JP5307478B2 - Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid - Google Patents

Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid Download PDF

Info

Publication number
JP5307478B2
JP5307478B2 JP2008212646A JP2008212646A JP5307478B2 JP 5307478 B2 JP5307478 B2 JP 5307478B2 JP 2008212646 A JP2008212646 A JP 2008212646A JP 2008212646 A JP2008212646 A JP 2008212646A JP 5307478 B2 JP5307478 B2 JP 5307478B2
Authority
JP
Japan
Prior art keywords
copper
waste liquid
solid
acidic waste
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008212646A
Other languages
Japanese (ja)
Other versions
JP2010047799A (en
Inventor
厚史 小林
葉子 窪田
利宏 鈴木
一憲 加納
琢也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2008212646A priority Critical patent/JP5307478B2/en
Publication of JP2010047799A publication Critical patent/JP2010047799A/en
Application granted granted Critical
Publication of JP5307478B2 publication Critical patent/JP5307478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液などの銅イオンを含有する酸性廃液を処理して銅を除去回収する方法および装置に関するものである。   The present invention treats copper by treating an acidic waste liquid containing copper ions, such as an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant or a plating bath renewal waste liquid in electrolytic copper foil production. The present invention relates to a removal and recovery method and apparatus.

銅イオンを高濃度で含有する酸性の廃液(以下、「銅含有酸性廃液」という)としては、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液などが知られている。これらの廃液は、銅濃度が5〜20質量%(以下、単に「%」で示す)程度と高い一方で、共存する塩化物イオンや硫酸イオンの濃度も通常5〜30%と高い。また、エッチング廃液においては、塩化物イオンが、含有される銅イオンに対してモル比で2倍以上という高い比率で含有されている。   As an acidic waste liquid containing copper ions at a high concentration (hereinafter referred to as “copper-containing acidic waste liquid”), etching waste liquid generated when etching a copper printed board with a cupric chloride etchant or plating in the production of electrolytic copper foil Renewed waste liquid of bath liquid is known. These waste liquids have a high copper concentration of about 5 to 20% by mass (hereinafter simply referred to as “%”), while the concentration of coexisting chloride ions and sulfate ions is usually as high as 5 to 30%. Further, in the etching waste liquid, chloride ions are contained at a high ratio of 2 times or more in molar ratio with respect to the contained copper ions.

このような銅含有酸性廃液を対象にした銅の回収処理としては、イオン化傾向の差を利用して例えば鉄スクラップと反応させて金属銅を析出させて回収する方法が一部で行われている。しかし、この方法では廃液からの銅回収率が低いとともに、銅イオンとの反応により溶出した鉄イオンなどと回収されなかった銅イオンとが含まれる廃液が残るため、この廃液の処理が別途必要であり効率的な処理方法とは言いがたい。   As a copper recovery process for such a copper-containing acidic waste liquid, a method of depositing and recovering metallic copper by reacting with, for example, iron scrap using a difference in ionization tendency is performed in part. . However, this method has a low copper recovery rate from the waste liquid, and a waste liquid containing iron ions eluted by reaction with copper ions and copper ions that have not been recovered remains. It is hard to say that there is an efficient processing method.

また、一般的な銅含有酸性廃液の処理方法としては、水酸化ナトリウムなどのアルカリ性物質を添加することにより重金属類を水酸化物として沈殿除去する処理方法が知られているが、この方法は生成するスラッジの嵩が高く、量も多いため、銅イオンの含有濃度が高い銅含有酸性廃液の処理には適さない。   In addition, as a general treatment method for copper-containing acidic waste liquid, a treatment method is known in which heavy metals are precipitated and removed as a hydroxide by adding an alkaline substance such as sodium hydroxide. Since the volume of sludge to be produced is high and the amount is large, it is not suitable for the treatment of copper-containing acidic waste liquid having a high copper ion concentration.

更に、エッチング廃水については、アルカリを添加して銅イオンを銅水酸化物として不溶化し、更に酸化剤を添加して酸化銅にして回収する処理方法(特許文献1等)が試みられている。しかしながら、当該技術において酸化剤として次亜塩素酸塩やさらし粉などの塩化物イオンを含む酸化剤を使用した場合には、添加後の液中の塩化物イオン濃度がより高くなることで塩化銅と酸化銅との複塩の生成やスラッジへの塩分の混入が懸念されるなどの問題点があり、また、高濃度廃液を対象にした場合には回収される酸化銅への不純物含有量が多くなるなど、改善すべき点が多い。   Furthermore, as for the etching wastewater, a treatment method (Patent Document 1, etc.) is attempted in which alkali is added to insolubilize copper ions as copper hydroxide, and further an oxidizing agent is added to obtain copper oxide. However, when an oxidizing agent containing chloride ions such as hypochlorite or bleaching powder is used as the oxidizing agent in the art, the concentration of chloride ions in the liquid after the addition becomes higher, so that copper chloride and There are problems such as concern about the formation of double salts with copper oxide and the inclusion of salt in sludge, and when high concentration waste liquid is targeted, the amount of impurities contained in the recovered copper oxide is large. There are many points to be improved.

一方、酸化剤として過酸化水素を使用する場合には前述の塩類濃度の上昇は起こらないが、次のような問題点から、この方法では効率的な処理が実施出来ない。すなわち、銅イオンと、塩化物イオンあるいは硫酸イオンが高濃度で共存する強酸性廃液を処理する場合、酸性であるこの液に対してアルカリ剤を添加して酸性側から中性付近ないしアルカリ性へと中和を進める方法では、pH≒1.5以上で水酸化銅と塩化銅あるいは硫酸銅との複塩を主成分とする固形物が析出する。そして、この複塩を主体とする固形物は嵩高であるために、銅を高濃度で含むこの廃液の処理に採用した場合は、中和の途中で廃液がペースト状の汚泥に変化し、処理が困難となってしまう問題があった。   On the other hand, when hydrogen peroxide is used as the oxidizing agent, the above-described increase in the salt concentration does not occur, but due to the following problems, this method cannot perform an efficient treatment. That is, when treating a strongly acidic waste liquid in which copper ions and chloride ions or sulfate ions coexist at a high concentration, an alkaline agent is added to the acidic liquid so that the acid side becomes neutral or alkaline. In the method of proceeding with neutralization, a solid containing a double salt of copper hydroxide and copper chloride or copper sulfate as a main component is precipitated at pH≈1.5 or more. And since the solids mainly composed of this double salt are bulky, when it is used for the treatment of this waste liquid containing copper at a high concentration, the waste liquid changes to paste-like sludge during the neutralization process. There was a problem that would be difficult.

さらにこの複塩は、過酸化水素では酸化分解されない一方で、過酸化水素の分解触媒として作用するため、この固形物が析出した液に酸化剤として過酸化水素を加えても、過酸化水素が一方的に分解消費され、酸化銅への酸化処理が不完全な状況で反応が終結してしまうという問題もあった。   Furthermore, this double salt is not oxidatively decomposed with hydrogen peroxide, but acts as a hydrogen peroxide decomposition catalyst. Therefore, even if hydrogen peroxide is added as an oxidizing agent to the liquid in which the solid is deposited, There was also a problem that the reaction ended in a situation where it was unilaterally decomposed and consumed and the oxidation treatment to copper oxide was incomplete.

この複塩を主成分とする固形物析出に伴う被処理液(廃液)のペースト状化を回避するためには、中和処理に際して銅イオン濃度が10g/L程度以下、塩化物イオンあるいは硫酸イオン濃度が20g/L程度以下になるように希釈することが有効である。しかし、このためには多くの希釈水を必要とし、またそれに伴い処理する装置も大型となるという問題点がある。   In order to avoid paste-like treatment liquid (waste liquid) due to precipitation of solids composed mainly of this double salt, the copper ion concentration is about 10 g / L or less, chloride ions or sulfate ions during neutralization treatment. It is effective to dilute so that the concentration is about 20 g / L or less. However, this requires a large amount of dilution water, and there is a problem that the apparatus for processing becomes large accordingly.

更にまた、銅イオンを含有するエッチング排水のように、廃液に含有される銅イオンと、塩化物イオンあるいは硫酸イオンが高濃度で共存する強酸性廃液を処理する場合には、銅を含有する酸性廃液に過酸化水素を先に添加して共存させておいても、これにアルカリ剤を注入して酸性側から中性ないしアルカリ性へと中和反応を進めた場合には反応の途中で前述の複塩を主成分とする析出物を一部生じるため、これにより過酸化水素の多くが触媒分解されて消失してしまい、過酸化水素量が不足することで酸化銅への酸化処理が一部不完全な状況で反応が終結してしまう問題があった。これに対し、不足する分を見越して過酸化水素量を十分過剰に加えることで酸化処理状況を改善することは可能であるが、薬剤の添加量が多くなり効率が悪いとともに、この場合でも過酸化水素で酸化分解を受けない複塩はスラッジ中に残留する。そして、この複塩自体は水洗を十分に行うことでスラッジから溶解して含有濃度を低減させることが可能であるが、洗浄用水を多く必要とするとともに、洗浄排水中に銅イオンが含有されることになるため、その処理が別途必要であり、この点からも処理効率が悪い。   Furthermore, when processing a highly acidic waste liquid in which copper ions contained in the waste liquid and chloride ions or sulfate ions coexist at a high concentration, such as etching waste water containing copper ions, an acid containing copper is treated. Even if hydrogen peroxide is first added to the waste liquid and coexisted, if an alkali agent is injected into the waste liquid and the neutralization reaction proceeds from the acidic side to neutral to alkaline, Since some precipitates mainly composed of double salts are produced, most of the hydrogen peroxide is catalytically decomposed and disappears, and due to the insufficient amount of hydrogen peroxide, oxidation treatment to copper oxide is partly performed. There was a problem that the reaction ended in an incomplete situation. On the other hand, it is possible to improve the oxidation treatment status by adding a sufficient amount of hydrogen peroxide in anticipation of the shortage, but the amount of chemicals added increases and the efficiency is poor. Double salts that do not undergo oxidative decomposition with hydrogen oxide remain in the sludge. And this double salt itself can be dissolved from sludge by sufficiently washing with water to reduce the content concentration, but requires a lot of water for washing and contains copper ions in the washing waste water. Therefore, the processing is separately required, and the processing efficiency is poor from this point.

また更に、これらの技術では酸性の液をpH=8〜12のアルカリ性側にして処理するため、回収固形物の脱水や上澄水の放流など後段側の状況を考慮し、後段側で中性付近に再中和する必要があるが、その場合はその分の薬品も必要となるため、この点からも効率的な方法とは言いがたいものである。   Furthermore, in these techniques, the acidic liquid is treated with the alkaline side of pH = 8 to 12, so the situation on the rear side such as dehydration of the collected solids and the discharge of the supernatant water is taken into consideration, and the neutral side is located on the rear side. However, it is difficult to say that the method is efficient from this point of view.

以上のように、銅の回収再利用の妨げとなる塩化物イオンなどの塩類濃度が高い酸性銅廃液から銅のみを効率良く回収する技術がないために、これらの廃液は一般的には産業廃棄物処理会社により回収され、再利用されることなく処分されることが多かった。   As mentioned above, since there is no technology for efficiently recovering only copper from acidic copper waste liquids with high salt concentrations such as chloride ions that hinder the recovery and reuse of copper, these waste liquids are generally disposed of in industrial waste. It was often collected by a waste disposal company and disposed of without being reused.

これらの状況を鑑み、本発明者らは、前記課題を解決すべく鋭意研究をかさねた結果、以下の事柄を見出し、酸性銅廃液から銅を酸化銅を主体とする固形物を、塩素含有量の少ない状態で析出させ、回収できる発明を完成するに至った。   In view of these circumstances, as a result of intensive research to solve the above problems, the present inventors have found the following matters, copper from the acidic copper waste liquid, the solids mainly composed of copper oxide, the chlorine content The present invention has been completed which can be precipitated and recovered in a state where there is little amount of.

すなわち、処理対象液である銅イオンを高濃度で含有する酸性廃液、例えばエッチング廃液と酸化剤を混合した後、これをアルカリ剤溶液に所定のpH域(アルカリ領域)に管理しつつ注加、混合することで、塩化物イオンなどの含有濃度が高い廃液においても複塩の生成を回避出来、該廃液中の銅イオンを酸化銅として不溶化し、除去回収できることを見出した。また、この酸化反応を逐次進行させることにより、残留銅イオン濃度が低い液が得られ、この液による希釈効果を有効に活用することで最終的に中和した状態においても複塩の生成を回避して過酸化水素等の酸化剤による銅イオンからの酸化銅の生成反応を良好に維持、進行することが出来、これにより、効率良く酸化銅を析出させることが可能で、最終的な液性が弱アルカリ性ないし中性となる処理を実施することができることを見出した。   That is, after mixing an acidic waste liquid containing a high concentration of copper ions, which is a treatment target liquid, for example, an etching waste liquid and an oxidizing agent, this is added to an alkaline agent solution while managing it in a predetermined pH range (alkali region). It has been found that, by mixing, the formation of double salts can be avoided even in waste liquids containing a high concentration of chloride ions and the like, and copper ions in the waste liquid can be insolubilized as copper oxide and removed and recovered. In addition, by sequentially proceeding with this oxidation reaction, a liquid with a low residual copper ion concentration can be obtained. By effectively utilizing the dilution effect of this liquid, the formation of double salts is avoided even in the final neutralized state. Therefore, the production reaction of copper oxide from copper ions by an oxidizing agent such as hydrogen peroxide can be maintained and proceeded well, which makes it possible to deposit copper oxide efficiently, and the final liquidity Has been found to be able to carry out a treatment that becomes weakly alkaline or neutral.

しかしながら、上記方法も、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液などの塩化物イオンの含有率が高い廃液を対象とする場合は、問題が残っていた。すなわち、この方法で処理して得られた固形物を水で洗浄後乾燥して得られた固形物中には、単純な水性操作では低減困難な塩素分が400μg/g程度(蛍光X線回折法蛍光X線測定装置;(株)リガク社製 ZSX PrimsII型、管球;Cu、電流/電圧;50kV/50mAによる分析結果)含有されていることが見出された。   However, the above method also has a problem when a waste solution having a high chloride ion content such as an etching waste solution generated when etching a copper printed board with a cupric chloride etchant is used. That is, in the solid obtained by washing the solid obtained by this method with water and drying, the chlorine content that is difficult to reduce by simple aqueous operation is about 400 μg / g (fluorescent X-ray diffraction). Method X-ray fluorescence measurement apparatus; manufactured by Rigaku Corporation ZSX Prims II type, tube; Cu, current / voltage; analysis result by 50 kV / 50 mA) was found to be contained.

そして、回収した酸化銅を主体とする固形物を銅メッキ処理工程における銅イオン供給源として再利用する場合には、メッキ処理への塩化物イオンの悪影響が知られており(非特許文献1)、これを回避するために、固形物中の塩素含有量をなるべく低く(例えば50〜100μg/g以下)することが求められている。このため、上記の方法で回収された固形物は、銅メッキ浴液への銅イオンの供給原料として再利用するためには、塩素の取り込み量をなるべく低減することが要求されているが、これは従来の技術では困難であった。
特願2002−212857 「表面技術」、第55巻,第6号,第423−427頁 (2004)
Then, when the recovered solid matter mainly composed of copper oxide is reused as a copper ion supply source in the copper plating process, the adverse effect of chloride ions on the plating process is known (Non-Patent Document 1). In order to avoid this, the chlorine content in the solid is required to be as low as possible (for example, 50 to 100 μg / g or less). For this reason, in order to reuse the solids recovered by the above method as a copper ion feedstock to the copper plating bath, it is required to reduce the amount of chlorine taken in as much as possible. It was difficult with the conventional technology.
Japanese Patent Application No. 2002-212857 “Surface Technology”, Vol. 55, No. 6, pp. 423-427 (2004)

従って本発明は、塩化銅含有エッチング廃液などの銅と塩化物イオンを高濃度で含有する強酸性の廃液について、これを効率的かつ低いスラッジ発生量で処理可能であり、しかも、銅メッキ浴液への銅イオン供給源として再利用出来る程度の塩素含有量の少ない酸化銅を沈殿物として回収するための技術の提供をその課題とするものである。   Therefore, the present invention is capable of treating a highly acidic waste solution containing copper and chloride ions at a high concentration, such as a copper chloride-containing etching waste solution, with an efficient and low sludge generation amount, and further, a copper plating bath solution. It is an object of the present invention to provide a technique for recovering, as a precipitate, copper oxide having a low chlorine content that can be reused as a copper ion supply source.

本発明者らは、前記課題を解決すべく鋭意研究をかさねた結果、以下の事柄を見出し、本発明を完成するに至った。すなわち、エッチング廃液等、銅イオンと塩化物イオンを高濃度で含有する酸性廃液と酸化剤を混合した後、これをアルカリ剤溶液に注加、混合するにあたり、アルカリ剤溶液のpHを一時的にでもpH7以下としないという条件の他、アルカリ溶液の温度を55℃以上、望ましくは80℃以上に加熱してから混合液を注加して反応させるという条件を満たすよう管理すれば、複塩の生成を回避しつつ、該廃液中の銅イオンを酸化銅として不溶化させ、回収可能であり、しかもその固形物中の塩素イオン濃度を大幅に低減しうることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found the following matters and have completed the present invention. That is, after mixing an acidic waste liquid containing a high concentration of copper ions and chloride ions with an oxidizing agent, such as an etching waste liquid, and adding this to the alkaline agent solution, the pH of the alkaline agent solution is temporarily adjusted. However, in addition to the condition that the pH is not lower than 7, the temperature of the alkali solution is controlled to 55 ° C. or higher, preferably 80 ° C. It has been found that the copper ions in the waste liquid can be insolubilized and recovered as copper oxide while avoiding the production, and the chlorine ion concentration in the solid can be greatly reduced.

また、混合液注加後のアルカリ剤溶液のpHを11.5以上、望ましくは12.5以上の強アルカリ性となるよう管理しても、塩素の取り込み量が少ない酸化銅を主成分とする固形物を生成させることができることを見出した。   Further, even if the pH of the alkaline agent solution after pouring the mixed solution is controlled to be strong alkalinity of 11.5 or more, desirably 12.5 or more, the solid containing copper oxide as a main component with a small amount of chlorine uptake. It was found that the product can be generated.

本発明は、上記知見に基づいて完成したものであり、その第一の発明は、次の管理条件(1)および(2)
(1)混合液注加後のアルカリ剤溶液のpHを一時的にでも7以下にしない
(2)混合液注加後のアルカリ剤溶液の温度を55℃以上とする
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法である。
This invention is completed based on the said knowledge, The 1st invention is the following management conditions (1) and (2)
(1) The pH of the alkaline agent solution after pouring the mixed solution is not temporarily set to 7 or less. (2) The copper-containing acidity is maintained while keeping the temperature of the alkaline agent solution after pouring the mixed solution at 55 ° C or higher. A method for recovering a copper-containing solid with reduced chlorine content from a copper-containing acidic waste liquid, characterized in that a mixed liquid of a waste liquid and an oxidizing agent is poured into an alkaline agent solution to obtain a generated solid. is there.

また、本発明の第二の発明は、上記管理条件(1)および(2)を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする塩素含有量の低い銅含有固形物の製造方法である。   In addition, the second invention of the present invention is to add a mixed liquid of copper-containing acidic waste liquid and oxidizing agent to an alkaline agent solution while keeping the above management conditions (1) and (2), and to produce a solid matter to be generated. A method for producing a copper-containing solid material having a low chlorine content.

更に、本発明の第三の発明は、次の管理条件(3)
(3)混合液注加後のアルカリ剤溶液のpHを11.5以上に維持する
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法である。
Furthermore, the third invention of the present invention is the following management condition (3):
(3) Solid matter produced by pouring the mixed solution of the copper-containing acidic waste liquid and the oxidizing agent into the alkaline agent solution while keeping the pH of the alkaline agent solution after pouring the mixed solution at 11.5 or higher. Is a method for recovering a copper-containing solid with reduced chlorine content from a copper-containing acidic waste liquid.

更にまた、本発明の第四の発明は、上記管理条件(3)を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする塩素含有量の低い銅含有固形物の製造方法である。   Furthermore, the fourth invention of the present invention is to add the mixed solution of the copper-containing acidic waste liquid and the oxidizing agent to the alkaline agent solution while keeping the above management condition (3), and obtain a solid matter to be generated. This is a method for producing a copper-containing solid having a low chlorine content.

更に本発明の第五の発明は、加熱手段およびpH測定手段を備えた、銅含有酸性廃液と酸化剤との混合液とアルカリ剤溶液とを反応させて固形物として析出させる反応槽と、前記固形物を分離回収する固液分離装置と、酸化剤配管および銅含有酸性廃液配管とが途中で合流された混合液配管とを含み、前記混合液配管は、反応槽に混合液を注加可能に設けられ、反応槽と固液分離装置とは固形物を含む懸濁液を移送可能に連通されていることを特徴とする銅含有酸性廃液からの銅含有固形物の回収装置である。   Furthermore, the fifth invention of the present invention comprises a reaction tank comprising a heating means and a pH measurement means, wherein a reaction liquid containing a copper-containing acidic waste liquid and an oxidizing agent and an alkaline agent solution are reacted to precipitate as a solid, Includes a solid-liquid separator that separates and recovers solids, and a mixed liquid pipe that joins the oxidizer pipe and copper-containing acidic waste liquid pipe on the way. The mixed liquid pipe can pour the mixed liquid into the reaction tank. The reaction vessel and the solid-liquid separator are connected to each other so as to be able to transfer a suspension containing the solid matter so as to recover the copper-containing solid matter from the copper-containing acidic waste liquid.

また更に、本発明の第六の発明は、銅含有酸性廃液と酸化剤溶液とを混合する混合槽と、加熱手段およびpH測定手段を備えた、混合物とアルカリ剤溶液を反応させて固形物として析出させる反応槽と、前記固形物を分離回収する固液分離装置と、前記混合槽から反応槽に混合液を注加する手段とを含み、前記反応槽と前記固液分離装置とは固形物を含む懸濁液を移送可能に連通されていることを特徴とする、銅含有酸性廃液からの銅含有固形物の回収装置である。   Furthermore, the sixth invention of the present invention comprises a mixing tank for mixing the copper-containing acidic waste liquid and the oxidant solution, a heating means and a pH measuring means, and reacting the mixture with the alkaline agent solution as a solid matter. A reaction tank for precipitation, a solid-liquid separation device for separating and recovering the solid matter, and a means for pouring the mixed solution from the mixing tank to the reaction vessel. The reaction tank and the solid-liquid separation device are solid materials. It is the collection | recovery apparatus of the copper containing solid substance from the copper containing acidic waste liquid characterized by the above-mentioned.

本発明によれば、従来技術では回収処理が困難であった、銅含有濃度が高い酸性廃液から、効率的に銅を酸化銅を主成分とする固形物として回収することが可能である。   According to the present invention, it is possible to efficiently recover copper as a solid containing copper oxide as a main component from an acidic waste liquid having a high copper-containing concentration, which has been difficult to recover with the prior art.

特に、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液など、銅イオンの他塩化物イオンの含有率が高い廃液であっても、複塩の生成を防ぎつつ、直接処理することができるとともに、銅イオンを、塩素含有量の少ない酸化銅を主体とした固形物として生成、回収することが可能になった。   In particular, even waste liquids containing a high content of chloride ions in addition to copper ions, such as etching waste liquids produced when etching copper printed circuit boards with cupric chloride etchants, are treated directly while preventing the formation of double salts. In addition, copper ions can be generated and recovered as a solid mainly composed of copper oxide having a low chlorine content.

そして、回収された塩素含有量の少ない酸化銅を主体とした固形物は、銅プリント基板の製造などにおける銅メッキ工程に銅イオンの供給源として戻すことが可能であるため、本発明方法を銅プリント基板の製造工程などに組み込めば、銅を資源として有効に循環再利用することが可能となり、極めて効率的である。   The recovered solid matter mainly composed of copper oxide having a low chlorine content can be returned as a copper ion supply source to the copper plating process in the production of a copper printed circuit board. If incorporated in the manufacturing process of printed circuit boards, copper can be effectively recycled and reused as a resource, which is extremely efficient.

本発明方法による処理プロセスの基本は、銅含有酸性廃液と酸化剤とをまず混合し、次いでこの得られた混合液をアルカリ剤溶液に注加して、固形物を生成させるというものである。そして本発明の特徴は、この固形物生成を、次の管理条件(1)および(2)
(1)混合液注加後のアルカリ剤溶液のpHを一時的にでも7以下にしない
(2)混合液注加後のアルカリ剤溶液の温度を55℃以上とする
または、次の管理条件(3)
(3)混合液注加後のアルカリ剤溶液のpHを11.5以上に維持する
を守りつつ行うことにより塩素の取り込み量が少ない固形物を生成させるというものである。
The basis of the treatment process according to the method of the present invention is to first mix the copper-containing acidic waste liquid and the oxidizing agent, and then pour the obtained mixed liquid into the alkaline agent solution to produce a solid. The feature of the present invention is that this solid matter generation is controlled by the following control conditions (1) and (2)
(1) The pH of the alkaline agent solution after pouring the mixed solution is not temporarily set to 7 or less. (2) The temperature of the alkaline agent solution after pouring the mixed solution is set to 55 ° C. or higher, or the following control conditions ( 3)
(3) By maintaining the pH of the alkaline solution after pouring the mixed solution at 11.5 or higher, a solid matter with a small amount of chlorine uptake is generated.

本発明方法で処理対象となる銅含有酸性廃液としては、銅をイオン状態で含有する酸性廃液であり、これに含まれる銅イオン濃度や、アニオン濃度に特に制約なく適用できるが、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液など、特に銅イオン濃度と塩化物イオン濃度の高いものに有利に適用することができる。   The copper-containing acidic waste liquid to be treated by the method of the present invention is an acidic waste liquid containing copper in an ionic state, and can be applied to the copper ion concentration and anion concentration contained therein without any particular restrictions. For example, a copper printed board Can be advantageously applied to an etching waste solution generated when etching with a cupric chloride etchant, particularly those having high copper ion concentration and chloride ion concentration.

また、本発明方法で利用される酸化剤としては、2価の銅イオンを酸化銅とすることができるものであれば、種々の酸化剤を利用することができるが、溶液として取り扱えることや、反応後に水以外の成分が残らないことから、過酸化水素やオゾン水などが有効に利用され、過酸化水素が特に適している。また、気体オゾンを直接銅含有酸性廃液に吹き込むことで、酸化剤との混合液とすることも出来る。   In addition, as the oxidizing agent used in the method of the present invention, various oxidizing agents can be used as long as they can convert divalent copper ions into copper oxide, but they can be handled as a solution, Since no components other than water remain after the reaction, hydrogen peroxide, ozone water or the like is effectively used, and hydrogen peroxide is particularly suitable. Moreover, it can also be set as a liquid mixture with an oxidizing agent by blowing gaseous ozone directly into copper containing acidic waste liquid.

更に、本発明で利用されるアルカリ剤としては、種々のアルカリ剤を使用することができるが、共存する恐れのある陰イオンと沈降性の塩を形成する可能性のないアルカリ金属の水酸化物が望ましく、比較的安価で入手が容易なことから水酸化ナトリウムが好適に使用できる。また水溶液として入手した場合は、容易に使用できる利点があるが、溶解に伴う反応熱を有効に活用して液温を上昇させることを目的に、固体状のアルカリ剤を適宜溶解させて用いても良い。   Further, as the alkali agent used in the present invention, various alkali agents can be used, but alkali metal hydroxides which do not have the possibility of forming a precipitating salt with an anion that may coexist. Sodium hydroxide is preferably used because it is relatively inexpensive and easily available. In addition, when obtained as an aqueous solution, there is an advantage that it can be easily used, but for the purpose of increasing the liquid temperature by effectively utilizing the heat of reaction accompanying dissolution, a solid alkaline agent is appropriately dissolved and used. Also good.

本発明方法の実施にあたっては、まず、上記した順序を守ることが特に重要である。そこで、酸化剤溶液として過酸化水素溶液を、アルカリ剤として水酸化ナトリウムを用いる場合を例にとり、混合、反応順序の重要性を以下に説明する。   In carrying out the method of the present invention, it is particularly important to first observe the order described above. Therefore, the importance of the mixing and reaction sequence will be described below, taking as an example the case of using a hydrogen peroxide solution as the oxidant solution and sodium hydroxide as the alkali agent.

まず、銅イオンを高濃度で含有する銅含有酸性廃液にアルカリ剤を注加するという順序では、従来技術で述べたとおり複塩の生成が起こり、処理が困難な性状の汚泥が析出するという結果となる。   First, in the order of adding an alkaline agent to a copper-containing acidic waste liquid containing copper ions at a high concentration, as described in the prior art, double salt formation occurs, and sludge with properties that are difficult to treat is deposited. It becomes.

また、銅含有酸性廃液を過酸化水素溶液と混合する前にアルカリ剤に注加した場合は、水酸化銅の析出が先行して起こる。そしてその後に過酸化水素溶液を注加した場合には、液中に析出した水酸化銅の固体の酸化処理となるため、過酸化水素による酸化銅への酸化反応の効率が低下する。   In addition, when the copper-containing acidic waste liquid is added to the alkaline agent before mixing with the hydrogen peroxide solution, copper hydroxide is precipitated first. Then, when a hydrogen peroxide solution is poured thereafter, the copper hydroxide solid precipitated in the solution is oxidized, so that the efficiency of the oxidation reaction to copper oxide by hydrogen peroxide is reduced.

さらにエッチング廃液などの第一銅イオンを含有する廃液を処理対象とする場合、過酸化水素と混合する前にこれをアルカリ剤に注加した場合には水酸化銅に加えて溶解度が低い塩化第一銅(CuCl)も析出する。この塩化第一銅(CuCl)は過酸化水素の分解触媒として作用するため、酸化銅の生成への寄与が不十分な状況で過酸化水素が消費されてしまい、過酸化水素による酸化反応の効率が更に低下する。   In addition, when waste liquid containing cuprous ions, such as etching waste liquid, is treated, if it is added to an alkaline agent before mixing with hydrogen peroxide, it is added to copper hydroxide and has a low solubility. Monocopper (CuCl) is also deposited. This cuprous chloride (CuCl) acts as a hydrogen peroxide decomposition catalyst, so that hydrogen peroxide is consumed in a situation where the contribution to the formation of copper oxide is insufficient, and the efficiency of the oxidation reaction by hydrogen peroxide. Is further reduced.

以上のように、本発明による処理プロセスにおいては、アルカリ剤溶液と混合、反応させるに先立ち、銅含有廃液と過酸化水素溶液とを混合させることが重要である。これにより、廃液に含有される第二銅イオンの酸化銅への酸化反応が、アルカリ剤に注加した際に速やかに進行する。また、廃液に第一銅イオンが含有される場合には、アルカリ剤と接触させる前に過酸化水素と混合することで、過酸化水素の酸化作用により第一銅イオンが第二銅イオンに酸化されるため、溶解度が低い塩化第一銅(CuCl)などの第一銅塩の析出を回避出来る。   As described above, in the treatment process according to the present invention, it is important to mix the copper-containing waste liquid and the hydrogen peroxide solution before mixing and reacting with the alkaline agent solution. Thereby, the oxidation reaction to the copper oxide of the cupric ion contained in a waste liquid advances rapidly, when it adds to an alkaline agent. Also, when cuprous ions are contained in the waste liquid, the cuprous ions are oxidized to cupric ions by the oxidizing action of hydrogen peroxide by mixing with hydrogen peroxide before contacting with the alkaline agent. Therefore, precipitation of cuprous salts such as cuprous chloride (CuCl) having low solubility can be avoided.

本発明において、銅含有廃液と過酸化水素溶液とを混合させるために必要な時間は、混合する両者の濃度にもよるが、両者が高濃度の場合は、第一銅イオンは5秒程度の短時間でもかなりの割合で酸化され、20秒間程度では酸化反応が十分に進行する。   In the present invention, the time required for mixing the copper-containing waste liquid and the hydrogen peroxide solution depends on the concentration of both of the mixing, but when both are high in concentration, the cuprous ion is about 5 seconds. Oxidation is carried out at a considerable rate even in a short time, and the oxidation reaction proceeds sufficiently in about 20 seconds.

その一方で、銅含有酸性廃液と過酸化水素溶液を混合すると、過酸化水素の分解反応が進行する。その分解反応は、両者を混合後約60秒経過した時点から顕在化し、7分間〜10分間経過後には顕著な発泡を伴いながら激しく進行する。過酸化水素の分解による発泡は、混合する両者の濃度にもよるが、例えば銅イオンに対してモル濃度で2倍量の過酸化水素を混合した場合、その発泡は20分間経過後には減少し、25分間経過後には僅かなものになり、この時点でアルカリ剤に注加した場合には酸化銅よりも水酸化銅を多く含む沈殿物が生成する。   On the other hand, when the copper-containing acidic waste liquid and the hydrogen peroxide solution are mixed, the decomposition reaction of hydrogen peroxide proceeds. The decomposition reaction becomes apparent from the time when about 60 seconds have passed after mixing the both, and proceeds violently with remarkable foaming after 7 to 10 minutes. The foaming due to the decomposition of hydrogen peroxide depends on the concentration of both of them. For example, when hydrogen peroxide of 2 times the molar concentration is mixed with copper ions, the foaming decreases after 20 minutes. After 25 minutes, the amount is slight, and when added to the alkaline agent at this point, a precipitate containing more copper hydroxide than copper oxide is formed.

このようなことから、アルカリ剤への注加に先立ち、銅含有酸性廃液と過酸化水素溶液との混合、反応時間として、5秒間〜20分間程度、望ましくは20秒間〜7分間程度の時間を取ることが好ましく、この時間設定も重要である。   For this reason, prior to pouring into the alkaline agent, mixing the copper-containing acidic waste liquid and the hydrogen peroxide solution, the reaction time is about 5 seconds to 20 minutes, preferably about 20 seconds to 7 minutes. This time setting is also important.

上記した、銅含有廃液と過酸化水素溶液との混合方法としては、例えば、混合槽内に両液を注加して撹拌する方法や、銅含有廃液と過酸化水素溶液とを合流させて混合する方法等が適用可能である。   Examples of the mixing method of the copper-containing waste liquid and the hydrogen peroxide solution described above include, for example, a method in which both liquids are poured into the mixing tank and stirred, or the copper-containing waste liquid and the hydrogen peroxide solution are merged and mixed. The method of doing etc. is applicable.

このうち、混合用の槽内に両液を注入して撹拌する方法では、注入量の確認と調整が容易で、混合時に発泡しても開放系のため装置上の問題が発生しないメリットがある。   Among these, the method of injecting both liquids into the mixing tank and stirring them has the merit that the injection amount can be easily confirmed and adjusted, and there is no problem on the apparatus because it is open even if foaming occurs during mixing. .

また、銅含有廃液と過酸化水素溶液とを合流させて混合する方法では、両溶液の配管をY字管等で接続して合流させる方法、どちらかの配管内に他方の液を注入して混合する方法などが使用できる。さらに合流後にスタティックミキサーを通すことで両液の撹拌混合することもできる。この方法では、発泡への対処のために装置の耐圧性、もしくは発生した気体を排出できる機構が必要になるが、両液を混合してから供給するまでの時間を均一に保ち、かつ連続的に供給できるというメリットがある。   In addition, in the method of mixing and mixing the copper-containing waste liquid and the hydrogen peroxide solution, the pipes of both solutions are connected by connecting them with a Y-shaped pipe or the like, and the other liquid is injected into one of the pipes. A method of mixing can be used. Furthermore, both liquids can be stirred and mixed by passing through a static mixer after merging. This method requires pressure resistance of the device to cope with foaming or a mechanism that can discharge the generated gas, but keeps the time from mixing and supplying both solutions uniform and continuous. There is an advantage that can be supplied to.

次に、銅含有廃液と過酸化水素溶液との混合液(以下、「混合液」と略称する)とアルカリ剤との反応であるが、複塩の生成を回避するためには、銅イオンの濃度が希薄な条件下で反応させることが必要である。すなわち、アルカリ剤溶液中に、少量ずつ断続的あるいは連続的に混合液を加えてゆくことが必要である。そして更に、銅イオンを塩素の取り込み量が少ない、酸化銅を主成分とする固形物として回収するためには、混合液をアルカリ溶液に注加した後の反応時の温度を、通常より高い温度とすることが必要である。   Next, a reaction between a mixed solution of a copper-containing waste liquid and a hydrogen peroxide solution (hereinafter abbreviated as “mixed solution”) and an alkali agent is used. It is necessary to react under conditions of dilute concentration. That is, it is necessary to add the mixed solution intermittently or continuously little by little to the alkaline agent solution. In addition, in order to recover copper ions as a solid substance containing a small amount of chlorine and containing copper oxide as a main component, the temperature during the reaction after pouring the mixed solution into the alkaline solution is higher than usual. Is necessary.

これらの条件を実現するため、本発明技術においては、次の管理条件(1)および(2)
(1)混合液注加後のアルカリ剤溶液のpHを一時的にでも7以下にしない
(2)混合液注加後のアルカリ剤溶液の温度を55℃以上とする
を維持することが必要となる。
In order to realize these conditions, in the technology of the present invention, the following management conditions (1) and (2)
(1) The pH of the alkaline agent solution after pouring the mixed liquid should not be 7 or less even temporarily (2) It is necessary to maintain the temperature of the alkaline agent solution after pouring the mixed liquid at 55 ° C or higher. Become.

より具体的には、例えば、操作性の良い溶液体のアルカリ剤を用い、このアルカリ剤溶液を、55℃以上に加熱し、これを撹拌しつつこの中に前記の混合液を、アルカリ溶液のpHが部分的にでも、一時的に7を下回らないように適切な速度で注加してゆくことが必要である。   More specifically, for example, an alkaline agent of a solution body with good operability is used, and the alkaline agent solution is heated to 55 ° C. or higher, and the mixture is mixed with the alkaline solution while stirring the solution. Even if the pH is partially, it is necessary to add at an appropriate rate so as not to temporarily drop below 7.

アルカリ剤溶液に混合液を注加することにより中和熱が発生するので反応を進行させるにつれて初期よりも液温は上昇するが、塩素含有率が低減された銅含有固形物を得るためには、混合液を最初に注加する段階で、上記(2)の管理限界の55℃以上に加熱しておくことが必要かつ有効である。   Since the heat of neutralization is generated by pouring the mixed solution into the alkaline agent solution, the liquid temperature rises from the initial stage as the reaction proceeds, but in order to obtain a copper-containing solid with a reduced chlorine content It is necessary and effective to heat the mixed liquid to 55 ° C. or more, which is the control limit of (2) above, at the stage of first adding the mixed liquid.

また、pHが一時的にでも7以下に下がらないように管理しながら注加、混合する方法としては、たとえば撹拌混合状態にあるアルカリ剤溶液中に、少量の混合液を間隔をあけて断続的に注加する方法や、混合液を少量づつ連続的に注加する方法を挙げることができる。このとき、アルカリ剤溶液量と、混合液の注加量の関係は、最終的な混合反応終了時における、これらの混合反応液の最終的pHが7以上、望ましくは8以上となる量とすれば良い。   In addition, as a method of adding and mixing while controlling so that the pH does not drop to 7 or less even temporarily, for example, a small amount of mixed solution is intermittently provided at intervals in an alkaline agent solution in a stirred and mixed state. And a method of continuously adding the mixed solution little by little. At this time, the relationship between the amount of the alkaline agent solution and the amount of the mixed solution added is such that the final pH of the mixed reaction solution at the end of the final mixing reaction is 7 or more, preferably 8 or more. It ’s fine.

一方、銅イオンを塩素の取り込み量が少ない、酸化銅を主成分とする固形物として回収する別の方法としては、混合液注加後のアルカリ剤溶液のpHが11.5以上、望ましくは12.5以上の強アルカリ性で反応を進行・終了させる方法が挙げられる。   On the other hand, as another method for recovering copper ions as a solid substance having a small amount of chlorine uptake and containing copper oxide as a main component, the pH of the alkaline agent solution after pouring the mixed solution is 11.5 or more, preferably 12 And a method of proceeding and terminating the reaction with a strong alkalinity of .5 or more.

これらの条件を実現するため、本発明技術においては、次の管理条件(3)
(3)混合液注加後のアルカリ剤溶液のpHを11.5以上に維持する
を維持することが必要となる。
In order to realize these conditions, in the technology of the present invention, the following management condition (3)
(3) It is necessary to maintain the pH of the alkaline agent solution after pouring the mixed solution at 11.5 or higher.

この方法は、具体的には、アルカリ剤溶液中への混合液の注加に伴い、pHが中性に近づいてくるので、混合液注加後のアルカリ剤溶液のpHを監視しながら、アルカリ剤を必要に応じて追加しつつ、反応混合槽中でのpHが11.5以上、望ましくは12.5以上の強アルカリ性を維持しながら反応を進行・終了させるという方法である。この操作により、アルカリ剤溶液による希釈効果を得ながら、主要な酸化反応を過酸化水素の反応性が高い、pH11.5〜14.5の強アルカリ性条件下で効率的に行うことが出来るため、酸化反応を逐次進行完結させることによって残留する銅イオン含有濃度が低い液を得ることができる。なお、この場合はpHを7.0以上とすることにはほとんど問題はないが、例えば、撹拌が弱いときに大量の混合液を注加すれば、部分的に一時的にpHが7以下に下がる可能性もあるので、この場合の注加速度も、注加後のアルカリ剤溶液が、部分的にでも、一時的に7以下に下がらないように、望ましくは8以下にならないように管理することが必要であることはいうまでもない。   Specifically, in this method, as the mixed solution is poured into the alkaline agent solution, the pH approaches neutral, so the alkaline solution is monitored while monitoring the pH of the alkaline agent solution after the mixed solution is poured. In this method, the agent is added as necessary, and the reaction is allowed to proceed and complete while maintaining a strong alkalinity of 11.5 or higher, preferably 12.5 or higher in the reaction mixing tank. By this operation, the main oxidation reaction can be efficiently carried out under strong alkaline conditions of pH 11.5 to 14.5 with high reactivity of hydrogen peroxide while obtaining the dilution effect by the alkaline agent solution. By sequentially advancing and completing the oxidation reaction, it is possible to obtain a liquid having a low copper ion-containing concentration. In this case, there is almost no problem in setting the pH to 7.0 or higher. However, for example, if a large amount of a mixed solution is added when stirring is weak, the pH is temporarily temporarily reduced to 7 or lower. The injection acceleration in this case should also be controlled so that the alkaline agent solution after the injection does not drop below 7 in order to prevent it from dropping temporarily to 7 or less even partially. Needless to say, is necessary.

上記のうち、アルカリ剤溶液の液温を55℃以上とする方法では、反応終了時の液のpHを弱アルカリ性から中性付近として処理することが可能であり、後処理工程における中和用の酸の必要量が少なくて済むというメリットがある、一方、アルカリ剤溶液のpHを11.5以上に維持する方法では、溶液を加熱するための特別な熱源や装置を必要とせず、その分、装置構造や運転管理が簡易になるというメリットがある。   Among the above, in the method in which the liquid temperature of the alkaline agent solution is 55 ° C. or higher, the pH of the liquid at the end of the reaction can be treated from weakly alkaline to near neutral, and is used for neutralization in the post-treatment process. On the other hand, there is a merit that the required amount of acid is small, while the method of maintaining the pH of the alkaline agent solution at 11.5 or higher does not require a special heat source or apparatus for heating the solution, and accordingly, There is an advantage that the device structure and operation management are simplified.

前記したように、本発明方法では、アルカリ剤溶液中に少量ずつ断続的あるいは連続的に混合液を加えてゆくことが必要であるが、この混合液の注加方法としては、例えば、アルカリ剤が入れられた反応槽に混合液を滴下する方法や、配管を通して混合液を液中に注入する方法等の方法が適用可能である。   As described above, in the method of the present invention, it is necessary to intermittently or continuously add the mixed solution little by little to the alkaline agent solution. It is possible to apply a method such as a method of dropping the mixed solution into a reaction tank in which is added or a method of injecting the mixed solution into the liquid through a pipe.

上記のうち、反応槽へ滴下する方法では、供給状況を目視で確認でき、供給状況が不調の際に対応しやすいメリットがある。一方、配管を通して液中に供給する方法では、液表面から供給する場合に比べて良好に混合できる位置に供給できるメリットがある。混合槽が反応槽に比べて十分に小さい場合には、混合槽1回分ごとを分注することで、簡単な設備で行うことができる。なお、配管を通して液中に注入する方法では、銅含有廃液と過酸化水素溶液とを合流させて作成した混合液を連続して添加する方法が好適に使用できる。   Among the methods described above, the method of dropping into the reaction tank has an advantage that the supply status can be visually confirmed, and it is easy to cope with the supply status being unsatisfactory. On the other hand, the method of supplying the liquid through the pipe has an advantage that the liquid can be supplied to a position where it can be mixed well compared with the case of supplying from the liquid surface. When the mixing tank is sufficiently smaller than the reaction tank, it can be carried out with simple equipment by dispensing one batch of the mixing tank. In addition, in the method of inject | pouring into a liquid through piping, the method of adding continuously the liquid mixture created by making a copper containing waste liquid and a hydrogen peroxide solution merge can be used conveniently.

なお、上記処理に用いられる過酸化水素の濃度は特に限定されないが、例えば、濃度30%のものを直接使用することが出来る。同様に、アルカリ剤溶液の濃度も特に限定されないが、例えば、濃度25%の水酸化ナトリウム溶液を直接使用することが出来る。   The concentration of hydrogen peroxide used for the treatment is not particularly limited. For example, a concentration of 30% can be used directly. Similarly, the concentration of the alkaline agent solution is not particularly limited. For example, a sodium hydroxide solution having a concentration of 25% can be used directly.

以上説明した本発明技術によれば、銅含有酸性廃液の処理により、酸化銅を主成分とする固形物が得られる。そして、この固形物は嵩密度が高く沈降性が良いため、固液分離が極めて容易であり、脱水性も良好な性状のものである。しかしながら、反応完了時において、このものは、本来有していた酸と処理に使用されたアルカリから生じる高濃度の塩類を含んでいる。そこで、再利用を目的とした固形物の回収に際しては、水洗を複数回繰り返すことでこれらの塩類を洗い流し、回収物の純度を上げる対応が有効である。   According to the technology of the present invention described above, a solid material mainly composed of copper oxide can be obtained by processing the copper-containing acidic waste liquid. And since this solid substance has a high bulk density and good sedimentation, solid-liquid separation is extremely easy, and the dehydrating property is also good. However, at the completion of the reaction, it contains a high concentration of salts resulting from the acid it originally had and the alkali used in the treatment. Therefore, when collecting solids for reuse, it is effective to wash these salts by repeating washing with water a plurality of times to increase the purity of the collected material.

この場合の固液分離方法としては、公知の固液分離手段、例えば、ろ過分離、遠心分離、沈降分離等が適用可能である。   As a solid-liquid separation method in this case, known solid-liquid separation means, for example, filtration separation, centrifugation, sedimentation separation, etc. can be applied.

また、塩類を洗い流すための洗浄水としては、塩類含有量が少ない清澄な水、例えば水道水や工業用水などを用いても良いが、これに代えて、処理された液を固液分離して得られた分離液、固形物を水洗で洗い流した洗浄排水、及び/又は固液分離して得られた分離液などを脱塩処理して得られた処理水を再利用することも有効である。なお、この場合の方法としては例えば、膜ろ過法や減圧蒸留法、電気透析法等が適用可能である。   In addition, as washing water for washing away salts, clear water having a low salt content, for example, tap water or industrial water, may be used, but instead, the treated liquid is separated into solid and liquid. It is also effective to reuse the obtained separation liquid, washing waste water from which solids have been washed away with water, and / or treated water obtained by desalting the separation liquid obtained by solid-liquid separation. . As a method in this case, for example, a membrane filtration method, a vacuum distillation method, an electrodialysis method, or the like is applicable.

次に、図面を参照して、本発明方法を実施するために使用する回収装置について説明する。   Next, with reference to the drawings, a collection device used for carrying out the method of the present invention will be described.

図1は、管理条件(1)および(2)を守りつつ、塩素含量の少ない銅を回収するための装置の一態様を示す系統図である。図中、1は銅回収装置、2は反応槽、3は固液分離装置、4は酸性銅廃液配管、5は酸化剤供給配管、6は混合配管、7は流量調節器、8はアルカリ供給配管、9はpHメーター、10は攪拌機、11は移送ポンプ、13は洗浄水供給配管、14はアルカリ溶液の加熱装置をそれぞれ示す。   FIG. 1 is a system diagram showing an embodiment of an apparatus for recovering copper having a low chlorine content while keeping management conditions (1) and (2). In the figure, 1 is a copper recovery device, 2 is a reaction tank, 3 is a solid-liquid separation device, 4 is an acidic copper waste liquid piping, 5 is an oxidizing agent supply piping, 6 is a mixing piping, 7 is a flow controller, and 8 is an alkali supply. A pipe, 9 is a pH meter, 10 is a stirrer, 11 is a transfer pump, 13 is a washing water supply pipe, and 14 is a heating device for the alkaline solution.

図1に示す銅回収装置1は、攪拌機10、pHメーター9および加熱装置14を備えた反応槽2と、これに移送ポンプ11を介して連通される固液分離装置3を有する。そして、反応槽2の上部には、酸性銅廃液配管4と、酸化剤供給配管5が一緒になった混合配管6が設けられ、酸性銅廃液と酸化剤の混合液が反応槽2中に注加可能となっている。注加される酸性銅廃液と酸化剤の量は、それぞれ酸性銅廃液配管4と、酸化剤供給配管5に設けられた流量調節器7aおよび7bにより調整され、適切な割合の混合液が混合配管6で生成されるようになっている。   A copper recovery apparatus 1 shown in FIG. 1 has a reaction tank 2 equipped with a stirrer 10, a pH meter 9 and a heating apparatus 14, and a solid-liquid separation apparatus 3 communicated with the reaction tank 2 via a transfer pump 11. The upper part of the reaction tank 2 is provided with a mixed pipe 6 in which the acidic copper waste liquid pipe 4 and the oxidant supply pipe 5 are combined, and the mixed liquid of the acidic copper waste liquid and the oxidant is poured into the reaction tank 2. It is possible to add. The amount of the acid copper waste liquid and the oxidant to be added is adjusted by the flow rate regulators 7a and 7b provided in the acid copper waste liquid pipe 4 and the oxidant supply pipe 5, respectively. 6 is generated.

反応槽2には、アルカリ供給配管8からアルカリ剤溶液が供給される。そして、加熱装置14により、アルカリ溶液が55℃以上を維持するよう加熱され、攪拌機10により撹拌されているアルカリ剤溶液中に、前記混合配管6から酸性銅廃液と酸化剤の混合液が注入される。その際のpH変化は、pHメーター9で測定され、その測定値は制御装置(図示せず)で管理されており、流量調節器7aないし7cを開閉することにより、pHが、一時的にでも7以下にならないよう制御される。   The alkaline agent solution is supplied to the reaction tank 2 from the alkali supply pipe 8. Then, the alkaline solution is heated by the heating device 14 so as to maintain a temperature of 55 ° C. or higher, and the mixed solution of the acidic copper waste liquid and the oxidizing agent is injected from the mixing pipe 6 into the alkaline agent solution stirred by the stirrer 10. The The pH change at that time is measured by a pH meter 9, and the measured value is managed by a control device (not shown). By opening and closing the flow rate regulators 7a to 7c, the pH can be temporarily changed. It is controlled not to be 7 or less.

この反応槽2中において、酸化銅を主体とする固形物が生成し、アルカリ剤溶液はアルカリ性懸濁液となるが、この懸濁液は、移送ポンプ11を介して固液分離装置3に移され、ここにおいて、固形物と分離水に分けられる。そして更に、洗浄水供給配管13から供給される洗浄水により洗浄され、再利用に供される。   In this reaction tank 2, a solid mainly composed of copper oxide is generated, and the alkaline agent solution becomes an alkaline suspension. This suspension is transferred to the solid-liquid separator 3 via the transfer pump 11. Here, it is divided into solid and separated water. Further, the cleaning water supplied from the cleaning water supply pipe 13 is cleaned and reused.

図2に示す系統図は、連続処理を可能とする図1とは別の態様の銅の回収装置を示す図面である。図中、1から13は図1と同じものを示し、12はオーバーフロー、15は混合槽、16は混合槽用攪拌機をそれぞれ示す。   The system diagram shown in FIG. 2 is a drawing showing a copper recovery apparatus in a mode different from that shown in FIG. 1 that enables continuous processing. In the figure, 1 to 13 are the same as in FIG. 1, 12 is an overflow, 15 is a mixing tank, and 16 is a mixing tank stirrer.

本発明方法は、基本的に反応槽2のアルカリ剤溶液中に、連続または断続的に混合液を注加し、撹拌して酸化銅を主成分とする固形物を生成させることになるが、この際、アルカリ性が高い方が、塩素含量の少ない固形物を得るために有利になるので、アルカリ供給配管8からアルカリ剤が供給されることになる。しかしながら、混合液の注加およびアルカリ剤の供給を続けていくと、反応で生成する固形物を懸濁したアルカリ性懸濁液の容量が増大してしまう。従って、本発明方法により、酸性銅廃液を連続処理するためには、増大したアルカリ性懸濁液の一部を連続的あるいは断続的に反応槽2から取り出し、固液分離装置3で固液分離処理を行うことが必要になる。   In the method of the present invention, basically, the mixed solution is poured continuously or intermittently into the alkaline agent solution in the reaction tank 2 and stirred to produce a solid containing copper oxide as a main component. At this time, since the higher alkalinity is advantageous for obtaining a solid having a low chlorine content, the alkali agent is supplied from the alkali supply pipe 8. However, if the mixture is continuously poured and the alkali agent is supplied, the volume of the alkaline suspension in which the solid produced by the reaction is suspended increases. Therefore, in order to continuously treat the acidic copper waste liquid by the method of the present invention, a part of the increased alkaline suspension is taken out from the reaction tank 2 continuously or intermittently, and the solid-liquid separation device 3 performs the solid-liquid separation treatment. Need to do.

図2でのオーバーフロー12は、アルカリ性懸濁液の一部を連続的に取り出す手段であって、混合液の注加およびアルカリ剤の供給による増大に見合う容量のものを固液分離装置3に送り出す働きをするものである。   The overflow 12 in FIG. 2 is a means for continuously taking out a part of the alkaline suspension, and sends out to the solid-liquid separation device 3 a capacity that is commensurate with the increase due to the addition of the mixed liquid and the supply of the alkaline agent. It works.

また、図1の装置では、酸性銅廃液配管4と、酸化剤供給配管5が直接一緒となり、混合配管6となっていたが、図2の装置では、酸性銅廃液配管4と、酸化剤供給配管5はそれぞれ混合槽の上部に設けられており、この混合槽15中で、混合槽用攪拌機16により十分に混合されてから、混合液配管6を通って反応槽2に注加される。   Further, in the apparatus of FIG. 1, the acidic copper waste liquid pipe 4 and the oxidant supply pipe 5 are directly combined to form a mixing pipe 6, but in the apparatus of FIG. 2, the acidic copper waste liquid pipe 4 and the oxidant supply are provided. Each of the pipes 5 is provided in the upper part of the mixing tank. In the mixing tank 15, the pipes 5 are sufficiently mixed by the mixing tank stirrer 16 and then poured into the reaction tank 2 through the mixed liquid pipe 6.

上記混合槽15は、酸化剤の酸化力が長く保持できないという理由から、処理すべき酸性銅廃液とこれに加えられる酸化剤を一度に収容できる容量である必要はなく、分割して処理される酸性銅廃液とこれに加えられる酸化剤を収容できる容量であれば良い。   The mixing tank 15 does not need to have a capacity capable of containing the acidic copper waste liquid to be treated and the oxidizing agent added thereto at a time because the oxidizing power of the oxidizing agent cannot be maintained for a long time. What is necessary is just a capacity | capacitance which can accommodate an acidic copper waste liquid and the oxidizing agent added to this.

図2の装置の利用に当たっては、分割して処理される酸性銅廃液とこれに加えられる酸化剤を、それぞれ酸性銅廃液配管4と、酸化剤供給配管5に設けられた流量調節器7aおよび7bにより調整しつつ混合槽15に加え、これを混合した後、反応槽2に設けられたpHメーター9でアルカリ剤溶液中のpHが、望ましくは11.5を下回らないように管理されつつ、混合配管から少量づつ注加される。   In using the apparatus of FIG. 2, the acidic copper waste liquid to be divided and the oxidant added thereto are divided into flow controllers 7 a and 7 b provided in the acidic copper waste liquid pipe 4 and the oxidant supply pipe 5, respectively. The mixture is added to the mixing tank 15 while being adjusted, and mixed with the pH meter 9 provided in the reaction tank 2 while the pH in the alkaline agent solution is desirably controlled so as not to fall below 11.5. A small amount is added from the pipe.

この装置においても、アルカリ剤溶液が、加熱装置14により、55℃以上に加熱され、アルカリ剤溶液中のpH変化が、pHメーター9で測定され、pHが、一時的にでも7以下にならないよう制御されることは、図1の装置と同一である。   Also in this apparatus, the alkaline agent solution is heated to 55 ° C. or higher by the heating device 14, and the pH change in the alkaline agent solution is measured by the pH meter 9, so that the pH does not temporarily become 7 or less. What is controlled is the same as the apparatus of FIG.

図3は、脱塩装置を取り付けた本発明の銅の回収装置の一態様を示す図面である。この装置は、基本的に図1の装置と類似するが、固液分離装置の後に、濃縮脱水ユニット17、脱塩装置18および脱塩処理水配管19を有する点で相違する。   FIG. 3 is a view showing an embodiment of the copper recovery apparatus of the present invention to which a desalting apparatus is attached. This apparatus is basically similar to the apparatus shown in FIG. 1, but is different in that it includes a concentration / dehydration unit 17, a desalting apparatus 18 and a desalting water pipe 19 after the solid-liquid separation apparatus.

この装置では、固液分離装置3において、分けられた分離水は脱塩装置18において脱塩処理された後、脱塩処理水配管19を通じて、再度固液分離装置3の洗浄水として使用される。一方、固液分離装置3で洗浄・分離された固形物は、濃縮脱水ユニット17に移されて、さらに濃縮脱水される。ここで濃縮脱水された固形物は銅資源として回収再利用され、一方ここで得られた分離水は、前記分離水と同様、脱塩装置18において脱塩処理された後、脱塩処理水配管19を通じ、再度固液分離装置3の洗浄水として使用される。   In this apparatus, the separated water separated in the solid-liquid separation device 3 is desalted in the desalting device 18 and then used again as washing water for the solid-liquid separation device 3 through the desalting water pipe 19. . On the other hand, the solids washed and separated by the solid-liquid separator 3 are transferred to the concentration / dehydration unit 17 and further concentrated / dehydrated. The solid material concentrated and dehydrated here is recovered and reused as a copper resource. On the other hand, the separated water obtained here is desalted in the desalinator 18 in the same manner as the separated water, and then the desalted water pipe. 19 is used again as washing water for the solid-liquid separator 3.

本発明装置において、洗浄用水としては、一般的に塩類含有量が少ない清澄な水、例えば工業用水などを用いるが、図3の装置では、これに代えて、あるいはその一部として反応で得られた分離水や、洗浄排水及び濃縮脱水ユニットからの脱水ろ液を脱塩装置で処理して得られた脱塩処理水を用いることができるので、後段の廃水処理を考慮した場合に有効である。   In the apparatus of the present invention, clean water having a low salt content, such as industrial water, is generally used as the washing water, but the apparatus shown in FIG. 3 can be obtained by reaction instead of or as part of this. Since it is possible to use the desalted water obtained by treating the separated water and the dewatered filtrate from the washing waste water and the concentrated dewatering unit with a desalinator, it is effective when considering the wastewater treatment in the latter stage. .

次に実施例および参考例を挙げ、本発明をさらに詳しく説明するが、本発明はこれら実施例等に何ら制約されるものではない。   EXAMPLES Next, although an Example and a reference example are given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

参 考 例 1
(1)銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液(pH=−1.2、銅イオン濃度=120g/L、塩化物イオン濃度=220g/L;以下、「エッチング廃液」という)、30%過酸化水素溶液および25%水酸化ナトリウム溶液を使用し、これらにより酸化銅を主成分とする固形物を生成、沈殿させる際の、反応溶液(アルカリ性懸濁液)のpHの変化状態および最終的に得られる固形物に含まれる塩素量を調べた。
Reference example 1
(1) Etching waste solution (pH = -1.2, copper ion concentration = 120 g / L, chloride ion concentration = 220 g / L; hereinafter referred to as “etching” generated when a copper printed circuit board is etched with a cupric chloride etchant. Waste solution)), a 30% hydrogen peroxide solution and a 25% sodium hydroxide solution, and thereby producing and precipitating a solid mainly composed of copper oxide, the reaction solution (alkaline suspension) The state of pH change and the amount of chlorine contained in the finally obtained solid were examined.

まず、エッチング廃液の酸性度を測定し、これと完全に混合した際に、pH7.2となる25%水酸化ナトリウム溶液(以下、「水酸化ナトリウム溶液」と略称する)の容量を算出した。この結果、エッチング廃液1000mLを中和(pHを7.2)するのに必要な水酸化ナトリウム溶液の容量は、870mLであることが分かった。   First, the acidity of the etching waste liquid was measured, and the volume of a 25% sodium hydroxide solution (hereinafter abbreviated as “sodium hydroxide solution”) that would have a pH of 7.2 when it was completely mixed with this was calculated. As a result, it was found that the volume of the sodium hydroxide solution necessary to neutralize 1000 mL of the etching waste liquid (pH 7.2) was 870 mL.

一方、エッチング廃液の銅イオン濃度を測定し、その銅イオンの含有モル数に対して2倍のモル数となる過酸化水素量を、使用過酸化水素量として算出した。30%過酸化水素溶液(以下、「過酸化水素水」と略称する)を用いた場合の、エッチング廃液1000mlに対する使用過酸化水素量は、380mlであった。   On the other hand, the copper ion concentration of the etching waste liquid was measured, and the amount of hydrogen peroxide that was twice the number of moles of copper ions contained was calculated as the amount of hydrogen peroxide used. When a 30% hydrogen peroxide solution (hereinafter abbreviated as “hydrogen peroxide solution”) was used, the amount of hydrogen peroxide used with respect to 1000 ml of the etching waste liquid was 380 ml.

実験は、撹拌装置およびpHメーターを備えたビーカーに水酸化ナトリウム溶液870mlを取り、これにエッチング廃液と過酸化水素の混合液を、下記注加方法で注加することにより行った。この際、水酸化ナトリウムの加熱は行わなかった。   The experiment was performed by taking 870 ml of a sodium hydroxide solution in a beaker equipped with a stirrer and a pH meter, and pouring a mixed solution of etching waste liquid and hydrogen peroxide into the beaker by the following pouring method. At this time, sodium hydroxide was not heated.

(2)混合液の注加は、まず、エッチング廃液100mLと、過酸化水素溶液38mL(いずれも、中和時必要量の10分の1量)を分取、混合して60秒間静置した後、これをビーカーの水酸化ナトリウム溶液中に2分間かけて少量づつ注加した。この際、pHメーターにより、注加後の液のpHが一時的にでも7以下にならないように監視した。   (2) To add the mixed solution, first, 100 mL of the etching waste solution and 38 mL of the hydrogen peroxide solution (both are one-tenth of the amount required for neutralization) were collected, mixed, and allowed to stand for 60 seconds. This was then poured in small portions into the beaker's sodium hydroxide solution over 2 minutes. At this time, it was monitored with a pH meter so that the pH of the liquid after pouring did not temporarily become 7 or less.

注加後、撹拌を継続した状態で3分間放置し、更に、先と同じ量のエッチング廃液と過酸化水素溶液を混合して60秒間静置したものを、先の操作と同じくpHを監視しつつ、2分間かけて水酸化ナトリウム溶液中に注加し、更に撹拌を継続した状態で3分間待った。   After the addition, the mixture was left for 3 minutes with continued stirring, and the same amount of etching waste solution and hydrogen peroxide solution were mixed and allowed to stand for 60 seconds. Then, the mixture was poured into the sodium hydroxide solution over 2 minutes, and further waited for 3 minutes while stirring was continued.

この操作を、エッチング廃液と過酸化水素溶液の混合液の添加量が中和時必要量の10分の9量になるまで7回繰り返した。   This operation was repeated seven times until the addition amount of the mixed solution of the etching waste liquid and the hydrogen peroxide solution became 9/10 of the necessary amount during neutralization.

その後、最後の中和時必要量の10分の1量のエッチング廃液と過酸化水素溶液を混合液を60秒間静置し、注加後の液のpHが一時的にでも7以下にならないように監視しつつ、5分間かけて徐々に水酸化ナトリウム溶液中に注加した後、撹拌を更に30分間継続した。   After that, let the mixed solution of etching waste liquid and hydrogen peroxide solution of 1/10 of the amount necessary for the last neutralization stand still for 60 seconds, so that the pH of the liquid after pouring does not become 7 or less even temporarily. The mixture was gradually poured into the sodium hydroxide solution over 5 minutes, and stirring was continued for another 30 minutes.

上記操作における、エッチング廃液と過酸化水素溶液の混合液の注加割合(中和時必要量に対する割合)と、注加後の混合溶液(アルカリ性懸濁液)のpHとの関係を図4に示す。また、注加混合操作中の、溶液の温度は、20ないし55℃の範囲であった。   FIG. 4 shows the relationship between the ratio of the mixed solution of the etching waste liquid and the hydrogen peroxide solution in the above operation (ratio to the amount required for neutralization) and the pH of the mixed solution (alkaline suspension) after the addition. Show. In addition, the temperature of the solution during the pouring and mixing operation was in the range of 20 to 55 ° C.

(3)上記(2)の処理操作により、黒色のスラッジを含むアルカリ性懸濁液が得られた。このスラッジの固形物濃は72g/Lであり、その約95%が酸化銅であった。また、アルカリ性懸濁液の、原水液量に対する30分間静置後の汚泥容量(SV30)は58容量%、60分間静置後の汚泥容量(SV60)は40容量%であった。また、静置により得られた上澄液は無色透明で、銅イオンの濃度は1mg/L未満であった。   (3) An alkaline suspension containing black sludge was obtained by the processing operation of (2) above. The sludge solids concentration was 72 g / L, of which about 95% was copper oxide. Moreover, the sludge capacity | capacitance (SV30) after leaving still for 30 minutes with respect to the amount of raw | natural water of alkaline suspension was 58 volume%, and the sludge capacity | capacitance after leaving still for 60 minutes (SV60) was 40 volume%. Further, the supernatant obtained by standing was colorless and transparent, and the concentration of copper ions was less than 1 mg / L.

(4)上記処理で得られたスラッジ中の固形物分を遠心分離し、上澄水を排除した。次いで、回収した固形物に対してリスラリー後の固形物濃度が4%となる量の水を添加して30分間撹拌した後、再度遠心分離する水洗操作を5回繰り返した。水洗後の固形物を乾燥して得られた回収物に含有される塩素量を、蛍光X線回折法(蛍光X線測定装置;(株)リガク社製 ZSX PrimsII型、管球;Cu、電流/電圧;50kV/50mA)により分析したところ、420μg/gであった。この塩素量は、水洗を9回繰り返してもほぼ変化はなく、固形物中の塩素分は水洗操作で低減できないことが分かった。   (4) The solid matter in the sludge obtained by the above treatment was centrifuged to remove the supernatant water. Next, the water washing operation in which the solid concentration after reslurry was 4% was added to the collected solids and stirred for 30 minutes, and then centrifuged again 5 times. The amount of chlorine contained in the recovered product obtained by drying the solid after washing with water was determined by the fluorescent X-ray diffraction method (fluorescent X-ray measurement device; ZSX Prims II type, tube manufactured by Rigaku Corporation; Cu; current / Voltage; 50 kV / 50 mA), and it was 420 μg / g. The amount of chlorine was not substantially changed even after repeated washing with water 9 times, and it was found that the chlorine content in the solid matter could not be reduced by the washing operation.

実 施 例 1
(1)参考例1で用いたのと同じエッチング廃液(pH=−1.2、銅イオン濃度=120g/L、塩化物イオン濃度=220g/L)、30%過酸化水素溶液および25%水酸化ナトリウム溶液を使用し、これらにより酸化銅を主成分とする固形物を生成、沈殿させる際の、反応温度と固形物中の塩素濃度の関係を調べた。
Example 1
(1) The same etching waste solution as used in Reference Example 1 (pH = -1.2, copper ion concentration = 120 g / L, chloride ion concentration = 220 g / L), 30% hydrogen peroxide solution and 25% water A sodium oxide solution was used, and the relationship between the reaction temperature and the chlorine concentration in the solid was examined when a solid containing copper oxide as a main component was produced and precipitated.

参考例1で行った分析および計算の結果から、エッチング廃液1000mLを中和(pH7.2)するのに必要な水酸化ナトリウム溶液の容量は、870mL、エッチング廃液1000mlに対する使用過酸化水素量は、380mlであることがわかっているので、これを基礎に実験を行った。   From the results of the analysis and calculation performed in Reference Example 1, the volume of sodium hydroxide solution required to neutralize 1000 mL of etching waste liquid (pH 7.2) is 870 mL, and the amount of hydrogen peroxide used for 1000 ml of etching waste liquid is Since it was known that it was 380 ml, the experiment was conducted based on this.

実験は、撹拌装置およびpHメーターを備えたビーカーに水酸化ナトリウム溶液870mlを取り、これを所定の開始温度とした後、これにエッチング廃液と過酸化水素の混合液を、下記注加方法で注加することにより行った。開始温度は、室温(約20℃)、55℃および80℃とした。   In the experiment, 870 ml of sodium hydroxide solution was placed in a beaker equipped with a stirrer and a pH meter, and this was set to a predetermined starting temperature. Then, a mixed solution of etching waste liquid and hydrogen peroxide was poured into the beaker by the following pouring method. It was done by adding. The starting temperatures were room temperature (about 20 ° C.), 55 ° C. and 80 ° C.

(2)混合液の注加は、まず、エッチング廃液100mLと、過酸化水素溶液38mL(いずれも、中和時必要量の1/10量)を分取、混合して60秒間静置した後、これをビーカーの水酸化ナトリウム溶液中に2分間かけて少量づつ注加した。この際、pHメーターにより、注加後の液のpHが一時的にでも7以下にならないように監視した。   (2) First, 100 mL of the etching waste solution and 38 mL of hydrogen peroxide solution (both are 1/10 of the amount required for neutralization) are collected, mixed and allowed to stand for 60 seconds. This was poured into the beaker's sodium hydroxide solution in small portions over 2 minutes. At this time, it was monitored with a pH meter so that the pH of the liquid after pouring did not temporarily become 7 or less.

注加後、撹拌を継続した状態で3分間放置し、その後、先と同じ量のエッチング廃液と過酸化水素溶液を混合して60秒間静置したものを、先の操作と同じくpHを監視しつつ、2分間かけて水酸化ナトリウム溶液中に注加し、更に撹拌を継続した状態で3分間待った。   After the addition, the mixture was allowed to stand for 3 minutes with continued stirring, and then the same amount of the etching waste solution and the hydrogen peroxide solution were mixed and allowed to stand for 60 seconds. Then, the mixture was poured into the sodium hydroxide solution over 2 minutes, and further waited for 3 minutes while stirring was continued.

この操作を、更に3回繰り返した後(エッチング廃液の添加量は、500ml、過酸化水素水の添加量は、190ml)、撹拌を更に30分間継続した。   This operation was repeated three more times (the amount of etching waste liquid added was 500 ml and the amount of hydrogen peroxide added was 190 ml), and stirring was continued for another 30 minutes.

(3)上記処理後のアルカリ性懸濁液中の固形物分を遠心分離し、上澄水を排除した。次いで、回収した固形物に対し、リスラリー後の固形物濃度が4%となる量の水を添加して30分間撹拌した後、再度遠心分離する水洗操作を5回繰り返した。水洗後の固形物を乾燥して得られた回収物に含有される塩素量を、蛍光X線回折法蛍光X線測定装置;(株)リガク社製 ZSX PrimsII型、管球;Cu、電流/電圧;50kV/50mAにより分析した。この結果を表1に示す。   (3) The solid matter in the alkaline suspension after the above treatment was centrifuged to remove the supernatant water. Next, a water washing operation in which the solid content after reslurry was added in an amount of 4% to the collected solid and stirred for 30 minutes, and then centrifuged again was repeated five times. The amount of chlorine contained in the recovered product obtained by drying the solid material after washing with water was measured using a fluorescent X-ray diffractometry X-ray fluorescence measuring apparatus; manufactured by Rigaku Corporation, ZSX Prims II type, tube; Cu, current / The voltage was analyzed by 50 kV / 50 mA. The results are shown in Table 1.

Figure 0005307478
Figure 0005307478

この結果より、反応中の温度が高いほど、固形物中の塩素濃度が低いことが示された。また、加熱しない場合(試験1)でも固形物中の塩素含有量が少ないが、これは反応時のpHが高アルカリであったためと判断される(最終的に、中和必要量の10分の5量しか加えていないため、pHは、12以上であったと判断される)。   This result showed that the higher the temperature during the reaction, the lower the chlorine concentration in the solid. In addition, even when not heated (Test 1), the chlorine content in the solid is small, but this is considered to be because the pH during the reaction was high alkali (finally 10 minutes of the neutralization required amount). Since only 5 amounts are added, the pH is judged to be 12 or more).

実 施 例 2
(1)参考例1で使用したのと同じエッチング廃液、過酸化水素溶液および水酸化ナトリウム溶液を使用し、水酸化ナトリウム溶液に対するエッチング廃液と過酸化水素の混合液の注加量を代えることで、反応中のpHが固形物中に含まれる塩素量に与える影響を調べた。
Example 2
(1) By using the same etching waste solution, hydrogen peroxide solution and sodium hydroxide solution as used in Reference Example 1, and changing the amount of the mixed solution of the etching waste solution and hydrogen peroxide to the sodium hydroxide solution. The influence of pH during the reaction on the amount of chlorine contained in the solid was examined.

参考例1で行った分析および計算の結果から、エッチング廃液1000mLを中和(pH7.2)するのに必要な水酸化ナトリウム溶液の容量は、870mL、エッチング廃液1000mlに対する使用過酸化水素量は、380mlであることがわかっているので、これを基礎に実験を行った。   From the results of the analysis and calculation performed in Reference Example 1, the volume of sodium hydroxide solution required to neutralize 1000 mL of etching waste liquid (pH 7.2) is 870 mL, and the amount of hydrogen peroxide used for 1000 ml of etching waste liquid is Since it was known that it was 380 ml, the experiment was conducted based on this.

実験は、撹拌装置およびpHメーターを備えたビーカーに水酸化ナトリウム溶液870mlを取り、これにエッチング廃液と過酸化水素の混合液を、下記注加方法で注加することにより行った。この際、水酸化ナトリウムの加熱は行わなかった。   The experiment was performed by taking 870 ml of a sodium hydroxide solution in a beaker equipped with a stirrer and a pH meter, and pouring a mixed solution of etching waste liquid and hydrogen peroxide into the beaker by the following pouring method. At this time, sodium hydroxide was not heated.

(2)混合液の注加は、まず、エッチング廃液100mLと、過酸化水素溶液38mL(いずれも、中和時必要量の10分の1量)を分取、混合して60秒間静置した後、これをビーカーの水酸化ナトリウム溶液中に2分間かけて少量づつ注加した。この際、pHメーターにより、注加後の液のpHが一時的にでも7以下にならないように監視した。   (2) To add the mixed solution, first, 100 mL of the etching waste solution and 38 mL of the hydrogen peroxide solution (both are one-tenth of the amount required for neutralization) were collected, mixed, and allowed to stand for 60 seconds. This was then poured in small portions into the beaker's sodium hydroxide solution over 2 minutes. At this time, it was monitored with a pH meter so that the pH of the liquid after pouring did not temporarily become 7 or less.

注加後、撹拌を継続した状態で3分間放置し、その後、先と同じ量のエッチング廃液と過酸化水素溶液を混合して60秒間静置したものを、先の操作と同じくpHを監視しつつ、2分間かけて水酸化ナトリウム溶液中に注加し、更に撹拌を継続した状態で3分間待った。   After the addition, the mixture was allowed to stand for 3 minutes with continued stirring, and then the same amount of the etching waste solution and the hydrogen peroxide solution were mixed and allowed to stand for 60 seconds. Then, the mixture was poured into the sodium hydroxide solution over 2 minutes, and further waited for 3 minutes while stirring was continued.

この操作を、エッチング廃液と過酸化水素溶液の混合液の総添加量が中和時必要量の10分の5量となるまで繰り返し行い、撹拌を更に30分間継続した。   This operation was repeated until the total amount of the mixed solution of the etching waste liquid and the hydrogen peroxide solution became 5/10 of the necessary amount during neutralization, and stirring was further continued for 30 minutes.

(3)上記処理後のアルカリ性懸濁液中の固形物分を遠心分離し、上澄水を排除した。次いで、回収した固形物に対し、リスラリー後の固形物濃度が4%となる量の水を添加して30分間撹拌した後、再度遠心分離する水洗操作を5回繰り返した。   (3) The solid matter in the alkaline suspension after the above treatment was centrifuged to remove the supernatant water. Next, a water washing operation in which the solid content after reslurry was added in an amount of 4% to the collected solid and stirred for 30 minutes, and then centrifuged again was repeated five times.

(4)上記(1)ないし(3)の操作を、(2)のエッチング廃液と過酸化水素溶液の混合液の総添加量を、中和時必要量の10分の7量、10分の8量、10分の8.5量、10分の9量および10分10量のとする以外は同一条件で繰り返し、それぞれ固形分を得た。   (4) The above operations (1) to (3) are carried out by changing the total amount of the mixture of the etching waste liquid and the hydrogen peroxide solution of (2) to 7/10, 10 minutes of the necessary amount during neutralization. Solids were obtained by repeating the same conditions except that the amount was 8, 10, 8.5, 10, 9, and 10 minutes.

(5)固形物を乾燥して得られた回収物に含有される塩素量を、蛍光X線回折法蛍光X線測定装置;(株)リガク社製 ZSX PrimsII型、管球;Cu、電流/電圧;50kV/50mAにより分析した結果を、表2に示す。   (5) The amount of chlorine contained in the recovered product obtained by drying the solid was determined by measuring the X-ray fluorescence X-ray fluorescence measurement apparatus; ZSX Prims II type, tube manufactured by Rigaku Corporation; Cu, current / Table 2 shows the results of analysis by voltage; 50 kV / 50 mA.

Figure 0005307478
Figure 0005307478

この結果、得られた固形物に残留する塩素分は、混合液の水酸化ナトリウム溶液に対する添加率が少ない方が、即ち反応終了時のpHが高い方が少ないという傾向が確認された。
As a result, it was confirmed that the chlorine content remaining in the obtained solid was less when the addition ratio of the mixed solution to the sodium hydroxide solution was lower, that is, when the pH at the end of the reaction was higher.

本発明によれば、銅を高濃度で含有する酸性廃液、特に銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液などの塩化物イオンの含有率が高い廃液中の銅を、塩素含有量の少ない酸化銅を主体とする固形物として経済的で効率良く除去回収することが出来る。     According to the present invention, an acid waste liquid containing copper at a high concentration, in particular, copper in a waste liquid having a high chloride ion content such as an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant. In addition, it can be economically and efficiently removed and recovered as a solid mainly composed of copper oxide having a low chlorine content.

本発明の銅の回収装置の一態様を示す図面である。It is drawing which shows the one aspect | mode of the copper collection | recovery apparatus of this invention. 本発明の銅の回収装置の別の態様を示す図面である。It is drawing which shows another aspect of the copper collection | recovery apparatus of this invention. 脱塩装置を取り付けた本発明の銅の回収装置の一態様を示す図面である。It is drawing which shows the one aspect | mode of the copper collection | recovery apparatus of this invention which attached the desalination apparatus. 水酸化ナトリウム溶液への、エッチング廃液と過酸化水素の混合液の注加割合と、注加後のアルカリ性懸濁液のpHとの関係を示す図面である。It is drawing which shows the relationship between the pouring ratio of the liquid mixture of an etching waste liquid and hydrogen peroxide to a sodium hydroxide solution, and the pH of the alkaline suspension after pouring.

符号の説明Explanation of symbols

1 … … 銅回収装置
2 … … 反応槽
3 … … 固液分離装置
4 … … 酸性銅廃液配管
5 … … 酸化剤供給配管
6 … … 混合配管
7 … … 流量調節器
8 … … アルカリ供給配管
9 … … pHメーター
10 … … 攪拌機
11 … … 移送ポンプ
12 … … オーバーフロー
13 … … 洗浄水供給配管
14 … … 加熱装置
15 … … 混合槽
16 … … 混合槽用撹拌機
17 … … 濃縮脱水ユニット
18 … … 脱塩装置
19 … … 脱塩処理水配管
DESCRIPTION OF SYMBOLS 1 ...... Copper recovery apparatus 2 ...... Reaction tank 3 ... Solid-liquid separator 4 ...... Acidic copper waste liquid piping 5 ...... Oxidant supply piping 6 ...... Mixing piping 7 ...... Flow controller 8 ...... Alkali supply piping 9 …… PH meter 10…… Stirrer 11…… Transfer pump 12…… Overflow 13…… Washing water supply pipe 14…… Heating device 15…… Mixing tank 16…… Mixing tank stirrer 17…… Concentration dehydration unit 18 ... ... Desalination equipment 19 ... ... Desalination water piping

Claims (26)

次の管理条件(1)および(2)
(1)混合液注加後のアルカリ剤溶液のpHを一時的にでも7以下にしない
(2)混合液注加後のアルカリ剤溶液の温度を55℃以上とする
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。
The following management conditions (1) and (2)
(1) The pH of the alkaline agent solution after pouring the mixed solution is not temporarily set to 7 or less. (2) The copper-containing acidity is maintained while keeping the temperature of the alkaline agent solution after pouring the mixed solution at 55 ° C or higher. A method for recovering a copper-containing solid with reduced chlorine content from a copper-containing acidic waste liquid, wherein a mixed liquid of a waste liquid and an oxidizing agent is poured into an alkaline agent solution to obtain a generated solid.
銅含有酸性廃液と酸化剤との混合液が、銅含有酸性廃液の供給ラインと酸化剤供給ラインとを合流させて生成させたものである請求項1に記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。   The chlorine-containing acid waste liquid containing copper from the copper-containing acidic waste liquid according to claim 1, wherein the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is produced by joining the supply line of the copper-containing acidic waste liquid and the oxidizing agent supply line. A method for recovering a copper-containing solid having a reduced amount. 銅含有酸性廃液と酸化剤との混合液は、混合槽で銅含有酸性廃液と酸化剤を混合して生成させたものである請求項1に記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。   The chlorine content from the copper-containing acidic waste liquid according to claim 1, wherein the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is produced by mixing the copper-containing acidic waste liquid and the oxidizing agent in a mixing tank. For recovering the resulting copper-containing solid. 酸化剤として過酸化水素を用いる請求項1ないし3のいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。   The method for recovering a copper-containing solid material having a reduced chlorine content from a copper-containing acidic waste liquid according to any one of claims 1 to 3, wherein hydrogen peroxide is used as an oxidizing agent. 銅含有酸性廃液が、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液である請求項1ないしのいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 The chlorine content from the copper-containing acidic waste liquid according to any one of claims 1 to 4 , wherein the copper-containing acidic waste liquid is an etching waste liquid produced when etching a copper printed board with a cupric chloride etchant. A method for recovering a copper-containing solid. 生成する固形物が酸化銅を主成分とする固形物である請求項1ないしのいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 The method for recovering a copper-containing solid with a reduced chlorine content from a copper-containing acidic waste liquid according to any one of claims 1 to 5 , wherein the solid that is produced is a solid mainly composed of copper oxide. 次の管理条件(1)および(2)
(1)混合液注加後のアルカリ剤溶液のpHを一時的にでも7以下にしない
(2)混合液注加後のアルカリ剤溶液の温度を55℃以上とする
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする塩素含有量の低い銅含有固形物の製造方法。
The following management conditions (1) and (2)
(1) The pH of the alkaline agent solution after pouring the mixed solution is not temporarily set to 7 or less. (2) The copper-containing acidity is maintained while keeping the temperature of the alkaline agent solution after pouring the mixed solution at 55 ° C or higher. A method for producing a copper-containing solid having a low chlorine content, wherein a mixed liquid of a waste liquid and an oxidizing agent is poured into an alkaline agent solution to obtain a solid that is generated.
銅含有酸性廃液と酸化剤との混合液が、銅含有酸性廃液の供給ラインと酸化剤供給ラインとを合流させて生成させたものである請求項に記載の塩素含有量の低い銅含有固形物の製造方法。 The copper-containing solid with a low chlorine content according to claim 7 , wherein the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is produced by joining the supply line of the copper-containing acidic waste liquid and the oxidizing agent supply line. Manufacturing method. 銅含有酸性廃液と酸化剤との混合液は、混合槽で銅含有酸性廃液と酸化剤を混合して生成させたものである請求項に記載の塩素含有量の低い銅含有固形物の製造方法。 The mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is produced by mixing the copper-containing acidic waste liquid and the oxidizing agent in a mixing tank, and manufacturing a copper-containing solid having a low chlorine content according to claim 7. Method. 酸化剤として過酸化水素を用いる請求項ないしのいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 7 to 9 , wherein hydrogen peroxide is used as the oxidizing agent. 銅含有酸性廃液が、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液である請求項ないし10のいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 7 to 10 , wherein the copper-containing acidic waste liquid is an etching waste liquid produced when etching a copper printed board with a cupric chloride etchant. 生成する固形物が酸化銅を主成分とする固形物である請求項ないし11のいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 7 to 11 , wherein the produced solid is a solid containing copper oxide as a main component. 次の管理条件(3)
(3)混合液注加後のアルカリ剤溶液のpHを11.5以上の強アルカリに維持する
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。
Next management condition (3)
(3) While keeping the pH of the alkaline solution after pouring the mixed solution at a strong alkali of 11.5 or higher, the mixed solution of the copper-containing acidic waste liquid and the oxidizing agent is poured into the alkaline solution to produce A method for recovering a copper-containing solid having a reduced chlorine content from a copper-containing acidic waste liquid, wherein the solid is obtained.
銅含有酸性廃液と酸化剤との混合液が、銅含有酸性廃液の供給ラインと酸化剤供給ラインとを合流させて生成させたものである請求項13に記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 A mixed solution of copper-containing acidic waste liquid and the oxidizing agent, chlorine-containing copper-containing acidic waste liquid of claim 13 in which was generated by merging and the supply line and an oxidant supply line of the copper-containing acidic waste liquid A method for recovering a copper-containing solid having a reduced amount. 銅含有酸性廃液と酸化剤との混合液は、混合槽で銅含有酸性廃液と酸化剤を混合して生成させたものである請求項13に記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 14. The chlorine content from the copper-containing acidic waste liquid according to claim 13 , wherein the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is produced by mixing the copper-containing acidic waste liquid and the oxidizing agent in a mixing tank. For recovering the resulting copper-containing solid. 酸化剤として過酸化水素を用いる請求項13ないし15のいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 The method for recovering a copper-containing solid with reduced chlorine content from a copper-containing acidic waste liquid according to any one of claims 13 to 15 , wherein hydrogen peroxide is used as an oxidizing agent. 銅含有酸性廃液が、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液である請求項13ないし16のいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 Copper-containing acidic waste liquid, the chlorine content of the copper-containing acidic waste liquid according to any one of 13 claims a waste etching solution generated in etching the copper printed circuit board with cupric chloride etching solution 16 is reduced A method for recovering a copper-containing solid. 生成する固形物が酸化銅を主成分とする固形物である請求項13ないし17のいずれかに記載の銅含有酸性廃液からの塩素含有量が低減された銅含有固形物の回収方法。 The method for recovering a copper-containing solid with a reduced chlorine content from a copper-containing acidic waste liquid according to any one of claims 13 to 17 , wherein the generated solid is a solid mainly composed of copper oxide. 次の管理条件(3)
(3)混合液注加後のアルカリ剤溶液のpHを11.5以上の強アルカリに維持する
を守りつつ、銅含有酸性廃液と酸化剤との混合液をアルカリ剤溶液に注加し、生成する固形物を取得することを特徴とする塩素含有量の低い銅含有固形物の製造方法。
Next management condition (3)
(3) While keeping the pH of the alkaline solution after pouring the mixed solution at a strong alkali of 11.5 or higher, the mixed solution of the copper-containing acidic waste liquid and the oxidizing agent is poured into the alkaline solution to produce A method for producing a copper-containing solid having a low chlorine content, wherein the solid is obtained.
銅含有酸性廃液と酸化剤との混合液が、銅含有酸性廃液の供給ラインと酸化剤供給ラインとを合流させて生成させたものである請求項19に記載の塩素含有量の低い銅含有固形物の製造方法。 The copper-containing solid with a low chlorine content according to claim 19 , wherein the mixed liquid of the copper-containing acidic waste liquid and the oxidizing agent is formed by joining the supply line of the copper-containing acidic waste liquid and the oxidizing agent supply line. Manufacturing method. 銅含有酸性廃液と酸化剤との混合液は、混合槽で銅含有酸性廃液と酸化剤を混合して生成させたものである請求項19に記載の塩素含有量の低い銅含有固形物の製造方法。 The mixed liquid of a copper-containing acidic waste liquid and an oxidizing agent is produced by mixing a copper-containing acidic waste liquid and an oxidizing agent in a mixing tank, and manufacturing a copper-containing solid having a low chlorine content according to claim 19. Method. 酸化剤として過酸化水素を用いる請求項19ないし21のいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 19 to 21 , wherein hydrogen peroxide is used as an oxidizing agent. 銅含有酸性廃液が、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液である請求項19ないし22のいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 19 to 22 , wherein the copper-containing acidic waste liquid is an etching waste liquid produced when etching a copper printed board with a cupric chloride etchant. 生成する固形物が酸化銅を主成分とする固形物である請求項19ないし23のいずれかに記載の塩素含有量の低い銅含有固形物の製造方法。 The method for producing a copper-containing solid having a low chlorine content according to any one of claims 19 to 23 , wherein the produced solid is a solid mainly composed of copper oxide. 加熱手段およびpH測定手段を備えた、銅含有酸性廃液と酸化剤との混合液とアルカリ剤溶液とを反応させて固形物として析出させる反応槽と、前記固形物を分離回収する固液分離装置と、酸化剤配管および銅含有酸性廃液配管とが途中で合流された混合液配管とを含み、前記混合液配管は、反応槽に混合液を注加可能に設けられ、反応槽と固液分離装置とは固形物を含む懸濁液を移送可能に連通されていることを特徴とする銅含有酸性廃液からの銅含有固形物の回収装置。   A reaction tank for reacting a mixed liquid of copper-containing acidic waste liquid and an oxidizing agent with an alkaline agent solution to precipitate as a solid substance, and a solid-liquid separation apparatus for separating and recovering the solid substance, comprising heating means and pH measuring means And an oxidant pipe and a copper-containing acidic waste liquid pipe joined together in the middle, and the mixed liquid pipe is provided so that the mixed liquid can be poured into the reaction tank, and the reaction tank and the solid-liquid separation are provided. An apparatus for recovering a copper-containing solid from a copper-containing acidic waste liquid is characterized in that a suspension containing the solid is communicated so as to be transportable. 銅含有酸性廃液と酸化剤溶液とを混合する混合槽と、加熱手段およびpH測定手段を備えた、混合物とアルカリ剤溶液を反応させて固形物として析出させる反応槽と、前記固形物を分離回収する固液分離装置と、前記混合槽から反応槽に混合液を注加する手段とを含み、前記反応槽と前記固液分離装置とは固形物を含む懸濁液を移送可能に連通されていることを特徴とする、銅含有酸性廃液からの銅含有固形物の回収装置。   A mixing tank for mixing the copper-containing acidic waste liquid and the oxidant solution, a reaction tank having a heating means and a pH measuring means for reacting the mixture with the alkaline agent solution to precipitate as a solid, and separating and recovering the solid And a means for pouring the mixed liquid from the mixing tank to the reaction tank, and the reaction tank and the solid-liquid separation apparatus communicate with each other so that a suspension containing solid matter can be transferred. An apparatus for recovering a copper-containing solid from a copper-containing acidic waste liquid.
JP2008212646A 2008-08-21 2008-08-21 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid Active JP5307478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212646A JP5307478B2 (en) 2008-08-21 2008-08-21 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212646A JP5307478B2 (en) 2008-08-21 2008-08-21 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid

Publications (2)

Publication Number Publication Date
JP2010047799A JP2010047799A (en) 2010-03-04
JP5307478B2 true JP5307478B2 (en) 2013-10-02

Family

ID=42065114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212646A Active JP5307478B2 (en) 2008-08-21 2008-08-21 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid

Country Status (1)

Country Link
JP (1) JP5307478B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696406B2 (en) * 2010-09-08 2015-04-08 栗田工業株式会社 Copper etching waste treatment method
JP5808132B2 (en) * 2011-04-19 2015-11-10 水ing株式会社 Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor
CN102321908A (en) * 2011-09-02 2012-01-18 广州市天承化工有限公司 Recycling and regenerating process method and metal copper recovery system of acid chloride etching solution
JP5777495B2 (en) * 2011-11-18 2015-09-09 株式会社東芝 Copper recovery method and copper recovery device from copper etching waste liquid
KR101313844B1 (en) 2012-04-02 2013-10-01 (주)에이치에스켐텍 Manufacturing method of high quality copper oxide and material for copper plating from waste copper liquid
CN106077700A (en) * 2016-07-13 2016-11-09 许勤峰 A kind of method utilizing circuit board waste liquid to prepare Nanometer Copper catalysis slurry
CN106041122A (en) * 2016-07-13 2016-10-26 许勤峰 Method for preparing nanometre copper-catalyzed slurry by virtue of PCB acidic waste liquid
CN111908499A (en) * 2020-07-21 2020-11-10 王水平 Method and device for preparing copper oxide and ammonium chloride by combining waste acid and alkaline etching solution
CN112209543B (en) * 2020-09-03 2022-12-20 深圳市环保科技集团股份有限公司 Composite treatment method of complex copper waste liquid and microetching waste liquid
CN112661181A (en) * 2020-12-30 2021-04-16 深圳市祺鑫环保科技有限公司 Method for preparing copper oxide powder
CN114702058A (en) * 2022-04-25 2022-07-05 惠州市东江环保技术有限公司 Process for comprehensively recycling micro-etching waste liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514813B2 (en) * 1973-06-18 1980-04-18
JP3525203B2 (en) * 2000-12-28 2004-05-10 独立行政法人産業技術総合研究所 Method and apparatus for recovering copper oxide from copper chloride-containing etching waste liquid
JP2002233882A (en) * 2001-02-09 2002-08-20 Kawasaki Kasei Chem Ltd Method for recovering heavy metal from heavy metal- containing aqueous solution
JP2002255550A (en) * 2001-02-28 2002-09-11 National Institute Of Advanced Industrial & Technology Method and apparatus for recovering copper as precipitate from etching waste liquid containing copper chloride
JP3595826B2 (en) * 2001-03-30 2004-12-02 独立行政法人産業技術総合研究所 Heavy metal sludge reduction method and chemicals used for it
JP4165637B2 (en) * 2002-07-22 2008-10-15 独立行政法人産業技術総合研究所 Method for treating wastewater containing harmful substances without producing sludge and chemicals used therefor
JP2008127266A (en) * 2006-11-24 2008-06-05 Nittetsu Mining Co Ltd Method for producing cupric oxide from copper etching waste liquid
JP5102157B2 (en) * 2008-09-05 2012-12-19 水ing株式会社 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid

Also Published As

Publication number Publication date
JP2010047799A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5307478B2 (en) Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
JP4199821B1 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP5102157B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP5215111B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
CN102459096B (en) Method for recovering water and metals from plating wastewater resulting from washing
JP5431998B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP6511040B2 (en) Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution
JP5808131B2 (en) Process and recovery method for copper-containing acidic waste liquid and apparatus therefor
JP4947640B2 (en) Waste acid solution treatment method
EP2935126B1 (en) Method of treating industrial water
TWI507363B (en) Treatment of Copper Etching Waste
WO2007113926A1 (en) Method of purifying copper salt solution, purification apparatus and copper salt solution
JP2013244430A (en) Method and apparatus for treating copper chloride-containing acidic waste liquid
JP5808132B2 (en) Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor
TW200806587A (en) Copper recovery method and system therefor
JP4399529B2 (en) Treatment method of electroless plating waste liquid
JP2014012880A (en) Method for disposing electroless copper plating waste solution, and device for the same
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
JP6078345B2 (en) Wastewater treatment method and apparatus
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
JP2019063710A (en) Treatment method and treatment apparatus of liquid to be treated
JP4121064B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JPS6096765A (en) Purifying treatment of plating waste water
JP3014614B2 (en) Method for recovering Ni or Zn and their salts from Ni-containing waste liquid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250