WO2007113926A1 - Method of purifying copper salt solution, purification apparatus and copper salt solution - Google Patents

Method of purifying copper salt solution, purification apparatus and copper salt solution Download PDF

Info

Publication number
WO2007113926A1
WO2007113926A1 PCT/JP2006/313928 JP2006313928W WO2007113926A1 WO 2007113926 A1 WO2007113926 A1 WO 2007113926A1 JP 2006313928 W JP2006313928 W JP 2006313928W WO 2007113926 A1 WO2007113926 A1 WO 2007113926A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
salt solution
copper salt
copper
liquid
Prior art date
Application number
PCT/JP2006/313928
Other languages
French (fr)
Japanese (ja)
Inventor
Shiroshi Matsuki
Original Assignee
Tsurumi Soda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co., Ltd. filed Critical Tsurumi Soda Co., Ltd.
Publication of WO2007113926A1 publication Critical patent/WO2007113926A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a technology for removing and purifying calcium and barrier contained in a copper salt solution such as a copper chloride etching waste solution.
  • a copper salt solution such as copper chloride etching waste liquid after etching a copper printed circuit board, etc., is etched with a cupric chloride solution, but it is used in the electrolytic plating method as one of its applications. Copper plating materials are known.
  • the electrolytic plating method is a method in which a copper plating material is supplied to a plating working fluid (sulfuric acid and copper sulfate as main components), and an electric current is passed between the insoluble anode and the substrate to be the cathode.
  • a copper plating material used in this method copper oxide powder obtained by thermally decomposing basic copper carbonate is known. Since the copper plating material is appropriately replenished in the working fluid, it must be easily soluble in sulfuric acid. In this regard, copper oxide powder obtained by thermally decomposing basic copper carbonate is suitable as a copper plating material because it is readily soluble in sulfuric acid.
  • Patent Document 1 describes a method of producing copper oxide powder by thermally decomposing basic copper carbonate after producing basic copper carbonate using a copper chloride etching waste solution as a raw material.
  • the waste liquid can be effectively used, and commercially available basic copper carbonate is used as a raw material. Compared to the case, it is advantageous in terms of cost.
  • the copper chloride etching waste solution the copper printed circuit board may be dissolved during etching, and impurities contained in the copper printed circuit board, such as calcium and barium, may be dissolved. For this reason, the above calcium and barium may be mixed in the copper oxide powder obtained using the copper chloride etching waste solution as a raw material.
  • electrolytic copper powder copper oxide with few impurities can be obtained by oxidizing electrolytic copper powder.
  • the cost of electrolytic copper powder is high even if low-impurity copper copper is produced, and copper oxide made from electrolytic copper powder is less than the plating solution. It is known that it is not easily soluble and cannot be adopted.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a copper plating material with less impurities. Therefore, by removing force barium from a copper salt solution such as a copper chloride etching waste liquid,
  • the object is to provide a purification method, a purification apparatus, and a copper salt solution purified by these purification methods.
  • the method for purifying a copper salt solution according to the present invention comprises a neutralization step of neutralizing a copper salt solution with Al force to obtain a solid-liquid mixture,
  • a re-dissolution step of re-dissolving the solid content in an inorganic acid to obtain a copper salt solution from which calcium has been removed may be obtained by a similar method.
  • Examples of the copper salt solution to be purified include copper chloride etching waste liquid.
  • a material to be etched made of copper for example, a copper printed circuit board surface
  • the cupric chloride reacts with the copper and changes to cuprous chloride. Since this cuprous chloride decreases the etching rate, for example, by adding hydrogen peroxide and hydrochloric acid to the etching solution, the cuprous chloride can be converted into chloride. Recycle to the copper.
  • the copper chloride etching waste liquid according to the present invention is a surplus liquid obtained as a result of an increase in the etching liquid by such a regeneration process.
  • the neutralization step is preferably performed so that the copper salt solution is in the range of pH 3.5 to 7.0, and the temperature at which the solid-liquid mixture is 40 ° C. or higher. It is preferable to be performed within a range.
  • the alkali is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate.
  • a copper chloride solution for example, with copper chloride etching waste liquid after etching with a copper chloride solution, mixing with alkali ⁇ solid-liquid separation ⁇ re-dissolution of solids
  • a copper chloride solution from which calcium or the like has been removed purified
  • copper chloride etching waste liquid can be used as a raw material for copper oxide powder, which is a plating material, it is possible to keep raw material costs low compared to, for example, obtaining copper oxide with less impurities using electrolytic copper powder as a raw material. it can.
  • FIG. 1 is a flowchart illustrating a method for purifying a copper chloride solution according to the present invention.
  • FIG. 2 is a configuration diagram showing an example of a copper chloride solution purifying apparatus according to the first embodiment.
  • FIG. 3 is an explanatory view showing an operation procedure of the neutralization reaction tank of the copper chloride solution purifying apparatus according to the second embodiment.
  • FIG. Figure 1 shows an example of a copper chloride solution. It is a flowchart regarding the process which refine
  • the etching waste liquid is an excess waste liquid generated as a result of etching a material to be etched made of copper, for example, a copper printed circuit board surface, with an etching liquid containing hydrochloric acid mainly composed of cupric chloride.
  • hydrochloric acid mainly composed of cupric chloride.
  • impurities such as calcium and barium contained in the copper printed circuit board, the stage to be etched, the tank container, and the tank lorry container are dissolved in the etching waste liquid during etching, for example, several tens of weight p pm It is dissolved at a certain concentration.
  • “Purification” refers to a treatment for removing an impurity such as calcium from such an etching waste liquid to obtain a copper chloride solution that does not contain calcium or has a low content of calcium or the like.
  • an etching waste liquid and an alkali for example, a 10 wt% sodium hydroxide aqueous solution are mixed, and the hydrogen ion concentration (hereinafter referred to as PH) of the mixed liquid is, for example, 3.5 to 7 Within the range of 0, for example, the mixing ratio of the etching waste liquid and the sodium hydroxide aqueous solution is adjusted so that the pH becomes 4.0.
  • the mixed solution is heated so as to be constant in a temperature range of 40 ° C. or higher, for example, 70 ° C. (step S 1 (neutralization step)).
  • the alkali that neutralizes the etching waste liquid Is not limited to sodium hydroxide.
  • potassium hydroxide, ammonium hydroxide, sodium carbonate, carbonated lithium, ammonium carbonate, sodium bicarbonate or potassium bicarbonate may be used.
  • an alkaline aqueous solution and for example, an alkaline powder may be used.
  • this neutralization step whether calcium or the like, which is an impurity, is contained in the solid content or the liquid content depends on the pH of the solid-liquid mixture. That is, in the region where pH is low, calcium is dissolved in the liquid component in the form of calcium chloride (C a C l 2 ).
  • the mixing amount is more a connexion of aqueous sodium hydroxide solution
  • the p H is large Doconnection go
  • said the C u C l 2 ⁇ 3 C u (OH) partially Karushiu beam atoms of copper atoms in the two molecules
  • a solid content that is replaced with a solid content is generated, or calcium is adsorbed on the solid content, so that the solid content is contained in the solid content.
  • the inventor collects copper as a solid content from the etching waste liquid by adjusting the pH in the neutralization step to a range of 3.5 to 7.0, and impurities such as calcium are contained in the liquid content. I know I can keep it.
  • the inventor conducted a test and ascertained the conditions that facilitate solid-liquid separation by filtration. As a result, the neutralization step is performed in a temperature range in which the temperature of the solid-liquid mixture is 40 ° C or higher. As a result, it was understood that the filterability was improved.
  • step S 2 solid-liquid separation step
  • copper and impurities such as calcium mixed in the etching waste liquid are separated into a solid content and a liquid content, respectively.
  • Step S3 about redissolution
  • water is added as necessary to adjust the concentration.
  • a purified copper salt copper solution from which the impurities are removed can be obtained.
  • inorganic acids that re-dissolve solids are not limited to hydrochloric acid, but may be sulfuric acid or nitric acid, for example.
  • the liquid component containing calcium and the like obtained in the solid-liquid separation process in step S 2 is neutralized to about pH 7 with an aqueous sodium hydride solution (step S 4), and becomes a solid-liquid mixture again.
  • This solid-liquid mixture is again solid-liquid separated (step S 5), and a ferric chloride solution is added to the solid content to form a redissolved solution (step S 6).
  • the redissolved solution is treated to recover copper.
  • the liquid obtained in step S5 is subjected to waste liquid treatment (step S7) and discharged to the environment.
  • FIG. 2 shows an example of a continuous copper chloride solution purifier.
  • the apparatus generally includes a neutralization reaction tank 10 for neutralizing the etching waste liquid and the aqueous sodium hydroxide solution, and a filter press 30 for solid-liquid separation of the solid-liquid mixture produced in the neutralization reaction tank 10.
  • the neutralization reaction tank 10 is composed of a hydroxylated sodium hydroxide supply valve 1 1, which is composed of a redissolution tank 40 for redissolving the separated solid content in hydrochloric acid.
  • the sodium hydroxide tank 1 is connected to the sodium hydroxide tank 1 via a 1a.
  • the sodium hydride supply valve 11 has a function as an alkali supply means, and plays a role of continuously supplying a sodium hydroxide aqueous solution to the neutralization reaction tank 10 while increasing or decreasing the supply amount.
  • the neutralization reaction tank 10 is connected to the etching waste liquid tank 2 through the etching waste liquid supply pipe 1 2 a provided in the etching waste liquid supply valve 12, and the etching waste liquid supply valve 1 2 is also in the middle. It serves as a solution supply means for the sum reactor 10.
  • a mixer 13 for mixing the etching waste liquid and the sodium hydride aqueous solution, and a solid-liquid mixture (hereinafter referred to as slurry) in the neutralization reaction tank 10 are heated, for example, by electric heating.
  • a heater 14 consisting of a vessel and a liquid level gauge 15 for measuring the level of the slurry in the neutralization reactor 10 are installed.
  • a bottom pipe 1.6a is attached to the bottom of the neutralization reaction tank 10, and the slurry can be extracted from the neutralization reaction tank 10 by, for example, a bottom pump 16 comprising a slurry pump. It has become possible to do.
  • the bottom pipe 1 6 a branches into a return pipe 1 7 a and an extraction pipe 1 8 a, and the return pipe 1 7 a plays a role of returning the slurry to the neutralization reaction tank 10.
  • the extraction pipe 1 8 a is connected to the filter press 30 with the extraction valve 1 8 interposed, and the extraction valve 1 8 is connected to the extraneous slurry from the neutralization reaction tank 10. It plays a role as an extraction means to continuously extract one.
  • a sampling pot 17 having a thermometer 19 for measuring the temperature of the slurry and a pH meter 20 for measuring the pH of the slurry is interposed in the return pipe 17a.
  • the purification apparatus further includes a control unit 21, and a pH meter 20, a sodium hydroxide supply valve 11, and an etching waste liquid supply valve 12 are connected to each other through signal lines 2 2 to 24. Connected to the control unit 2 1.
  • the control unit 21 sends an opening / closing instruction to the sodium hydroxide supply valve 11 and the etching waste liquid supply valve 12 based on the indicated value of the pH meter 20 so that the slurry has a pH of 3. It plays a role of controlling to increase / decrease the supply amount of the sodium hydroxide aqueous solution and the etching waste liquid so as to become a predetermined value in the range of 5 to 7.0, for example, 4.0.
  • liquid level gauge 15 and the extraction valve 18 are connected to the control unit 21 via signal lines 25 and 26.
  • the control unit 21 sends an opening / closing instruction to the extraction valve 18 based on the indicated value of the liquid level gauge 15 so that the liquid level of the slurry in the neutralization reaction tank 10 becomes constant. It also has a function of controlling the slurry to be extracted.
  • the thermometer 19 and the heater 14 are connected to a controller (not shown), and the temperature of the slurry in the neutralization reaction tank 10 becomes a predetermined temperature by this controller. So that it is controlled.
  • the slurry extracted from the neutralization reaction tank 10 by the extraction valve 18 to the outside of the system is separated into a solid and a liquid by a filter press 30 (hereinafter referred to as a mother liquor).
  • the filter press 30 functions as a solid-liquid separation means for feeding the slurry at a high pressure into the chamber covered with the filter cloth and separating the solid content of the slurry and the mother liquor.
  • the solid-liquid separation means is not limited to the case where the filter press 30 is used.
  • the precipitation tank may use a liquid cyclone.
  • the mother liquor that has exited the filter press 30 is sent to the post-treatment device 3 through the mother liquor pipe 30 b and subjected to post-treatment.
  • the solid content is conveyed to the remelting tank 40 via the solid content conveyance path 30 a.
  • a belt conveyor or a bulldozer or the like may be used for conveyance by the solid content conveyance path 30a.
  • the redissolving tank 40 is connected to the hydrochloric acid tank 4 via a hydrochloric acid supply pipe 40 a so that a predetermined amount of hydrochloric acid can be received therefrom.
  • the redissolving tank 40 has a function as a redissolving means for mixing the received solid content and hydrochloric acid to redissolve the solid content. If an etching waste solution with a low calcium or barium concentration is available, it can be used in place of hydrochloric acid to redissolve the solids.
  • the re-dissolution tank 40 is further provided with a mixer 41 for mixing solids and hydrochloric acid, and a liquid level gauge 42 for measuring the level of the re-dissolution liquid in the re-dissolution tank 40.
  • a bottom pipe 43a is attached to the bottom of the remelting tank 40 so that the remelted liquid can be extracted from the remelting tank 40 by the bottom pump 43.
  • the bottom pipe 4 3 a branches into a return pipe 4 4 a and an extraction pipe 4 5 a, and the return pipe 4 4 a plays a role of returning the redissolved liquid to the redissolving tank 40.
  • the extraction pipe 4 5 a is connected to the purified copper chloride solution tank 5 with the extraction valve 4 5 interposed, and the extraction valve 4 5 is connected to the purified copper chloride of the re-dissolved liquid. It performs the function of continuously dispensing as a solution.
  • the extraction valve 4 5 and the liquid level gauge 4 2 are connected to a controller (not shown) via the signal line 46, and the liquid level of the redissolved liquid in the redissolving tank 40 is constant.
  • the amount of the re-dissolved liquid extracted is controlled by the controller.
  • a water supply means and a pH meter may be installed in the redissolving tank 40 so that the redissolved solution is diluted with water to a certain concentration, and the adjusted copper chloride solution is dispensed. Good.
  • the refiner can It is possible to execute the neutralization process of the waste liquid, the solid-liquid separation process of the slurry and the solid re-dissolution process in parallel. As a result, it is possible to continuously process the etching waste liquid and dispense the purified copper chloride solution.
  • FIG. 3 shows an example of a batch-type copper chloride solution purifier.
  • the neutralization reaction tank 10 and its peripheral equipment in the apparatus have substantially the same configuration as that shown in FIG. However, it is provided with water supply means (not shown), has no return pipe 1 ⁇ a for returning the extracted slurry to the neutral reaction tank 10, and the mother liquor after the slurry is settled and separated Neutralization reaction tank 1 0
  • the mother liquor extraction pipe 1 6 b has a thermometer 1 9 and pH meter 2 0 instead of the sampling pot 1 7 This is different from the first embodiment in that it is directly attached to the first embodiment.
  • the liquid level indicator 15 is not shown in FIG.
  • the control unit 21 is connected to each device such as a sodium hydroxide supply valve 11 and an etching waste liquid supply valve 1 2 and has a role of executing sequence control related to the operation of the neutralization reaction tank 10. is doing. The details of the control executed by the control unit 21 will be described below.
  • the control unit 21 performs the neutralization reaction using the water supply means (not shown) with the on-off valves provided in the bottom pipe 16a and the mother liquor extraction pipe 16b closed. Fill the tank 10 with a predetermined amount of water, turn the mixer 1 3 “ON”, and heat to the predetermined temperature using the heater 14.
  • the control unit 21 opens the etching waste liquid supply valve 12 to start supplying the etching waste liquid.
  • control unit 21 monitors the pH of the solution in the neutralization reaction tank 10 using a pH meter 20, and the value of pH is, for example, a predetermined value from 3.5 to 7.0. Supply only the etching waste liquid until the value reaches (eg 4.0).
  • the supply valves 1 1 and 1 2 in the open state are marked with “0”, and the closed valves are blacked out and marked with “S”.
  • the control unit 21 opens the sodium hydroxide supply valve 11 and opens the sodium hydroxide solution.
  • the supply of the solution is started and neutralization of the etching waste liquid is started.
  • the degree of opening of the sodium hydroxide supply valve 1 1 and the etching waste liquid supply valve 1 2 is adjusted so that the neutralization reaction tank 1
  • the supply amounts of the etching waste liquid and the aqueous sodium hydroxide solution are controlled so that the pH of the solution within 0 maintains a predetermined value of, for example, 3.5 to 7.0.
  • the control unit 21 closes the sodium hydroxide supply valve 11 and the etching waste liquid supply valve 1 2 as shown in FIG. 3 (c). Then, the supply of the etching waste liquid and the sodium hydroxide aqueous solution is stopped, and the mixer 13 is further stopped. Then, the slurry is allowed to stand for a predetermined time, and the solid content in the slurry is precipitated and roughly separated from the mother liquor.
  • control unit 21 opens the on-off valve of the mother liquor extraction pipe 16 b, discharges the supernatant in the neutralization reaction tank 10 as a mother liquor to an unshown post-treatment device, and then the neutralization reaction tank 10
  • the slurry that has settled at the bottom of the filter is extracted toward a filter press (not shown). Since then, the equipment for solid-liquid separation of the slurry and the equipment for re-dissolving the solid content with hydrochloric acid are almost the same as those described in FIG. In these devices, the slurry and solids may be processed in batches, or may be processed continuously after a certain amount is accumulated.
  • FIG. 3 a series of operations for neutralizing the etching waste liquid has been described as an example of sequence control by the control unit 21, but a part or all of the above operations are manually performed by a human. Also good. In this case, the equipment cost can be reduced because the instrumentation installed in the equipment can be reduced.
  • a copper salt solution a copper chloride etching waste solution
  • the copper salt solution that can be purified according to the present invention is not limited to the exemplified one.
  • the present invention can also be applied to a copper salt solution such as a copper sulfate solution that is a waste liquid for printed circuit boards.
  • Example 1-11 the copper concentration remaining in the mother liquor obtained by solid-liquid separation of the slurry was analyzed, and the copper yield from the etching waste liquid to the solid content was calculated. In addition, by analyzing the concentration of calcium and barium in the solids, the removal rate of these components (mother The ratio remaining in the liquid) was calculated. The results are shown in (Table 2). Note that (Table 2) also shows the results of Example 1-1-2 to 1-3.
  • the etching waste solution was neutralized in the same manner as in Example 1-11, except that the pH target values were set to 5.0 and 7.0, respectively.
  • Example 2-1 the time from when the slurry was filtered by suction until a predetermined amount of mother liquor was obtained was measured and used as an index to evaluate filterability. The results are shown in Table 4. In Table 4, the results of Comparative Example 2-1 are also shown.
  • etching waste solution in a 1 L beaker in advance and heat to 70 ° C and stir.
  • a sodium hydroxide aqueous solution was supplied at a constant flow rate until a pH target value of 4.0 was reached.
  • the flow rate and concentration of the aqueous sodium hydroxide solution are (Example 2-1) and It is the same.
  • stirring was continued for 30 minutes while maintaining the temperature condition, heating was stopped, and the resulting slurry was allowed to stand.
  • the same suction filtration experiment as in (Example 2-1) was performed on 400 mL of the slurry thus obtained.
  • Example 2-1 A suction filtration experiment similar to (Example 2-1) was carried out using a slurry obtained in substantially the same manner as (Example 2-1) except that the temperature during mixing was 40 ° C. It was. The results are shown in (Table 5). In Table 5, Examples 3-2 to 3-3 and Comparative Example 3—! The results of ⁇ 3-2 are also shown.
  • a suction filtration experiment was performed using the slurry obtained under the same conditions as in Example 1-11, except that the temperature during mixing was 50 ° C and 70 ° C, respectively.
  • etching waste liquid and Al force solution such as sodium hydroxide aqueous solution are mixed so that pH is in the range of 3.5 to 7.0
  • a solid-liquid mixture (slurry) in which the solid content containing copper in the cupric salt and the liquid content containing impurities such as calcium are mixed can be obtained. Therefore, a solid content obtained by solid-liquid separation of this solid-liquid mixture is redissolved in an inorganic acid such as hydrochloric acid to obtain a copper chloride solution from which impurities such as calcium are removed.
  • the temperature when mixing and neutralizing the etching waste liquid and Al force is set to 40 ° C.
  • the pH value in the neutralization reaction tank can be controlled within the target range. Can be purified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

A method of purifying, in which calcium and barium are removed from a copper salt solution, such as a copper chloride etchant waste occurring after etching with a cupric chloride solution, to thereby attain purification; a relevant purification apparatus; and a copper chloride solution purified by the purification method. In particular, there is provided a method comprising neutralizing a copper salt solution, such as a copper chloride etchant waste, with an alkali, such as sodium hydroxide, so that, for example, the pH value falls within the range of 3.5 to 7.0 (step S1); subjecting the obtained solid-liquid mixture to solid-liquid separation (step S2); and re-dissolving the solid contents obtained by the solid-liquid separation in an inorganic acid, such as hydrochloric acid (step S3), thereby obtaining a copper chloride solution having calcium and other impurities removed therefrom.

Description

明細書  Specification
銅塩溶液の精製方法、 精製装置及び銅塩溶液 技術分野 - 本発明は、 塩化銅エッチング廃液等の銅塩溶液に含まれるカルシウムやバリゥ ムを除去して、 精製する技術に関する。 背景技術  TECHNICAL FIELD The present invention relates to a technology for removing and purifying calcium and barrier contained in a copper salt solution such as a copper chloride etching waste solution. Background art
塩化第二銅溶液により、 銅プリント基板等をエッチングした後の塩化銅エッチ ング廃液等の銅塩溶液を有効利用することが行われているが、 その用途の一つと して電解メツキ法に用いられる銅メツキ材料が知られている。  A copper salt solution such as copper chloride etching waste liquid after etching a copper printed circuit board, etc., is etched with a cupric chloride solution, but it is used in the electrolytic plating method as one of its applications. Copper plating materials are known.
電解メツキ法は、 メツキ稼動液 (主成分として硫酸、 硫酸銅) に銅メツキ材料 を供給し、 不溶性陽極と陰極をなす被メツキ体との間で通電する手法である。 こ の方法に用いられる銅メツキ材料としては、 塩基性炭酸銅を熱分解して得られた 酸化銅粉が知られている。 銅メツキ材料は、 稼動液中に適宜補給されるものであ るため、 硫酸に対して易溶解性であることが必要である。 この点につき、 塩基性 炭酸銅を熱分解して得られた酸化銅粉は硫酸に易溶解性なので銅メツキ材料とし て好適である。 特許文献 1には、 塩化銅エッチング廃液を原料として、 塩基性炭 酸銅を生成した後、 この塩基性炭酸銅を熱分解して酸化銅粉を得る方法が記載さ れている。  The electrolytic plating method is a method in which a copper plating material is supplied to a plating working fluid (sulfuric acid and copper sulfate as main components), and an electric current is passed between the insoluble anode and the substrate to be the cathode. As a copper plating material used in this method, copper oxide powder obtained by thermally decomposing basic copper carbonate is known. Since the copper plating material is appropriately replenished in the working fluid, it must be easily soluble in sulfuric acid. In this regard, copper oxide powder obtained by thermally decomposing basic copper carbonate is suitable as a copper plating material because it is readily soluble in sulfuric acid. Patent Document 1 describes a method of producing copper oxide powder by thermally decomposing basic copper carbonate after producing basic copper carbonate using a copper chloride etching waste solution as a raw material.
上述のように塩ィヒ銅エッチング廃液を利用して銅メツキ材料である酸化銅粉を 製造する方法によれば、 廃液の有効利用を図る事ができ、 市販の塩基性炭酸銅を 原料とする場合と比較してコスト的にも有利である。 しかしながら、 塩化銅エツ チング廃液中には、 エッチング時に銅プリント基板が溶け出し、 銅プリント基板 中に含まれていた不純物、 例えばカルシウムやバリゥムが溶解していることがあ る。 このため、 塩化銅エッチング廃液を原料として得られた酸化銅粉にも、 上記 のカルシウムやバリゥムが混入してしまう場合がある。  As described above, according to the method for producing copper oxide powder, which is a copper plating material, using a salt copper etching waste liquid, the waste liquid can be effectively used, and commercially available basic copper carbonate is used as a raw material. Compared to the case, it is advantageous in terms of cost. However, in the copper chloride etching waste solution, the copper printed circuit board may be dissolved during etching, and impurities contained in the copper printed circuit board, such as calcium and barium, may be dissolved. For this reason, the above calcium and barium may be mixed in the copper oxide powder obtained using the copper chloride etching waste solution as a raw material.
カルシウムやバリゥムが混入した酸化銅粉をメツキ材料として使用した場合は 、 これらの不純物がメツキ稼動液中に蓄積して、 そのままにしておくと電解メッ キに悪影響を与えるため、 不純物の蓄積量が所定量に達する前に建浴をする必要 がある。 し力 し、 銅メツキ材料 (補給材) に不純物が多く含まれていると建浴を 頻繁に行わなければならずメツキ処理のコストが高騰するし、 また手間がかかる 。 そこで、 稼動液に銅メツキ材料として酸化銅粉を供給する前に塩基性炭酸銅の 段階で前記の不純物を出来るだけ多く取り除いておくことが重要であるが、 不純 物を十分に除去することは難しい。 なお、 電解銅粉を酸化処理する事で不純物の 少ない酸化銅を得る事はできる。 し力 し、 電解銅粉による場合は、 不純物の少な い酸ィヒ銅ができたとしても電解銅粉のコス トが高く、 また、 電解銅粉を原料とし た酸化銅はメツキ液に対して易溶解性とはならない事が分かっており、 採用する ことができない。 When copper oxide powder mixed with calcium or barium is used as a plating material, these impurities accumulate in the plating working solution, and if left untouched, the electrolytic mesh is adversely affected, so the amount of impurities accumulated Necessary to build before reaching the prescribed amount There is. However, if the copper plating material (replenishment material) contains a lot of impurities, the bathing must be carried out frequently, which increases the cost of the plating treatment and takes time. Therefore, it is important to remove as much of the impurities as possible at the basic copper carbonate stage before supplying copper oxide powder as a copper plating material to the working fluid. However, it is important to remove impurities sufficiently. difficult. In addition, copper oxide with few impurities can be obtained by oxidizing electrolytic copper powder. However, in the case of electrolytic copper powder, the cost of electrolytic copper powder is high even if low-impurity copper copper is produced, and copper oxide made from electrolytic copper powder is less than the plating solution. It is known that it is not easily soluble and cannot be adopted.
特許文献 1 Patent Literature 1
特許第 2 7 5 3 8 5 5号公報 発明の開示  Japanese Patent No. 2 7 5 3 8 5 5 Disclosure of Invention
本発明はかかる事情に鑑みてなされたものであって、 本発明の目的は不純物の 少ない銅メツキ材料を提供するため、 塩化銅エッチング廃液等の銅塩溶液から力 ルシゥムゃバリウムを除去して、 精製する精製方法、 精製装置及び、 これらの精 製方法により精製された銅塩溶液を提供することにある。  The present invention has been made in view of such circumstances, and an object of the present invention is to provide a copper plating material with less impurities. Therefore, by removing force barium from a copper salt solution such as a copper chloride etching waste liquid, The object is to provide a purification method, a purification apparatus, and a copper salt solution purified by these purification methods.
本発明に係る銅塩溶液の精製方法は、 銅塩溶液を、 アル力リにより中和して、 固液混合物を得る中和工程と、  The method for purifying a copper salt solution according to the present invention comprises a neutralization step of neutralizing a copper salt solution with Al force to obtain a solid-liquid mixture,
前記固液混合物を、 銅を含む固形分と力ルシゥムを含む液体分とに固液分離す る固液分離工程と、  A solid-liquid separation step of solid-liquid separation of the solid-liquid mixture into a solid content containing copper and a liquid content containing force Luc;
前記固形分を無機酸に再溶解させて、 カルシウムが除去された銅塩溶液を得る 再溶解工程と、 を含むことを特徴とする。 同様の方法によりバリウムが除去され た銅塩溶液を得てもよい。  And a re-dissolution step of re-dissolving the solid content in an inorganic acid to obtain a copper salt solution from which calcium has been removed. A copper salt solution from which barium has been removed may be obtained by a similar method.
精製される銅塩溶液としては、 例えば塩化銅エッチング廃液などが挙げられる 。 一般に、 銅からなる被エッチング材 (例えば銅プリント基板表面) を塩化第二 銅エツチング液によってエッチングさせると、 塩化第二銅が銅と反応して塩化第 一銅に変わる。 この塩化第一銅はエッチング速度を低下させることから、 例えば 過酸化水素と塩酸とをエツチング液に添加することによつて塩化第一銅を塩化第 二銅に再生する。 本発明に係る塩化銅エッチング廃液は、 このような再生処理に よりェツチング液が増加した結果得られた余剰液である。 Examples of the copper salt solution to be purified include copper chloride etching waste liquid. In general, when a material to be etched made of copper (for example, a copper printed circuit board surface) is etched with a cupric chloride etching solution, the cupric chloride reacts with the copper and changes to cuprous chloride. Since this cuprous chloride decreases the etching rate, for example, by adding hydrogen peroxide and hydrochloric acid to the etching solution, the cuprous chloride can be converted into chloride. Recycle to the copper. The copper chloride etching waste liquid according to the present invention is a surplus liquid obtained as a result of an increase in the etching liquid by such a regeneration process.
これらの方法において、 前記中和工程は、 銅塩溶液を p H 3 . 5〜7 . 0の範 囲となるように行うとよく、 また、 前記固液混合物が 4 0 °C以上となる温度範囲 で行われることが好ましい。 また、 前記アルカリは、 水酸化ナトリウム、 水酸化 カリウム、 水酸化アンモニゥム、 炭酸ナトリウム、 炭酸カリウム、 炭酸アンモニ ゥム、 炭酸水素ナトリゥム又は炭酸水素カリウムからなるアルカリ群から選択さ れるとよレ、。  In these methods, the neutralization step is preferably performed so that the copper salt solution is in the range of pH 3.5 to 7.0, and the temperature at which the solid-liquid mixture is 40 ° C. or higher. It is preferable to be performed within a range. The alkali is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate.
本発明に係る銅塩溶液の精製方法によれば、 例えば塩化銅溶液によりエツチン グを行った後の塩化銅エッチング廃液等に対して、 アルカリとの混合→固液分離 →固形分の再溶解という簡単な処理を施すことにより、 カルシウム等が除去 (精 製) された塩化銅溶液を得ることができる。 このため、 この方法により精製され た銅塩溶液を原料とする酸化銅粉をメツキ材料としてもメツキ浴中に不純物が蓄 積しにくく、 メツキ浴を建浴する頻度を抑えることが可能となり、 メツキ処理の コストや建浴の手間を削減することができる。 また、 塩化銅エッチング廃液等を メッキ材料である酸化銅粉の原料とすることができるので、 例えば電解銅粉を原 料として不純物の少ない酸化銅を得る場合に比べて原材料費を低く抑えることが できる。 図面の簡単な説明  According to the method for purifying a copper salt solution according to the present invention, for example, with copper chloride etching waste liquid after etching with a copper chloride solution, mixing with alkali → solid-liquid separation → re-dissolution of solids By performing a simple treatment, a copper chloride solution from which calcium or the like has been removed (purified) can be obtained. For this reason, even if copper oxide powder made from a copper salt solution purified by this method is used as a plating material, it is difficult for impurities to accumulate in the plating bath, making it possible to reduce the frequency of building the plating bath. It is possible to reduce the processing cost and the time required for bathing. In addition, since copper chloride etching waste liquid can be used as a raw material for copper oxide powder, which is a plating material, it is possible to keep raw material costs low compared to, for example, obtaining copper oxide with less impurities using electrolytic copper powder as a raw material. it can. Brief Description of Drawings
図 1は、 本発明に係る塩化銅溶液の精製方法を説明するフローチャートである。 図 2は、 第 1の実施の形態に係る塩化銅溶液の精製装置の一例を示す構成図であ る。 FIG. 1 is a flowchart illustrating a method for purifying a copper chloride solution according to the present invention. FIG. 2 is a configuration diagram showing an example of a copper chloride solution purifying apparatus according to the first embodiment.
図 3は、 第 2の実施の形態に係る塩化銅溶液の精製装置の中和反応槽の操作手順 を示す説明図である。 発明を実施するための最良の形態 FIG. 3 is an explanatory view showing an operation procedure of the neutralization reaction tank of the copper chloride solution purifying apparatus according to the second embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る銅塩溶液の精製方法に係る実施の形態の一例として、 塩化銅溶液 の精製方法について図 1を参照しながら説明する。 図 1は、 塩化銅溶液の一例で ある塩化銅エッチング廃液 (以下、 エッチング廃液という) を精製する処理に関 するフローチャートである。 図中、 点線で囲んだ部分がエッチング廃液を精製す る処理の内容を示し、 その他の部分は後処理を示している。 ここで、 エッチング 廃液とは、 塩化第二銅を主成分とした塩酸を含むエッチング液により、 銅からな る被エッチング材、 例えば銅プリント基板表面をエッチングさせた結果発生する 余剰廃液である。 その組成としては、 例えば塩化第二銅が 19〜21重量%、 塩 酸が 7〜 8重量%含まれている。 更に、 エッチング廃液中には、 銅プリント基板 や被エッチング台、 タンク容器やタンクローリの容器等に含まれていたカルシゥ ムゃバリゥムからなる不純物がエッチング時等に溶け出して、 例えば数十重量 p pm程度の濃度で溶解している。 「精製」 とは、 このようなエッチング廃液から カルシウム等の不純物を除去して、 カルシウム等を含まない、 又はカルシウム等 の含有量が少なレ、塩化銅溶液を得るための処理をいう。 As an example of an embodiment relating to a method for purifying a copper salt solution according to the present invention, a method for purifying a copper chloride solution will be described with reference to FIG. Figure 1 shows an example of a copper chloride solution. It is a flowchart regarding the process which refine | purifies a certain copper chloride etching waste liquid (henceforth an etching waste liquid). In the figure, the part surrounded by the dotted line shows the content of the process for purifying the etching waste liquid, and the other part shows the post-treatment. Here, the etching waste liquid is an excess waste liquid generated as a result of etching a material to be etched made of copper, for example, a copper printed circuit board surface, with an etching liquid containing hydrochloric acid mainly composed of cupric chloride. As its composition, for example, 19 to 21% by weight of cupric chloride and 7 to 8% by weight of hydrochloric acid are contained. In addition, impurities such as calcium and barium contained in the copper printed circuit board, the stage to be etched, the tank container, and the tank lorry container are dissolved in the etching waste liquid during etching, for example, several tens of weight p pm It is dissolved at a certain concentration. “Purification” refers to a treatment for removing an impurity such as calcium from such an etching waste liquid to obtain a copper chloride solution that does not contain calcium or has a low content of calcium or the like.
ここで、 本発明に係る塩化銅溶液の精製法の考え方について説明する。 一般的 に、 C a2 +や B a2+を含む水溶液にアルカリを加えていった場合、 じ 3ゃ8 &の 炭酸化物は pH 8以上、 水酸化物は p HI 2以上で沈殿する事が知られている。 Cu2+は pH3〜4付近で沈殿生成するため、 pH差による Cuと C a、 B a分 離が可能と考えられた。,しかし、 本件に関する試験を行った結果、 pHが 7以下 であっても、 生成した沈殿中に C a、 B aが予想以上に存在している事が分かつ た。 Cuの沈殿とともに Ca、 B a分が共沈したものと考えられる。 この沈殿を 大量の水で洗浄しても、 沈殿中の Ca、 B a濃度は減少しなかった。 pH値によ つては、 更に何らかの精製プロセスを加える必要性が考えられた。 このような考 え方に鑑み、 以下にエッチング廃液を精製する処理の具体的な内容について説明 する。 ' Here, the concept of the copper chloride solution purification method according to the present invention will be described. Generally, if went by adding an alkali to an aqueous solution containing a C a 2 + and B a 2+, Ji 3 Ya 8 & carbonate of pH 8 or higher, the hydroxide will be precipitated by p HI 2 or more It has been known. Since Cu 2+ precipitates around pH 3-4, it was considered possible to separate Cu, Ca, and Ba due to pH differences. However, as a result of conducting tests on this case, it was found that even when the pH was 7 or less, Ca and Ba were present more than expected in the formed precipitate. It is thought that Ca and Ba were co-precipitated with the precipitation of Cu. Even if this precipitate was washed with a large amount of water, the Ca and Ba concentrations in the precipitate did not decrease. Depending on the pH value, it may be necessary to add some additional purification process. In view of this concept, the specific contents of the process for purifying the etching waste liquid will be described below. '
まず、 図 1に示すように、 エッチング廃液と、 アルカリ、 例えば濃度 10重量 %の水酸化ナトリウム水溶液とを混合して、 混合液の水素イオン濃度 (以下、 P Hという) が例えば 3. 5〜7. 0の範囲内で、 例えば pHが 4. 0となるよう に、 エッチング廃液と水酸化ナトリウム水溶液との混合比を調整する。 このとき 、 混合液は 40°C以上の温度範囲、 例えば 70°Cで一定となるように加温されて いる (ステップ S 1 (中和工程) ) 。 なお、 エッチング廃液を中和するアルカリ は、 水酸化ナトリゥムに限られない。 例えば、 水酸化力リウム、 水酸化アンモニ ゥム、 炭酸ナトリゥム、 炭酸力リゥム、 炭酸アンモニゥム、 炭酸水素ナトリウム 又は炭酸水素カリウム等でもよい。 また、 アルカリ水溶液用いる場合に限定され ず、 例えばアルカリ粉末を使用してもよい。 First, as shown in FIG. 1, an etching waste liquid and an alkali, for example, a 10 wt% sodium hydroxide aqueous solution are mixed, and the hydrogen ion concentration (hereinafter referred to as PH) of the mixed liquid is, for example, 3.5 to 7 Within the range of 0, for example, the mixing ratio of the etching waste liquid and the sodium hydroxide aqueous solution is adjusted so that the pH becomes 4.0. At this time, the mixed solution is heated so as to be constant in a temperature range of 40 ° C. or higher, for example, 70 ° C. (step S 1 (neutralization step)). In addition, the alkali that neutralizes the etching waste liquid Is not limited to sodium hydroxide. For example, potassium hydroxide, ammonium hydroxide, sodium carbonate, carbonated lithium, ammonium carbonate, sodium bicarbonate or potassium bicarbonate may be used. Moreover, it is not limited to the case of using an alkaline aqueous solution, and for example, an alkaline powder may be used.
エツチング廃液を水酸化ナトリゥム水溶液で中和することにより、 エッチング 廃液中の塩ィヒ第二銅と水酸ィ匕ナトリウムとが反応して、 例えば C u C l 2 ■ 3 C u (O H ) 2等の固形分が析出し、 混合後の溶液は固液混合物となる。 このとき 、 エッチング廃液に加える水酸ィヒナトリウム水溶液の量が多い程、 即ち、 混合液 の p Hの値が大きい程、 エッチング廃液から銅を固形分として回収する収率を高 くすることができる。 By neutralizing the etching wastewater with aqueous sodium hydroxide solution, cupric chloride and sodium hydroxide in the etching wastewater react with each other. For example, C u C l 2 ■ 3 C u (OH) 2 And the like, and the mixed solution becomes a solid-liquid mixture. At this time, the larger the amount of sodium hydride aqueous solution added to the etching waste solution, that is, the higher the pH value of the mixed solution, the higher the yield of recovering copper as a solid content from the etching waste solution.
一方、 この中和工程において、 不純物であるカルシウム等が、 固形分と液体分 とのいずれに含まれることになるかは、 固液混合物の p Hに依存する。 即ち、 p Hが低い領域ではカルシウムは塩化カルシウム (C a C l 2 ) 等の形態で液体分 中に溶解している。 On the other hand, in this neutralization step, whether calcium or the like, which is an impurity, is contained in the solid content or the liquid content depends on the pH of the solid-liquid mixture. That is, in the region where pH is low, calcium is dissolved in the liquid component in the form of calcium chloride (C a C l 2 ).
しかし、 水酸化ナトリウム水溶液の混合量が多くなつて、 p Hが大きくなつて いくと、 前記した C u C l 2 · 3 C u (O H) 2分子中の銅原子の一部がカルシゥ ム原子等と入れ替わった固形分が生成したり、 固形分にカルシウム等が吸着した りして、 カルシウム等が固形分に含まれるようになる。 However, the mixing amount is more a connexion of aqueous sodium hydroxide solution, the p H is large Do connexion go, said the C u C l 2 · 3 C u (OH) partially Karushiu beam atoms of copper atoms in the two molecules As a result, a solid content that is replaced with a solid content is generated, or calcium is adsorbed on the solid content, so that the solid content is contained in the solid content.
発明者は、 中和工程における p Hを 3 . 5〜7 . 0の範囲に調整することによ り、 エッチング廃液中から銅を固形分として回収し、 カルシウム等の不純物は液 体分中に残しておくことが可能となることを把握している。  The inventor collects copper as a solid content from the etching waste liquid by adjusting the pH in the neutralization step to a range of 3.5 to 7.0, and impurities such as calcium are contained in the liquid content. I know I can keep it.
ところで、 中和による沈殿生成反応において、 沈殿する粒子の径を大きく した い場合、 反応温度を高くする事は一般的である。 し力ゝし、 粒子成長の傾向等は、 物質ごとに異なる。 また、 濾過性を向上させるためには、 一般的に粒子径を大き くさせる事が挙げられる。 し力 し、 粒子の形状や細かな粒子の存在によっても濾 過性は大きく左右される。 そのため、 粒子径だけで濾過性を判断する事は出来な い。 そこで、 発明者は試験を行い、 濾過による固液分離が容易となる条件の把握 を行った結果、 この中和工程を固液混合物の温度が 4 0 °C以上となるような温度 範囲で行うことにより、 濾過性が良くなることを把握した。 次いで、 中和工程で得られた固液混合物は、 例えばフィルタ一等により固形分 と液体分とに固液分離される (ステップ S 2 (固液分離工程) ) 。 この固液分離 工程において、 エッチング廃液中に混在していた銅と、 カルシウム等の不純物と は、 夫々固形分と液体分とに分離される。 By the way, in the precipitation reaction by neutralization, when it is desired to increase the size of the precipitated particles, it is common to increase the reaction temperature. However, the tendency of particle growth varies from material to material. In order to improve the filterability, generally increasing the particle diameter can be mentioned. However, the filterability is greatly affected by the shape of the particles and the presence of fine particles. Therefore, the filterability cannot be judged only by the particle size. Therefore, the inventor conducted a test and ascertained the conditions that facilitate solid-liquid separation by filtration. As a result, the neutralization step is performed in a temperature range in which the temperature of the solid-liquid mixture is 40 ° C or higher. As a result, it was understood that the filterability was improved. Next, the solid-liquid mixture obtained in the neutralization step is subjected to solid-liquid separation into a solid component and a liquid component using, for example, a filter (step S 2 (solid-liquid separation step)). In this solid-liquid separation step, copper and impurities such as calcium mixed in the etching waste liquid are separated into a solid content and a liquid content, respectively.
次いで、 固形分離工程で得られた固形分に、 塩酸を加えて再溶解し (ステップ S 3 (再溶^ i程) ) 、 必要に応じて水を加え濃度を調整することにより、 カル シゥム等の不純物が除去された精製塩ィヒ銅溶液を得ることができる。 ここで、 固 形分を再溶解する無機酸ほ、 塩酸に限定されるものではなく、 例えば硫酸や硝酸 であってもよレ、。  Next, hydrochloric acid is added to the solid content obtained in the solid separation process and redissolved (Step S3 (about redissolution)), and water is added as necessary to adjust the concentration. A purified copper salt copper solution from which the impurities are removed can be obtained. Here, inorganic acids that re-dissolve solids are not limited to hydrochloric acid, but may be sulfuric acid or nitric acid, for example.
なお、 ステップ S 2の固液分離工程において得られたカルシウム等を含む液体 分は、 水酸ィヒナトリウム水溶液等で p H 7程度まで中和 (ステップ S 4 ) され、 再度固液混合物となる。 この固液混合物は、 再び固液分離されて (ステップ S 5 ) 、 固形分には塩化第二鉄溶液が加えられ再溶解液となる (ステップ S 6 ) 。 再 溶解液に対しては、 銅を回収する処理等が施される。 一方、 ステップ S 5で得ら れた液体分には、 廃液処理が施され (ステップ S 7 ) 環境へ排出される。  The liquid component containing calcium and the like obtained in the solid-liquid separation process in step S 2 is neutralized to about pH 7 with an aqueous sodium hydride solution (step S 4), and becomes a solid-liquid mixture again. This solid-liquid mixture is again solid-liquid separated (step S 5), and a ferric chloride solution is added to the solid content to form a redissolved solution (step S 6). The redissolved solution is treated to recover copper. On the other hand, the liquid obtained in step S5 is subjected to waste liquid treatment (step S7) and discharged to the environment.
次に、 上述のフローに基づいて塩化銅溶液を精製する精製装置について説明す る。 図 2は、 連続式の塩化銅溶液の精製装置の一例を示している。 当該装置は、 概略、 ェツチング廃液と水酸化ナトリゥム水溶液との中和を行う中和反応槽 1 0 と、 中和反応槽 1 0で生成された固液混合物を固液分離するフィルタープレス 3 0と、 分離された固形分を塩酸に再溶解する再溶解槽 4 0とから構成されている 詳細には、 中和反応槽 1 0は、 水酸化ナトリゥム供給弁 1 1の介設された水酸 化ナトリゥム供給管 1 1 aを介して水酸化ナトリゥムタンク 1と接続されている 。 水酸ィヒナトリウム供給弁 1 1は、 アルカリ供給手段としての機能を有しており 、 供給量を增減しながら中和反応槽 1 0に水酸化ナトリゥム水溶液を連続供給す る役割を果たす。 また、 中和反応槽 1 0は、 エッチング廃液供給弁 1 2の介設さ れたェツチング廃液供給管 1 2 aを介してエツチング廃液タンク 2と接続されて おり、 ェツチング廃液供給弁 1 2も中和反応槽 1 0に対する溶液供給手段として の役割を果たす。 更に、 中和反応槽 1 0には、 エッチング廃液と水酸ィヒナトリウム水溶液とを混 合するミキサー 1 3と、 中和反応槽 1 0内の固液混合物 (以下、 スラリーという ) を加熱する例えば電熱器からなるヒーター 1 4と、 中和反応槽 1 0内のスラリ 一の液位を測定する液面計 1 5とが設置されている。 また、 中和反応槽 1 0の底 部には、 ボトム配管 1 .6 aが取り付けられており、 例えばスラリーポンプからな るボトムポンプ 1 6によって、 中和反応槽 1 0からスラリーを抜き出すことがで きるようになつている。 ボトム配管 1 6 aは、 戻し配管 1 7 aと抜出配管 1 8 a とに分岐しており、 戻し配管 1 7 aはスラリーを中和反応槽 1 0に戻す役割を果 たす。 また、 抜出配管 1 8 aは、 抜出弁 1 8が介設された状態でフィルタープレ ス 3 0と接続されており、 抜出弁 1 8は、 中和反応槽 1 0から系外ヘスラリ一を 連続的に抜き出す抜出手段としての役割を果たす。 また、 戻し配管 1 7 aには、 スラリ一の温度を計測する温度計 1 9と、 スラリーの p Hを計測する p H計 2 0 とを備えたサンプリングポット 1 7が介設されている。 Next, a purification apparatus for purifying a copper chloride solution based on the above flow will be described. Figure 2 shows an example of a continuous copper chloride solution purifier. The apparatus generally includes a neutralization reaction tank 10 for neutralizing the etching waste liquid and the aqueous sodium hydroxide solution, and a filter press 30 for solid-liquid separation of the solid-liquid mixture produced in the neutralization reaction tank 10. In detail, the neutralization reaction tank 10 is composed of a hydroxylated sodium hydroxide supply valve 1 1, which is composed of a redissolution tank 40 for redissolving the separated solid content in hydrochloric acid. The sodium hydroxide tank 1 is connected to the sodium hydroxide tank 1 via a 1a. The sodium hydride supply valve 11 has a function as an alkali supply means, and plays a role of continuously supplying a sodium hydroxide aqueous solution to the neutralization reaction tank 10 while increasing or decreasing the supply amount. In addition, the neutralization reaction tank 10 is connected to the etching waste liquid tank 2 through the etching waste liquid supply pipe 1 2 a provided in the etching waste liquid supply valve 12, and the etching waste liquid supply valve 1 2 is also in the middle. It serves as a solution supply means for the sum reactor 10. Further, in the neutralization reaction tank 10, a mixer 13 for mixing the etching waste liquid and the sodium hydride aqueous solution, and a solid-liquid mixture (hereinafter referred to as slurry) in the neutralization reaction tank 10 are heated, for example, by electric heating. A heater 14 consisting of a vessel and a liquid level gauge 15 for measuring the level of the slurry in the neutralization reactor 10 are installed. In addition, a bottom pipe 1.6a is attached to the bottom of the neutralization reaction tank 10, and the slurry can be extracted from the neutralization reaction tank 10 by, for example, a bottom pump 16 comprising a slurry pump. It has become possible to do. The bottom pipe 1 6 a branches into a return pipe 1 7 a and an extraction pipe 1 8 a, and the return pipe 1 7 a plays a role of returning the slurry to the neutralization reaction tank 10. In addition, the extraction pipe 1 8 a is connected to the filter press 30 with the extraction valve 1 8 interposed, and the extraction valve 1 8 is connected to the extraneous slurry from the neutralization reaction tank 10. It plays a role as an extraction means to continuously extract one. Further, a sampling pot 17 having a thermometer 19 for measuring the temperature of the slurry and a pH meter 20 for measuring the pH of the slurry is interposed in the return pipe 17a.
当該精製装置は、 更に制御部 2 1を有しており、 p H計 2 0と水酸化ナトリウ ム供給弁 1 1、 エツチング廃液供給弁 1 2とは、 各信号線 2 2 ~ 2 4を介して制 御部 2 1と接続されている。 制御部 2 1は、 p H計 2 0の指示値に基づいて水酸 化ナトリゥム供給弁 1 1とエッチング廃液供給弁 1 2とに対して開閉指示を発信 し、 スラリーの p Hが例えば 3 . 5〜7 . 0の範囲の所定の値、 例えば 4 . 0と なるように水酸化ナトリゥム水溶液やエッチング廃液の供給量を増減させる制御 を行う役割を果たす。  The purification apparatus further includes a control unit 21, and a pH meter 20, a sodium hydroxide supply valve 11, and an etching waste liquid supply valve 12 are connected to each other through signal lines 2 2 to 24. Connected to the control unit 2 1. The control unit 21 sends an opening / closing instruction to the sodium hydroxide supply valve 11 and the etching waste liquid supply valve 12 based on the indicated value of the pH meter 20 so that the slurry has a pH of 3. It plays a role of controlling to increase / decrease the supply amount of the sodium hydroxide aqueous solution and the etching waste liquid so as to become a predetermined value in the range of 5 to 7.0, for example, 4.0.
更に、 液面計 1 5と抜出弁 1 8とは、 信号線 2 5、 2 6を介して制御部 2 1と 接続されている。 制御部 2 1は、 液面計 1 5の指示値に基づいて抜出弁 1 8に対 して開閉指示を発信し、 中和反応槽 1 0内のスラリーの液位が一定となるように 、 スラリーを抜き出させる制御を行う機能も有している。 また、 温度計 1 9とヒ 一ター 1 4とは、 図示しないコントローラに接続されており、 このコントローラ によって、 中和反応槽 1 0内のスラリーの温度が予め定められた所定の温度とな るように制御されている。  Further, the liquid level gauge 15 and the extraction valve 18 are connected to the control unit 21 via signal lines 25 and 26. The control unit 21 sends an opening / closing instruction to the extraction valve 18 based on the indicated value of the liquid level gauge 15 so that the liquid level of the slurry in the neutralization reaction tank 10 becomes constant. It also has a function of controlling the slurry to be extracted. The thermometer 19 and the heater 14 are connected to a controller (not shown), and the temperature of the slurry in the neutralization reaction tank 10 becomes a predetermined temperature by this controller. So that it is controlled.
抜出弁 1 8によって中和反応槽 1 0から系外に抜き出されたスラリーは、 フィ ルタープレス 3 0で固形分と液体分 (以下、 母液という) とに固液分離される。 フィルタープレス 3 0は、 濾布で覆われた室内に、 高圧力でスラリーを送り込み 、 スラリーの固形分と母液とを分離する固液分離手段としての機能を果たす。 固 液分離手段は、 フィルタープレス 3 0を利用する場合に限定されず、 例えば沈殿 槽ゃ液体サイクロンを利用してもよい。 The slurry extracted from the neutralization reaction tank 10 by the extraction valve 18 to the outside of the system is separated into a solid and a liquid by a filter press 30 (hereinafter referred to as a mother liquor). The filter press 30 functions as a solid-liquid separation means for feeding the slurry at a high pressure into the chamber covered with the filter cloth and separating the solid content of the slurry and the mother liquor. The solid-liquid separation means is not limited to the case where the filter press 30 is used. For example, the precipitation tank may use a liquid cyclone.
フィルタープレス 3 0を出た母液は母液配管 3 0 bを介して後処理装置 3へ送 られ、 後処理が施される。 一方、 固形分は固形分搬送路 3 0 aを介じて再溶解槽 4 0へ搬送される。 固形分搬送路 3 0 aによる搬送は、 例えばベルトコンペャに よってもよく、 ブルドーザ等によってもよレヽ。  The mother liquor that has exited the filter press 30 is sent to the post-treatment device 3 through the mother liquor pipe 30 b and subjected to post-treatment. On the other hand, the solid content is conveyed to the remelting tank 40 via the solid content conveyance path 30 a. For example, a belt conveyor or a bulldozer or the like may be used for conveyance by the solid content conveyance path 30a.
再溶解槽 4 0は、 塩酸供給配管 4 0 aを介して塩酸タンク 4と接続されており 、 ここから所定量の塩酸を受け入れることができるようになつている。 再溶解槽 4 0は、 受け入れた固形分と塩酸とを混合して、 固形分を再溶解する再溶解手段 としての機能を有している。 なお、 カルシウムやバリウムの濃度が低いエツチン グ廃液が入手できれば、 これを塩酸の替わりに使用して固形分を再溶解してもよ レ、。  The redissolving tank 40 is connected to the hydrochloric acid tank 4 via a hydrochloric acid supply pipe 40 a so that a predetermined amount of hydrochloric acid can be received therefrom. The redissolving tank 40 has a function as a redissolving means for mixing the received solid content and hydrochloric acid to redissolve the solid content. If an etching waste solution with a low calcium or barium concentration is available, it can be used in place of hydrochloric acid to redissolve the solids.
また、 再溶解槽 4 0には、 更に固形分と塩酸とを混合するミキサー 4 1と、 再 溶解槽 4 0内の再溶解液の液位を測定する液面計 4 2とが設置されている。 再溶 解槽 4 0の底部には、 ボトム配管 4 3 aが取り付けられており、 ボトムポンプ 4 3によって再溶解槽 4 0から再溶解液を抜き出すことができるようになつている 。 ボトム配管 4 3 aは、 戻し配管 4 4 aと抜出配管 4 5 aとに分岐しており、 戻 し配管 4 4 aは再溶解液を再溶解槽 4 0に戻す役割を果たす。  Further, the re-dissolution tank 40 is further provided with a mixer 41 for mixing solids and hydrochloric acid, and a liquid level gauge 42 for measuring the level of the re-dissolution liquid in the re-dissolution tank 40. Yes. A bottom pipe 43a is attached to the bottom of the remelting tank 40 so that the remelted liquid can be extracted from the remelting tank 40 by the bottom pump 43. The bottom pipe 4 3 a branches into a return pipe 4 4 a and an extraction pipe 4 5 a, and the return pipe 4 4 a plays a role of returning the redissolved liquid to the redissolving tank 40.
また、 抜出配管 4 5 aは、 抜出弁 4 5の介設された状態で精製塩化銅溶液タン ク 5と接続されており、 抜出弁 4 5は再溶解液を精製された塩化銅溶液として連 続的に払い出す機能を果たす。 このとき、 抜出弁 4 5と液面計 4 2とは、 信号線 4 6を介して図示を省略したコントローラと接続されており、 再溶解槽 4 0内の 再溶解液の液位が一定となるように、 再溶解液の抜き出し量がコントローラによ つて制御されている。 なお、 再溶解槽 4 0に例えば水供給手段と p H計とを設置 し、 再溶解液を水で一定の濃度に薄めて、 濃度調整された塩化銅溶液を払い出す ように構成してもよい。  In addition, the extraction pipe 4 5 a is connected to the purified copper chloride solution tank 5 with the extraction valve 4 5 interposed, and the extraction valve 4 5 is connected to the purified copper chloride of the re-dissolved liquid. It performs the function of continuously dispensing as a solution. At this time, the extraction valve 4 5 and the liquid level gauge 4 2 are connected to a controller (not shown) via the signal line 46, and the liquid level of the redissolved liquid in the redissolving tank 40 is constant. The amount of the re-dissolved liquid extracted is controlled by the controller. For example, a water supply means and a pH meter may be installed in the redissolving tank 40 so that the redissolved solution is diluted with water to a certain concentration, and the adjusted copper chloride solution is dispensed. Good.
以上に説明した各機器の機能を協働させることにより、 当該精製装置はェツチ ング廃液の中和工程とスラリ一の固液分離工程と固形分の再溶解工程とを並行し て実行させることが可能となる。 これにより、 エッチング廃液を連続的に処理し 、 精製された塩化銅溶液を払い出すことが可能となる。 By reconciling the functions of the devices described above, the refiner can It is possible to execute the neutralization process of the waste liquid, the solid-liquid separation process of the slurry and the solid re-dissolution process in parallel. As a result, it is possible to continuously process the etching waste liquid and dispense the purified copper chloride solution.
次に、 塩化銅溶液の精製装置の第 2の実施の形態について説明する。 図 3は、 バッチ式の塩化銅溶液の精製装置の一例を示している。 当該装置における中和反 応槽 1 0及び、 その周辺機器は、 図 2で示したものと略同様の構成を有している 。 但し、 図示を省略した水供給手段を備えている点と、 抜き出したスラリーを中 和反応槽 1 0へ戻す戻し配管 1 Ί aを有していない点と、 スラリーを沈降分離し た後の母液を中和反応槽 1 0の側面から抜き出す母液抜出配管 1 6 bを有してい る点と、 温度計 1 9と p H計 2 0とがサンプリングポット 1 7ではなく中和反応 槽 1 0に直接取り付けられている点とが第 1の実施の形態と異なっている。 なお 便宜上、 図 3では液面計 1 5の図示を省略した。  Next, a second embodiment of the copper chloride solution purification apparatus will be described. Figure 3 shows an example of a batch-type copper chloride solution purifier. The neutralization reaction tank 10 and its peripheral equipment in the apparatus have substantially the same configuration as that shown in FIG. However, it is provided with water supply means (not shown), has no return pipe 1 Ί a for returning the extracted slurry to the neutral reaction tank 10, and the mother liquor after the slurry is settled and separated Neutralization reaction tank 1 0 The mother liquor extraction pipe 1 6 b has a thermometer 1 9 and pH meter 2 0 instead of the sampling pot 1 7 This is different from the first embodiment in that it is directly attached to the first embodiment. For convenience, the liquid level indicator 15 is not shown in FIG.
制御部 2 1は、 水酸化ナトリゥム供給弁 1 1やエッチング廃液供給弁 1 2等の 各機器と接続されており、 当該中和反応槽 1 0の作用に係るシーケンス制御を実 行する役割を有している。 以下、 制御部 2 1が実行する制御の内容について説明 する。 初めに、 制御部 2 1は、 ボトム配管 1 6 aと母液抜出配管 1 6 bとに備わ つている開閉弁を閉とした状態で、 図示を省略した水供給手段を用いて中和反応 槽 1 0内に所定量の水を張り、 ミキサー 1 3を 「O N」 とし、 ヒーター 1 4を使 つて所定の温度まで加熱する。 次に、 制御部 2 1は、 図 3 ( a ) に示すように、 エツチング廃液供給弁 1 2を開きエツチング廃液の供給を開始する。 ここで、 制 御部 2 1は、 p H計 2 0を使って中和反応槽 1 0内の溶液の p Hを監視し、 p H の値が例えば 3 . 5〜7 . 0までの所定の値 (例えば 4 . 0 ) になるまで、 エツ チング廃液のみを供給する。 なお図 3において、 開状態の各供給弁 1 1、 1 2に は 「0」 の文字を付し、 閉状態のバルブは黒く塗り潰すと共に 「S」 の文字を付 してある。  The control unit 21 is connected to each device such as a sodium hydroxide supply valve 11 and an etching waste liquid supply valve 1 2 and has a role of executing sequence control related to the operation of the neutralization reaction tank 10. is doing. The details of the control executed by the control unit 21 will be described below. First, the control unit 21 performs the neutralization reaction using the water supply means (not shown) with the on-off valves provided in the bottom pipe 16a and the mother liquor extraction pipe 16b closed. Fill the tank 10 with a predetermined amount of water, turn the mixer 1 3 “ON”, and heat to the predetermined temperature using the heater 14. Next, as shown in FIG. 3 (a), the control unit 21 opens the etching waste liquid supply valve 12 to start supplying the etching waste liquid. Here, the control unit 21 monitors the pH of the solution in the neutralization reaction tank 10 using a pH meter 20, and the value of pH is, for example, a predetermined value from 3.5 to 7.0. Supply only the etching waste liquid until the value reaches (eg 4.0). In FIG. 3, the supply valves 1 1 and 1 2 in the open state are marked with “0”, and the closed valves are blacked out and marked with “S”.
中和反応槽 1 0内の溶液の p Hが所定の値となったら、 図 3 ( b ) に示すよう に、 制御部 2 1は水酸化ナトリゥム供給弁 1 1を開として、 水酸化ナトリウム水 溶液の供給を開始してエッチング廃液の中和を開始する。 そして、 水酸化ナトリ ゥム供給弁 1 1とエッチング廃液供給弁 1 2との開度を調節して、 中和反応槽 1 0内の溶液の p Hが例えば 3 . 5 ~ 7 . 0までの所定の値を維持するように、 ェ ツチング廃液と水酸化ナトリゥム水溶液との供給量を制御する。 これらの動作に より、 エッチング廃液と水酸化ナトリゥム水溶液との中和反応で生成したスラリ 一が中和反応槽 1 0内に貯留される。 When the pH of the solution in the neutralization reactor 10 reaches a predetermined value, as shown in FIG. 3 (b), the control unit 21 opens the sodium hydroxide supply valve 11 and opens the sodium hydroxide solution. The supply of the solution is started and neutralization of the etching waste liquid is started. Then, the degree of opening of the sodium hydroxide supply valve 1 1 and the etching waste liquid supply valve 1 2 is adjusted so that the neutralization reaction tank 1 The supply amounts of the etching waste liquid and the aqueous sodium hydroxide solution are controlled so that the pH of the solution within 0 maintains a predetermined value of, for example, 3.5 to 7.0. By these operations, the slurry generated by the neutralization reaction between the etching waste liquid and the aqueous sodium hydroxide solution is stored in the neutralization reaction tank 10.
発明者は、 事前の実験により、 このような条件でエッチング廃液と水酸化ナト リウム水溶液とを混合すると、 他の条件で中和を行う場合と比較して、 スラリー が濾過等により母液と固形分とに分離しやすくなることを把握している。 これは 、 予めェツチング廃液を張っておいた中和反応槽 1 0に水酸化ナトリゥム水溶液 を加えていく場合等に比べて、 何らかの理由により、 生成する固形分の粒径が大 きくなることが原因であると考えられる。 そこで、 図 3に示した精製装置では、 上述のように、 予め水を張った中和反応槽 1 0に、 まずエッチング廃液のみを供 給して、 中和反応槽 1 0内の溶液を所定の p Hに調整してから、 その値が大きく 変動しないように水酸化ナトリゥム水溶液を供給する手法を採用している。  As a result of prior experiments, the inventor found that when the etching waste liquid and the sodium hydroxide aqueous solution were mixed under such conditions, the slurry was filtered and the mother liquor and solid content were compared with the case where neutralization was performed under other conditions. We understand that it becomes easy to separate. This is because, for some reason, the particle size of the solid content to be produced becomes larger than when adding an aqueous sodium hydroxide solution to the neutralization reaction tank 10 in which the etching waste liquid is previously added. It is thought that. Therefore, in the purification apparatus shown in FIG. 3, as described above, only the etching waste liquid is first supplied to the neutralization reaction tank 10 filled with water in advance, and the solution in the neutralization reaction tank 10 is predetermined. After adjusting to the pH of the solution, a method of supplying a sodium hydroxide aqueous solution is adopted so that the value does not fluctuate greatly.
次いで中和反応槽 1 0内のスラリーが一定の量に達したら、 図 3 ( c ) に示す ように、 制御部 2 1は水酸化ナトリゥム供給弁 1 1とエッチング廃液供給弁 1 2 とを閉として、 エッチング廃液と水酸化ナトリウム水溶液との供給を停止し、 更 にミキサー 1 3を停止する。 そして、 所定の時間スラリーを静置し、 スラリー内 の固形分を沈殿させて母液と粗分離する。 その後、 制御部 2 1は、 母液抜出配管 1 6 bの開閉弁を開として、 中和反応槽 1 0内の上澄みを母液として図示しない 後処理装置へ払い出し、 次に中和反応槽 1 0の底部に沈降しているスラリーを同 じく図示しないフィルタープレス等へ向けて抜き出す。 これ以降、 スラリーを固 液分離する機器や固形分を塩酸で再溶解する機器は、 図 2で説明したものと略同 じである。 これらの機器においては、 スラリーや固形分をバッチで処理してもよ いし、 ある程度の量が貯まつてから連続で処理してもよい。  Next, when the slurry in the neutralization reactor 10 reaches a certain amount, the control unit 21 closes the sodium hydroxide supply valve 11 and the etching waste liquid supply valve 1 2 as shown in FIG. 3 (c). Then, the supply of the etching waste liquid and the sodium hydroxide aqueous solution is stopped, and the mixer 13 is further stopped. Then, the slurry is allowed to stand for a predetermined time, and the solid content in the slurry is precipitated and roughly separated from the mother liquor. Thereafter, the control unit 21 opens the on-off valve of the mother liquor extraction pipe 16 b, discharges the supernatant in the neutralization reaction tank 10 as a mother liquor to an unshown post-treatment device, and then the neutralization reaction tank 10 The slurry that has settled at the bottom of the filter is extracted toward a filter press (not shown). Since then, the equipment for solid-liquid separation of the slurry and the equipment for re-dissolving the solid content with hydrochloric acid are almost the same as those described in FIG. In these devices, the slurry and solids may be processed in batches, or may be processed continuously after a certain amount is accumulated.
また、 図 3では、 ェツチング廃液を中和する一連の操作を制御部 2 1によりシ 一ケンス制御する場合を例に説明したが、 上記の一部または全部の操作を人間が 手動で実行してもよい。 この場合には、 装置に設置する計装を削減できるので、 設備コストを低減することができる。  In addition, in FIG. 3, a series of operations for neutralizing the etching waste liquid has been described as an example of sequence control by the control unit 21, but a part or all of the above operations are manually performed by a human. Also good. In this case, the equipment cost can be reduced because the instrumentation installed in the equipment can be reduced.
また、 実施の形態においては、 銅塩溶液の一例として塩化銅エッチング廃液 ( 塩化銅溶液) を精製する場合について説明したが、 本発明により精製可能な銅塩 溶液は例示したものに限定されない。 例えば、 プリント基板のメツキ廃液である 硫酸銅溶液等の銅塩溶液にも本発明は適用することができる。 In the embodiment, as an example of a copper salt solution, a copper chloride etching waste solution ( However, the copper salt solution that can be purified according to the present invention is not limited to the exemplified one. For example, the present invention can also be applied to a copper salt solution such as a copper sulfate solution that is a waste liquid for printed circuit boards.
(実施例) (Example)
(実験 1 )  (Experiment 1)
中和反応時の p Hが銅の収率や不純物の除去率に与える影響について評価を行 つた。  We evaluated the effect of pH during the neutralization reaction on copper yield and impurity removal rate.
(実施例 1一 1 )  (Example 1 1 1)
中和工程をバッチ式で実行する実験レベルの装置 (2 Lのビーカー) に予めェ ツチング廃液を 5 0 0 g入れておき、 7 0 °Cで撹拌させておく。 そこへ、 液の p Hを監視しながら、 チューブポンプを使用して水酸化ナトリゥム水溶液を一定の 供給速度で供給した。 そして、 液の p Hが所定の値 (目標値) に到達したら水酸 化ナトリウム水溶液の供給を中止した。 その後、 3 0分間撹拌を続け、 得られた スラリーを吸引濾過により固液分離して得られた固形分を水洗した。 (表 1 ) に 実験の条件を示す。  Put 500 g of the etching waste solution in a laboratory-level apparatus (2 L beaker) that performs the neutralization process in batch mode and stir at 70 ° C. Thereto, the aqueous solution of sodium hydroxide was supplied at a constant supply rate using a tube pump while monitoring the pH of the solution. When the pH of the solution reached a predetermined value (target value), the supply of the sodium hydroxide aqueous solution was stopped. Thereafter, stirring was continued for 30 minutes, and the obtained slurry was subjected to solid-liquid separation by suction filtration, and the solid content obtained was washed with water. Table 1 shows the experimental conditions.
(表 1 )  (table 1 )
(実施例 1一 1 ) の実験条件  Experimental conditions of (Example 1-11)
Figure imgf000013_0001
Figure imgf000013_0001
(実施例 1一 1 ) で、 スラリーを固液分離して得られた母液中に残存している 銅濃度を分析して、 エッチング廃液から固形分への銅の収率を算出した。 また、 固形分中のカルシウム及びバリゥムの濃度を分析してこれらの成分の除去率 (母 液に残存している割合) を算出した。 それらの結果を (表 2) に示す。 なお、 ( 表 2) には、 実施例 1一 2~ 1— 3の結果も併せて示してある。 In Example 1-11, the copper concentration remaining in the mother liquor obtained by solid-liquid separation of the slurry was analyzed, and the copper yield from the etching waste liquid to the solid content was calculated. In addition, by analyzing the concentration of calcium and barium in the solids, the removal rate of these components (mother The ratio remaining in the liquid) was calculated. The results are shown in (Table 2). Note that (Table 2) also shows the results of Example 1-1-2 to 1-3.
(表 2)  (Table 2)
銅の収率及びカルシウム、 バリゥムの除去率への pH目標値の影響
Figure imgf000014_0001
Effect of pH target values on copper yield and calcium and barium removal rates
Figure imgf000014_0001
(実施例 1— 2、 1 -3)  (Examples 1-2, 1-3)
pH目標値を夫々 5. 0、 7. 0に設定した他は、 実施例 1一 1と同様にして エッチング廃液を中和した。  The etching waste solution was neutralized in the same manner as in Example 1-11, except that the pH target values were set to 5.0 and 7.0, respectively.
(実験 1の考察)  (Consideration of Experiment 1)
(表 2) より、 pH目標値が高い程、 即ちエッチング廃液に供給した水酸化ナ トリゥム水溶液量が多い程、 固形物として回収される銅の収率が高いことが分か る。 一方で、 カルシウムやバリウムの除去率は、 pH目標値が高くなるにつれて 低下し、 固形分中にこれらの不純物が混入する傾向が見られる。 しかしながら、 カルシウムについては、 pH目標値が 4. 0~7. 0の範囲で約 9割以上の除去 率を維持している。 また、 バリウムについては、 pH目標値が 4. 0〜5. 0の 範囲で約 80%以上の除去率を有し、 pH目標値が 7. 0となっても約半量のバ リウムを除去することができている。 以上より、 エッチング廃液の中和を行うこ とにより、 銅の収率を 9割以上とし、 かつ、 カルシウム等の不純物も実用上十分 な除去率を維持することが可能となっているといえる。  From Table 2, it can be seen that the higher the pH target value, that is, the higher the amount of sodium hydroxide aqueous solution supplied to the etching waste liquid, the higher the yield of copper recovered as a solid. On the other hand, the removal rate of calcium and barium decreases as the pH target value increases, and there is a tendency for these impurities to be mixed into the solid content. However, with regard to calcium, the removal rate of about 90% or more is maintained when the pH target value is in the range of 4.0 to 7.0. Barium has a removal rate of about 80% or more when the pH target value is in the range of 4.0 to 5.0, and removes about half of the barium even when the pH target value is 7.0. Is able to. From the above, it can be said that by neutralizing the etching waste liquid, the copper yield can be increased to 90% or more, and impurities such as calcium can be maintained at a practically sufficient removal rate.
(実験 2) (Experiment 2)
中和の際、 エッチング廃液と水酸化ナトリゥム水溶液とを混合する方法がスラ リーの濾過性 (固液分離のしゃすさ) に与える影響について評価を行った。  During the neutralization, the effect of the method of mixing the etching waste solution and aqueous sodium hydroxide solution on the filterability of the slurry (solid-liquid separation) was evaluated.
(実施例 2— 1 )  (Example 2-1)
図 3に示す装置に対応する実験レベルの装置 (3 Lのビーカ一) に予めイオン 交換水 1 , O O O gを張り、 70°Cに加熱して撹拌させておく。 そこへ、 エッチ ング廃液を供給し、 pHが目標値となったところで、 エッチング廃液の供給を続 けたまま一定流量 (8mL/分) で水酸化ナトリウム水溶液 (10重量。/。) の供 給を開始した。 そして、 pHが目標値に維持されるように、 エッチング廃液の供 給量を調整した。 このように両液を供給しながら pHコントロールを 1時間継続 した後、 エッチング廃液と水酸ィ匕ナトリウム水溶液との供給を停止した。 その後 、 温度条件はそのままに、 1時間撹拌を続けた後、 加熱を停止して、 得られたス ラリーをー晚静置した。 このようにして得られたスラリーを 40 OmL取り出し て、 吸引濾過を行った。 (表 3) に実験の条件を示す。 In an experimental-level device (3 L beaker) corresponding to the device shown in Fig. 3, apply ion-exchanged water 1, OOO g in advance, and heat to 70 ° C and stir. The etching waste solution was supplied there, and when the pH reached the target value, the aqueous solution of sodium hydroxide (10 wt./.) Was supplied at a constant flow rate (8 mL / min) while continuing to supply the etching waste solution. I started paying. Then, the supply amount of the etching waste liquid was adjusted so that the pH was maintained at the target value. In this way, pH control was continued for 1 hour while supplying both solutions, and then the supply of the etching waste solution and the aqueous sodium hydroxide solution was stopped. Thereafter, stirring was continued for 1 hour while maintaining the temperature condition, and then heating was stopped, and the resulting slurry was allowed to stand. 40 OmL of the slurry thus obtained was taken out and suction filtered. Table 3 shows the experimental conditions.
(表 3)  (Table 3)
(実施例 2— 1) の実験条件  Experimental conditions of (Example 2-1)
Figure imgf000015_0001
Figure imgf000015_0001
(実験 2— 1) で、 スラリーを吸引濾過して所定量の母液が得られるまでの時 間を計測し、 濾過性を評価する指標とした。 その結果を (表 4) に示す。 なお、 (表 4) には、 比較例 2— 1の結果も併せて示してある。  In (Experiment 2-1), the time from when the slurry was filtered by suction until a predetermined amount of mother liquor was obtained was measured and used as an index to evaluate filterability. The results are shown in Table 4. In Table 4, the results of Comparative Example 2-1 are also shown.
(表 4)  (Table 4)
エッチング廃液と水酸化ナトリゥム水溶液との混合方法がスラリ一の濾過性に 与える影響  Effects of Etching Waste Solution and Sodium Hydroxide Aqueous Solution on Slurry Filterability
Figure imgf000015_0002
Figure imgf000015_0002
(比較例 2- 1)  (Comparative Example 2-1)
1 Lビーカーに予めエッチング廃液 400 gを入れて 70°Cに加熱して撹拌さ せておく。 そこへ、 pH目標値 4. 0となるまで一定流量で水酸化ナトリウム水 溶液を供給した。 水酸化ナトリゥム水溶液の流量及び濃度は (実施例 2— 1 ) と 同様である。 その後、 温度条件はそのままに、 30分間撹拌を続けた後、 加熱を 停止して、 得られたスラリーをー晚静置した。 このようにして得られたスラリー 400mLに対して (実施例 2— 1) と同様の吸引濾過実験を行った。 Put 400 g of etching waste solution in a 1 L beaker in advance and heat to 70 ° C and stir. Thereto, a sodium hydroxide aqueous solution was supplied at a constant flow rate until a pH target value of 4.0 was reached. The flow rate and concentration of the aqueous sodium hydroxide solution are (Example 2-1) and It is the same. Thereafter, stirring was continued for 30 minutes while maintaining the temperature condition, heating was stopped, and the resulting slurry was allowed to stand. The same suction filtration experiment as in (Example 2-1) was performed on 400 mL of the slurry thus obtained.
(実験 2の考察)  (Consideration of Experiment 2)
(表 4) より、 (実施例 2— 1) のように pHの値が一定になるように調整し ながら、 エッチング廃液と水酸ィヒナトリゥム水溶液とを少量ずつ混合して得られ たスラリーは、 (比較例 2— 1) のように容器に満たしたエッチング廃液に所定 の pHとなるまで水酸化ナトリゥム水溶液を加えて得たスラリ一よりも、 濾過に 要する時間が 30分の 1程度も短く、 濾過 (固液分離) 性が良好であり、 大量の スラリーを扱う実際のプロセスにおいて有利であることが分かる。  From (Table 4), the slurry obtained by mixing the etching waste solution and the aqueous solution of sodium hydroxide solution little by little while adjusting the pH value to be constant as in (Example 2-1) is ( Compared to the slurry obtained by adding sodium hydroxide aqueous solution to the etching waste liquid filled in the container as shown in Comparative Example 2-1) until the predetermined pH is reached, the time required for filtration is about 30 times shorter. (Solid-liquid separation) It is clear that it is advantageous in actual processes that handle a large amount of slurry.
(実験 3) (Experiment 3)
混合時の温度がスラリーの濾過性に与える影響について評価を行った。  The influence of the temperature during mixing on the filterability of the slurry was evaluated.
(実施例 3— 1 )  (Example 3-1)
混合時の温度を 40°Cとした以外は、 (実施例 2— 1) と略同様の手法で得ら れたスラリーを用いて、 (実施例 2— 1) と同様の吸引濾過実験を行った。 その 結果を (表 5) に示す。 なお、 (表 5) には、 実施例 3— 2〜 3— 3及び、 比較 例 3—:!〜 3— 2の結果も併せて示してある。  A suction filtration experiment similar to (Example 2-1) was carried out using a slurry obtained in substantially the same manner as (Example 2-1) except that the temperature during mixing was 40 ° C. It was. The results are shown in (Table 5). In Table 5, Examples 3-2 to 3-3 and Comparative Example 3—! The results of ~ 3-2 are also shown.
(表 5)  (Table 5)
Figure imgf000016_0001
Figure imgf000016_0001
(実施例 3— 2、 3— 3)  (Examples 3-2, 3-3)
混合時の温度を夫々 50°C、 70°Cとした他は、 実施例 1一 1と同じ条件で得 られたスラリーを用いて吸引濾過実験を行った。  A suction filtration experiment was performed using the slurry obtained under the same conditions as in Example 1-11, except that the temperature during mixing was 50 ° C and 70 ° C, respectively.
(比較例 3— 1、 3-2) 混合時の温度を夫々 2 0 °C、 3 0 °Cとした他は、 実施例 1一 1と同じ条件で得 られたスラリーを用いて吸引濾過実験を行った。 (Comparative Examples 3-1 and 3-2) A suction filtration experiment was performed using the slurry obtained under the same conditions as in Example 1-11, except that the temperature at the time of mixing was 20 ° C. and 30 ° C., respectively.
(実験 3の考察)  (Consideration of Experiment 3)
(表 5 ) より、 エッチング廃液と水酸化ナトリゥム水溶液との混合時の温度が 高くなる程、 濾過に要する時間が短く、 濾過性が良好であることが分かる。 これ らの結果より、 3分程度で 4 0 O m Lのスラリーの半量を濾過することが可能な 、 4 0 °C以上の温度範囲で混合する場合が、 本発明者が目標とする値を達成して いる。 以上のように、 本発明に係る実施の形態によれば、 p Hが例えば 3 . 5〜 7 . 0の範囲となるように、 エツチング廃液と水酸化ナトリゥム水溶液等のアル力リ とを混合すると、 塩ィヒ第二銅中の銅を含む固形分とカルシウム等の不純物を含む 液体分とが混合された固液混合物 (スラリー) を得ることができる。 そこで、 こ の固液混合物を固液分離して得られた固形分を塩酸等の無機酸に再溶解させるこ とによってカルシウム等の不純物が除去された塩化銅溶液を得ることができる。 このとき、 エッチング廃液とアル力リとを混合して中和する際の温度を 4 0 °C 以上とすると、 フィルタ一等による固液分離のし易い固液混合物を生成すること が可能となる。 これにより、 例えばフィルタープレス等を使って工業的に固液分 離を行う場合等も、 フィルタ一が目詰まりを起こしにくいので、 圧力損失が小さ くなり、 ポンプ等で消費される動力等を小さくすることができる。  From Table 5, it can be seen that the higher the temperature during mixing of the etching waste liquid and the aqueous sodium hydroxide solution, the shorter the time required for filtration and the better the filterability. From these results, it is possible to filter half of a 40 OmL slurry in about 3 minutes. When mixing in a temperature range of 40 ° C or higher, the present inventors set the target value. Achieved. As described above, according to the embodiment of the present invention, when etching waste liquid and Al force solution such as sodium hydroxide aqueous solution are mixed so that pH is in the range of 3.5 to 7.0, for example, A solid-liquid mixture (slurry) in which the solid content containing copper in the cupric salt and the liquid content containing impurities such as calcium are mixed can be obtained. Therefore, a solid content obtained by solid-liquid separation of this solid-liquid mixture is redissolved in an inorganic acid such as hydrochloric acid to obtain a copper chloride solution from which impurities such as calcium are removed. At this time, if the temperature when mixing and neutralizing the etching waste liquid and Al force is set to 40 ° C. or more, it becomes possible to produce a solid-liquid mixture that is easily separated into solid and liquid by a filter or the like. . As a result, even when solid-liquid separation is performed industrially using a filter press, etc., the filter is less likely to be clogged, so the pressure loss is reduced and the power consumed by the pump is reduced. can do.
また、 エッチング廃液を連続的に中和する精製装置では、 中和反応槽内の p H の値を目標の範囲内にコントロールすることができるので、 人手を要さず、 効率 的に塩化銅溶液を精製することができる。  In addition, in a purification device that continuously neutralizes the etching waste liquid, the pH value in the neutralization reaction tank can be controlled within the target range. Can be purified.
また、 バッチ式で中和を行う精製装置では、 水を張った中和反応槽にエツチン グ廃液とアルカリとを少量ずつ混合しながら、 p Hの値が目標の範囲内となるよ うに中和を行う。 この方法によって得られたスラリーは、 例えば、 エッチング廃 液を張った反応槽にアル力リを加えることにより得られたスラリーと比較して固 液分離し易いことが実験的に分かっている。 このため、 後段の固液分離工程で消 費する動力等を小さくすることが可能となる。 なお、 エッチング廃液を連続的に 中和する精製装置の場合にも、 P Hの値が目標の範囲内となるように中和を行つ ているので、 同様の効果が得られる。 In addition, in a purification system that performs batch-type neutralization, neutralization is performed so that the pH value is within the target range while mixing the etching waste liquid and alkali little by little in a neutralized reaction tank filled with water. I do. It has been experimentally found that the slurry obtained by this method is more easily separated from the slurry obtained by, for example, adding slurry to a reaction tank filled with etching waste liquid. For this reason, it is possible to reduce the power consumed in the subsequent solid-liquid separation process. Etching waste liquid is continuously removed In the case of the purification unit to neutralize also, since Gyotsu neutralized so that the value of P H is in the range of the target, the same effect can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 銅塩溶液を、 アルカリにより中和して、 固液混合物を得る中和工程と、 前記固液混合物を、 銅を含む固形分とカルシウムを含む液体分とに固液分離す る固液分離工程と、  1. a neutralization step of neutralizing a copper salt solution with an alkali to obtain a solid-liquid mixture; and a solid-liquid separation of the solid-liquid mixture into a solid content containing copper and a liquid content containing calcium A separation process;
前記固形分を無機酸に再溶解させて、 カルシウムが除去された銅塩溶液を得る 再溶解工程と、 を含むことを特徴とする銅塩溶液の精製方法。  A re-dissolution step of re-dissolving the solid content in an inorganic acid to obtain a calcium salt solution from which calcium has been removed, and a method for purifying a copper salt solution.
2 . 銅塩溶液を、 アルカリにより中和して、 固液混合物を得る中和工程と、 前記固液混合物を、 銅を含む固形分とバリウムを含む液体分とに固液分離する 固液分離工程と、  2. A neutralization step of neutralizing a copper salt solution with an alkali to obtain a solid-liquid mixture, and solid-liquid separation of the solid-liquid mixture into a solid content containing copper and a liquid content containing barium Process,
前記固形分を無機酸に再溶解させて、 バリゥムが除去された銅塩溶液を得る再 溶解工程と、 を含むことを特徴とする銅塩溶液の精製方法。  A re-dissolution step of re-dissolving the solid content in an inorganic acid to obtain a copper salt solution from which the barium has been removed, and a method for purifying a copper salt solution.
3 . 前記中和工程において、 前記銅塩溶液を、 p H 3 . 5〜 7 . ◦の範囲とな るようにアル力リにより中和して、 固液混合物を得ることを特徴とする請求項 1 または 2に記載の銅塩溶液の精製方法。  3. In the neutralization step, the copper salt solution is neutralized with Al force so as to be in the range of pH 3.5 to 7.◦ to obtain a solid-liquid mixture. Item 3. A method for purifying a copper salt solution according to Item 1 or 2.
4 . 前記中和工程は、 前記固液混合物が 4 0 °C以上となる温度範囲で行われる ことを特徴とする請求項 1または 2に記載の銅塩溶液の精製方法。  4. The method for purifying a copper salt solution according to claim 1 or 2, wherein the neutralization step is performed in a temperature range in which the solid-liquid mixture is 40 ° C or higher.
5 . 前記銅塩溶液は、 塩化銅エッチング廃液であることを特徴とする請求項 1 または 2に記載の銅塩溶液の精製方法。  5. The method for purifying a copper salt solution according to claim 1 or 2, wherein the copper salt solution is a copper chloride etching waste solution.
6 . 前記アルカリは、 水酸化ナトリウム、 水酸化カリウム、 水酸化アンモニゥ ム、 炭酸ナトリウム、 炭酸カリウム、 炭酸アンモニゥム、 炭酸水素ナトリウム又 は炭酸水素力リゥムからなるアルカリ群から選択されることを特徴とする請求項 1または 2に記載の銅塩溶液の精製方法。  6. The alkali is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, or hydrogen carbonate power. The method for purifying a copper salt solution according to claim 1 or 2.
7 . 請求項 1ないし 5のいずれか一つに記載の精製方法により精製されたこと を特徴とする銅塩溶液。  7. A copper salt solution purified by the purification method according to any one of claims 1 to 5.
8 . 中和反応槽と、  8. Neutralization reactor,
銅塩溶液の供給量を増減しながら前記中和反応槽に連続供給可能な溶液供給手 段と、  A solution supply means capable of continuously supplying to the neutralization reaction tank while increasing or decreasing the supply amount of the copper salt solution;
アル力リの供給量を增減しながら前記中和反応槽に連続供給可能なアルカリ供 給手段と、 前記中和反応槽内の反応生成物である固液混合物の P Hを計測する p H計測手 段と、 An alkali supply means capable of continuously supplying to the neutralization reaction tank while increasing or decreasing the supply amount of Al power; PH measurement means for measuring the pH of the solid-liquid mixture that is a reaction product in the neutralization reaction tank;
前記中和反応槽から前記固液混合物を連続的に抜き出す抜出手段と、 前記溶液供給手段と前記アルカリ供給手段との少なくとも一方を介して、 前記 p H計測手段の計測結果が 3 . 5〜7 . 0の範囲内となるように、 前記銅塩溶液 と前記アル力リとの少なくとも一方の供給量を増減させる制御を行う制御手段と 前記抜出手段により中和反応槽から抜き出された固液混合物を、 銅を含む固形 分とカルシウムを含む液体分とに固液分離する固液分離手段と、  The measurement result of the pH measurement means is 3.5 to 5 through at least one of the extraction means for continuously extracting the solid-liquid mixture from the neutralization reaction tank, the solution supply means, and the alkali supply means. The control means for controlling to increase or decrease the supply amount of at least one of the copper salt solution and the alkali power so as to be within the range of 7.0, and extracted from the neutralization reaction tank by the extraction means Solid-liquid separation means for separating the solid-liquid mixture into a solid content containing copper and a liquid content containing calcium; and
前記固形分を無機酸に再溶解させて、 カルシウムが除去された銅塩溶液を得る 再溶解手段と、 を備えたことを特徴とする銅塩溶液の精製装置。  A re-dissolution means for re-dissolving the solid content in an inorganic acid to obtain a calcium salt solution from which calcium has been removed, and a copper salt solution purification device.
9 . 前記固液分離手段により固液分離される液体分にはバリウムを含み、 前記 再溶解手段により得られる銅塩溶液は、 バリゥムが除去されていることを特徴と する請求項 8に記載の銅塩溶液の精製装置。  9. The liquid component that is solid-liquid separated by the solid-liquid separation means contains barium, and the copper salt solution obtained by the re-dissolution means has a volume removed. Copper salt solution purification equipment.
1 0 . 中和反応槽と、  1 0. Neutralization reactor;
銅塩溶液の供給量を増減しながら前記中和反応槽に連続供給可能な溶液供給手 段と、  A solution supply means capable of continuously supplying to the neutralization reaction tank while increasing or decreasing the supply amount of the copper salt solution;
アル力リの供給量を増減しながら前記中和反応槽に連続供給可能なアルカリ供 給手段と、  Alkaline supply means capable of continuously supplying to the neutralization reaction tank while increasing or decreasing the supply amount of Al power;
前記中和反応槽内の溶液の p Hを計測する p H計測手段と、  PH measurement means for measuring the pH of the solution in the neutralization reaction tank;
前記中和反応槽内に水を供給する水供給手段と、  Water supply means for supplying water into the neutralization reaction tank;
予め前記中和反応槽内に水を張り、 次いで当該中和反応槽内の溶液の p Hが 3 . 5〜7 . 0の範囲内となるまで前記銅塩溶液を供給し、 次いで当該溶液の p H が前記範囲内の値を維持するように、 前記銅塩溶液と前記アル力リとの少なくと も一方の供給量を制御する制御手段と、  Water is added to the neutralization reaction tank in advance, and then the copper salt solution is supplied until the pH of the solution in the neutralization reaction tank is in the range of 3.5 to 7.0. control means for controlling a supply amount of at least one of the copper salt solution and the aluminum force so that pH is maintained within the range;
前記中和反応槽内の反応生成物である固液混合物を、 銅を含む固形分とカルシ ゥムを含む液体分とに固液分離する固液分離手段と、  A solid-liquid separation means for solid-liquid separation of a solid-liquid mixture which is a reaction product in the neutralization reaction tank into a solid content containing copper and a liquid content containing calcium;
前記固形分を無機酸に再溶解させて、 カルシウムが除去された銅塩溶液を得る 再溶解手段と、 を備えたことを特徴とする銅塩溶液の精製装置。 A re-dissolution means for re-dissolving the solid content in an inorganic acid to obtain a calcium salt solution from which calcium has been removed, and a copper salt solution purification device.
1 1. 前記中和反応槽内の溶液が 40°C以上の温度となるように調節する温度 調節手段を更に有することを特徴とする請求項 8または 10に記載の銅塩溶液の 精製装置。 1 1. The apparatus for purifying a copper salt solution according to claim 8 or 10, further comprising temperature adjusting means for adjusting the solution in the neutralization reaction tank to a temperature of 40 ° C or higher.
PCT/JP2006/313928 2006-04-05 2006-07-06 Method of purifying copper salt solution, purification apparatus and copper salt solution WO2007113926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006104513A JP5158665B2 (en) 2006-04-05 2006-04-05 Copper salt solution purification method, purification apparatus, and copper salt solution
JP2006-104513 2006-04-05

Publications (1)

Publication Number Publication Date
WO2007113926A1 true WO2007113926A1 (en) 2007-10-11

Family

ID=38563199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313928 WO2007113926A1 (en) 2006-04-05 2006-07-06 Method of purifying copper salt solution, purification apparatus and copper salt solution

Country Status (3)

Country Link
JP (1) JP5158665B2 (en)
TW (1) TW200738562A (en)
WO (1) WO2007113926A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036058A (en) * 2010-08-11 2012-02-23 Japan Organo Co Ltd Method for recovering copper sulfate and apparatus for recovering copper sulfate
CN104975183A (en) * 2015-07-17 2015-10-14 中南大学 Method for separating and recovering copper from acid CuCl2 etching solution
CN105018732A (en) * 2015-07-01 2015-11-04 夏栋 Novel method for comprehensive recovery of etching waste liquid and waste residues
CN112408458A (en) * 2020-12-05 2021-02-26 苏州华锋环保技术有限公司 Production equipment and production method of regenerated copper sulfate
CN113481560A (en) * 2021-07-30 2021-10-08 江苏铭丰电子材料科技有限公司 Method and device for reducing burrs on surface of electrolytic copper foil
CN115072763A (en) * 2021-04-29 2022-09-20 阮氏化工(常熟)有限公司 Device and method for producing basic copper nitrate by using copper-containing stripping and hanging liquid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016341A (en) * 2014-07-07 2016-02-01 太平洋セメント株式会社 Method for treating calcium-containing waste water
CN106517301B (en) * 2016-10-21 2017-10-31 广州科城环保科技有限公司 A kind of method that basic copper chloride is reclaimed in the contained waste liquid from sulfuric acid system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489315A (en) * 1990-07-30 1992-03-23 Toagosei Chem Ind Co Ltd Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JPH0812327A (en) * 1994-07-04 1996-01-16 Nippon Chem Ind Co Ltd Production of cupric oxide
JP2002265219A (en) * 2001-03-09 2002-09-18 Azusaa:Kk Method for producing metal-containing material
JP2003267726A (en) * 2002-03-12 2003-09-25 Tsurumi Soda Co Ltd Method for producing purified cuprous chloride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489315A (en) * 1990-07-30 1992-03-23 Toagosei Chem Ind Co Ltd Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JPH0812327A (en) * 1994-07-04 1996-01-16 Nippon Chem Ind Co Ltd Production of cupric oxide
JP2002265219A (en) * 2001-03-09 2002-09-18 Azusaa:Kk Method for producing metal-containing material
JP2003267726A (en) * 2002-03-12 2003-09-25 Tsurumi Soda Co Ltd Method for producing purified cuprous chloride

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036058A (en) * 2010-08-11 2012-02-23 Japan Organo Co Ltd Method for recovering copper sulfate and apparatus for recovering copper sulfate
CN105018732A (en) * 2015-07-01 2015-11-04 夏栋 Novel method for comprehensive recovery of etching waste liquid and waste residues
CN104975183A (en) * 2015-07-17 2015-10-14 中南大学 Method for separating and recovering copper from acid CuCl2 etching solution
CN112408458A (en) * 2020-12-05 2021-02-26 苏州华锋环保技术有限公司 Production equipment and production method of regenerated copper sulfate
CN115072763A (en) * 2021-04-29 2022-09-20 阮氏化工(常熟)有限公司 Device and method for producing basic copper nitrate by using copper-containing stripping and hanging liquid
CN113481560A (en) * 2021-07-30 2021-10-08 江苏铭丰电子材料科技有限公司 Method and device for reducing burrs on surface of electrolytic copper foil

Also Published As

Publication number Publication date
JP2007277035A (en) 2007-10-25
JP5158665B2 (en) 2013-03-06
TW200738562A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
WO2007113926A1 (en) Method of purifying copper salt solution, purification apparatus and copper salt solution
KR101440012B1 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance
EP2888206B1 (en) Method for removing sulphate, calcium and other soluble metals from sulphate-containing waste water
JP5307478B2 (en) Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
EP1428798A1 (en) Method of treating heavy-metal-containing wastewater with sulfidizing agent and treatment apparatus
JP5102157B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP5808131B2 (en) Process and recovery method for copper-containing acidic waste liquid and apparatus therefor
JP5215111B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP5431998B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP6511040B2 (en) Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution
JP2682433B2 (en) Waste liquid treatment method for surface treatment of aluminum material
CN1865166A (en) Microwave circulating disposal process for printed plate board etching waste liquor
FR2766842A1 (en) PROCESS FOR SELECTIVE PRECIPITATION OF NICKEL AND COBALT
JP5808132B2 (en) Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor
JP7084704B2 (en) Silica-containing water treatment equipment and treatment method
JP2000212658A (en) Solvent extraction of gallium and indium
JP4169996B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2833466B2 (en) Treatment method for metal-containing wastewater
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2008149222A (en) Removal method of fluorine ions in hot spring water
JP4142874B2 (en) Method for recovering metal from neutralized sludge or neutralized slurry
KR19980702743A (en) Ammonia Metal Solution Recirculation Method
JP5142945B2 (en) Phosphoric acid-containing water treatment apparatus and phosphoric acid-containing water treatment method
JP6508747B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2008031543A (en) Method for treating compound containing gallium and indium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781048

Country of ref document: EP

Kind code of ref document: A1