing an alkaline suspension containing copper oxide by a reaction, and a solid-liquid separation apparatus for collecting copper oxide from an alkaline suspension containing copper oxide that is communicated with the mixed reaction tank and extracted from the mixed reaction tank Because
Furthermore,
Means for measuring the pH of the mixing reactor;
And means for controlling the addition of the mixed solution according to the pH of the mixing tank,
A facility for recovering copper from a copper-containing acidic waste liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010035035A JP5431998B2 (en) | 2010-02-19 | 2010-02-19 | Method and apparatus for recovering copper from acidic waste liquid containing copper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010035035A JP5431998B2 (en) | 2010-02-19 | 2010-02-19 | Method and apparatus for recovering copper from acidic waste liquid containing copper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011168856A JP2011168856A (en) | 2011-09-01 |
JP5431998B2 true JP5431998B2 (en) | 2014-03-05 |
Family
ID=44683268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010035035A Active JP5431998B2 (en) | 2010-02-19 | 2010-02-19 | Method and apparatus for recovering copper from acidic waste liquid containing copper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5431998B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779606A (en) * | 2017-09-20 | 2018-03-09 | 郴州丰越环保科技有限公司 | A kind of method of wet-treating high-fluorine chlorine cigarette ash containing zinc-copper |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5696406B2 (en) * | 2010-09-08 | 2015-04-08 | 栗田工業株式会社 | Copper etching waste treatment method |
JP5965213B2 (en) * | 2012-05-24 | 2016-08-03 | 水ing株式会社 | Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid |
CN104591255A (en) * | 2013-10-31 | 2015-05-06 | 孙立 | Method for preparing micron-sized copper oxide from copper chloride etching waste liquid |
KR101636936B1 (en) * | 2014-06-16 | 2016-07-08 | (주)화백엔지니어링 | Apparatus for making oxidized copper powder usiing wasted copper chloride liquid |
JP6418143B2 (en) * | 2015-10-21 | 2018-11-07 | 住友金属鉱山株式会社 | Repulping apparatus and repulping method |
CN109292738B (en) * | 2018-10-26 | 2021-10-26 | 惠州市臻鼎环保科技有限公司 | Process and system for preparing industrial bleaching water by using acidic etching waste liquid |
CN114162848A (en) * | 2021-06-02 | 2022-03-11 | 王水平 | Method for preparing copper oxide by indirectly treating waste acidic etching solution |
CN115739082A (en) * | 2022-12-09 | 2023-03-07 | 长春黄金研究院有限公司 | Preparation of carbon-based nano copper oxide catalyst and method for treating cyanide-containing wastewater |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002255550A (en) * | 2001-02-28 | 2002-09-11 | National Institute Of Advanced Industrial & Technology | Method and apparatus for recovering copper as precipitate from etching waste liquid containing copper chloride |
JP2008127266A (en) * | 2006-11-24 | 2008-06-05 | Nittetsu Mining Co Ltd | Method for producing cupric oxide from copper etching waste liquid |
JP4199821B1 (en) * | 2008-01-15 | 2008-12-24 | 株式会社荏原製作所 | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid |
JP5215111B2 (en) * | 2008-08-25 | 2013-06-19 | 水ing株式会社 | Method and apparatus for recovering copper from acidic waste liquid containing copper |
-
2010
- 2010-02-19 JP JP2010035035A patent/JP5431998B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779606A (en) * | 2017-09-20 | 2018-03-09 | 郴州丰越环保科技有限公司 | A kind of method of wet-treating high-fluorine chlorine cigarette ash containing zinc-copper |
CN107779606B (en) * | 2017-09-20 | 2019-11-08 | 郴州丰越环保科技有限公司 | A kind of method of wet-treating high-fluorine chlorine cigarette ash containing zinc-copper |
Also Published As
Publication number | Publication date |
---|---|
JP2011168856A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5431998B2 (en) | Method and apparatus for recovering copper from acidic waste liquid containing copper | |
TWI423935B (en) | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and manufacturing method of copper-containing substance | |
JP5102157B2 (en) | Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid | |
JP5307478B2 (en) | Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid | |
JP5215111B2 (en) | Method and apparatus for recovering copper from acidic waste liquid containing copper | |
JP4947640B2 (en) | Waste acid solution treatment method | |
CN102459096B (en) | Method for recovering water and metals from plating wastewater resulting from washing | |
JP5808131B2 (en) | Process and recovery method for copper-containing acidic waste liquid and apparatus therefor | |
JP6511040B2 (en) | Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution | |
JP4894403B2 (en) | Cyanide-containing wastewater treatment method and apparatus | |
JP2022159814A (en) | Method and apparatus for treating manganese-containing water | |
WO2013176111A1 (en) | Processing method and apparatus for copper chloride-containing acidic waste liquids | |
JP5808132B2 (en) | Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor | |
JP5568259B2 (en) | Waste water treatment method and waste water treatment apparatus | |
CN108083563A (en) | A kind of admiro waste liquid, chemical nickel waste liquid and pickle liquor collaboration treatment process | |
JP5965213B2 (en) | Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid | |
JP2014012880A (en) | Method for disposing electroless copper plating waste solution, and device for the same | |
JP3642516B2 (en) | Method and apparatus for removing COD components in water | |
JP2013236983A (en) | Device and method for treating waste water | |
JP6807209B2 (en) | Wastewater treatment method and treatment equipment containing chromium and phosphorus | |
JP3788782B2 (en) | Method for removing and recovering copper by treating waste water and chemicals used therefor | |
JP2000167569A (en) | Method and equipment for treating copper-containing acidic waste water | |
JP4121064B2 (en) | Method for removing and recovering copper by treating waste water and chemicals used therefor | |
JP2022014842A (en) | Method for treating etching wastewater that contains copper ions and water-soluble organic substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5431998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |