JP5102157B2 - Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid - Google Patents

Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid Download PDF

Info

Publication number
JP5102157B2
JP5102157B2 JP2008229001A JP2008229001A JP5102157B2 JP 5102157 B2 JP5102157 B2 JP 5102157B2 JP 2008229001 A JP2008229001 A JP 2008229001A JP 2008229001 A JP2008229001 A JP 2008229001A JP 5102157 B2 JP5102157 B2 JP 5102157B2
Authority
JP
Japan
Prior art keywords
copper
liquid
solid
waste liquid
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008229001A
Other languages
Japanese (ja)
Other versions
JP2010059521A (en
Inventor
厚史 小林
葉子 窪田
利宏 鈴木
一憲 加納
琢也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2008229001A priority Critical patent/JP5102157B2/en
Publication of JP2010059521A publication Critical patent/JP2010059521A/en
Application granted granted Critical
Publication of JP5102157B2 publication Critical patent/JP5102157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液などのような、銅イオンと酸性イオンを高濃度で含有する酸性廃液を処理して銅を除去回収する方法および装置に関するものである。   The present invention contains a high concentration of copper ions and acidic ions, such as an etching waste solution generated when etching a copper printed board with a cupric chloride etchant or a renewal waste solution of a plating bath solution in the production of electrolytic copper foil. The present invention relates to a method and an apparatus for removing and recovering copper by treating an acidic waste liquid.

銅イオンを高濃度で含有する酸性の廃液(以下、「銅含有酸性廃液」という)としては、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液などが知られている。これらの廃液は、銅濃度が5〜20質量%(以下、単に「%」で示す)程度と高い一方で、共存する塩化物イオンや硫酸イオンの濃度も通常5〜30%と高い。   As an acidic waste liquid containing copper ions at a high concentration (hereinafter referred to as “copper-containing acidic waste liquid”), etching waste liquid generated when etching a copper printed board with a cupric chloride etchant or plating in the production of electrolytic copper foil Renewed waste liquid of bath liquid is known. These waste liquids have a high copper concentration of about 5 to 20% by mass (hereinafter simply referred to as “%”), while the concentration of coexisting chloride ions and sulfate ions is usually as high as 5 to 30%.

このような銅含有酸性廃液を対象にした銅の回収処理としては、イオン化傾向の差を利用して例えば鉄スクラップと反応させて金属銅を析出させて回収する方法が一部で行われている。しかし、この方法では廃液からの銅回収率が低いとともに、銅イオンとの反応により溶出した鉄イオンなどと回収されなかった銅イオンとが含まれる廃液が残るため、この廃液の処理が別途必要であり効率的な処理方法とは言いがたい。   As a copper recovery process for such a copper-containing acidic waste liquid, a method of depositing and recovering metallic copper by reacting with, for example, iron scrap using a difference in ionization tendency is performed in part. . However, this method has a low copper recovery rate from the waste liquid, and a waste liquid containing iron ions eluted by reaction with copper ions and copper ions that have not been recovered remains. It is hard to say that there is an efficient processing method.

また、一般的な銅含有酸性廃液の処理方法としては、水酸化ナトリウムなどのアルカリ性物質を添加することにより重金属類を水酸化物として沈殿除去する処理方法が知られているが、この方法は生成するスラッジの嵩が高く量も多いため、銅イオンの含有濃度が高い銅含有酸性廃液の処理には適さない。   In addition, as a general treatment method for copper-containing acidic waste liquid, a treatment method is known in which heavy metals are precipitated and removed as a hydroxide by adding an alkaline substance such as sodium hydroxide. Since the sludge to be produced is bulky and large in volume, it is not suitable for the treatment of a copper-containing acidic waste liquid having a high copper ion concentration.

更に、エッチング廃水については、アルカリを添加して銅イオンを銅水酸化物として不溶化し、更に酸化剤を添加して酸化銅にして回収する処理方法(特許文献1等)が試みられている。しかしながら、当該技術において酸化剤として次亜塩素酸塩やさらし粉などの塩化物イオンを含む酸化剤を使用した場合には、添加後の液中の塩化物イオン濃度が更に濃くなることで塩化銅と酸化銅との複塩の生成やスラッジへの塩分の混入が懸念されるなどの問題点があり、また、高濃度廃液を対象にした場合には回収される酸化銅への不純物含有量が多くなるなど、改善すべき点が多い。   Furthermore, as for the etching wastewater, a treatment method (Patent Document 1, etc.) is attempted in which alkali is added to insolubilize copper ions as copper hydroxide, and further an oxidizing agent is added to obtain copper oxide. However, when an oxidizing agent containing chloride ions such as hypochlorite and bleaching powder is used as the oxidizing agent in the art, the concentration of chloride ions in the liquid after addition is further increased, so that copper chloride and There are problems such as concern about the formation of double salts with copper oxide and the inclusion of salt in sludge, and when high concentration waste liquid is targeted, the amount of impurities contained in the recovered copper oxide is large. There are many points to be improved.

一方、酸化剤として過酸化水素を使用する場合には前述の塩類濃度の上昇は起こらないが、次のような問題点から、この方法では効率的な処理が実施出来ない。すなわち、銅イオンと、塩化物イオンあるいは硫酸イオンが高濃度で共存する強酸性廃液を処理する場合、酸性であるこの液に対してアルカリ剤を添加して酸性側から中性付近ないしアルカリ性へと中和を進める方法では、pH≒1.5以上で水酸化銅と塩化銅あるいは硫酸銅との複塩を主成分とする固形物が析出する。そして、この複塩を主体とする固形物は不純物濃度が高いだけでなく、酸化銅に比べると嵩高であるために、銅を高濃度で含むこの廃液の処理に採用した場合は、中和の途中でペースト状の汚泥に変化し、処理が困難となってしまう問題があった。   On the other hand, when hydrogen peroxide is used as the oxidizing agent, the above-described increase in the salt concentration does not occur, but due to the following problems, this method cannot perform an efficient treatment. That is, when treating a strongly acidic waste liquid in which copper ions and chloride ions or sulfate ions coexist at a high concentration, an alkaline agent is added to the acidic liquid so that the acid side becomes neutral or alkaline. In the method of proceeding with neutralization, a solid containing a double salt of copper hydroxide and copper chloride or copper sulfate as a main component is precipitated at pH≈1.5 or more. And since the solid substance mainly composed of this double salt is not only high in impurity concentration, but also bulky compared to copper oxide, if it is used for the treatment of this waste liquid containing copper at a high concentration, There was a problem that it changed to paste-like sludge on the way, making the treatment difficult.

さらにこの複塩は、過酸化水素では酸化分解が進行しない一方で、過酸化水素の分解触媒として作用するため、この固形物が析出した液に酸化剤として過酸化水素を加えても、過酸化水素が一方的に分解消費され、酸化銅への酸化処理が不完全な状況で反応が終結してしまうという問題もあった。   Furthermore, this double salt does not proceed with oxidative decomposition with hydrogen peroxide, but acts as a decomposition catalyst for hydrogen peroxide. Therefore, even if hydrogen peroxide is added as an oxidizing agent to the liquid in which this solid is precipitated, There was also a problem that the reaction was terminated in a situation where hydrogen was unilaterally decomposed and consumed, and the oxidation treatment to copper oxide was incomplete.

この複塩を主成分とする固形物析出に伴う対象液のペースト状化を回避するためには、中和処理に際して銅イオン濃度が10g/L程度以下、塩化物イオンあるいは硫酸イオン濃度が20g/L程度以下になるように希釈することが有効である。しかし、このためには多くの希釈水を必要とし、またそれに伴い処理する装置も大型となるという問題点がある。   In order to avoid the formation of a paste of the target liquid accompanying the precipitation of the solid substance containing the double salt as a main component, the copper ion concentration is about 10 g / L or less and the chloride ion or sulfate ion concentration is 20 g / L during the neutralization treatment. It is effective to dilute to about L or less. However, this requires a large amount of dilution water, and there is a problem that the apparatus for processing becomes large accordingly.

更にまた、銅イオンを含有するエッチング廃液のように、廃液に含有される銅イオンと、塩化物イオンあるいは硫酸イオンが高濃度で共存する強酸性廃液を処理する場合には、銅を含有する酸性廃液に過酸化水素を先に添加して共存させておいても、これにアルカリ剤を注入して酸性側から中性ないしアルカリ性へと中和反応を進めた場合には、酸性側での反応の途中で前述の複塩を主成分とする析出物を一部生じるため、これにより過酸化水素の多くが触媒分解されて消失してしまい、過酸化水素量が不足することで酸化銅への酸化処理が一部不完全な状況で反応が終結してしまう問題があった。これに対し、不足する分を見越して過酸化水素量を十分過剰に加えることで酸化処理状況を改善することは可能であるが、薬剤の添加量が多くなり効率が悪いとともに、この場合でも過酸化水素で酸化分解を受けない複塩はスラッジ中に残留する。そしてこの複塩自体は水洗を十分に行うことでスラッジから溶解して含有濃度を低減することが可能ではあるが、洗浄用水を多く必要とするとともに、洗浄排水に銅イオンが含有されることになるため、その処理が別途必要であり、この点からも処理効率が悪い。   Furthermore, when processing a highly acidic waste liquid in which copper ions contained in the waste liquid and chloride ions or sulfate ions coexist at a high concentration, such as an etching waste liquid containing copper ions, an acidic solution containing copper is used. Even if hydrogen peroxide is first added to the waste liquid and coexisted, if the neutralization reaction proceeds from the acidic side to neutral or alkaline by injecting an alkaline agent, the reaction on the acidic side In the middle of the process, a precipitate mainly composed of the above-mentioned double salt is generated, so that much of the hydrogen peroxide is catalytically decomposed and disappears. There was a problem that the reaction was terminated when the oxidation treatment was partially incomplete. On the other hand, it is possible to improve the oxidation treatment status by adding a sufficient amount of hydrogen peroxide in anticipation of the shortage, but the amount of chemicals added increases and the efficiency is poor. Double salts that do not undergo oxidative decomposition with hydrogen oxide remain in the sludge. And this double salt itself can be dissolved from sludge by sufficiently washing with water to reduce the content concentration, but it requires a lot of washing water and contains copper ions in the washing waste water. Therefore, the processing is separately required, and the processing efficiency is poor from this point.

また更に、これらの技術では酸性の液をpH=8〜12のアルカリ性側にして処理するため、回収固形物の脱水や上澄水の放流など後段側の状況を考慮し、後段側で中性付近に再中和する必要があるが、その場合はその分の薬品も必要となるため、この点からも効率的な方法とは言いがたい。   Furthermore, in these techniques, the acidic liquid is treated with the alkaline side of pH = 8 to 12, so the situation on the rear side such as dehydration of the collected solids and the discharge of the supernatant water is taken into consideration, and the neutral side is located on the rear side. In this case, it is difficult to say that the method is efficient from this point of view.

一方、銅の回収処理工程で発生する排水は、塩類濃度が高いため、その処理及び放流が困難な場合がある。特に塩類濃度の高い排水を放流できず、産廃処理の委託先もない場所においては、塩類濃度の高い排水の適切な処理手段が無ければ、銅イオンの回収処理自体が実施できないことになってしまう。   On the other hand, since the wastewater generated in the copper recovery process has a high salt concentration, it may be difficult to process and discharge the wastewater. Especially in places where wastewater with high salt concentration cannot be discharged and there is no contractor for industrial waste treatment, if there is no appropriate treatment means for wastewater with high salt concentration, the copper ion recovery process itself cannot be performed. .

以上のように、銅イオン濃度は高いが、同時に銅の回収再利用の妨げとなる塩化物イオンなどの塩類濃度が高い銅含有酸性廃液から銅のみを効率良く回収する技術がないために、これらの廃液は一般的には産業廃棄物処理会社により回収され、再利用されることなく処分されることが多かった。   As described above, the copper ion concentration is high, but at the same time, there is no technology for efficiently recovering only copper from the copper-containing acidic waste liquid with a high salt concentration such as chloride ions that hinders copper recovery and reuse. The waste liquid was generally collected by an industrial waste disposal company and disposed of without being reused.

これらの状況を鑑み、本発明者らは、前記課題を解決すべく鋭意研究をかさねた結果、以下の事柄を見出し、銅含有酸性廃液から酸化銅を主体とする固形物を塩素含有量の少ない状態で析出させ、回収できる発明を完成するに至った。   In view of these circumstances, as a result of intensive studies to solve the above problems, the present inventors have found the following matters, and solid matter mainly composed of copper oxide from a copper-containing acidic waste liquid has a low chlorine content. The present invention has been completed which can be deposited and recovered in a state.

すなわち、処理対象液である銅イオンを高濃度で含有する酸性廃液、例えばエッチング廃液と、酸化剤とを混合した後、これをアルカリ剤溶液に所定のpH域(アルカリ領域)に管理しつつ注加、混合することで、塩化物イオンなどの含有濃度が高い廃液においても複塩の生成を回避出来、該廃液中の銅イオンを酸化銅として不溶化し、回収できることを見出した。また、この酸化反応を逐次進行させることにより、残留銅イオン濃度が低い液が得られ、この液による希釈効果を有効に活用することで最終的に中和した状態においても複塩の生成を回避して過酸化水素等の酸化剤による銅イオンからの酸化銅の生成反応を良好に維持、進行することが出来、これにより、効率良く酸化銅を析出させることが可能で、最終的な液性が弱アルカリ性ないし中性となる処理を実施することができることを見出した。   That is, after mixing an acidic waste liquid containing a high concentration of copper ions, which is a treatment target liquid, for example, an etching waste liquid, and an oxidizing agent, the alkaline solution is poured into an alkaline agent solution while maintaining the pH within a predetermined pH range (alkali region). By adding and mixing, it was found that the formation of double salts can be avoided even in waste liquids containing a high concentration of chloride ions and the like, and copper ions in the waste liquid can be insolubilized and recovered as copper oxide. In addition, by sequentially proceeding with this oxidation reaction, a liquid with a low residual copper ion concentration can be obtained. By effectively utilizing the dilution effect of this liquid, the formation of double salts is avoided even in the final neutralized state. Therefore, the production reaction of copper oxide from copper ions by an oxidizing agent such as hydrogen peroxide can be maintained and proceeded well, which makes it possible to deposit copper oxide efficiently, and the final liquidity Has been found to be able to carry out a treatment that becomes weakly alkaline or neutral.

しかしながら、上記方法も、実用化に当たっては経済性の面での問題があった。すなわち、上記方法では、高濃度のアルカリ溶液中に銅含有酸性廃液を注入することになり、この中和反応で多量の塩が生成するが、この塩を含む溶液の廃液としての処理費用がコストとして問題となることが予想される。また、反応に用いられるアルカリ剤や酸化剤のコストが、この反応自体の経済性を低下させることも予想される。従って、これらのコストを低減し、より実用性の高い方法とすることが望まれている。
特願2002−212857
However, the above method also has a problem in terms of economy when put to practical use. That is, in the above method, a copper-containing acidic waste liquid is injected into a high-concentration alkaline solution, and a large amount of salt is generated by this neutralization reaction. However, the processing cost of the solution containing this salt as a waste liquid is low. It is expected to become a problem. It is also expected that the cost of the alkali agent and oxidant used in the reaction will reduce the economics of the reaction itself. Therefore, it is desired to reduce these costs and make the method more practical.
Japanese Patent Application No. 2002-212857

従って本発明は、排水の発生量を抑制した上で、これまで産業廃棄物として処分されていた塩化銅含有エッチング廃液や電解銅箔メッキ浴の更新廃液などの銅を高濃度で含有する強酸性の廃液を、高い経済性で、しかも、効率的かつ低いスラッジ発生量で処理して、酸化銅を沈殿物として回収するための方法及び装置を提供することをその課題とする。   Therefore, the present invention suppresses the generation amount of waste water, and also contains a high concentration of copper such as copper chloride-containing etching waste liquid and electrolytic copper foil plating bath renewal waste liquid that have been disposed of as industrial waste until now. It is an object of the present invention to provide a method and an apparatus for treating the waste liquid with high economic efficiency and with an efficient and low sludge generation amount and recovering copper oxide as a precipitate.

本発明者らは、前記課題を解決すべく鋭意研究をかさねた結果、以下の事柄を見出し、本発明を完成するに至った。すなわち、処理対象液である銅イオンを高濃度で含有する酸性廃液を酸化剤と混合した後、これをアルカリ剤溶液に所定のpH域に管理しつつ注加、混合する方法により、該廃液中の銅イオンを酸化銅として不溶化し、固液分離装置により回収できるが、この際に生じる固液分離装置からの分離液を電気透析に付すことにより、酸化性溶液およびアルカリ性溶液を回収することができ、得られた酸化性溶液およびアルカリ性溶液は、それぞれ反応に用いる酸化剤およびアルカリ剤として再利用できることを見出した。そして、これに伴い、用水量、薬剤使用量、排水放流量がともに削減できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found the following matters and have completed the present invention. That is, after mixing an acidic waste liquid containing copper ions as a treatment target liquid at a high concentration with an oxidizer, the mixture is poured into an alkaline agent solution while being controlled within a predetermined pH range, and mixed, whereby the waste liquid is mixed. The copper ions are insolubilized as copper oxide and can be recovered by a solid-liquid separator. However, an oxidizing solution and an alkaline solution can be recovered by subjecting the resulting separated liquid from the solid-liquid separator to electrodialysis. It was found that the obtained oxidizing solution and alkaline solution can be reused as the oxidizing agent and alkaline agent used in the reaction, respectively. And in connection with this, it discovered that both the amount of water used, the amount of chemical | medical agents used, and a waste_water | drain discharge | emission flow volume could be reduced, and completed this invention.

すなわち本発明は、銅含有酸性廃液と酸化剤との混合液を、アルカリ剤溶液に、混合液注加後のアルカリ剤溶液のpHが一時的にでも7以下に下がらないよう管理しつつ注加し、生成する酸化銅を主成分とする固形物を固液分離により取得する銅含有酸性廃液からの銅の回収方法において、固液分離後の分離液及び/又は固液分離した固形物の洗浄排液を電気透析に付し、当該電気透析において生成した酸化性溶液を酸化剤の少なくとも一部として回収利用することを特徴とする銅含有酸性廃液からの銅の回収方法である。   That is, the present invention adds a mixed solution of copper-containing acidic waste liquid and an oxidizing agent to an alkaline agent solution while controlling the pH of the alkaline agent solution after pouring the mixed solution so that it does not drop below 7 or less. In the method for recovering copper from the copper-containing acidic waste liquid obtained by solid-liquid separation of the solid matter mainly composed of copper oxide to be produced, the separated liquid after solid-liquid separation and / or the solid-solid separated washing is washed. A method for recovering copper from a copper-containing acidic waste liquid, characterized in that the effluent is subjected to electrodialysis and the oxidizing solution generated in the electrodialysis is recovered and used as at least a part of the oxidizing agent.

また本発明は、銅含有酸性廃液と酸化剤との混合液を、アルカリ剤溶液に、混合液注加後のアルカリ剤溶液のpHが一時的にでも7以下に下がらないよう管理しつつ注加し、生成する酸化銅を主成分とする固形物を固液分離により取得する銅含有酸性廃液からの銅の回収方法において、固液分離後の分離液及び/又は固液分離後の固形物の洗浄排液を電気透析に付し、当該電気透析において生成したアルカリ性溶液をアルカリ剤の少なくとも一部として回収利用することを特徴とする銅含有酸性廃液からの銅の回収方法である。   In addition, the present invention adds a mixed liquid of copper-containing acidic waste liquid and an oxidizing agent to an alkaline agent solution while controlling the pH of the alkaline agent solution after pouring the mixed solution so as not to drop to 7 or less even temporarily. In the method for recovering copper from the copper-containing acidic waste liquid obtained by solid-liquid separation of the solid matter mainly composed of copper oxide to be produced, the separation liquid after solid-liquid separation and / or the solid matter after solid-liquid separation A method for recovering copper from a copper-containing acidic waste liquid, comprising subjecting the washing drainage to electrodialysis and recovering and using the alkaline solution generated in the electrodialysis as at least part of the alkaline agent.

更に本発明は、銅含有酸性廃液と酸化剤との混合液とアルカリ剤溶液とを反応させ、酸化銅を主成分とする固形物として析出させる反応槽と、この固形物を分離回収する固液分離装置と、酸化剤と銅含有酸性廃液とを混合して反応槽に注加する装置と、固液分離装置からの分離液を処理する電気透析装置とを含み、反応槽と固液分離装置とは固形物を含むアルカリ性懸濁液を移送可能に連通され、固液分離装置と電気透析装置は、固液分離装置からの分離液及び/又は固液分離後の固形物の洗浄排液を電気透析装置の脱塩室に供給可能に連通され、更に、電気透析装置の陽極室で生成した酸化性溶液を酸化剤配管へ返送するための配管と、アルカリ濃縮室で生成したアルカリ性溶液をアルカリ剤配管へ返送するための配管を設けたことを特徴とする銅含有酸性廃液からの銅の回収装置である。   Furthermore, the present invention provides a reaction tank for reacting a mixed solution of an acid waste liquid containing copper and an oxidizing agent with an alkaline agent solution to precipitate as a solid containing copper oxide as a main component, and a solid / liquid for separating and recovering the solid. A reaction vessel and a solid-liquid separation device, including a separation device, a device for mixing an oxidizing agent and a copper-containing acidic waste liquid, and pouring the mixture into a reaction vessel, and an electrodialysis device for treating the separation liquid from the solid-liquid separation device Is communicated so that an alkaline suspension containing solids can be transferred, and the solid-liquid separation device and the electrodialysis device can separate the separation liquid from the solid-liquid separation device and / or the washing waste liquid of the solid matter after solid-liquid separation. It is connected to the desalination chamber of the electrodialyzer so that it can be supplied. Further, a pipe for returning the oxidizing solution generated in the anode chamber of the electrodialyzer to the oxidizer pipe and the alkaline solution generated in the alkali concentrating chamber are alkalinized. Features piping for returning to the agent piping A recovery device of copper from copper-containing acidic waste liquid to be.

更にまた本発明は、上記電気透析装置が、陰極と第1のアニオン交換膜で区画され、アニオン交換体を充填した陰極室、第1のアニオン交換膜と第1のカチオン交換膜で区画されるアルカリ濃縮室、第1のカチオン交換膜と第2のアニオン交換膜で区画される脱塩室、第2のアニオン交換膜と第2のカチオン交換膜で区画される酸濃縮室および第2のカチオン交換膜と陽極で区画され、カチオン交換体が充填された陽極室の順で構成された上記銅含有酸性廃液からの銅の回収装置である。   Furthermore, according to the present invention, the electrodialysis apparatus is partitioned by a cathode and a first anion exchange membrane, and is partitioned by a cathode chamber filled with an anion exchanger, a first anion exchange membrane and a first cation exchange membrane. An alkali concentration chamber, a desalting chamber defined by a first cation exchange membrane and a second anion exchange membrane, an acid concentration chamber defined by a second anion exchange membrane and a second cation exchange membrane, and a second cation It is the recovery apparatus of copper from the said copper containing acidic waste liquid comprised in order of the anode chamber divided with the exchange membrane and the anode, and being filled with the cation exchanger.

本発明によれば、銅含有酸性廃液と酸化剤を混合した後、これをアルカリ剤溶液に所定のpH域(アルカリ領域)に管理しつつ注加、混合することで、該廃液中の銅イオンを酸化銅として不溶化し、回収することができる。しかも、固液分離操作により生成した分離水等を電気透析に付すことにより、これから酸化性溶液およびアルカリ性溶液を生成させることにより、薬剤使用量、廃棄物量や使用用水量も削減が可能になる。   According to the present invention, the copper-containing acidic waste liquid and the oxidizing agent are mixed, and then added to the alkaline agent solution while being controlled in a predetermined pH range (alkaline range), and mixed, so that the copper ions in the waste liquid are mixed. Can be insolubilized and recovered as copper oxide. In addition, by using the electrolyzed separation water or the like generated by the solid-liquid separation operation, the amount of the chemical used, the amount of waste, and the amount of water for use can be reduced by generating an oxidizing solution and an alkaline solution.

本発明方法による処理プロセスは、銅含有酸性廃液と酸化剤とをまず混合し、得られた混合液をアルカリ剤溶液に注加して、酸化銅を主成分とする固形物を生成させて固液分離し、酸化銅は回収し、分離水は更に電気透析処理して、酸化性溶液およびアルカリ性溶液として再利用するというものである。   In the treatment process according to the method of the present invention, a copper-containing acidic waste liquid and an oxidizing agent are first mixed, and the obtained mixed solution is poured into an alkaline agent solution to produce a solid mainly composed of copper oxide. Liquid separation is performed, copper oxide is recovered, and the separated water is further electrodialyzed and reused as an oxidizing solution and an alkaline solution.

本発明方法で処理対象となる銅含有酸性廃液としては、銅をイオン状態で含有する酸性廃液であり、これに含まれる銅イオン濃度や、アニオン濃度に特に制約なく適用できるが、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液など、銅イオン濃度や塩濃度の高い廃液に対して、特に有利に適用することができる。   The copper-containing acidic waste liquid to be treated by the method of the present invention is an acidic waste liquid containing copper in an ionic state, and can be applied to the copper ion concentration and anion concentration contained therein without any particular restrictions. For example, a copper printed board It can be applied particularly advantageously to waste liquids with high copper ion concentration or salt concentration, such as etching waste liquid generated when etching copper cupric chloride etching solution or plating bath liquid renewal waste liquid in electrolytic copper foil production. .

また、本発明方法で利用される酸化剤としては、2価の銅イオンを酸化銅とすることができるものであれば、種々の酸化剤を利用することができる。溶液として取り扱えることや、反応後に水以外の成分が残らないことから、過酸化水素やオゾン水などが有効に利用され、特別な発生装置が不要な取り扱い上の容易さから過酸化水素が特に適しているが、気体状オゾンを直接酸化剤として廃液又は酸化剤溶液に吹き込んでも良い。また、後で詳しく説明するが、電気透析により、陽極室で生成する酸化性溶液を酸化剤として利用することができる。   Moreover, as an oxidizing agent utilized by this invention method, various oxidizing agents can be utilized if a bivalent copper ion can be made into a copper oxide. Since it can be handled as a solution and no components other than water remain after the reaction, hydrogen peroxide, ozone water, etc. are used effectively, and hydrogen peroxide is particularly suitable because it does not require a special generator and is easy to handle. However, gaseous ozone may be directly blown into the waste liquid or oxidant solution as an oxidant. As will be described in detail later, an oxidizing solution produced in the anode chamber by electrodialysis can be used as an oxidizing agent.

更に、本発明で利用されるアルカリ剤としては、種々のアルカリ剤を使用することができるが、共存する恐れのある陰イオンと沈降性の塩を形成する可能性のないアルカリ金属の水酸化物が望ましく、比較的安価で入手が容易なことから水酸化ナトリウムが好適に使用できる。また水溶液として入手した場合は、容易に使用できる利点があるが、固体状のアルカリ剤を適宜溶解させて用いても良い。なお、固体状のアルカリを使用する場合、先に溶解させてから反応槽に供給しても良く、反応槽内に固体状のまま供給して反応槽と溶解槽を兼ねさせても良い。また、後で詳しく説明するが、電気透析により、アルカリ濃縮室において生成したアルカリ性溶液を利用することができる。   Further, as the alkali agent used in the present invention, various alkali agents can be used, but alkali metal hydroxides which do not have the possibility of forming a precipitating salt with an anion that may coexist. Sodium hydroxide is preferably used because it is relatively inexpensive and easily available. Moreover, when it obtains as aqueous solution, there exists an advantage which can be used easily, However, You may dissolve and use a solid alkali agent suitably. In addition, when using a solid alkali, you may make it melt | dissolve previously and you may supply to a reaction tank, and you may supply a reaction tank as a solid state, and may make a reaction tank and a dissolution tank serve as both. Moreover, although demonstrated in detail later, the alkaline solution produced | generated in the alkali concentration chamber by electrodialysis can be utilized.

本発明方法は、銅含有酸性廃液と酸化剤とをまず混合し、得られた混合液をアルカリ剤溶液に注加するという順序で実施することが特に重要である。そこで、酸化剤溶液として過酸化水素溶液を、アルカリ剤として水酸化ナトリウムを用いる場合を例にとり、混合、反応順序の重要性を以下に説明する。   It is particularly important that the method of the present invention be carried out in the order of first mixing the copper-containing acidic waste liquid and the oxidizing agent, and pouring the resulting mixed liquid into the alkaline agent solution. Therefore, the importance of the mixing and reaction sequence will be described below, taking as an example the case of using a hydrogen peroxide solution as the oxidant solution and sodium hydroxide as the alkali agent.

まず、銅イオンを高濃度で含有する銅含有酸性廃液にアルカリ剤を注加するという順序では、従来技術で述べたとおり複塩の生成が起こり、処理が困難な性状の汚泥が析出するという結果となる。   First, in the order of adding an alkaline agent to a copper-containing acidic waste liquid containing copper ions at a high concentration, as described in the prior art, double salt formation occurs, and sludge with properties that are difficult to treat is deposited. It becomes.

また、銅含有酸性廃液を過酸化水素溶液と混合する前にアルカリ剤に注加した場合は、水酸化銅の析出が先行して起こる。そしてこれに過酸化水素溶液を注加した場合には、液中に析出した水酸化銅の固体の酸化処理となるため、過酸化水素による酸化銅への酸化反応の効率が低下する。   In addition, when the copper-containing acidic waste liquid is added to the alkaline agent before mixing with the hydrogen peroxide solution, copper hydroxide is precipitated first. When a hydrogen peroxide solution is added thereto, the copper hydroxide solid precipitated in the solution is oxidized, so that the efficiency of the oxidation reaction of hydrogen peroxide to copper oxide is reduced.

さらにエッチング廃液などの第一銅イオンを含有する廃液を処理対象とする場合、過酸化水素と混合する前にこれをアルカリ剤に注加した場合には、塩化第一銅(CuCl)としても析出する。この塩化第一銅(CuCl)析出物は過酸化水素の分解触媒として作用するため、過酸化水素が消費されてしまい、過酸化水素による酸化反応の効率が更に低下する。   In addition, when waste liquid containing cuprous ions, such as etching waste liquid, is treated, if it is added to an alkaline agent before mixing with hydrogen peroxide, it will also precipitate as cuprous chloride (CuCl). To do. Since the cuprous chloride (CuCl) precipitate acts as a decomposition catalyst for hydrogen peroxide, the hydrogen peroxide is consumed, and the efficiency of the oxidation reaction with hydrogen peroxide is further reduced.

以上のように、本発明による処理プロセスにおいては、アルカリ剤溶液と混合、反応させるに先立ち、銅含有廃液と過酸化水素溶液とを混合させることが重要である。これにより、廃液に含有される第二銅イオンの酸化銅への酸化反応が、アルカリ剤に注加した際に速やかに進行する。また、廃液に第一銅イオンが含有される場合には、第一銅塩の溶解度が低いが、アルカリ剤と接触させる前に過酸化水素と混合することで、過酸化水素の酸化作用により第一銅イオンが第二銅イオンに酸化されるため、塩化第一銅(CuCl)などの第一銅塩の析出を回避出来る。   As described above, in the treatment process according to the present invention, it is important to mix the copper-containing waste liquid and the hydrogen peroxide solution before mixing and reacting with the alkaline agent solution. Thereby, the oxidation reaction to the copper oxide of the cupric ion contained in a waste liquid advances rapidly, when it adds to an alkaline agent. In addition, when cuprous ions are contained in the waste liquid, the solubility of the cuprous salt is low. However, mixing with hydrogen peroxide before contacting with the alkali agent causes the oxidation of hydrogen peroxide. Since cuprous ions are oxidized to cupric ions, precipitation of cuprous salts such as cuprous chloride (CuCl) can be avoided.

本発明において、銅含有廃液と過酸化水素溶液とを混合させるために必要な時間は、混合する両者の濃度にもよるが、両者が高濃度の場合は、第一銅イオンは5秒程度の短時間でもかなりの割合で酸化され、20秒間程度では酸化反応が十分に進行する。   In the present invention, the time required for mixing the copper-containing waste liquid and the hydrogen peroxide solution depends on the concentration of both of the mixing, but when both are high in concentration, the cuprous ion is about 5 seconds. Oxidation is carried out at a considerable rate even in a short time, and the oxidation reaction proceeds sufficiently in about 20 seconds.

その一方で、銅含有酸性廃液と過酸化水素溶液を混合すると、過酸化水素の分解反応が進行する。その分解反応は、両者を混合後約60秒経過した時点から顕在化し、7分間〜10分間経過後には顕著な発泡を伴いながら激しく進行する。混合する両者の濃度にもよるが、例えば銅イオンに対してモル濃度で2倍量の過酸化水素を混合した場合、過酸化水素の分解に伴う発泡は、混合20分間経過後には減少し、25分間経過後には僅かなものになり、この時点でアルカリ剤に注加した場合には酸化銅よりも水酸化銅を多く含む沈殿物が生成する。   On the other hand, when the copper-containing acidic waste liquid and the hydrogen peroxide solution are mixed, the decomposition reaction of hydrogen peroxide proceeds. The decomposition reaction becomes apparent from the time when about 60 seconds have passed after mixing the both, and proceeds violently with remarkable foaming after 7 to 10 minutes. Depending on the concentration of both, for example, when hydrogen peroxide in a molar concentration of copper ions is mixed twice as much, foaming accompanying the decomposition of hydrogen peroxide decreases after 20 minutes of mixing, After a lapse of 25 minutes, the amount becomes slight, and when added to the alkaline agent at this time, a precipitate containing more copper hydroxide than copper oxide is formed.

このようなことから、アルカリ剤への注加に先立ち、銅含有酸性廃液と過酸化水素溶液との混合、反応時間として、5秒間〜20分間程度、望ましくは20秒間〜7分間程度の時間を取ることが好ましく、この時間設定が本発明技術の特徴の一つである。   For this reason, prior to pouring into the alkaline agent, mixing the copper-containing acidic waste liquid and the hydrogen peroxide solution, the reaction time is about 5 seconds to 20 minutes, preferably about 20 seconds to 7 minutes. This time setting is one of the features of the present technology.

上記した、銅含有廃液と過酸化水素溶液との混合方法としては、例えば、1つ又は複数の混合槽内に両液を注加して撹拌する方法や、銅含有廃液と過酸化水素溶液とを合流させて混合する方法等が適用可能である。   As described above, as a method of mixing the copper-containing waste liquid and the hydrogen peroxide solution, for example, a method of adding both liquids into one or a plurality of mixing tanks and stirring, a copper-containing waste liquid and a hydrogen peroxide solution, It is possible to apply a method of mixing and mixing them.

このうち、混合用の槽内に両液を注入して撹拌する方法では、混合槽をバッチ式で用いる場合には、混合してから注加までの反応時間の制御が問題になるが、注入量の確認と調整が容易で、混合時に発泡しても開放系のため装置上の問題が発生しないメリットがある。   Among these, in the method of injecting both liquids into the mixing tank and stirring, when the mixing tank is used in a batch system, control of the reaction time from mixing to pouring becomes a problem. It is easy to check and adjust the amount, and there is an advantage that even if foaming occurs during mixing, there is no problem on the apparatus because it is an open system.

また、銅含有廃液と過酸化水素溶液とを合流させて混合する方法では、両溶液の配管を2字管等で接続して合流させる方法、どちらかの配管内に他方の液を注入して混合する方法などが使用できる。さらに合流後にスタティックミキサーを通すことで両液の撹拌混合することもできる。この方法では、発泡への対処のために装置の耐圧性、もしくは発生した気体を排出できる機構が必要になるが、両液を混合してから供給するまでの時間を均一に保ち、かつ連続的に供給できるというメリットがある。さらに、反応槽水面上から銅含有廃液と過酸化水素溶液とを気中流下させて合流させることも出来る。この場合、落下流中に邪魔板などを置き、反応時間と混合状態を確保することが望ましい。   In addition, in the method of mixing and mixing the copper-containing waste liquid and the hydrogen peroxide solution, the pipes of both solutions are connected by connecting them with a two-letter pipe or the like, and the other liquid is injected into one of the pipes. A method of mixing can be used. Furthermore, both liquids can be stirred and mixed by passing through a static mixer after merging. This method requires pressure resistance of the device to cope with foaming or a mechanism that can discharge the generated gas, but keeps the time from mixing and supplying both solutions uniform and continuous. There is an advantage that can be supplied to. Further, the copper-containing waste liquid and the hydrogen peroxide solution can be brought into the air from the water surface of the reaction tank to join them. In this case, it is desirable to place a baffle or the like in the falling flow to ensure the reaction time and the mixed state.

次に、銅含有廃液と過酸化水素溶液との混合液(以下、「混合液」と略称する)とアルカリ剤との反応であるが、複塩の生成を回避するためには、イオンとしての銅濃度が希薄な条件下で反応させることが必要である。また、銅イオンの酸化反応を速やかに進行させるためには、過酸化水素の反応性が高くなる強アルカリ性条件下で反応させることが望ましい。   Next, a reaction between a mixed solution of a copper-containing waste liquid and a hydrogen peroxide solution (hereinafter abbreviated as “mixed solution”) and an alkaline agent is used. It is necessary to react under conditions where the copper concentration is dilute. Moreover, in order to advance the oxidation reaction of copper ions promptly, it is desirable to carry out the reaction under strongly alkaline conditions where the reactivity of hydrogen peroxide is high.

これらの条件を実現するため、本発明技術においては、操作性の良い溶液体のアルカリ剤を用い、このアルカリ剤溶液を撹拌しているところに前記の混合液を適切な速度で注加してゆくことが必要である。この注加速度は、注加後のアルカリ剤溶液中において、そのpHが部分的に、一時的にでも7以下に下がらないように、望ましくは8以下にならないように管理しながら注加、混合して逐次反応を進行・完結させてゆくことが必要であり、この点が本発明技術の別の特徴である。   In order to realize these conditions, in the technology of the present invention, an alkaline agent of a solution body with good operability is used, and the above mixed solution is poured at an appropriate rate while stirring the alkaline agent solution. It is necessary to go. The pouring acceleration is added and mixed in the alkaline agent solution after pouring while controlling the pH so that it does not partially drop to 7 or less, preferably 8 or less. Therefore, it is necessary to proceed and complete the sequential reaction, and this is another feature of the technology of the present invention.

混合液の注加方法としては、例えば、アルカリ剤が入れられた反応槽に滴下する方法や配管を通して液中に注入する方法等の方法が適用可能である。このうち、反応槽へ滴下する方法では、供給状況を目視で確認でき、供給状況が不調の際に対応しやすいメリットがある。一方、配管を通して液中に供給する方法では、液表面から供給する場合に比べて、撹拌流の分布上で良好に混合できる位置に供給できるメリットがある。混合槽が反応槽に比べて十分に小さく反応制限時間内に注加できる場合には、混合槽1回分ごとを分注することで、簡単な設備で行うことができる。複数の混合槽を順次使用する方法、混合槽内を完全混合状態にして滞留時間が反応制限時間内になるようにする方法もある。なお、配管を通して液中に注入する方法では、銅含有廃液と過酸化水素溶液とを合流させて作成した混合液を連続して添加する方法が好適に使用できる。   As a method of pouring the mixed liquid, for example, a method such as a method of dropping into a reaction tank containing an alkaline agent or a method of pouring into a liquid through a pipe can be applied. Among these, the method of dropping into the reaction tank has an advantage that the supply status can be visually confirmed and that it is easy to cope with the supply status being unsatisfactory. On the other hand, the method of supplying the liquid through the pipe has an advantage that it can be supplied to a position where the mixing can be satisfactorily mixed on the distribution of the stirring flow as compared with the case of supplying from the liquid surface. When the mixing tank is sufficiently smaller than the reaction tank and can be added within the reaction time limit, dispensing can be performed with simple equipment by dispensing each batch of the mixing tank. There are also a method of sequentially using a plurality of mixing tanks and a method in which the mixing tank is completely mixed so that the residence time is within the reaction limit time. In addition, in the method of inject | pouring into a liquid through piping, the method of adding continuously the liquid mixture created by making a copper containing waste liquid and a hydrogen peroxide solution merge can be used conveniently.

更に、アルカリ剤溶液内に、pHが一時的にでも7以下に下がらないように管理しながら注加、混合する方法としては、たとえば撹拌混合状態にあるアルカリ剤溶液中に、少量の混合液を間隔をあけて断続的に注加する方法や、混合液を少量づつ注加する方法を挙げることができる。このとき、アルカリ剤溶液に対する、混合液の注加量は、アルカリ剤溶液のpHが一時的にでも7以下にならず、最終的な反応終了時のpHが7以上、望ましくは8以上であれば、後述の一定の範囲内で任意に調節できる。この操作により、アルカリ剤溶液による希釈効果を得ながら、主要な酸化反応を過酸化水素の反応性が高い、pH11.5〜14.5の強アルカリ性条件下で効率的に行うことが出来るとともに、酸化反応を逐次進行完結させることによりイオンとしての銅含有濃度が低い液を得ることができる。なお、反応槽内のアルカリ剤溶液のpH管理方法として、反応槽内にアルカリ剤を補充供給することも出来る。   Further, as a method of adding and mixing in the alkaline agent solution while controlling so that the pH does not drop to 7 or less even temporarily, a small amount of the mixed solution is added to the alkaline agent solution in a stirring and mixing state, for example. Examples thereof include a method of intermittently adding at intervals and a method of adding a mixed solution little by little. At this time, the amount of the mixed solution added to the alkaline agent solution may be 7 or less, preferably 8 or more at the end of the final reaction, even if the pH of the alkaline solution is temporarily 7 or less. For example, it can be arbitrarily adjusted within a certain range described later. By this operation, the main oxidation reaction can be efficiently performed under the strong alkaline condition of pH 11.5 to 14.5 with high reactivity of hydrogen peroxide while obtaining the dilution effect by the alkaline agent solution, A liquid having a low concentration of copper as ions can be obtained by sequentially advancing and completing the oxidation reaction. In addition, as a pH control method of the alkaline agent solution in the reaction vessel, the alkaline agent can be replenished and supplied to the reaction vessel.

また、アルカリ剤に対する酸の量が等量となる付近に至った段階では、混合液の添加量に対して、それまでの反応の結果得られている銅イオン含有濃度が低い液の量が相対的に多くなっているため、これによる希釈効果が得られることで、pH7〜11.5、望ましくはpH8〜11という条件下においても複塩の生成を回避して過酸化水素による銅イオンからの酸化銅の生成反応を良好に維持、進行することが出来る。これにより、効率良く酸化銅を析出させることが出来て、かつ最終的な液性が中性付近となる処理を実施することが可能である。   In addition, at the stage where the amount of acid relative to the alkaline agent reaches the same level, the amount of liquid with a low copper ion-containing concentration obtained as a result of the previous reaction is relative to the amount of liquid mixture added. Therefore, it is possible to avoid the formation of double salt even under the conditions of pH 7 to 11.5, preferably pH 8 to 11 by the effect of diluting by this, and from the copper ions by hydrogen peroxide. The formation reaction of copper oxide can be well maintained and progressed. As a result, it is possible to efficiently deposit copper oxide and to perform a process in which the final liquidity is near neutral.

前記の、混合液が注加されるアルカリ剤溶液の濃度は、反応槽中のpHが所定範囲に維持できるようであれば特に限定されないが、反応槽中のアルカリ濃度が低いと、処理可能な廃液の量が小さくなったり、排水量が増えるなどの問題があるため、例えば、濃度25%の水酸化ナトリウム溶液を使用することが好ましい。   The concentration of the alkaline agent solution to which the mixed solution is poured is not particularly limited as long as the pH in the reaction vessel can be maintained within a predetermined range, but can be treated when the alkali concentration in the reaction vessel is low. For example, it is preferable to use a sodium hydroxide solution having a concentration of 25% because there is a problem that the amount of waste liquid becomes small or the amount of drainage increases.

一方、上記処理に用いられる過酸化水素の濃度は特に限定されないが、あまり低濃度では所要液量が大きくなり、反応効率が低くなるので、例えば、濃度30%程度のものを利用することが好ましい。   On the other hand, the concentration of hydrogen peroxide used in the above treatment is not particularly limited. However, if the concentration is too low, the required amount of liquid becomes large and the reaction efficiency becomes low. For example, it is preferable to use a concentration of about 30%. .

上記した、銅含有酸性廃液の処理後に生成する固形物は酸化銅を主成分とするものであり、固液分離が比較的し易く、脱水性も比較的良好な性状のものである。しかしながら、高濃度の銅イオンを含む銅含有酸性廃液の場合には、濃厚な酸とアルカリを混合して処理しているため、反応完了時の固形物は中和反応により生じた高濃度の塩類と共存している。そこで、再利用を目的とした固形物の回収に際しては、水洗を複数回繰り返すことでこれらの塩類を洗い流し、回収物の純度を上げる対応が有効である。   The solid matter generated after the treatment of the copper-containing acidic waste liquid described above has copper oxide as a main component, and is relatively easy to solid-liquid separation and has a relatively good dehydration property. However, in the case of a copper-containing acidic waste liquid containing a high concentration of copper ions, since a concentrated acid and alkali are mixed and processed, the solids at the completion of the reaction are highly concentrated salts generated by the neutralization reaction. Coexist with. Therefore, when collecting solids for reuse, it is effective to wash these salts by repeating washing with water a plurality of times to increase the purity of the collected material.

この場合の固液分離方法としては例えば、ろ過分離、遠心分離、沈降分離等が適用可能であり、これにより塩分濃度が高く、アルカリ性の分離液が得られる。また、固液分離した固形物は、更に付着した塩類を洗浄水で洗浄することもできる。ここで使用される洗浄水としては、塩類含有量が少ない清澄な水、例えば水道水や工業用水などを用いても良いが、これに代えて、処理済液、固形物を水洗で洗い流した洗浄排水、及び/又は固液分離されたろ液などを脱塩処理して得られた処理水を再利用することも有効である。   As a solid-liquid separation method in this case, for example, filtration separation, centrifugal separation, sedimentation separation, and the like can be applied. Thereby, an alkaline separation liquid having a high salt concentration can be obtained. Moreover, the solid substance which separated into solid and liquid can also wash | clean the attached salt with washing water. As washing water used here, clear water with a low salt content, for example, tap water or industrial water, may be used. It is also effective to reuse the treated water obtained by desalting the drained water and / or the filtrate separated by solid-liquid.

本発明の基本的な特徴は、上記のようにして生じた、酸化銅を主成分とする固形物を固液分離で分離した後の分離液(塩類を多量に含むアルカリ性溶液)および/または固液分離した固形物の洗浄排液(分離液ほどではないが、塩類を多く含むアルカリ性溶液)を電気透析に付し、当該電気透析において生成したアルカリ性溶液および酸化性溶液の少なくとも一部を回収し、これをそれぞれアルカリ剤および酸化剤として再利用する点である。   The basic feature of the present invention is that the separated liquid (alkaline solution containing a large amount of salts) and / or solid after the solid matter mainly composed of copper oxide produced as described above is separated by solid-liquid separation. The liquid separated solid waste liquid (not so much as the separated liquid but alkaline solution containing a lot of salts) is subjected to electrodialysis, and at least a part of the alkaline solution and the oxidizing solution generated in the electrodialysis is recovered. These are reused as an alkali agent and an oxidizing agent, respectively.

このように本発明においては、前記のアルカリ剤の他、固液分離処理で生じる分離液や、洗浄廃液を電気透析に付すことでアルカリ性水溶液が得られ、これをアルカリ剤溶液として利用できる理由は、次の通りである。   Thus, in the present invention, in addition to the above alkaline agent, an alkaline aqueous solution can be obtained by subjecting a separation liquid produced by solid-liquid separation treatment or washing waste liquid to electrodialysis, and the reason why this can be used as an alkaline agent solution. It is as follows.

すなわち、電気透析装置は、後記図2にも示すように、陰極と第1のアニオン交換膜で区画され、アニオン交換体を充填した陰極室、第1のアニオン交換膜と第1のカチオン交換膜で区画されるアルカリ濃縮室、第1のカチオン交換膜と第2のアニオン交換膜で区画される脱塩室、第2のアニオン交換膜と第2のカチオン交換膜で区画される酸濃縮室および第2のカチオン交換膜と陽極で区画され、カチオン交換体が充填された陽極室をこの順配置することにより構成されている。   That is, as shown in FIG. 2 to be described later, the electrodialysis apparatus is divided by a cathode and a first anion exchange membrane, and is filled with an anion exchanger, a first anion exchange membrane and a first cation exchange membrane. An alkali concentrating chamber partitioned by, a desalting chamber partitioned by a first cation exchange membrane and a second anion exchange membrane, an acid concentrating chamber partitioned by a second anion exchange membrane and a second cation exchange membrane, and The anode chamber is partitioned by the second cation exchange membrane and the anode, and the anode chamber filled with the cation exchanger is arranged in this order.

そして、脱塩室に分離液等塩類を多量に含むアルカリ性溶液を注入後、電気透析を行うと、電流印加によって、脱塩室からはカチオン交換膜を通って陰極側にあるアルカリ濃縮室にカチオンが移動するが、このカチオンは、反対側でアルカリ濃縮室を区画するアニオン交換膜を通過することができず、アルカリ濃縮室に溜まってゆき、アルカリ濃縮室中の溶液のアルカリ性が高まる。このような理由で、このアルカリ濃縮室でアルカリ性溶液を回収し、アルカリ剤として再利用が可能となるが、このアルカリ性溶液の濃度が低い場合には、更にアルカリ剤を補充してアルカリ剤濃度を増加させることが望ましい。   Then, after injecting an alkaline solution containing a large amount of a salt such as a separation solution into the desalting chamber, electrodialysis is performed, and by applying current, the cation exchange membrane passes through the cation exchange membrane to the alkali concentration chamber on the cathode side. However, this cation cannot pass through the anion exchange membrane that partitions the alkali concentrating chamber on the opposite side, and accumulates in the alkali concentrating chamber, thereby increasing the alkalinity of the solution in the alkali concentrating chamber. For this reason, the alkaline solution can be recovered in the alkaline concentration chamber and reused as an alkaline agent. However, if the concentration of the alkaline solution is low, the alkaline agent concentration is further increased by replenishing the alkaline agent concentration. It is desirable to increase.

同様、固液分離処理で生じる分離液や、洗浄廃液を電気透析に付すことで酸化性水溶液が得られ、これを酸化剤として利用できる理由は、次の通りである。   Similarly, an oxidizing aqueous solution can be obtained by subjecting the separation liquid produced in the solid-liquid separation treatment or the washing waste liquid to electrodialysis, and this can be used as an oxidizing agent for the following reasons.

すなわち、電気透析装置の陽極室においては、酸濃縮室のアニオンは、当該室を区画するカチオン交換膜により、また、脱塩室からのカチオンは、それより手前のアニオン交換膜により通過が妨げられるため、水しか存在しないことになる。そして、この陽極室には、アニオンである塩素が存在しないため、遊離塩素の生成がなく、この陽極室での反応は、下式(I)および/または(II)で示される水の電気分解反応が生じ、過酸化水素等を含む酸化性溶液が生成することになるのである。   That is, in the anode chamber of the electrodialysis apparatus, the anion in the acid concentrating chamber is blocked by the cation exchange membrane that partitions the chamber, and the cation from the desalting chamber is blocked by the anion exchange membrane in front of it. Therefore, only water will exist. In this anode chamber, there is no chlorine as an anion, so there is no generation of free chlorine, and the reaction in this anode chamber is an electrolysis of water represented by the following formulas (I) and / or (II) A reaction occurs, and an oxidizing solution containing hydrogen peroxide and the like is generated.

2HO → H + 2H + 2e (I)
2HO → 4H + O + 4e (II)
2H 2 O → H 2 O 2 + 2H + + 2e (I)
2H 2 O → 4H + + O 2 + 4e (II)

本発明方法においては、この電気透析により陽極室で生成する酸化性溶液を酸化剤として利用可能であるが、その酸化力が低い場合には、過酸化水素液を添加するか、気体状オゾンを吹き込むなどの方法によって、酸化力を上げることが望ましい。   In the method of the present invention, the oxidizing solution produced in the anode chamber by electrodialysis can be used as an oxidizing agent. However, when the oxidizing power is low, hydrogen peroxide solution is added or gaseous ozone is added. It is desirable to increase the oxidizing power by a method such as blowing.

このように、本来廃液として処理される分離液や洗浄排液を、電気透析を利用することによって、アルカリ性溶液や酸化性溶液として回収利用し、コストや廃液処理の労力の削減が可能となり、経済的に銅含有酸性廃液から銅を、酸化銅を主成分とする固形物として回収可能になるのである。   In this way, separation liquid and washing waste liquid that are originally treated as waste liquid can be recovered and used as an alkaline solution or an oxidizing solution by using electrodialysis, thereby reducing costs and labor of waste liquid treatment. In particular, copper can be recovered from the copper-containing acidic waste liquid as a solid containing copper oxide as a main component.

次に、本発明方法を実施するために使用する回収装置のいくつかの態様について、図面を参照して説明する。   Next, some aspects of the recovery apparatus used for carrying out the method of the present invention will be described with reference to the drawings.

図1は本発明を実施する場合の銅の回収装置の一態様を示す系統図である。図中、1は銅回収装置、2は反応槽、3は固液分離装置、4は銅含有酸性廃液配管、5は酸化剤供給配管、6は混合配管、7は流量調節器、8はアルカリ供給配管、9はpHメーター、10は攪拌機、11は移送ポンプ、12は液面レベル計、13は洗浄水供給配管、14は電気透析装置、15は脱塩水返送配管、16は酸化剤溶液返送配管、17はアルカリ剤返送配管をそれぞれ示す。   FIG. 1 is a system diagram showing an embodiment of a copper recovery apparatus when the present invention is implemented. In the figure, 1 is a copper recovery device, 2 is a reaction tank, 3 is a solid-liquid separation device, 4 is a copper-containing acidic waste liquid piping, 5 is an oxidizing agent supply piping, 6 is a mixing piping, 7 is a flow controller, and 8 is an alkali. Supply pipe, 9 is a pH meter, 10 is a stirrer, 11 is a transfer pump, 12 is a liquid level meter, 13 is a wash water supply pipe, 14 is an electrodialyzer, 15 is a desalted water return pipe, and 16 is an oxidant solution return. Pipes 17 are alkaline agent return pipes.

図1に示す銅回収装置1は、攪拌機10、pHメーター9および液面レベル計12を備えた反応槽2と、これに移送ポンプ11を介して連通される固液分離装置3を有する。そして、反応槽2の上部には、銅含有酸性廃液配管4と、酸化剤供給配管5が一緒になった混合配管6が設けられ、銅含有酸性廃液と酸化剤の混合液が反応槽2中に注加可能となっている。注加される銅含有酸性廃液と酸化剤の量は、それぞれ銅含有酸性廃液配管4と、酸化剤供給配管5に設けられた流量調節器7aおよび7bにより調整され、適切な割合の混合液が混合配管6で生成されるようになっている。   A copper recovery apparatus 1 shown in FIG. 1 has a reaction tank 2 provided with a stirrer 10, a pH meter 9 and a liquid level meter 12, and a solid-liquid separation apparatus 3 communicated with the reaction tank 2 via a transfer pump 11. The upper part of the reaction tank 2 is provided with a mixed pipe 6 in which the copper-containing acidic waste liquid pipe 4 and the oxidant supply pipe 5 are combined, and the mixed liquid of the copper-containing acidic waste liquid and the oxidant is in the reaction tank 2. Can be added. The amounts of the copper-containing acidic waste liquid and the oxidant to be added are adjusted by the flow rate controllers 7a and 7b provided in the copper-containing acidic waste liquid pipe 4 and the oxidant supply pipe 5, respectively. It is generated by the mixing pipe 6.

反応槽2には、アルカリ供給配管8からアルカリ剤溶液が供給される。そして、攪拌機10により撹拌されているアルカリ剤溶液中に、前記混合配管6から銅含有酸性廃液と酸化剤の混合液が注入され、その際のpH変化はpHメーター9で測定され、流量調節器7aや7bにより、pHが、一時的にでも7以下にならないよう制御される。   The alkaline agent solution is supplied to the reaction tank 2 from the alkali supply pipe 8. Then, a mixed solution of copper-containing acidic waste liquid and oxidizing agent is injected from the mixing pipe 6 into the alkaline agent solution stirred by the stirrer 10, and the pH change at that time is measured by the pH meter 9, and the flow rate controller The pH is controlled by 7a and 7b so as not to become 7 or less even temporarily.

この反応槽2中において生成する、酸化銅を主体とする固形物は、移送ポンプ11を介して固液分離装置3に移され、ここにおいて、固形物と分離液に分離される。そして更に、固形物は、固形物精製装置18において、洗浄水供給配管13から供給される洗浄水により洗浄され、系外に取り出され、酸化銅として再利用に供される。   The solid matter mainly composed of copper oxide generated in the reaction tank 2 is transferred to the solid-liquid separation device 3 via the transfer pump 11, and is separated into the solid matter and the separation liquid here. Further, the solid matter is washed by the washing water supplied from the washing water supply pipe 13 in the solid matter purification device 18, taken out of the system, and reused as copper oxide.

一方、分離液は、その一部が分離液返送配管19を通じてそのまま反応槽2に戻され、他は、電気透析装置14に送られ、電気透析に付される。   On the other hand, a part of the separation liquid is directly returned to the reaction tank 2 through the separation liquid return pipe 19, and the other is sent to the electrodialysis apparatus 14 and subjected to electrodialysis.

図2に、本発明で利用される電気透析設備の構成の一例を示す。図中、20は陰極、21は第1アニオン交換膜、22は第1カチオン交換膜、23は第2アニオン交換膜、24は第2カチオン交換膜、25は陽極であり、26は陰極室、27はアルカリ濃縮室、28は脱塩室、29は酸濃縮室、30は陽極室を示す。陰極20と第1アニオン交換膜21の間の、これらで区画、構成される陰極室26にはアニオン交換体(繊維、スペーサ含む)31が充填され、陽極25と第2カチオン交換体24の間の、これらで構成される陽極室30にはカチオン交換体(繊維、スペーサ含む)32を充填されている。   FIG. 2 shows an example of the configuration of the electrodialysis equipment used in the present invention. In the figure, 20 is a cathode, 21 is a first anion exchange membrane, 22 is a first cation exchange membrane, 23 is a second anion exchange membrane, 24 is a second cation exchange membrane, 25 is an anode, 26 is a cathode chamber, Reference numeral 27 denotes an alkali concentration chamber, 28 denotes a desalting chamber, 29 denotes an acid concentration chamber, and 30 denotes an anode chamber. An anion exchanger (including fibers and spacers) 31 is filled in a cathode chamber 26 that is partitioned and configured between the cathode 20 and the first anion exchange membrane 21, and between the anode 25 and the second cation exchanger 24. These anode chambers 30 are filled with a cation exchanger (including fibers and spacers) 32.

そして、第1カチオン交換膜22と第2アニオン交換膜23の間の、これらで区画された脱塩室28には、分離液及び/又は洗浄排液(以下、「塩溶液」ということがある)が供給される。また、第1アニオン交換膜21と第1カチオン交換膜22の間の、これらで区画されたアルカリ濃縮室27、第2アニオン交換膜23と第2カチオン交換膜24の間の、これらで区画された酸濃縮室29および陰極室26には、それぞれ脱塩室28からの流出水又は純水が供給され、陽極室30には、気液分離装置33により気液分離された陰極室流出水又は純水が供給される。   In the desalting chamber 28 between the first cation exchange membrane 22 and the second anion exchange membrane 23, the separation liquid and / or the washing waste liquid (hereinafter referred to as “salt solution”) may be used. ) Is supplied. Further, the alkali concentration chamber 27 partitioned by these between the first anion exchange membrane 21 and the first cation exchange membrane 22, and the partition between these by the second anion exchange membrane 23 and the second cation exchange membrane 24 are partitioned. The acid concentration chamber 29 and the cathode chamber 26 are respectively supplied with effluent water or pure water from the desalting chamber 28, and the anode chamber 30 is supplied with cathode chamber effluent water or gas separated by a gas-liquid separator 33. Pure water is supplied.

図2中には、塩化ナトリウムを多量含むアルカリ性溶液を脱塩室28に入れた場合のイオンの動きも例示するが、この電気透析設備に電流を印加すると、これによって、脱塩室28から陽極側に向かって塩化物イオンなどのアニオンが移動する。しかし、これは第2カチオン交換膜24に妨げられて陽極室30まで移行することはできず、酸濃縮室29に蓄積される。同様に、陰極側に向かって、ナトリウムイオンなどのカチオンが移動するが、これも同様に第1アニオン交換膜に妨げられて陰極室26に到達することができず、アルカリ濃縮室27に蓄積される。   FIG. 2 also illustrates the movement of ions when an alkaline solution containing a large amount of sodium chloride is placed in the desalting chamber 28, but when an electric current is applied to the electrodialysis equipment, this causes the anode from the desalting chamber 28. Anions such as chloride ions move toward the side. However, this is blocked by the second cation exchange membrane 24 and cannot move to the anode chamber 30, but is accumulated in the acid concentration chamber 29. Similarly, cations such as sodium ions move toward the cathode side, but they are also blocked by the first anion exchange membrane and cannot reach the cathode chamber 26 and are accumulated in the alkali concentration chamber 27. The

また、電気透析により生じる陰極20での水の電気分解によって陰極室26では、下式の反応により、水酸イオンと水素が発生するが、このうちの水酸イオンは、アルカリ濃縮室27に移行できるが、第1カチオン交換膜22により、脱塩室28までは移動できない。   Moreover, in the cathode chamber 26 due to the electrolysis of water at the cathode 20 generated by electrodialysis, hydroxide ions and hydrogen are generated by the following reaction, and these hydroxide ions migrate to the alkali concentration chamber 27. However, the first cation exchange membrane 22 cannot move to the desalting chamber 28.

2HO + 2e → 2OH + H (III) 2H 2 O + 2e → 2OH + H 2 (III)

一方、前記式(I)または(II)に従い、陽極25での水の電気分解により陽極室30に生成した水素イオンは、酸濃縮室29には移行するが、第2アニオン交換膜23に妨げられて脱塩室28には到達しない。   On the other hand, according to the formula (I) or (II), the hydrogen ions generated in the anode chamber 30 by the electrolysis of water at the anode 25 migrate to the acid concentration chamber 29 but interfere with the second anion exchange membrane 23. Thus, the desalting chamber 28 is not reached.

このような機構により、脱塩室28の陰極側に隣接するアルカリ濃縮室27にはアルカリが、陽極側に隣接する酸濃縮室29には酸が濃縮されるのであるが、このうちのアルカリ濃縮室27に濃縮されるアルカリ性溶液をアルカリ剤溶液として回収使用するのである。なお、酸濃縮室29に濃縮された酸溶液は、直接本発明装置においては回収利用できないが、酸性銅含有廃液が主に塩酸を含むものであれば、濃縮された酸溶液は塩酸を主に含むものであるから、例えば、エッチング液として利用することが可能である。   With such a mechanism, alkali is concentrated in the alkali concentrating chamber 27 adjacent to the cathode side of the desalting chamber 28, and acid is concentrated in the acid concentrating chamber 29 adjacent to the anode side. The alkaline solution concentrated in the chamber 27 is recovered and used as an alkaline agent solution. The acid solution concentrated in the acid concentration chamber 29 cannot be directly recovered and used in the apparatus of the present invention, but if the acid copper-containing waste liquid mainly contains hydrochloric acid, the concentrated acid solution mainly contains hydrochloric acid. For example, it can be used as an etching solution.

また、前記したように、陽極室30中には、塩化物イオンが存在しないため、陽極での電気分解によって、遊離塩素の生成反応はなく、過酸化水素等の酸化剤が生成することになる。そして、電気分解による遊離塩素が生成しないため、電極の損傷も防止される。   Further, as described above, since no chloride ions exist in the anode chamber 30, there is no generation reaction of free chlorine by electrolysis at the anode, and an oxidizing agent such as hydrogen peroxide is generated. . And since the free chlorine by electrolysis is not produced | generated, damage to an electrode is also prevented.

なお、電気透析装置14で生成される脱塩水は、ほとんど塩を含有しないものであるため、例えば、洗浄水供給配管13に返送して洗浄水として再使用することも可能である。あるいは、陰極室26、アルカリ濃縮室27、酸濃縮室28等での補充液として利用可能である。また、前記陰極室で生成する、水酸イオンと水素を含有するイオン水は、例えば、気液分離装置33により水素ガスを除去した後、例えば、陽極室30に送り、補充水として利用することもできる。   In addition, since the demineralized water produced | generated with the electrodialyzer 14 is a thing which hardly contains salt, for example, it can return to the washing water supply piping 13, and can also be reused as washing water. Alternatively, it can be used as a replenisher in the cathode chamber 26, the alkali concentration chamber 27, the acid concentration chamber 28, and the like. In addition, the ionic water containing hydroxide ions and hydrogen generated in the cathode chamber is, for example, removed to the anode chamber 30 after removing the hydrogen gas by the gas-liquid separator 33 and used as supplementary water. You can also.

図3に示す系統図は、本発明の別の態様の銅の回収装置を示す図面である。本態様の銅の回収装置は、基本的に図1の回収装置と同じであるが、電気透析装置14の前段に、膜ろ過装置44を設けた点で相違する。   The system diagram shown in FIG. 3 is a drawing showing a copper recovery apparatus according to another aspect of the present invention. The copper recovery device of this embodiment is basically the same as the recovery device of FIG. 1, but differs in that a membrane filtration device 44 is provided in the previous stage of the electrodialysis device 14.

この態様の装置では、膜ろ過による濃縮水を濃縮液配管46から系外に排出し、透過水を膜濾過透過水配管45を介し、図1の態様と同じく電気透析装置14に供給する。この態様では、濃縮水としてアルカリも排出されるため、アルカリの回収率が低くなり、アルカリ剤の補充所要量が多くなるが、酸性廃液中の不純物を膜処理の濃縮水として系外に排出するため、装置としての安定性が高く、少ない電流所要量で脱塩水を得られるという利点がある。   In the apparatus of this aspect, the concentrated water by membrane filtration is discharged out of the system from the concentrate pipe 46, and the permeate is supplied to the electrodialyzer 14 through the membrane filtration permeate pipe 45 as in the embodiment of FIG. In this embodiment, since alkali is also discharged as concentrated water, the alkali recovery rate is low and the replenishment amount of the alkaline agent is increased, but impurities in the acidic waste liquid are discharged out of the system as concentrated water for membrane treatment. Therefore, there is an advantage that demineralized water can be obtained with a high stability as a device and a small current requirement.

以上説明した本発明の銅回収方法や装置によれば、電気透析装置の設置とその稼動電力が必要にはなるが、酸化銅の純度の高い固形物を回収でき、また電気透析により回収したアルカリ性溶液や、酸化性溶液を再度利用することができるため、アルカリ剤や酸化剤の購入量のを低減でき、更に、廃棄物や排水量を大幅に低下させることができるため、経済性に優れたものということができる。   According to the copper recovery method and apparatus of the present invention described above, it is necessary to install an electrodialysis apparatus and its operating power, but it is possible to recover a high-purity solid of copper oxide and to recover the alkalinity recovered by electrodialysis. Since the solution and the oxidizing solution can be reused, the purchase amount of the alkaline agent and the oxidizing agent can be reduced, and furthermore, the amount of waste and drainage can be greatly reduced, so that the economy is excellent It can be said.

従って、本発明の銅回収方法や装置は、エッチング廃液や電解銅箔製造におけるメッキ浴液の更新廃液など、銅イオン濃度や塩濃度の高い廃液の処理が必要な場合に、特に有利に利用することができる。   Therefore, the copper recovery method and apparatus of the present invention is particularly advantageously used when it is necessary to treat a waste solution having a high copper ion concentration or salt concentration, such as an etching waste solution or a renewal waste solution of a plating bath in electrolytic copper foil production. be able to.

本発明の銅の回収装置の一態様を示す系統図である。It is a systematic diagram which shows the one aspect | mode of the copper collection | recovery apparatus of this invention. 本発明で用いる電気透析装置を模式的に示した図面である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which showed typically the electrodialysis apparatus used by this invention. 本発明の銅の回収装置の他の態様を示す系統図である。It is a systematic diagram which shows the other aspect of the copper collection | recovery apparatus of this invention.

符号の説明Explanation of symbols

1 … … 銅回収装置
2 … … 反応槽
3 … … 固液分離装置
4 … … 銅含有酸性廃液配管
5 … … 酸化剤供給配管
6 … … 混合配管
7 … … 流量調節器
8 … … アルカリ供給配管
9 … … pHメーター
10 … … 攪拌機
11 … … 移送ポンプ
12 … … 液面レベル計
13 … … 洗浄水供給配管
14 … … 電気透析装置
15 … … 脱塩水返送配管
16 … … 酸化剤溶液返送配管
17 … … アルカリ剤返送配管
18 … … 固形物精製装置
19 … … 分離液返送配管
20 … … 陰極
21 … … 第1アニオン交換膜
22 … … 第1カチオン交換膜
23 … … 第2アニオン交換膜
24 … … 第2カチオン交換膜
25 … … 陽極
26 … … 陰極室
27 … … アルカリ濃縮室
28 … … 脱塩室
29 … … 酸濃縮室
30 … … 陽極室
31 … … 繊維状アニオン交換体
32 … … 繊維状カチオン交換体
33 … … 気液分離装置
40 … … 固形物含有液配管
41 … … 分離液配管
42 … … 洗浄排水配管
43 … … 酸(廃液)配管
44 … … 膜ろ過装置
45 … … 膜ろ過透過水配管
46 … … 濃縮液配管(廃液)
DESCRIPTION OF SYMBOLS 1 ...... Copper recovery apparatus 2 ...... Reaction tank 3 ...... Solid-liquid separator 4 ...... Copper-containing acidic waste liquid piping 5 ...... Oxidant supply piping 6 ...... Mixing piping 7 ...... Flow controller 8 ...... Alkali supply piping 9…… pH meter 10…… Stirrer 11…… Transfer pump 12…… Liquid level meter 13…… Washing water supply piping 14…… Electrodialyzer 15…… Desalinated water return piping 16…… Oxidant solution return piping 17 ……… Alkaline agent return pipe 18…… Solids purification device 19…… Separation liquid return pipe 20…… Cathode 21…… First anion exchange membrane 22…… First cation exchange membrane 23…… Second anion exchange membrane 24… ... Second cation exchange membrane 25 ... ... Anode 26 ... ... Cathode chamber 27 ... ... Alkaline concentration chamber 28 ... ... Desalination chamber 29 ... ... Acid concentration chamber 30 ... ... Anode chamber 31 ... ... Fibrous anion exchanger 32 ... ... Fibrous cation exchanger 33 ... ... Gas-liquid separator 40 ... ... Solid-containing liquid pipe 41 ... ... Separation liquid pipe 42 ... ... Washing drain pipe 43 ... ... Acid (waste liquid) pipe 44 …… Membrane filtration device 45…… Membrane filtration permeate piping 46…… Concentrate piping (waste liquid)

Claims (10)

銅含有酸性廃液と酸化剤との混合液を、アルカリ剤溶液に、混合液注加後のアルカリ剤溶液のpHが一時的にでも7以下に下がらないよう管理しつつ注加し、生成する酸化銅を主成分とする固形物を固液分離により取得する銅含有酸性廃液からの銅の回収方法において、固液分離後の分離液及び/又は固液分離した固形物の洗浄排液を電気透析に付し、当該電気透析において生成した酸化性溶液を酸化剤の少なくとも一部として回収利用することを特徴とする銅含有酸性廃液からの銅の回収方法。   Oxidation produced by adding a mixed liquid of copper-containing acidic waste liquid and oxidizing agent to the alkaline agent solution while controlling so that the pH of the alkaline agent solution after pouring the mixed solution does not temporarily drop below 7 In a method for recovering copper from a copper-containing acidic waste liquid obtained by solid-liquid separation of solids containing copper as a main component, electrodialysis of the separated liquid after solid-liquid separation and / or the washing waste liquid of the solid-liquid separated solid is separated And a method for recovering copper from a copper-containing acidic waste liquid, wherein the oxidizing solution produced in the electrodialysis is recovered and used as at least part of an oxidizing agent. 銅含有酸性廃液と酸化剤との混合液を、アルカリ剤溶液に、混合液注加後のアルカリ剤溶液のpHが一時的にでも7以下に下がらないよう管理しつつ注加し、生成する酸化銅を主成分とする固形物を固液分離により取得する銅含有酸性廃液からの銅の回収方法において、固液分離後の分離液及び/又は固液分離後の固形物の洗浄排液を電気透析に付し、当該電気透析において生成したアルカリ性溶液をアルカリ剤の少なくとも一部として回収利用することを特徴とする銅含有酸性廃液からの銅の回収方法。   Oxidation produced by adding a mixed liquid of copper-containing acidic waste liquid and oxidizing agent to the alkaline agent solution while controlling so that the pH of the alkaline agent solution after pouring the mixed solution does not temporarily drop below 7 In a method for recovering copper from a copper-containing acidic waste liquid that obtains solids mainly composed of copper by solid-liquid separation, the separation liquid after solid-liquid separation and / or the washing waste liquid after solid-liquid separation is electrically A method for recovering copper from a copper-containing acidic waste liquid, characterized in that the alkaline solution produced by electrodialysis is recovered and used as at least part of an alkaline agent. 上記電気透析を、陰極と第1のアニオン交換膜で区画され、アニオン交換体を充填した陰極室、第1のアニオン交換膜と第1のカチオン交換膜で区画されるアルカリ濃縮室、第1のカチオン交換膜と第2のアニオン交換膜で区画される脱塩室、第2のアニオン交換膜と第2のカチオン交換膜で区画される酸濃縮室および第2のカチオン交換膜と陽極で区画され、カチオン交換体が充填された陽極室の順で構成された電気透析装置を用い、前記電気透析装置の脱塩室に固液分離後の分離液及び/又は固液分離後の固形物の洗浄排液を供給することにより行うものである請求項第1項または第2項記載の銅含有酸性廃液からの銅の回収方法。   The electrodialysis is divided into a cathode and a first anion exchange membrane, a cathode chamber filled with an anion exchanger, an alkali concentration chamber partitioned by a first anion exchange membrane and a first cation exchange membrane, Desalination chamber partitioned by cation exchange membrane and second anion exchange membrane, acid concentration chamber partitioned by second anion exchange membrane and second cation exchange membrane, and partitioned by second cation exchange membrane and anode Using an electrodialyzer configured in the order of an anode chamber filled with a cation exchanger, washing of the separated liquid after solid-liquid separation and / or solid matter after solid-liquid separation is performed in the desalting chamber of the electrodialyzer. The method for recovering copper from a copper-containing acidic waste liquid according to claim 1 or 2, which is carried out by supplying a drainage liquid. 上記酸化性溶液が、電気透析装置の陽極室で生成したものである請求項第1項または第3項記載の銅含有酸性廃液からの銅の回収方法。   The method for recovering copper from a copper-containing acidic waste liquid according to claim 1 or 3, wherein the oxidizing solution is produced in an anode chamber of an electrodialyzer. 上記アルカリ性溶液が、電気透析装置のアルカリ濃縮室で生成したものである請求項第2項または第3項記載の銅含有酸性廃液からの銅の回収方法。   The method for recovering copper from a copper-containing acidic waste liquid according to claim 2 or 3, wherein the alkaline solution is produced in an alkali concentration chamber of an electrodialyzer. 上記電気透析に先立ち、膜処理を行なう請求項第1項ないし第5項の何れかの項記載の銅含有酸性廃液からの銅の回収方法。   The method for recovering copper from a copper-containing acidic waste liquid according to any one of claims 1 to 5, wherein membrane treatment is performed prior to the electrodialysis. 上記電気透析において、前記アルカリ濃縮室、酸濃縮室および陰極室には、脱塩室からの流出水または純水を供給し、前記陽極室には気液分離後の陰極室流出水または純水を供給する請求項第3項ないし第6項の何れかの項記載の銅含有酸性廃液からの銅の回収方法。   In the electrodialysis, the alkali concentration chamber, the acid concentration chamber, and the cathode chamber are supplied with effluent water or pure water from a desalting chamber, and the anode chamber is subjected to gas chamber separation after effluent or pure water. A method for recovering copper from a copper-containing acidic waste liquid according to any one of claims 3 to 6. 銅含有酸性廃液と酸化剤との混合液とアルカリ剤溶液とを反応させ、酸化銅を主成分とする固形物として析出させる反応槽と、この固形物を分離回収する固液分離装置と、酸化剤と銅含有酸性廃液とを混合して反応槽に注加する装置と、固液分離装置からの分離液を処理する電気透析装置とを含み、反応槽と固液分離装置とは固形物を含むアルカリ性懸濁液を移送可能に連通され、固液分離装置と電気透析装置は、固液分離装置からの分離液及び/又は固液分離後の固形物の洗浄排液を電気透析装置の脱塩室に供給可能に連通され、更に、電気透析装置の陽極室で生成した酸化性溶液を酸化剤配管へ返送するための配管と、アルカリ濃縮室で生成したアルカリ性溶液をアルカリ剤配管へ返送するための配管を設けたことを特徴とする銅含有酸性廃液からの銅の回収装置。   A reaction tank for reacting a mixed solution of copper-containing acidic waste liquid and an oxidizing agent with an alkaline agent solution to precipitate the solid as a main component of copper oxide, a solid-liquid separator for separating and recovering the solid, and an oxidation Including a device for mixing the agent and the copper-containing acidic waste liquid and pouring it into the reaction tank, and an electrodialyzer for processing the separated liquid from the solid-liquid separator, and the reaction tank and the solid-liquid separator are solid substances. The alkaline suspension containing the mixture is communicated so that it can be transported. The solid-liquid separation device and the electrodialysis device remove the separation liquid from the solid-liquid separation device and / or the washing waste liquid of the solid matter after solid-liquid separation from the electrodialysis device. It is connected to the salt chamber so that it can be supplied, and further, the piping for returning the oxidizing solution generated in the anode chamber of the electrodialyzer to the oxidizing agent piping and the alkaline solution generated in the alkali concentrating chamber are returned to the alkaline agent piping. Copper-containing acid characterized by providing piping for Recovery system of copper from the waste. 上記電気透析装置が、陰極と第1のアニオン交換膜で区画され、アニオン交換体を充填した陰極室、第1のアニオン交換膜と第1のカチオン交換膜で区画されるアルカリ濃縮室、第1のカチオン交換膜と第2のアニオン交換膜で区画される脱塩室、第2のアニオン交換膜と第2のカチオン交換膜で区画される酸濃縮室および第2のカチオン交換膜と陽極で区画され、カチオン交換体が充填された陽極室の順で構成されたものである請求項第8項記載の銅の回収装置。   The electrodialysis apparatus is partitioned by a cathode and a first anion exchange membrane and filled with an anion exchanger, an alkaline concentration chamber partitioned by a first anion exchange membrane and a first cation exchange membrane, a first Desalination chamber partitioned by the cation exchange membrane and the second anion exchange membrane, an acid concentration chamber partitioned by the second anion exchange membrane and the second cation exchange membrane, and a partition by the second cation exchange membrane and the anode 9. The copper recovery apparatus according to claim 8, wherein the copper recovery apparatus is configured in the order of an anode chamber filled with a cation exchanger. 上記固液分離装置と上記電気透析装置の間に、分離水を処理する膜処理装置を有する請求項第8項または第9項記載の銅の回収装置。
The copper recovery apparatus according to claim 8 or 9, further comprising a membrane treatment device for treating separated water between the solid-liquid separation device and the electrodialysis device.
JP2008229001A 2008-09-05 2008-09-05 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid Active JP5102157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229001A JP5102157B2 (en) 2008-09-05 2008-09-05 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229001A JP5102157B2 (en) 2008-09-05 2008-09-05 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid

Publications (2)

Publication Number Publication Date
JP2010059521A JP2010059521A (en) 2010-03-18
JP5102157B2 true JP5102157B2 (en) 2012-12-19

Family

ID=42186633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229001A Active JP5102157B2 (en) 2008-09-05 2008-09-05 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid

Country Status (1)

Country Link
JP (1) JP5102157B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307478B2 (en) * 2008-08-21 2013-10-02 水ing株式会社 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
KR100972507B1 (en) 2010-04-28 2010-07-26 김웅 A manufacturing method and apparatus of cu sludge cake in industrial wastewater
JP5249305B2 (en) * 2010-10-29 2013-07-31 水ing株式会社 Electronic component factory waste liquid treatment method and apparatus therefor
RU2476624C1 (en) * 2011-12-13 2013-02-27 Николай Петрович Куприков Titanium electrode manufacturing method
WO2013156600A1 (en) * 2012-04-20 2013-10-24 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Improved dilute chemical reaction process with membrane separation step
JP2013244430A (en) * 2012-05-24 2013-12-09 Swing Corp Method and apparatus for treating copper chloride-containing acidic waste liquid
CN104152905B (en) * 2014-06-24 2017-02-15 深圳市新锐思环保科技有限公司 Acidic copper chloride etching liquid electrolytic regeneration recycling and copper plate recovery device and method
RU2603933C1 (en) * 2015-05-15 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" Method of spent alkaline galvanic copper plating electrolyte regenerating
CN109868476B (en) * 2019-01-28 2021-04-20 湖北永绍科技股份有限公司 Method for recycling etching liquid containing copper ions and nitrate radicals
CN110422948A (en) * 2019-07-22 2019-11-08 东莞市逸轩环保科技有限公司 Copper sulphate Sewage treatment metallic copper treatment process is electroplated
CN111925026A (en) * 2020-07-03 2020-11-13 昆山中环实业有限公司 Treatment process of acidic copper-containing etching waste liquid
CN112520915B (en) * 2020-11-18 2024-02-02 合肥工业大学 Anode electrodialysis method for synchronously recycling nitrogen and phosphorus in biogas slurry and removing antibiotics
CN112758958B (en) * 2020-12-21 2023-03-07 贵州红星电子材料有限公司 Method for removing chloride ions in sodium sulfate solution
CN114349240A (en) * 2021-11-19 2022-04-15 苏州金渠环保科技有限公司 Resource utilization method of copper in etching waste liquid
CN115159755A (en) * 2022-06-20 2022-10-11 天津正达科技有限责任公司 Copper chloride etching solution recycling treatment system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291608A (en) * 1987-05-22 1988-11-29 Tokuyama Soda Co Ltd System for regenerating acidic waste liquid
JPH07100337A (en) * 1993-10-07 1995-04-18 Kawasaki Steel Corp Treatment of hardly water-soluble metal salt
JP3519113B2 (en) * 1994-02-07 2004-04-12 株式会社神鋼環境ソリューション Method and apparatus for treating liquid to be treated such as waste liquid
JP3525203B2 (en) * 2000-12-28 2004-05-10 独立行政法人産業技術総合研究所 Method and apparatus for recovering copper oxide from copper chloride-containing etching waste liquid
JP2003213346A (en) * 2002-01-18 2003-07-30 National Institute Of Advanced Industrial & Technology Method of removing and recovering copper by treating waste water
JP4065386B2 (en) * 2002-04-17 2008-03-26 株式会社荏原製作所 Electrodialysis machine

Also Published As

Publication number Publication date
JP2010059521A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5102157B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
KR101440012B1 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance
JP5307478B2 (en) Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
CN102459096B (en) Method for recovering water and metals from plating wastewater resulting from washing
JP6223442B2 (en) Method and apparatus for producing or recovering hydrochloric acid from a metal salt solution
JP5215111B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP5431998B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP4828420B2 (en) Machining fluid quality control device and method, and electrical discharge machining device
JP6511040B2 (en) Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution
JP5808131B2 (en) Process and recovery method for copper-containing acidic waste liquid and apparatus therefor
WO2008005641A2 (en) Formulation of electrolyte solutions for electrochemical chlorine dioxide generators
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
WO2013176111A1 (en) Processing method and apparatus for copper chloride-containing acidic waste liquids
WO1993002227A1 (en) Process and apparatus for treating fluoride containing acid solutions
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2008162823A (en) Method for producing cupric oxide from waste copper etching solution
JP5808132B2 (en) Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor
KR101392243B1 (en) Deodorizing treatment system having wastewater recycling device
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
JP5954687B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005042183A (en) Treatment method for waste solution of electroless plating
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP4121064B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP4447493B2 (en) Surfactant-containing wastewater treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250