JP2833466B2 - Treatment method for metal-containing wastewater - Google Patents

Treatment method for metal-containing wastewater

Info

Publication number
JP2833466B2
JP2833466B2 JP3577894A JP3577894A JP2833466B2 JP 2833466 B2 JP2833466 B2 JP 2833466B2 JP 3577894 A JP3577894 A JP 3577894A JP 3577894 A JP3577894 A JP 3577894A JP 2833466 B2 JP2833466 B2 JP 2833466B2
Authority
JP
Japan
Prior art keywords
sludge
treated water
metal
tank
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3577894A
Other languages
Japanese (ja)
Other versions
JPH07241572A (en
Inventor
英世 山内
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURITA KOGYO KK
Original Assignee
KURITA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURITA KOGYO KK filed Critical KURITA KOGYO KK
Priority to JP3577894A priority Critical patent/JP2833466B2/en
Publication of JPH07241572A publication Critical patent/JPH07241572A/en
Application granted granted Critical
Publication of JP2833466B2 publication Critical patent/JP2833466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属含有排水の処理方法
に係り、特に、金属イオンを含有する排水にアルカリを
添加して不溶化物を生成させ、これを汚泥として処理水
と分離する方法であって、アルカリを該分離した汚泥の
一部と混合して排水に添加する処理方法において、運転
開始時の処理水質の悪化を防止して、高水質処理水を安
定に得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating metal-containing wastewater, and more particularly, to a method for adding an alkali to wastewater containing metal ions to generate insolubilized substances and separating the insolubles from the treated water as sludge. In addition, the present invention relates to a method for treating alkali water mixed with a part of the separated sludge and adding it to wastewater, in which the quality of treated water at the start of operation is prevented from deteriorating, and a method for stably obtaining high-quality treated water.

【0002】[0002]

【従来の技術】金属含有排水の処理において、濃縮性に
富み、脱水性に優れた高濃度金属水酸化物汚泥を得る方
法として、HDS法(High Density So
lid法:米国特許第3,738,932号、特公昭6
1−156号公報)がある。この方法は、金属含有排水
にアルカリ剤を直接添加せずに、排水の処理で分離され
る汚泥の一部と混合して添加する方法であり、アルカリ
汚泥法とも称される。
2. Description of the Related Art In the treatment of metal-containing wastewater, the HDS method (High Density Sodium) is used as a method for obtaining high-concentration metal hydroxide sludge rich in concentration and excellent in dehydration.
lid method: U.S. Pat. No. 3,738,932;
No. 1-156). This method is a method in which an alkali agent is not added directly to a metal-containing wastewater, but is added by mixing with a part of sludge separated in the treatment of wastewater, and is also called an alkali sludge method.

【0003】[0003]

【発明が解決しようとする課題】HDS法はFe2+,F
3+,Cu2+,Al3+,Cu2+,Zn2+等の溶解金属成
分を含有する排水の処理に適用されているが、従来の中
和・凝集沈殿法に比較して、得られる処理水中のSSが
多いため、処理水の透視度が劣る、着色が強いといった
問題点があった。特に、この処理水水質の悪化の現象
は、処理開始時の装置の立上げ運転時に顕著に現れる傾
向があり、例えば、立上げ後の定常運転時に処理水の色
度が20〜30度である排水の処理において、立上げ時
には色度が200〜400度となる場合があった。
The HDS method uses Fe 2+ , F
It has been applied to the treatment of wastewater containing dissolved metal components such as e 3+ , Cu 2+ , Al 3+ , Cu 2+ , Zn 2+, etc. Since the SS in the treated water obtained is large, there are problems such as poor transparency of the treated water and strong coloring. In particular, the phenomenon of the deterioration of the treated water quality tends to appear remarkably during the start-up operation of the apparatus at the start of the treatment. For example, the chromaticity of the treated water is 20 to 30 degrees during the steady operation after the start-up. In the treatment of wastewater, the chromaticity may be 200 to 400 degrees at startup.

【0004】この処理水の色度を改善する方法として、
処理水を沈殿濃縮汚泥と混合して更に凝集沈殿処理する
方法もあるが、この方法は処理フローが複雑で、分配液
量の制御が困難であるため、工業的に有利な方法とは言
えない。
As a method for improving the chromaticity of the treated water,
There is also a method of mixing the treated water with the sedimentation-concentrated sludge for further coagulation and sedimentation treatment. However, this method is not industrially advantageous because the treatment flow is complicated and the amount of liquid distribution is difficult to control. .

【0005】本発明は上記従来の問題点を解決し、HD
S法により金属含有排水を処理する方法において、立上
げ運転時の処理水水質悪化を防止して、高水質処理水を
安定に得る金属含有排水の処理方法を提供することを目
的とする。
[0005] The present invention solves the above-mentioned conventional problems and provides an HD
It is an object of the present invention to provide a method for treating metal-containing wastewater in a method for treating metal-containing wastewater by the S method, in which the quality of treated water during a start-up operation is prevented from deteriorating and stable high-quality treated water is obtained.

【0006】[0006]

【課題を解決するための手段】本発明の金属含有排水の
処理方法は、金属含有排水にアルカリを添加して不溶化
物を生成させ、これを汚泥として処理水と分離し、アル
カリは該分離した汚泥の一部と混合して得られる混合物
として前記排水に添加する方法において、処理開始後、
下記式で求められる返送比Rの値が8に到達した時点か
ら1〜3日間はRが8を超えないように、アルカリと混
合する前記分離した汚泥の量を制御し、その後R=12
〜20で処理を行なうことを特徴とする。
According to the method for treating metal-containing wastewater of the present invention, an alkali is added to a metal-containing wastewater to form an insolubilized product, which is separated as sludge from treated water, and the alkali is separated. In the method of adding to the wastewater as a mixture obtained by mixing with a part of the sludge, after the start of treatment,
The amount of the separated sludge mixed with the alkali is controlled so that R does not exceed 8 for 1 to 3 days after the value of the return ratio R obtained by the following formula reaches 8, and then R = 12
It is characterized in that the processing is performed at 20.

【0007】[0007]

【数2】 (Equation 2)

【0008】[0008]

【作用】HDS法による金属含有排水の処理において、
処理装置の立上げ運転時の返送汚泥濃度は、運転経過時
間と共に数g/lから徐々に上昇し、最終的には、数百
g/l(通常の場合100〜300g/l程度)とな
る。
[Action] In the treatment of metal-containing wastewater by the HDS method,
The return sludge concentration during the start-up operation of the treatment apparatus gradually increases from several g / l with the elapse of the operation, and finally reaches several hundred g / l (normally about 100 to 300 g / l). .

【0009】ところで、HDS法において、原水の中和
により生成するSS量(kg/hr)は下記式(1)に
より表され、一方、返送汚泥量は下記式(2)により表
される。
In the HDS method, the amount of SS (kg / hr) generated by neutralizing raw water is represented by the following equation (1), while the amount of returned sludge is represented by the following equation (2).

【0010】[0010]

【数3】 (Equation 3)

【0011】従って、返送比Rは下記(3)式により表
わされる。
Therefore, the return ratio R is represented by the following equation (3).

【0012】[0012]

【数4】 (Equation 4)

【0013】本発明においては、運転開始の立上げ時、
返送比RがR=1〜2からR=8までは、返送汚泥の経
時的な濃度上昇にまかせた運転とする。即ち、返送汚泥
の流量を特に制御することなく所定(一定)にしてお
く。これにより、汚泥濃度の上昇に連動してRが上がっ
てくる。
In the present invention, at the time of start-up of operation start,
When the return ratio R is from R = 1 to 2 to R = 8, the operation is made to depend on the concentration of returned sludge over time. That is, the flow rate of the returned sludge is set to a predetermined (constant) value without any particular control. As a result, R increases in association with the increase in the sludge concentration.

【0014】処理開始後、返送比Rが上昇して、Rの値
が8に到達した時点から少なくとも1日間、好ましくは
3日間は、Rが8を超えないように、返送汚泥ポンプの
吐出量を制御するなどして、アルカリと混合する分離汚
泥量を調節する。
After the start of the treatment, the return ratio R increases and the discharge amount of the return sludge pump is controlled so that R does not exceed 8 for at least one day, preferably 3 days, from the time when the value of R reaches 8. The amount of separated sludge mixed with the alkali is controlled by controlling the amount of sludge.

【0015】その後は、返送汚泥ポンプの吐出量を増大
して、R=12〜20で運転を継続する。
Thereafter, the discharge amount of the return sludge pump is increased, and the operation is continued at R = 12 to 20.

【0016】前記式(3)において、原水の通液量Q及
び返送汚泥の送液量qは、それぞれ原水ポンプ及び返送
汚泥ポンプの吐出量により設定される。また、原水の中
和により生成するSS濃度aは原水の水質により求めら
れる。従って、返送汚泥の濃度bを検出し、この検出値
より算出される返送比Rが上記範囲となるように、返送
汚泥の返送量qを調節すれば良い。
In the above equation (3), the flow rate Q of the raw water and the flow rate q of the returned sludge are set by the discharge rates of the raw water pump and the returned sludge pump, respectively. Further, the SS concentration a generated by the neutralization of the raw water is obtained from the quality of the raw water. Therefore, the concentration b of the returned sludge may be detected, and the return amount q of the returned sludge may be adjusted so that the return ratio R calculated from the detected value is within the above range.

【0017】このように、返送比Rに基いて制御を行な
うことにより、立上げ運転時の処理水質の悪化を最少限
に抑制することが可能である。
As described above, by performing the control based on the return ratio R, it is possible to minimize the deterioration of the treated water quality during the start-up operation.

【0018】なお、Rが8を超えないように制御した
後、R=12〜20で運転を開始した直後に、若干、処
理水が悪化する場合があるが、これはポリマーの添加量
を一時的に増加させることで十分に対応可能である。
Incidentally, after controlling so that R does not exceed 8, immediately after the operation is started at R = 12 to 20, the treated water may be slightly deteriorated. It is possible to respond sufficiently by increasing the number of times.

【0019】[0019]

【実施例】以下に図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】図1は本発明の金属含有排水の処理方法の
一実施例を示す系統図である。図1において、1は原水
槽、2は予備中和槽、3は中和槽、4は凝集槽、5は沈
殿槽、6は反応槽、7はアルカリ貯槽、8はポリマー槽
である。また、2A,3A,4A,6Aは攪拌機、2
B,3BはpH計、P1 ,P2 ,P3 ,P4 はポンプ、
Vはバルブ、10は空気供給管、11〜22の各符号は
配管である。
FIG. 1 is a system diagram showing one embodiment of the method for treating metal-containing wastewater of the present invention. In FIG. 1, 1 is a raw water tank, 2 is a pre-neutralization tank, 3 is a neutralization tank, 4 is a coagulation tank, 5 is a sedimentation tank, 6 is a reaction tank, 7 is an alkaline storage tank, and 8 is a polymer tank. In addition, 2A, 3A, 4A and 6A are stirrers,
B and 3B are pH meters, P 1 , P 2 , P 3 and P 4 are pumps,
V is a valve, 10 is an air supply pipe, and 11 to 22 are pipes.

【0021】本実施例の方法において、原水である金属
含有排水は、配管11、原水槽1及び配管12を経て予
備中和槽2に導入される。この予備中和槽2において、
原水は、配管18からの返送汚泥により好ましくはpH
4〜5に調整される。予備中和槽2の流出水は、配管1
3より中和槽3に導入される。中和槽3には、反応槽6
にて配管19からの返送汚泥と配管21を経てアルカリ
貯槽7から送給されるアルカリとが混合されて調製され
た混合物(以下「HDS汚泥」と称す。)が、配管22
より供給されている。この中和槽3のpH計3Bは、ア
ルカリ供給ポンプP3 に連動し、HDS汚泥の添加によ
り槽内液が好ましくはpH7〜9となるように、制御さ
れている。
In the method of this embodiment, the metal-containing wastewater as raw water is introduced into the pre-neutralization tank 2 via the pipe 11, the raw water tank 1 and the pipe 12. In this preliminary neutralization tank 2,
The raw water is preferably returned to pH by the returned sludge from the pipe 18.
Adjusted to 4-5. The effluent from the pre-neutralization tank 2 is
3 and is introduced into the neutralization tank 3. The neutralization tank 3 has a reaction tank 6
A mixture (hereinafter referred to as “HDS sludge”) prepared by mixing the returned sludge from the pipe 19 with the alkali fed from the alkali storage tank 7 via the pipe 21 is supplied to the pipe 22.
Supplied by PH meter 3B of the neutralization tank 3, in conjunction with the alkali supply pump P 3, intracisternal solution preferably by the addition of HDS sludge so that pH 7-9, are controlled.

【0022】中和槽3の流出液は、配管14より凝集槽
4に導入され、ポリマー槽8より配管20を経て注入さ
れるポリマーにより凝集処理される。このポリマー注入
量は通常の場合1〜5ppm程度とされる。
The effluent from the neutralization tank 3 is introduced into the coagulation tank 4 from the pipe 14, and is subjected to coagulation by the polymer injected from the polymer tank 8 through the pipe 20. This polymer injection amount is usually about 1 to 5 ppm.

【0023】凝集処理液は次いで配管15より沈殿槽5
に導入され、固液分離される。分離水は処理水として配
管16より系外へ排出され、沈降汚泥は、配管17より
抜き出され、一部は配管18より予備中和槽2へ、残部
は配管19を経て反応槽6に返送される。
The coagulation solution is then supplied from the pipe 15 to the settling tank 5.
And separated into solid and liquid. Separated water is discharged out of the system through a pipe 16 as treated water, and settled sludge is extracted through a pipe 17, a part of which is returned to a pre-neutralization tank 2 through a pipe 18, and the rest is returned to a reaction tank 6 through a pipe 19. Is done.

【0024】本発明においては、装置の運転開始時の立
上げ運転期間において、この返送汚泥濃度を連続的又は
間欠的に測定し、原水の通液量Q、原水の中和により生
成するSS濃度a及び返送汚泥濃度bとから、前記式
(3)により算出される返送比Rが下記範囲I〜III と
なるように、返送汚泥の送液量q(ポンプP2 の吐出
量)を制御する。
In the present invention, during the start-up operation period at the start of operation of the apparatus, the returned sludge concentration is measured continuously or intermittently, and the flow rate Q of raw water and the SS concentration generated by neutralization of raw water are measured. from the a and return sludge concentration b, return ratio R is calculated so that the following ranges I to III, to control the feed volume q of return sludge (discharge amount of the pump P 2) by the equation (3) .

【0025】I 運転開始から返送比Rが8に到達する
までの期間:返送汚泥の送液量は特に制御せず、所定の
送液量とする。
I Period from the start of operation until the return ratio R reaches 8: The amount of the returned sludge is not particularly controlled, and is set to a predetermined amount.

【0026】II 返送比Rが8に到達した時点から、そ
の後1〜3日間の間:返送比Rが8以下となるように、
返送汚泥の送液量を制御する。
II From the point in time when the return ratio R reaches 8, and for the next 1 to 3 days:
Controls the amount of returned sludge.

【0027】III 上記IIの後:返送汚泥の送液量を制御
せず、所定値に戻す。
III After the above-mentioned II: the return amount of the returned sludge is returned to a predetermined value without being controlled.

【0028】このような制御を行なうことにより、立上
げ運転時の処理水水質を良好なものとして、安定な処理
を行なうことができる。
By performing such control, the quality of the treated water during the start-up operation can be made good and a stable treatment can be performed.

【0029】なお、上記IIからIII に移行した時点にお
いて、一時的に処理水水質の悪化がみられるが、この悪
化は、この移行時点におけるポリマー注入量を増加させ
ることにより効果的に防止することができる。なお、こ
の移行時のポリマー注入量は、定常時の1.5〜2倍程
度で十分である。
At the time of the transition from II to III, the quality of the treated water temporarily deteriorates, but this deterioration must be effectively prevented by increasing the polymer injection amount at this transition. Can be. In this case, the amount of the injected polymer at the time of this transition is about 1.5 to 2 times that of the steady state.

【0030】なお、本発明において、処理対象となる金
属含有排水としては、重金属イオンや、重金属とキレー
ト剤との重金属錯体等を含む排水であり、例えばメッキ
排水などが挙げられる。重金属としては、銅、亜鉛、ニ
ッケル、カドミウム、マンガン、鉛、鉄等がある。一般
に、重金属錯体を含む排水は酸性のものが多いが、本発
明において、処理対象排水のpHは4以下の酸性排水で
あり、pHの高い排水においてはpHを一旦2〜3に調
整して重金属をイオン化する必要がある。
In the present invention, the metal-containing wastewater to be treated is a wastewater containing a heavy metal ion or a heavy metal complex of a heavy metal and a chelating agent, such as plating wastewater. Heavy metals include copper, zinc, nickel, cadmium, manganese, lead, iron and the like. Generally, wastewater containing a heavy metal complex is often acidic, but in the present invention, the pH of the wastewater to be treated is an acidic wastewater of 4 or less. Need to be ionized.

【0031】また、これらの排水に添加するアルカリと
しては、水酸化ナトリウム、消石灰等のアルカリ剤が挙
げられ、ポリマーとしてはポリアクリルアミド、その部
分加水分解物等が挙げられる。
The alkali added to these wastewaters includes alkali agents such as sodium hydroxide and slaked lime, and the polymer includes polyacrylamide and partially hydrolyzed products thereof.

【0032】以下に具体的な実施例及び比較例を挙げて
本発明をより詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples.

【0033】実施例1 図1に示す本発明の方法に従って、硫酸第二鉄1200
gと硫酸(98%濃度)25mlを水道水200リット
ルに溶解したものを原水として処理を行なった。この原
水の中和により発生するSS濃度aは2520mg/l
である。装置仕様及び運転条件は下記の通りとした。ア
ルカリとしては消石灰を用い、ポリマーとしてはポリア
クリルアミド部分加水分解物を用いた。
Example 1 According to the method of the present invention shown in FIG.
g and 25 ml of sulfuric acid (98% concentration) dissolved in 200 liters of tap water were treated as raw water. The SS concentration a generated by the neutralization of the raw water is 2520 mg / l.
It is. The device specifications and operating conditions were as follows. Slaked lime was used as the alkali, and polyacrylamide partially hydrolyzed product was used as the polymer.

【0034】反応槽容量:500ml 予備中和槽容量:500ml 中和槽容量:1000ml 沈殿槽容量:約3000ml(直径150mm) 予備中和槽pH:4.5 中和槽pH:8.5 ポリマー注入量:1ppm 原水通液量Q=2000ml/hr及び返送汚泥量q=
800ml/hrで連続通水し、その間、汚泥濃度(返
送汚泥濃度b)を適宜検出し、返送比Rを算出すると共
に、処理水の色度を測定し、返送比Rとの関係を調べ
た。
Reaction tank capacity: 500 ml Pre-neutralization tank capacity: 500 ml Neutralization tank capacity: 1000 ml Precipitation tank capacity: about 3000 ml (diameter 150 mm) Pre-neutralization tank pH: 4.5 Neutralization tank pH: 8.5 Polymer injection Amount: 1 ppm Raw water flow rate Q = 2000 ml / hr and returned sludge quantity q =
Water was continuously passed at 800 ml / hr, during which time the sludge concentration (returned sludge concentration b) was appropriately detected, the return ratio R was calculated, the chromaticity of the treated water was measured, and the relationship with the return ratio R was examined. .

【0035】その結果、処理開始後、返送比R=3では
処理水の色度は30度であったが、返送比R=6では処
理水の色度は50度に悪化し、返送比R=8では処理水
の色度は更に80度にまで悪化した。
As a result, after the processing started, the chromaticity of the treated water was 30 degrees at the return ratio R = 3, but the chromaticity of the treated water was deteriorated to 50 degrees at the return ratio R = 6. At = 8, the chromaticity of the treated water further deteriorated to 80 degrees.

【0036】そこで、返送比Rが8を超えないように、
返送汚泥量を制御した結果、返送比8に到達した直後に
80度であった処理水の色度が12時間後に60度、2
4時間後に50度、48時間後に40度、72時間後に
35度と徐々に低下した。
Therefore, the return ratio R does not exceed 8.
As a result of controlling the amount of returned sludge, the chromaticity of the treated water, which was 80 degrees immediately after reaching the return ratio of 8, changed to 60 degrees after 12 hours,
The temperature gradually decreased to 50 degrees after 4 hours, 40 degrees after 48 hours, and 35 degrees after 72 hours.

【0037】そこで、72時間(3日間)後、処理水の
色度が35度に低下した時点で、返送比R=12となる
ように返送汚泥量を変更したところ、処理水の色度は3
5度から90度に悪化した。しかし、このとき、ポリマ
ーの注入量を2ppmとすることにより処理水の色度を
40度とすることができることが、別途ポリマー注入量
2ppmで同様に実施した結果から確認することができ
た。この返送比R<8からR=12に変更したときの色
度の上昇は一時的な現象であり、その後は、R=12に
おいて、ポリマー注入量1ppmで処理水の色度は35
〜40度程度を保持することができた。
Then, after 72 hours (3 days), when the chromaticity of the treated water decreased to 35 degrees, the amount of returned sludge was changed so that the return ratio R = 12. 3
Degraded from 5 degrees to 90 degrees. However, at this time, it was confirmed that the chromaticity of the treated water could be set to 40 degrees by setting the amount of the injected polymer to 2 ppm from the result of the same experiment separately performed at the amount of the injected polymer of 2 ppm. The increase in chromaticity when this return ratio is changed from R <8 to R = 12 is a temporary phenomenon. Thereafter, at R = 12, the chromaticity of the treated water becomes 35 at a polymer injection amount of 1 ppm.
About 40 degrees could be maintained.

【0038】なお、本実施例における返送比、処理水色
度(ジャーテストにて3分静置後に求めた値)及び汚泥
濃度の経時変化は各々図2、図3、図4に示す通りであ
った。
The return ratio, the chromaticity of the treated water (value obtained after standing for 3 minutes in the jar test) and the sludge concentration over time in this embodiment are as shown in FIGS. 2, 3 and 4, respectively. Was.

【0039】比較例1 返送汚泥量q=800ml/hrで一定とし、返送汚泥
量の制御を行なわず、通水開始後、返送比R=15まで
返送汚泥の経時的な濃度上昇に任せて返送比を上げたこ
と以外は実施例1と同様に処理を行なった。
COMPARATIVE EXAMPLE 1 Returned sludge amount was fixed at q = 800 ml / hr, returned sludge amount was not controlled, and after the start of water supply, the returned sludge was allowed to increase in concentration over time until a return ratio R = 15. Processing was performed in the same manner as in Example 1 except that the ratio was increased.

【0040】その結果、返送比R=8までは、処理水質
は比較的良好で色度は50度以下であったが、返送比R
=10となった24時間経過後付近から、処理水の色度
は300〜400度に急激に悪化し、この色度の悪化は
ポリマー注入量を2ppmとしても120度付近にしか
改善できないことが、別途ポリマー注入量2ppmで同
様に実施した結果から確認することができた。
As a result, the treated water quality was relatively good and the chromaticity was not more than 50 degrees up to the return ratio R = 8.
= 24, the chromaticity of the treated water rapidly deteriorates to 300 to 400 degrees, and this chromaticity deterioration can only be improved to around 120 degrees even if the polymer injection amount is 2 ppm. It was confirmed from the results of the same operation performed separately at a polymer injection amount of 2 ppm.

【0041】12時間経過後以降、24時間後、48時
間後、60時間後の各処理水について、凝集沈殿処理を
ジャーテストにて実施したところ、例えば、60時間後
の処理水の色度は、ポリマーを3ppm添加しても80
度程度にしか下げることはできず、単にポリマー注入量
を増加しても対処し得ない種類の処理水水質の悪化であ
ることが確認された。
After the elapse of 12 hours, 24 hours, 48 hours, and 60 hours, the treated water was subjected to coagulation sedimentation treatment by a jar test. For example, the chromaticity of the treated water after 60 hours was as follows: 80% even if 3 ppm of polymer is added.
It was confirmed that the quality of the treated water deteriorated, which could not be dealt with by simply increasing the amount of injected polymer.

【0042】その後、処理開始72時間後付近から、処
理水水質の回復がみられ、色度50度前後の水質が得ら
れるようになった。これは、HDS汚泥の熟成が進行し
たためと推測される。
Thereafter, from around 72 hours after the start of the treatment, the quality of the treated water was recovered, and a water quality with a chromaticity of about 50 degrees was obtained. This is presumed to be due to the aging of HDS sludge.

【0043】本比較例における返送比、処理水色度(ジ
ャーテストにて3分静置後に求めた値)及び汚泥濃度の
経時変化は各々図5、図6、図7に示す通りであった。
The time-dependent changes in the return ratio, the chromaticity of the treated water (value obtained after standing for 3 minutes in the jar test) and the sludge concentration in this comparative example were as shown in FIGS. 5, 6 and 7, respectively.

【0044】この比較例において、処理水水質の悪化が
起きるのは装置の立上げ運転時1〜2日間程度であり、
その後はある程度の回復がみられるが、このように装置
の立上げ運転時のみであっても、色度が1〜2日間連続
して100を超える場合には、処理水を放流することが
できず、別途処理が必要になるため、立上げ運転時の処
理水水質の改善は極めて重要である。
In this comparative example, the quality of the treated water deteriorates during the start-up operation of the apparatus for about 1 to 2 days.
After that, a certain degree of recovery is seen, but even if the chromaticity exceeds 100 continuously for 1 to 2 days, the treated water can be discharged even only during the start-up operation of the apparatus. Therefore, it is extremely important to improve the quality of the treated water during the start-up operation because it requires separate treatment.

【0045】[0045]

【発明の効果】以上詳述した通り、本発明の金属含有排
水の処理方法によれば、金属イオンを含有する排水にア
ルカリを添加して不溶化物を生成させ、これを汚泥とし
て処理水と分離する方法であって、アルカリを該分離し
た汚泥の一部と混合して排水に添加する処理方法におい
て、運転開始時の処理水質の悪化を防止して、高水質処
理水を安定に得ることが可能とされる。
As described above in detail, according to the method for treating metal-containing wastewater of the present invention, an alkali is added to wastewater containing metal ions to generate insolubilized substances, which are separated as sludge from treated water. A method in which an alkali is mixed with a part of the separated sludge and added to wastewater. In the treatment method, it is possible to prevent deterioration of treated water quality at the start of operation and to obtain high-quality treated water stably. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明の金属含有排水の処理方法の一
実施例を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of a method for treating metal-containing wastewater of the present invention.

【図2】実施例1における返送比の経時変化を示すグラ
フである。
FIG. 2 is a graph showing a change over time in a return ratio in Example 1.

【図3】実施例1における処理水の色度の経時変化を示
すグラフである。
FIG. 3 is a graph showing the change over time in the chromaticity of treated water in Example 1.

【図4】実施例1における汚泥濃度の経時変化を示すグ
ラフである。
FIG. 4 is a graph showing the change over time in the sludge concentration in Example 1.

【図5】比較例1における返送比の経時変化を示すグラ
フである。
FIG. 5 is a graph showing a change over time in a return ratio in Comparative Example 1.

【図6】比較例1における処理水の色度の経時変化を示
すグラフである。
FIG. 6 is a graph showing the change over time in the chromaticity of treated water in Comparative Example 1.

【図7】比較例1における汚泥濃度の経時変化を示すグ
ラフである。
FIG. 7 is a graph showing the change over time in the sludge concentration in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 原水槽 2 予備中和槽 3 中和槽 4 凝集槽 5 沈殿槽 6 反応槽 7 アルカリ貯槽 8 ポリマー槽 1 Raw water tank 2 Pre-neutralization tank 3 Neutralization tank 4 Coagulation tank 5 Sedimentation tank 6 Reaction tank 7 Alkaline storage tank 8 Polymer tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属含有排水にアルカリを添加して不溶
化物を生成させ、これを汚泥として処理水と分離し、ア
ルカリは該分離した汚泥の一部と混合して得られる混合
物として前記排水に添加する方法において、 処理開始後、下記式で求められる返送比Rの値が8に到
達した時点から1〜3日間はRが8を超えないように、
アルカリと混合する前記分離した汚泥の量を制御し、そ
の後R=12〜20で処理を行なうことを特徴とする金
属含有排水の処理方法。 【数1】
1. An alkali is added to a metal-containing wastewater to produce an insolubilized product, which is separated as sludge from treated water, and the alkali is mixed with a part of the separated sludge to form a mixture obtained in the wastewater. In the method of adding, after the start of the treatment, from the time when the value of the return ratio R calculated by the following formula reaches 8, so that R does not exceed 8 for 1 to 3 days,
A method for treating metal-containing wastewater, comprising controlling the amount of the separated sludge to be mixed with an alkali, and then treating the sludge at R = 12 to 20. (Equation 1)
JP3577894A 1994-03-07 1994-03-07 Treatment method for metal-containing wastewater Expired - Fee Related JP2833466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3577894A JP2833466B2 (en) 1994-03-07 1994-03-07 Treatment method for metal-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3577894A JP2833466B2 (en) 1994-03-07 1994-03-07 Treatment method for metal-containing wastewater

Publications (2)

Publication Number Publication Date
JPH07241572A JPH07241572A (en) 1995-09-19
JP2833466B2 true JP2833466B2 (en) 1998-12-09

Family

ID=12451364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3577894A Expired - Fee Related JP2833466B2 (en) 1994-03-07 1994-03-07 Treatment method for metal-containing wastewater

Country Status (1)

Country Link
JP (1) JP2833466B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154810B2 (en) * 1999-08-19 2008-09-24 栗田工業株式会社 Waste water treatment equipment
JP4457458B2 (en) * 2000-03-29 2010-04-28 栗田工業株式会社 Water treatment equipment
JP5440199B2 (en) * 2010-01-19 2014-03-12 栗田工業株式会社 Silicon wafer etching wastewater treatment method and treatment apparatus
WO2011115230A1 (en) * 2010-03-18 2011-09-22 栗田工業株式会社 Method for starting high-density-sludge generating water treatment device
JP5073017B2 (en) * 2010-06-23 2012-11-14 株式会社ジャパンディスプレイセントラル Apparatus and method for treating phosphorus-containing wastewater

Also Published As

Publication number Publication date
JPH07241572A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US9243307B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance
EP0003862B1 (en) Process for the removal of heavy metals from aqueous liquids
JP3196640B2 (en) Fluorine removal equipment
WO2007113926A1 (en) Method of purifying copper salt solution, purification apparatus and copper salt solution
JP2833466B2 (en) Treatment method for metal-containing wastewater
US5853573A (en) Groundwater total cyanide treatment apparatus
JP3348636B2 (en) Water treatment equipment containing inorganic pollutants
JP3303332B2 (en) Treatment method for wastewater containing heavy metals
JP2005125316A (en) Heavy metal-containing wastewater treatment method and its system
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
JP2910346B2 (en) Treatment method for wastewater containing heavy metals
JPH07214073A (en) Treatment of metal-containing waste water
JP5338432B2 (en) Treatment method of inorganic ion-containing wastewater
EP0401048B1 (en) Aqueous solution for waste water treatment
JP4154810B2 (en) Waste water treatment equipment
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JP5082178B2 (en) Fluorine-containing water treatment method
JP3227844B2 (en) Treatment method for wastewater containing heavy metals
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3186094B2 (en) Treatment method for wastewater containing heavy metals
JPH057880A (en) Treatment of waste water containing heavy metal
JPH05293474A (en) Treatment of drainage containing fluoride ion
JPH08168798A (en) Treatment of heavy metal-containing waste water
JPH0691274A (en) Sedimentation processing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees