JP3595826B2 - Heavy metal sludge reduction method and chemicals used for it - Google Patents

Heavy metal sludge reduction method and chemicals used for it Download PDF

Info

Publication number
JP3595826B2
JP3595826B2 JP2001102284A JP2001102284A JP3595826B2 JP 3595826 B2 JP3595826 B2 JP 3595826B2 JP 2001102284 A JP2001102284 A JP 2001102284A JP 2001102284 A JP2001102284 A JP 2001102284A JP 3595826 B2 JP3595826 B2 JP 3595826B2
Authority
JP
Japan
Prior art keywords
water
heavy metal
added
carbonate
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001102284A
Other languages
Japanese (ja)
Other versions
JP2002292373A (en
Inventor
憲司 辰巳
愼二 和田
恭啓 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Corp
Priority to JP2001102284A priority Critical patent/JP3595826B2/en
Publication of JP2002292373A publication Critical patent/JP2002292373A/en
Application granted granted Critical
Publication of JP3595826B2 publication Critical patent/JP3595826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、水中に溶存する重金属を水酸化物として除去する際に生成する重金属スラッジを削減するための方法及びそのための薬剤に関するものである。
【0002】
【従来の技術】
従来から、水中に含まれる有害金属イオンを除去する方法としては、水中に水酸化ナトリウムや水酸化カルシウム等のアルカリ性物質を添加して、重金属水酸化物として沈殿させる方法が知られている。このような方法において発生する重金属スラッジは、含水率も高く、しかもその量が多いため、処分に多額の費用が掛かる等の問題があった。また、近年処分場の不足が大きな問題になってきており、そのことが処分費用の高騰の原因にもなってきている。このため、スラッジから金属を回収し再利用することが望まれてきたが、採算が合わず、ほとんど実現されていない。ところが、スラッジの発生量を削減できれば、輸送に掛かる費用を削減できるだけでなく、金属含有量の多いスラッジを得ることができることになり、スラッジから金属の回収を採算に載せることが可能になる。
【0003】
【発明が解決しようとする課題】
本発明は、重金属を含有する被処理水中にアルカリを添加して重金属を水酸化物として除去するに際して生成する重金属スラッジを削減するための方法及びそれに用いられる薬剤を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下に示す重金属スラッジの削減方法及びそれに用いる薬剤が提供される。
(1)溶存金属を含有する被処理水中にアルカリを添加して該重金属を重金属水酸化物として沈殿させ、該沈殿を重金属スラッジとして回収するに際し、該被処理水中に酸化剤及び炭酸イオンを存在させて該重金属水酸化物の少なくとも一部を酸化物に変換させることを特徴とする重金属スラッジの削減方法。
(2)該酸化剤が、次亜塩素酸ナトリウム又は過酸化水素からなる前記(1)の方法。
(3)該水中に炭酸イオン発生剤を添加して炭酸イオンを存在させる前記(1)又は(2)の方法。
(4)該炭酸イオン発生剤が炭酸ナトリウムからなる前記(3)の方法。
(5)該被処理水に対し、凝集剤を添加する前記(1)〜(4)のいずれかの方法。
(6)前記(1)の方法において酸化剤として用いる薬剤であって、(i)次亜塩素酸ナトリウムと(ii)水溶性炭酸塩との混合物からなることを特徴とする薬剤。
(7)前記(1)の方法において酸化剤として用いる薬剤であって、(i)過酸化水素と(ii)水溶性炭酸塩との混合物からなることを特徴とする薬剤。
【0005】
【発明の実施の形態】
本発明は、重金属が溶存する被処理水にアルカリを添加してそれに含まれているその溶存重金属を水不溶性の水酸化物として沈殿させ、該沈殿を重金属スラッジとして回収するに際し、該被処理水中に酸化剤及び炭酸イオンを存在させて、その重金属水酸化物を酸化物に変換させることにより、重金属スラッジを削減することを特徴とするものである。
【0006】
被処理水に酸化剤を添加する時点は、特に制約されず、アルカリを添加する以前、アルカリの添加と同時又はアルカリを添加した後であることができるが、好ましくはアルカリの添加と同時又はアルカリを添加した後である。
【0007】
被処理水中に溶存する重金属を水不溶性の重金属水酸化物とするためのアルカリとしては、従来公知のものが用いられる。このようなものには、水酸化ナトリウム、水酸化カルシウムの他、水酸化マグネシウム、水酸化カリウム、炭酸ナトリウム、水酸化アンモニウム等が包含される。本発明では、特に、経済性の点から、水酸化ナトリウムや水酸化カルシウムの使用が好ましい。
【0008】
被処理水に対するアルカリの添加量は、その水中に溶存する重金属が不溶性の水酸化物となる量であればよく、一般的には、その処理水のpHを6〜13、好ましくは8〜11の範囲にコントロールするような量であればよい。
【0009】
本発明で用いる酸化剤は、重金属水酸化物を酸化物に変換させ得る酸化力を有するものであればよい。このようなものには、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸等の酸素酸及びそれらの水溶性塩、過酸化水素、オゾン等があるが、本発明では、経済性の点から、次亜塩素酸ナトリウムや過酸化水素の使用が好ましい。
【0010】
本発明で被処理水中に添加する酸化剤の量は、水中に生成する重金属水酸化物の少なくとも一部、好ましくは10%以上、より好ましくは50〜100%を酸化物に変換させ得る割合量であればよい。
【0011】
本発明により酸化剤を水中において重金属水酸化物と反応させる場合、炭酸イオンを存在させるのが好ましい。この炭酸イオンの存在により、酸化剤単独の場合と比べて、フロックの生成を促進させる、酸化剤単独の場合と比べて、沈降性がよいフロックが得られる等の効果を得ることができる。
【0012】
炭酸イオンを発生させる化合物(炭酸イオン発生剤)としては、水中で炭酸イオンを発生する化合物であれば任意のものが使用可能である。このようなものには、炭酸ナトリウム、炭酸水素ナトリウム等の水溶性炭酸塩及び炭酸ガス等が包含される。その被処理水に添加する量は、被処理水中の炭酸イオン濃度が0.000005〜0.1モル/L、好ましくは0.00005〜0.01モル/Lとなるような割合である。
【0013】
炭酸イオン発生剤の添加時点は、特に制約されず、酸化剤の添加前、添加時又は添加後であるが、好ましくは酸化剤の添加直前又は添加と同時である。
【0014】
本発明により被処理水中で酸化剤と重金属水酸化物とを反応させる場合、その温度は常温でも良いが、その反応速度を高めるために加温するとなお好ましい。加温する温度は、高いほど反応は促進されるが、そのために必要なエネルギーコストを考慮して加温することが求められる。例えば、30〜70℃、好ましくは30〜55℃の温度を採用することができる。このような高められた温度での反応は、被処理水を加熱することにより実施される。
【0015】
本発明の薬剤の好ましい1つの態様(薬剤A)は、(i)次亜塩素酸ナトリウムと(ii)炭酸ナトリウム等の水溶性炭酸塩との混合物からなる。この混合物には、必要に応じ、(iii)水酸化ナトリウムを添加することができる。
また、本発明による薬剤の好ましい他の態様(薬剤B)は(i)過酸化水素と(ii)炭酸ナトリウム等の水溶性炭酸塩との混合物からなる。
【0016】
本発明の薬剤Aを好ましく製造する場合において、水酸化ナトリウムを含有するものを製造するときには、先ず、有効塩素濃度8〜13%の次亜塩素酸ナトリウム水溶液に、水酸化ナトリウムを溶解させ、これに炭酸塩を加えて溶解させる。この場合、水酸化ナトリウムの割合は、次亜塩素酸ナトリウムの有効塩素1モル当り、0.01〜1モル、好ましくは0.1〜1モルである。また、炭酸塩の割合は、次亜塩素酸ナトリウムの有効塩素1モル当たり、0.001〜1モル、好ましくは0.01〜0.5モルである。
【0017】
前記薬剤Aを製造する場合において、水酸化ナトリウムを含有しないものを製造するときには、有効塩素濃度8〜13%の次亜塩素酸ナトリウム水溶液に、炭酸塩を加えて溶解させる。この場合、炭酸塩の割合は、次亜塩素酸ナトリウムの有効塩素1モル当たり、0.001〜1モル、好ましくは0.01〜0.5モルである。
【0018】
本発明の薬剤Bを好ましく製造するには、濃度3〜35%の過酸化水素水に、炭酸ナトリウムを加えて溶解させる。この場合、炭酸ナトリウムの割合は、過酸化水素1モル当たり、0.01〜1モル、好ましくは0.05〜1モルである。
【0019】
本発明の薬剤Aにより重金属スラッジを減少させる場合、水酸化ナトリウムを含む薬剤、あるいは水酸化ナトリウムを含まない薬剤のどちらを用いてもかまわないが、水酸化ナトリウムを含まない薬剤を用いる場合、薬剤添加後pHが低下する場合は、アルカリを再び添加すればよい。
本発明の薬剤Aにより重金属スラッジを減少させるためには、被処理水にアルカリを添加し、pHを7から13、好ましくは8〜12、より好ましくは9〜11に調整し、薬剤Aを添加すればよい。
【0020】
薬剤の添加量は、酸化剤の当量数で、重金属水酸化物1当量当たり、0.002〜1当量、好ましくは0.004〜0.4当量、より好ましくは0.01〜0.2当量である。
【0021】
本発明の薬剤Bにより重金属スラッジを減少させるためには、被処理水にアルカリを添加し、pHを7から13、好ましくは8〜12、より好ましくは9〜11に調整し、薬剤Bを添加すればよい。薬剤の添加量は、酸化剤の当量数で、重金属水酸化物1当量当たり、0.01〜10当量、好ましくは0.05〜5当量、より好ましくは0.05〜4当量である。
【0022】
本発明においては、凝集剤を併用するのが好ましい。この場合の凝集剤は、フロックの凝集に用いられているものであればよく、このようなものには、ポリアクリルアミドのカチオン化変性物、ポリアクリル酸ジメチルアミノエチルエステル、ポリメタクリル酸ジメチルアミノエチルエステル、ポリエチレンイミン、キトサン等のカチオン性有機系凝集剤、ポリアクリルアミド等のノニオン性有機系凝集剤、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及びその塩等のアニオン性有機系凝集剤が包含される。凝集剤は、通常、被処理水に対し、薬剤の添加後に加えればよい。
【0023】
本発明の処理を施した後のフロックを含む被処理水は、固液分離処理される。この場合の固液分離方法としては、慣用の方法、例えば、濾過分離、遠心分離、沈降分離等が挙げられる。
【0024】
本発明は、重金属イオンを含む被処理水に対して適用される。この場合、重金属としては、銅、亜鉛、鉄、ニッケル等が包含される。被処理水中の重金属の濃度は、通常、0.01〜100g/L、特に0.5〜20g/Lである。
被処理水の具体例としては、例えば、銅エッチング廃液や、ソフトエッチング液、溶融亜鉛メッキのふかし液や水洗水等が挙げられる。
【0025】
本発明によれば、沈殿として生成された重金属水酸化物の少なくとも一部が重金属酸化物に変換されているため、最終的に得られる重金属スラッジを、その重量及び容量の両方において削減させることができる。
【0026】
その少なくとも一部が酸化物に変換されている重金属水酸化物は、脱水性の良いものであり、被処理水から分離された重金属スラッジは、加圧等の脱水処理により容易に脱水スラッジとすることができる。本発明の場合、含水率が70%以下、特に60%以下の脱水スラッジを効率よく得ることができる。
【0027】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0028】
参考例1
次亜塩素酸ソーダ水溶液(工業用)(有効塩素12%)1リットルに、水酸化ナトリウム43gを溶解したものに、炭酸ナトリウム36gを加えて溶解させた。この溶液を薬剤Iとする。
【0029】
参考例2
次亜塩素酸ソーダ水溶液(工業用)(有効塩素12%)1リットルに、炭酸ナトリウム36gを加えて溶解させた。この溶液を薬剤IIとする。
【0030】
参考例3
過酸化水素水(濃度30%)を水で5倍に希釈したもの1リットルに、炭酸ナトリウム36gを加えて溶解させた。この溶液を薬剤IIIとする。
【0031】
実施例1
pHが−0.98、銅イオン濃度が118g/L、塩素濃度が250g/Lの銅エッチング廃液を70倍に希釈したものに、水酸化カルシウム懸濁液(0.4%)を添加してpH約10に調整し、沈殿を生成させた。このスラリーに薬剤Iを0.3ml/L添加し、撹拌した。アニオン性高分子凝集剤AP120Cを43mg/L添加し撹拌した。スラッジを固液分離し、固形分中の銅を測定したところ、銅の含有率は、73.1%であった。
【0032】
比較例1
実施例1の廃液を70倍に希釈したものに、水酸化カルシウム懸濁液(0.4%)を添加してpH約10に調整し、沈殿を生成させた。このスラリーに、アニオン性高分子凝集剤AP120Cを45mg/L添加し撹拌した。このスラリーは、凝集性も脱水性も悪く、排出されたスラッジは、銅の含有率は、20.2%であった。
【0033】
実施例2
実施例1の廃液を70倍に希釈したものに、水酸化カルシウム懸濁液(0.4%)を添加してpH約10に調整し、沈殿を生成させた。このスラリーに薬剤IIを0.3ml/L添加し、撹拌した。アニオン性高分子凝集剤AP120Cを45mg/L添加し撹拌した。スラッジを固液分離し、固形分中の銅を測定したところ、銅の含有率は、74.9%であった。
【0034】
実施例3
実施例1の廃液を70倍に希釈したものに、水酸化カルシウム懸濁液(0.4%)を添加してpH約10に調整し、沈殿を生成させた。このスラリーに薬剤IIIを3ml/L添加し、撹拌した。アニオン性高分子凝集剤AP120Cを45mg/L添加し撹拌した。スラッジを固液分離し、固形分中の銅を測定したところ、銅の含有率は、65.3%であった。
【0035】
実施例4
実施例1の廃液を70倍に希釈したものに、薬剤Iを0.3ml/L添加し、撹拌した。これに水酸化カルシウム懸濁液(0.4%)を添加してpH約10に調整し、沈殿を生成させた。アニオン性高分子凝集剤AP120Cを45mg/L添加し撹拌した。スラッジを固液分離し、固形分中の銅を測定したところ、銅の含有率は、62.3%であった。
【0036】
実施例5
pHが−1.83、亜鉛濃度が242.5g/L、鉄濃度が48g/L、塩素濃度が381g/Lの溶融亜鉛メッキ工程で排出される亜鉛及び鉄を含む酸廃液を25倍に希釈したものに、水酸化カルシウム懸濁液(4%)を添加してpH約10に調整し、沈殿を生成した。このスラリーに薬剤Iを5ml/L添加し、撹拌した。カチオン性高分子凝集剤KP1200SVを550mg/L添加し、撹拌した後、アニオン性高分子凝集剤AP825Cを430mg/L添加し撹拌した。このスラリーをスクリュープレスに送り、スクリュー回転数0.3rpmで脱水したところ、排出されたスラッジは、含水率36.2%であり、固形分中の亜鉛、鉄及び塩素の含有率は、それぞれ64.7%、23.7%及び2.1%であった。
【0037】
比較例2
実施例1の廃液を25倍に希釈したものに、水酸化カルシウム懸濁液(4%)を添加してpH約10に調整し、沈殿を生成した。このスラリーに、カチオン性高分子凝集剤KP1200SVを550mg/L添加し、撹拌した後、アニオン性高分子凝集剤AP825Cを430mg/L添加し撹拌した。このスラリーは、凝集性も脱水性も悪く、排出されたスラッジは、亜鉛、鉄及び塩素の含有率は、それぞれ33%、7%及び16%であった。
【0038】
実施例6
実施例1の廃液を25倍に希釈したものに、水酸化カルシウム懸濁液(4%)を添加してpH約10に調整し、沈殿を生成した。このスラリーに薬剤IIを5ml/L添加し、撹拌した。カチオン性高分子凝集剤KP1200SVを550mg/L添加し、撹拌した後、アニオン性高分子凝集剤AP825Cを430mg/L添加し撹拌した。このスラリーをスクリュープレスに送り、スクリュー回転数0.3rpmで脱水したところ、排出されたスラッジは、含水率38.5%であり、固形分中の亜鉛、鉄及び塩素の含有率は、それぞれ62.4%、24.8%及び2.5%であった。
【0039】
実施例7
実施例1の廃液を25倍に希釈したものに、薬剤Iを5ml/L添加し、撹拌した。これに水酸化カルシウム懸濁液(4%)を添加してpH約10に調整し、沈殿を生成した。カチオン性高分子凝集剤KP1200SVを550mg/L添加し、撹拌した後、アニオン性高分子凝集剤AP825Cを430mg/L添加し撹拌した。このスラリーをスクリュープレスに送り、スクリュー回転数0.3rpmで脱水したところ、排出されたスラッジは、含水率39.4%であり、固形分中の亜鉛、鉄及び塩素の含有率は、それぞれ61.3%、24.6%及び2.6%であった。
【0040】
実施例8
pH3.4、亜鉛濃度が11g/L、鉄濃度が1.9g/Lの溶融亜鉛メッキ工程で排出される亜鉛及び鉄を含む水洗水に、水酸化カルシウム懸濁液(2%)を添加してpH10に調整し、沈殿を生成した。このスラリーに薬剤Iを5ml/L添加し、撹拌した。カチオン性高分子凝集剤KP1200SVを520mg/L添加し、撹拌した後、アニオン性高分子凝集剤AP825Cを250mg/L添加し撹拌した。このスラリーをスクリュープレスに送り、スクリュー回転数0.3rpmで脱水したところ、排出されたスラッジは、含水率38%であり、固形分中の亜鉛、鉄及び塩素の含有率は、それぞれ61.5%、24.0%及び2.8%であった。
【0041】
【発明の効果】
本発明によれば、被処理水中の溶存重金属を水不溶性の水酸化物として沈殿させ、この沈殿を重金属スラッジとして回収する際に、その重金属スラッジを効率よく削減させることができ、その産業的意義は多大である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for reducing heavy metal sludge generated when removing heavy metals dissolved in water as hydroxide, and an agent therefor.
[0002]
[Prior art]
Conventionally, as a method of removing harmful metal ions contained in water, a method of adding an alkaline substance such as sodium hydroxide or calcium hydroxide to water and precipitating it as a heavy metal hydroxide has been known. The heavy metal sludge generated in such a method has a high water content and a large amount, and thus has a problem that a large amount of cost is required for disposal. Further, in recent years, the shortage of disposal sites has become a major problem, which has also caused a rise in disposal costs. For this reason, it has been desired to recover and reuse metal from sludge, but it has not been profitable and has hardly been realized. However, if the amount of generated sludge can be reduced, not only can transportation costs be reduced, but also sludge having a high metal content can be obtained, and the recovery of metal from sludge can be profitable.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for reducing heavy metal sludge generated when an alkali is added to treated water containing a heavy metal to remove the heavy metal as a hydroxide, and an agent used for the method. .
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
That is, according to the present invention, there is provided a method for reducing heavy metal sludge and a chemical used therefor as described below.
(1) An oxidizing agent and carbonate ions are present in the water to be treated when an alkali is added to the water to be treated containing the dissolved metal to precipitate the heavy metal as a heavy metal hydroxide and the precipitate is recovered as heavy metal sludge. And converting at least a part of the heavy metal hydroxide into an oxide.
(2) The method according to the above (1), wherein the oxidizing agent comprises sodium hypochlorite or hydrogen peroxide.
(3) The method according to (1) or (2) above, wherein a carbonate ion generator is added to the water to cause carbonate ions .
(4) The method according to the above (3) , wherein the carbonate ion generator comprises sodium carbonate.
(5) The method according to any one of (1) to (4), wherein a coagulant is added to the water to be treated.
(6) A drug used as an oxidizing agent in the method (1), comprising a mixture of (i) sodium hypochlorite and (ii) a water-soluble carbonate.
(7) A drug used as an oxidizing agent in the method (1), comprising a mixture of (i) hydrogen peroxide and (ii) a water-soluble carbonate.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a method for adding an alkali to water to be treated in which heavy metals are dissolved to precipitate the dissolved heavy metal contained therein as a water-insoluble hydroxide, and recovering the precipitate as heavy metal sludge. The present invention is characterized in that heavy metal sludge is reduced by causing a heavy metal hydroxide to be converted into an oxide by causing an oxidizing agent and a carbonate ion to be present .
[0006]
The time when the oxidizing agent is added to the water to be treated is not particularly limited, and may be before the addition of the alkali, at the same time as the addition of the alkali or after the addition of the alkali. After the addition of
[0007]
As the alkali for converting the heavy metal dissolved in the water to be treated into a water-insoluble heavy metal hydroxide, a conventionally known alkali is used. Such materials include magnesium hydroxide, potassium hydroxide, sodium carbonate, ammonium hydroxide, and the like, in addition to sodium hydroxide and calcium hydroxide. In the present invention, it is particularly preferable to use sodium hydroxide or calcium hydroxide from the viewpoint of economy.
[0008]
The amount of the alkali to be added to the water to be treated may be any amount as long as the heavy metal dissolved in the water becomes an insoluble hydroxide. Generally, the pH of the water to be treated is 6-13, preferably 8-11. Any amount may be used as long as the amount is controlled within the range.
[0009]
The oxidizing agent used in the present invention only needs to have an oxidizing power capable of converting heavy metal hydroxide to an oxide. Such substances include hypochlorous acid, chlorous acid, chloric acid, oxyacids such as perchloric acid and their water-soluble salts, hydrogen peroxide, ozone, etc. From the viewpoint, use of sodium hypochlorite or hydrogen peroxide is preferred.
[0010]
In the present invention, the amount of the oxidizing agent added to the water to be treated is a proportion that can convert at least a part, preferably 10% or more, and more preferably 50 to 100% of the heavy metal hydroxide generated in the water to an oxide. Should be fine.
[0011]
When reacting an oxidizing agent with a heavy metal hydroxide in water according to the present invention, it is preferred that carbonate ions are present. By the presence of the carbonate ion, it is possible to obtain effects such as promotion of generation of flocs as compared with the case of using only the oxidizing agent, and obtaining flocs having better sedimentation properties than the case of using only the oxidizing agent.
[0012]
As the compound that generates carbonate ions (carbonate ion generator), any compound that generates carbonate ions in water can be used. Such substances include water-soluble carbonates such as sodium carbonate and sodium hydrogen carbonate, and carbon dioxide. The amount added to the water to be treated is such that the carbonate ion concentration in the water to be treated is 0.000005 to 0.1 mol / L, preferably 0.00005 to 0.01 mol / L.
[0013]
The point of addition of the carbonate ion generator is not particularly limited, and may be before, during or after the addition of the oxidizing agent, but is preferably immediately before or simultaneously with the addition of the oxidizing agent.
[0014]
When the oxidizing agent is reacted with the heavy metal hydroxide in the water to be treated according to the present invention, the temperature may be room temperature, but it is more preferable to heat it to increase the reaction rate. The higher the heating temperature is, the more the reaction is promoted. However, it is required to perform the heating in consideration of the energy cost required for the reaction. For example, a temperature of 30 to 70C, preferably 30 to 55C can be employed. The reaction at such an elevated temperature is carried out by heating the water to be treated.
[0015]
One preferred embodiment of the drug of the present invention (drug A) consists of a mixture of (i) sodium hypochlorite and (ii) a water-soluble carbonate such as sodium carbonate. If necessary, (iii) sodium hydroxide can be added to this mixture.
Another preferred embodiment of the drug according to the present invention (drug B) comprises a mixture of (i) hydrogen peroxide and (ii) a water-soluble carbonate such as sodium carbonate.
[0016]
In the case of preferably producing the drug A of the present invention, when producing a drug containing sodium hydroxide, first, sodium hydroxide is dissolved in an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 8 to 13%. Add carbonate and dissolve. In this case, the ratio of sodium hydroxide is 0.01 to 1 mol, preferably 0.1 to 1 mol, per 1 mol of available chlorine of sodium hypochlorite. The ratio of the carbonate is 0.001 to 1 mol, preferably 0.01 to 0.5 mol, per 1 mol of available chlorine of sodium hypochlorite.
[0017]
In the case of manufacturing the drug A, when manufacturing a product not containing sodium hydroxide, a carbonate is added to and dissolved in an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 8 to 13%. In this case, the proportion of the carbonate is 0.001 to 1 mol, preferably 0.01 to 0.5 mol, per 1 mol of available chlorine of sodium hypochlorite.
[0018]
In order to preferably produce the drug B of the present invention, sodium carbonate is added to and dissolved in a 3 to 35% aqueous hydrogen peroxide solution. In this case, the ratio of sodium carbonate is 0.01 to 1 mol, preferably 0.05 to 1 mol, per 1 mol of hydrogen peroxide.
[0019]
When the heavy metal sludge is reduced by the agent A of the present invention, either a drug containing sodium hydroxide or a drug not containing sodium hydroxide may be used. If the pH decreases after the addition, the alkali may be added again.
In order to reduce heavy metal sludge by the agent A of the present invention, an alkali is added to the water to be treated, the pH is adjusted to 7 to 13, preferably 8 to 12, more preferably 9 to 11, and the agent A is added. do it.
[0020]
The amount of the drug to be added is 0.002 to 1 equivalent, preferably 0.004 to 0.4 equivalent, and more preferably 0.01 to 0.2 equivalent per equivalent of heavy metal hydroxide in terms of the number of equivalents of the oxidizing agent. It is.
[0021]
In order to reduce heavy metal sludge by the agent B of the present invention, an alkali is added to the water to be treated, the pH is adjusted to 7 to 13, preferably 8 to 12, and more preferably 9 to 11, and the agent B is added. do it. The amount of the drug to be added is 0.01 to 10 equivalents, preferably 0.05 to 5 equivalents, more preferably 0.05 to 4 equivalents per equivalent of the heavy metal hydroxide in terms of the number of equivalents of the oxidizing agent.
[0022]
In the present invention, a coagulant is preferably used in combination. The flocculant in this case may be any one that is used for floc flocculation. Examples of such a flocculant include cationically modified polyacrylamide, dimethylaminoethyl polyacrylate, and dimethylaminoethyl polymethacrylate. Cationic organic coagulants such as esters, polyethyleneimine and chitosan; nonionic organic coagulants such as polyacrylamide; anionic organic coagulants such as polyacrylic acid, copolymers of acrylamide and acrylic acid, and salts thereof Is included. The coagulant may be usually added to the water to be treated after adding the chemical.
[0023]
The water to be treated including flocs after the treatment of the present invention is subjected to a solid-liquid separation treatment. As the solid-liquid separation method in this case, a conventional method, for example, filtration separation, centrifugation, sedimentation and the like can be mentioned.
[0024]
The present invention is applied to water to be treated containing heavy metal ions. In this case, heavy metals include copper, zinc, iron, nickel and the like. The concentration of heavy metal in the water to be treated is usually 0.01 to 100 g / L, particularly 0.5 to 20 g / L.
Specific examples of the water to be treated include a copper etching waste liquid, a soft etching liquid, a hot-dip galvanizing liquid, and washing water.
[0025]
According to the present invention, since at least a part of the heavy metal hydroxide generated as a precipitate is converted into a heavy metal oxide, the finally obtained heavy metal sludge can be reduced in both weight and volume. it can.
[0026]
The heavy metal hydroxide at least part of which is converted to an oxide has a good dehydration property, and the heavy metal sludge separated from the water to be treated is easily converted into a dewatered sludge by a dehydration treatment such as pressurization. be able to. In the case of the present invention, dewatered sludge having a water content of 70% or less, particularly 60% or less, can be efficiently obtained.
[0027]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0028]
Reference Example 1
36 g of sodium carbonate was added to 1 liter of sodium hypochlorite aqueous solution (industrial use) (effective chlorine 12%) in which 43 g of sodium hydroxide had been dissolved. This solution is referred to as drug I.
[0029]
Reference Example 2
36 g of sodium carbonate was added to 1 liter of aqueous sodium hypochlorite solution (for industrial use) (effective chlorine 12%) to dissolve it. This solution is designated as drug II.
[0030]
Reference Example 3
36 g of sodium carbonate was added to and dissolved in 1 liter of a hydrogen peroxide solution (concentration: 30%) diluted 5 times with water. This solution is referred to as drug III.
[0031]
Example 1
A calcium hydroxide suspension (0.4%) was added to a 70-fold diluted copper etching waste solution having a pH of -0.98, a copper ion concentration of 118 g / L, and a chlorine concentration of 250 g / L. The pH was adjusted to about 10 to produce a precipitate. 0.3 ml / L of Drug I was added to the slurry and stirred. 43 mg / L of an anionic polymer coagulant AP120C was added and stirred. When the sludge was subjected to solid-liquid separation and copper in the solid content was measured, the copper content was 73.1%.
[0032]
Comparative Example 1
A 70-fold dilution of the waste liquid of Example 1 was added with a calcium hydroxide suspension (0.4%) to adjust the pH to about 10, thereby producing a precipitate. To this slurry, 45 mg / L of an anionic polymer coagulant AP120C was added and stirred. This slurry had poor cohesiveness and dewatering properties, and the discharged sludge had a copper content of 20.2%.
[0033]
Example 2
A 70-fold dilution of the waste liquid of Example 1 was added with a calcium hydroxide suspension (0.4%) to adjust the pH to about 10, thereby producing a precipitate. 0.3 ml / L of Drug II was added to this slurry and stirred. 45 mg / L of an anionic polymer coagulant AP120C was added and stirred. When the sludge was subjected to solid-liquid separation and copper in the solid content was measured, the copper content was 74.9%.
[0034]
Example 3
A 70-fold dilution of the waste liquid of Example 1 was added with a calcium hydroxide suspension (0.4%) to adjust the pH to about 10, thereby producing a precipitate. 3 ml / L of Drug III was added to the slurry and stirred. 45 mg / L of an anionic polymer coagulant AP120C was added and stirred. When the sludge was subjected to solid-liquid separation and copper in the solid content was measured, the copper content was 65.3%.
[0035]
Example 4
0.3 ml / L of Drug I was added to a 70-fold dilution of the waste liquid of Example 1 and stirred. To this, a calcium hydroxide suspension (0.4%) was added to adjust the pH to about 10, and a precipitate was formed. 45 mg / L of an anionic polymer coagulant AP120C was added and stirred. When the sludge was subjected to solid-liquid separation and the copper content in the solid content was measured, the copper content was 62.3%.
[0036]
Example 5
Acid waste liquid containing zinc and iron discharged in the hot-dip galvanizing process with a pH of -1.83, a zinc concentration of 242.5 g / L, an iron concentration of 48 g / L, and a chlorine concentration of 381 g / L is diluted 25 times. To the resulting mixture, a calcium hydroxide suspension (4%) was added to adjust the pH to about 10, and a precipitate was formed. 5 ml / L of Drug I was added to this slurry and stirred. After adding 550 mg / L of a cationic polymer flocculant KP1200SV and stirring, 430 mg / L of an anionic polymer flocculant AP825C was added and stirred. When this slurry was sent to a screw press and dewatered at a screw rotation speed of 0.3 rpm, the discharged sludge had a water content of 36.2%, and the content of zinc, iron and chlorine in the solid content was 64%, respectively. 0.7%, 23.7% and 2.1%.
[0037]
Comparative Example 2
A 25-fold dilution of the waste liquid of Example 1 was adjusted to a pH of about 10 by adding a calcium hydroxide suspension (4%) to produce a precipitate. After adding 550 mg / L of a cationic polymer flocculant KP1200SV to this slurry and stirring, 430 mg / L of an anionic polymer flocculant AP825C was added and stirred. This slurry had poor cohesiveness and dewaterability, and the discharged sludge contained 33%, 7% and 16% of zinc, iron and chlorine, respectively.
[0038]
Example 6
A 25-fold dilution of the waste liquid of Example 1 was adjusted to a pH of about 10 by adding a calcium hydroxide suspension (4%) to produce a precipitate. 5 ml / L of Drug II was added to this slurry and stirred. After adding 550 mg / L of a cationic polymer flocculant KP1200SV and stirring, 430 mg / L of an anionic polymer flocculant AP825C was added and stirred. When this slurry was sent to a screw press and dewatered at a screw rotation speed of 0.3 rpm, the discharged sludge had a water content of 38.5%, and the content of zinc, iron and chlorine in the solid content was 62%, respectively. 0.4%, 24.8% and 2.5%.
[0039]
Example 7
5 ml / L of Drug I was added to a 25-fold dilution of the waste liquid of Example 1 and stirred. To this, a calcium hydroxide suspension (4%) was added to adjust the pH to about 10, and a precipitate was formed. After adding 550 mg / L of a cationic polymer flocculant KP1200SV and stirring, 430 mg / L of an anionic polymer flocculant AP825C was added and stirred. When this slurry was sent to a screw press and dewatered at a screw rotation speed of 0.3 rpm, the discharged sludge had a water content of 39.4%, and the content of zinc, iron and chlorine in the solid content was 61% each. 0.3%, 24.6% and 2.6%.
[0040]
Example 8
A calcium hydroxide suspension (2%) was added to washing water containing zinc and iron discharged in a hot-dip galvanizing process having a pH of 3.4, a zinc concentration of 11 g / L, and an iron concentration of 1.9 g / L. PH was adjusted to pH 10 to produce a precipitate. 5 ml / L of Drug I was added to this slurry and stirred. After adding 520 mg / L of cationic polymer flocculant KP1200SV and stirring, 250 mg / L of anionic polymer flocculant AP825C was added and stirred. When this slurry was sent to a screw press and dewatered at a screw rotation speed of 0.3 rpm, the discharged sludge had a water content of 38%, and the content of zinc, iron and chlorine in the solid content was 61.5%, respectively. %, 24.0% and 2.8%.
[0041]
【The invention's effect】
According to the present invention, the dissolved heavy metal in the water to be treated is precipitated as a water-insoluble hydroxide, and when this precipitate is recovered as heavy metal sludge, the heavy metal sludge can be efficiently reduced. Is enormous.

Claims (7)

溶存重金属を含有する被処理水中にアルカリを添加して該重金属を重金属水酸化物として沈殿させ、該沈殿を重金属スラッジとして回収するに際し、該被処理水中に酸化剤及び炭酸イオンを存在させて該重金属水酸化物の少なくとも一部を酸化物に変換させることを特徴とする重金属スラッジの削減方法。Alkali is added to the water to be treated containing dissolved heavy metals to precipitate the heavy metals as heavy metal hydroxides.When the precipitates are collected as heavy metal sludge, the oxidizing agent and the carbonate ions are present in the water to be treated to remove the heavy metals. A method for reducing heavy metal sludge, comprising converting at least a part of a heavy metal hydroxide to an oxide. 該酸化剤が、次亜塩素酸ナトリウム又は過酸化水素からなる請求項1の方法。The method of claim 1 wherein said oxidizing agent comprises sodium hypochlorite or hydrogen peroxide. 該水中に炭酸イオン発生剤を添加して炭酸イオンを存在させる請求項1又は2の方法。3. The method according to claim 1, wherein a carbonate ion generator is added to the water to cause carbonate ions . 該炭酸イオン発生剤が炭酸ナトリウムからなる請求項3の方法。The method of claim 3 wherein said carbonate ion generator comprises sodium carbonate. 該被処理水に対し、凝集剤を添加する請求項1〜4のいずれかの方法。5. The method according to claim 1, wherein a coagulant is added to the water to be treated. 請求項1の方法において酸化剤として用いる薬剤であって、(i)次亜塩素酸ナトリウムと(ii)水溶性炭酸塩との混合物からなることを特徴とする薬剤。2. A drug used as an oxidizing agent in the method of claim 1, comprising a mixture of (i) sodium hypochlorite and (ii) a water-soluble carbonate. 請求項1の方法において酸化剤として用いる薬剤であって、(i)過酸化水素と(ii)水溶性炭酸塩との混合物からなることを特徴とする薬剤。2. A drug for use as an oxidizing agent in the method of claim 1, comprising a mixture of (i) hydrogen peroxide and (ii) a water-soluble carbonate.
JP2001102284A 2001-03-30 2001-03-30 Heavy metal sludge reduction method and chemicals used for it Expired - Lifetime JP3595826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102284A JP3595826B2 (en) 2001-03-30 2001-03-30 Heavy metal sludge reduction method and chemicals used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102284A JP3595826B2 (en) 2001-03-30 2001-03-30 Heavy metal sludge reduction method and chemicals used for it

Publications (2)

Publication Number Publication Date
JP2002292373A JP2002292373A (en) 2002-10-08
JP3595826B2 true JP3595826B2 (en) 2004-12-02

Family

ID=18955501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102284A Expired - Lifetime JP3595826B2 (en) 2001-03-30 2001-03-30 Heavy metal sludge reduction method and chemicals used for it

Country Status (1)

Country Link
JP (1) JP3595826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093864A1 (en) * 2014-12-12 2016-06-16 Halliburton Energy Services, Inc. Water treatment processes utilizing sequential addition of a base and an oxidant

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003900241A0 (en) * 2003-01-21 2003-02-06 Australian Organic Resources Pty Ltd The extraction and treatment of heavy metals in sewage sludge
JP4199821B1 (en) 2008-01-15 2008-12-24 株式会社荏原製作所 Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
JP5307478B2 (en) * 2008-08-21 2013-10-02 水ing株式会社 Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
JP5215111B2 (en) * 2008-08-25 2013-06-19 水ing株式会社 Method and apparatus for recovering copper from acidic waste liquid containing copper
JP5567781B2 (en) * 2009-01-28 2014-08-06 荏原冷熱システム株式会社 Method and apparatus for removing copper in aqueous lithium bromide solution
CN103848490B (en) * 2012-12-05 2015-09-23 宁波金和锂电材料有限公司 Remove the method for cobalt in cobalt-containing wastewater
JP6515593B2 (en) * 2015-03-05 2019-05-22 三菱ケミカル株式会社 Method of treating metal-containing sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093864A1 (en) * 2014-12-12 2016-06-16 Halliburton Energy Services, Inc. Water treatment processes utilizing sequential addition of a base and an oxidant
GB2547171A (en) * 2014-12-12 2017-08-09 Halliburton Energy Services Inc Water treatment processes utilizing sequential addition of a base and an oxidant
US10934190B2 (en) 2014-12-12 2021-03-02 Halliburton Energy Services, Inc. Water treatment processes utilizing sequential addition of a base and an oxidant

Also Published As

Publication number Publication date
JP2002292373A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
CN102464440B (en) Method for carrying out decrement on physicochemical and biochemical mixed sludge
JP3595826B2 (en) Heavy metal sludge reduction method and chemicals used for it
JP4165637B2 (en) Method for treating wastewater containing harmful substances without producing sludge and chemicals used therefor
JPH1128500A (en) Sludge treating device
JP3525203B2 (en) Method and apparatus for recovering copper oxide from copper chloride-containing etching waste liquid
CN110981031A (en) Chemical nickel waste water treatment method
CN1958462A (en) Method for preparing potassium ferrate by using waste liquid from acid washing steel
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP4035347B2 (en) Method for treating selenate-containing wastewater and treating agent used therefor
JP4347096B2 (en) Fluorine removal apparatus and method for removing fluorine in waste water
JP3333483B2 (en) Treatment method and treatment agent for boron-containing water
KR20030084413A (en) agglutinating composition for wastewater treating and manufacturing method thereof
JP4052428B2 (en) Treatment method and treatment agent for lead-containing wastewater
JP4121064B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP3567224B2 (en) Method of treating electroless copper plating waste liquid and its treating agent
JP2938270B2 (en) Waste paper pulp wastewater treatment method
JP2001327979A (en) Method for treating wastewater containing arsenic and removing agent
JP2003213346A (en) Method of removing and recovering copper by treating waste water
JP3513754B2 (en) Antimony removal method and remover
JP5252545B2 (en) Reduction method of heavy metal sludge
JP3598324B2 (en) Method and apparatus for recovering zinc and iron in acid waste liquid as precipitate
JP3588616B2 (en) Method and agent for removing harmful metal ions
JP2002153889A (en) Method for treating copper chloride-containing waste etching solution, treating agent and method for recovering copper
JP3491022B2 (en) Fluorine ion removal method and remover

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3595826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term