JP2007237054A - Method of recycling multicomponent metal plating waste liquid sludge - Google Patents

Method of recycling multicomponent metal plating waste liquid sludge Download PDF

Info

Publication number
JP2007237054A
JP2007237054A JP2006061498A JP2006061498A JP2007237054A JP 2007237054 A JP2007237054 A JP 2007237054A JP 2006061498 A JP2006061498 A JP 2006061498A JP 2006061498 A JP2006061498 A JP 2006061498A JP 2007237054 A JP2007237054 A JP 2007237054A
Authority
JP
Japan
Prior art keywords
treatment
chromium
iron
hydroxide
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006061498A
Other languages
Japanese (ja)
Other versions
JP5063013B2 (en
Inventor
Nobuo Kusakabe
信夫 日下部
Masaki Nagashima
正毅 永島
Hiroshi Yoshino
寛 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP2006061498A priority Critical patent/JP5063013B2/en
Publication of JP2007237054A publication Critical patent/JP2007237054A/en
Application granted granted Critical
Publication of JP5063013B2 publication Critical patent/JP5063013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of recycling multicomponent metal plating waste liquid sludge capable of separately recovering valuables from the multicomponent metal plating waste liquid sludge at a low cost to recycle it. <P>SOLUTION: The method comprises the first process for dissolving the multicomponent metal plating waste liquid in an inorganic acid to recover a first treated liquid containing nickel, copper, zinc, iron, chromium and an organic substance, the second process for separating copper from the first treated liquid as a copper disposed iron powder to recover a second treated liquid containing nickel, zinc, iron, chromium and the organic substance, the third process for separating iron and chromium from the second treated liquid to recover a third treated liquid containing nickel and zinc, the fourth process for loading the third treated liquid with an iron powder to separate a nickel disposed iron powder to recover a fourth treated liquid containing zinc and iron, the fifth process for separating iron in the fourth treated liquid to recover a fifth treated liquid containing zinc, and the sixth process for separating zinc from the fifth treated liquid to provide the sixth treated liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多成分系めっき廃液スラッジから有価物を分別回収して再資源化する処理方法に関する。ここで、多成分系めっき廃液スラッジとは、鉄等を被めっき材としてニッケルめっき、銅めっき、亜鉛めっき、及びクロムめっきをそれぞれ行なった際にめっき工程で発生する各めっき廃液スラッジを混合したもので、金属成分としてニッケル、銅、亜鉛、鉄、及びクロムを含有するものを指す。 The present invention relates to a processing method for separating and recovering valuable materials from multicomponent plating waste liquid sludge for recycling. Here, multi-component plating waste sludge is a mixture of each plating waste sludge generated in the plating process when nickel plating, copper plating, zinc plating, and chromium plating are performed using iron as the material to be plated. In this case, the metal component contains nickel, copper, zinc, iron, and chromium.

例えば、ニッケルめっき廃液スラッジ中のニッケル分を回収する方法として、ニッケルめっき廃液スラッジに硫酸を加えて固形分を溶解させて溶解液を調製し、この溶解液から冷却晶析法により硫酸ニッケル結晶を晶析させて回収する方法、及びニッケル分の回収率を更に大きくするために、溶解液から硫酸ニッケル結晶を晶析させて回収すると共に、硫酸ニッケル結晶を濾過した濾液に鉄粉を加えて濾液中に残留するニッケルイオンを鉄粉表面に析出させて回収する冷却晶析処理とセメンテーション処理を組み合わせた方法が提案されている(例えば、特許文献1参照)。 For example, as a method of recovering the nickel content in the nickel plating waste liquid sludge, sulfuric acid is added to the nickel plating waste liquid sludge to dissolve the solid content to prepare a solution, and the nickel sulfate crystals are prepared from this solution by cooling crystallization. In order to further increase the nickel content recovery method by crystallization and recovery, nickel sulfate crystals are crystallized and recovered from the solution, and iron powder is added to the filtrate obtained by filtering the nickel sulfate crystals. There has been proposed a method in which a cooling crystallization process in which nickel ions remaining therein are deposited and recovered on the iron powder surface and a cementation process are combined (for example, see Patent Document 1).

あるいは、ニッケルめっき廃液スラッジに硫酸を添加して固形分を溶解した溶解液に炭酸カルシウムを加えると共に溶解液中の2価鉄イオンを3価鉄イオンに変えてからpH調整して鉄分を除去したニッケル原液を形成し、このニッケル原液に水酸化カルシウムを添加しpH調整して生成及び回収したニッケル含有石膏に酸を加えて水酸化ニッケルとして溶解させてニッケル分を抽出し、これに硫酸を加えて生成させた硫酸ニッケル溶液に冷却晶析処理を行なって硫酸ニッケル結晶を晶析させて回収する方法が提案されている(例えば、特許文献2参照)。 Alternatively, calcium carbonate is added to a solution obtained by adding sulfuric acid to nickel plating waste sludge to dissolve the solid content, and divalent iron ions in the solution are changed to trivalent iron ions, and then the pH is adjusted to remove iron. Form a nickel stock solution, add calcium hydroxide to this nickel stock solution, adjust the pH, add acid to the nickel-containing gypsum produced and recovered, dissolve it as nickel hydroxide, extract the nickel content, add sulfuric acid to this A method of cooling and crystallizing the nickel sulfate solution produced in this way to crystallize and recover nickel sulfate crystals has been proposed (see, for example, Patent Document 2).

特開2004−284848号公報JP 2004-284848 A 特開2005−15272号公報JP 2005-15272 A

一般に、めっき処理工場では、単一種の金属めっき処理を行なった際に発生するめっき廃液スラッジの量は少なく、しかも、2種類以上の金属めっき処理工程を有している場合が多いため、各金属めっき処理工程で発生するめっき廃液スラッジは混合処理され、めっき処理工場からは多成分の金属成分を含有した状態のめっき廃液スラッジが搬出され最終処分場で埋立処分されているのが現状である。一方、めっき廃液スラッジから有価金属を効率的に回収(再資源化)しようとする場合、発生しためっき廃液スラッジを、例えば、貯留タンク内に貯留しておき、めっき廃液スラッジが一定量に達した時点で一括処理して有価金属を回収することが経済性の観点から望ましい。 Generally, in a plating processing factory, the amount of plating waste liquid sludge generated when a single type of metal plating processing is performed is small, and more than two types of metal plating processing steps are often performed. The plating waste liquid sludge generated in the plating process is mixed, and the plating waste liquid sludge containing a multi-component metal component is taken out from the plating processing factory and disposed at the final disposal site. On the other hand, when trying to efficiently recover (recycle) valuable metals from plating waste sludge, the generated plating waste sludge is stored in, for example, a storage tank, and the plating waste sludge has reached a certain amount. From the viewpoint of economy, it is desirable to collect valuable metals by batch processing at the time.

従って、処理対象となるめっき廃液スラッジは、ニッケルめっきで発生するめっき廃液スラッジに限定されず、例えば、銅めっき、クロムめっき、及び亜鉛めっきを行なった際に発生した各めっき廃液スラッジが混入し多成分系めっき廃液スラッジの状態になっている。ここで、多成分系めっき廃液スラッジから、ニッケル、銅、亜鉛、鉄、及びクロムを、乾式精錬技術に基づく乾式法により分別回収することは非常に困難で、しかも、金属が溶融するような高温下で処理を行なうため、消費されるエネルギーも膨大となって経済的にも問題となる。このため、凝集沈澱法、セメンテーション法、キレート樹脂を用いたイオン交換樹脂法、及び溶媒抽出法等の湿式法を用いることが必要となる。しかし、イオン交換樹脂法で使用するイオン交換樹脂、溶媒抽出法で使用する抽出溶媒は、それぞれ専用に設計された極めて高価なもので、これを使用して多成分系めっき廃液スラッジから、ニッケル、銅、亜鉛、鉄、及びクロムの分別回収を経済的に行なうのは困難である。また、セメンテーション法を利用する特許文献1の発明、及び凝集沈澱法を利用する特許文献2の発明を、多成分系めっき廃液スラッジに適用する場合、回収される鉄及びニッケルにそれぞれ銅、クロム、及び亜鉛が混入することになる。このため、各有価金属の分別回収を精度よく行なうことができないという問題がある。そして、回収されるニッケル及び鉄の純度が低下し資源としての利用価値も低下するという問題も生じる。 Accordingly, the plating waste liquid sludge to be treated is not limited to the plating waste liquid sludge generated by nickel plating. It is in the state of component plating waste liquid sludge. Here, it is very difficult to separate and collect nickel, copper, zinc, iron, and chromium from multi-component plating waste sludge by a dry method based on dry refining technology, and at such a high temperature that the metal melts. Since the processing is performed below, the energy consumed is enormous, which causes a problem economically. For this reason, it is necessary to use wet methods such as a coagulation precipitation method, a cementation method, an ion exchange resin method using a chelate resin, and a solvent extraction method. However, the ion exchange resin used in the ion exchange resin method and the extraction solvent used in the solvent extraction method are extremely expensive ones designed specifically for each. It is difficult to economically separate and collect copper, zinc, iron, and chromium. In addition, when the invention of Patent Document 1 using the cementation method and the invention of Patent Document 2 using the coagulation precipitation method are applied to multicomponent plating waste liquid sludge, the recovered iron and nickel are respectively copper and chromium. , And zinc will be mixed. For this reason, there exists a problem that the separate collection | recovery of each valuable metal cannot be performed accurately. And the problem that the purity of the nickel and iron collect | recovered falls and the utility value as a resource also arises arises.

本発明はかかる事情に鑑みてなされたもので、多成分系めっき廃液スラッジから有価物を安価に分別回収して再資源化することが可能な多成分系めっき廃液スラッジの再資源化処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a recycling method for multi-component plating waste liquid sludge capable of separating and recovering valuable materials from multi-component plating waste liquid sludge at low cost and recycling them. The purpose is to provide.

前記目的に沿う第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、クロム、及び有機物を含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程と、
前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中に存在する有機物を分解すると共に前記水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離してニッケル、及び亜鉛を含有する第3処理液とする第3工程と、
前記第3処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛及び鉄を含有する第4処理液とする第4工程と、
前記第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、該中間処理液にpH調整剤を加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、
前記第5処理液のpHを調整し、該第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有し、
前記多成分系めっき廃液スラッジから有機物を分解しニッケル、銅、亜鉛、鉄、及びクロムを分別回収する。
ここで、ニッケル、銅、亜鉛、鉄、及びクロムには、ニッケル、銅、亜鉛、鉄、及びクロムの金属に加えてこれらの化合物も含まれる。また有機物には、有機高分子系の凝集剤等が含まれる。
The recycling method for multi-component plating waste liquid sludge according to the first aspect of the present invention is to add an inorganic acid to the multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, chromium, and organic matter. A sludge dissolution treatment is performed to dissolve the multi-component plating waste liquid sludge to form a dissolution treatment product, and the insoluble matter is removed from the dissolution treatment product so that a part of nickel, copper, zinc, iron, chromium, and organic matter is removed. A first step provided with an insoluble matter removal treatment for obtaining a mixed first treatment liquid;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step of forming a second treatment liquid containing zinc, iron, chromium, and organic matter;
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjuster to the second treatment solution to adjust the pH, and performing chromium neutralization treatment to change chromium ions in the second treatment solution to chromium hydroxide. And an oxidizing agent is added to the chromium hydroxide dispersion treatment solution to decompose organic substances present in the chromium hydroxide dispersion treatment solution and oxidize ferrous ions in the chromium hydroxide dispersion treatment solution. Then, ferric hydroxide starch is produced by performing a first iron neutralization treatment in which a ferric ion is added and then a pH adjusting agent is added to adjust the pH to convert the ferric ion to ferric hydroxide. A third step of separating the ferric hydroxide starch together with the chromium hydroxide into a third treatment liquid containing nickel and zinc;
The iron powder is added to the third treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the third treatment liquid are replaced with iron, and the nickel-attached iron powder on which nickel is deposited is separated, and zinc is separated. And a fourth step as a fourth treatment liquid containing iron,
An intermediate treatment solution is prepared by oxidizing the ferrous ions in the fourth treatment solution to ferric ions, and a pH adjuster is added to the intermediate treatment solution to adjust the pH. A second iron neutralization treatment for converting ferric ions to ferric hydroxide is performed to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. A fifth step as a treatment liquid;
Zinc neutralization treatment is performed by adjusting the pH of the fifth treatment liquid and changing zinc ions in the fifth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And a sixth step of making a sixth treatment liquid from which zinc has been removed,
Organic substances are decomposed from the multicomponent plating waste sludge to separate and recover nickel, copper, zinc, iron, and chromium.
Here, nickel, copper, zinc, iron, and chromium include these compounds in addition to nickel, copper, zinc, iron, and chromium metals. The organic substance includes an organic polymer-based flocculant and the like.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. It is good to do.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理では、前記第4処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して、該第4処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることができる。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, in the intermediate treatment, an oxidizing agent is added to the fourth treatment liquid to maintain a redox potential at 600 mV or higher, All ferrous ions in the treatment liquid can be oxidized to ferric ions.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理では、前記第4処理液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して前記第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤を加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、該鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることもできる。ここで、前記鉄中和処理液に加える酸化剤は過酸化水素であることが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, in the intermediate treatment, an oxidizing agent is added to the fourth treatment liquid to maintain the oxidation-reduction potential at 400 mV or more and 500 mV or less. Iron neutralization to convert ferric ions to ferric hydroxide by oxidizing a part of ferrous ions in the fourth treatment liquid to ferric ions and adjusting the pH by adding a pH adjuster. As an iron neutralization treatment liquid in which ferric hydroxide is dispersed, an oxidizing agent is added to the iron neutralization treatment liquid so that the oxidation-reduction potential is maintained at 600 mV or more, and the ferrous iron in the iron neutralization treatment liquid All ions can be oxidized to ferric ions. Here, the oxidizing agent added to the iron neutralization treatment liquid is preferably hydrogen peroxide.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に、酸化剤と共に第一鉄を加えることができ、前記第4処理液に加える酸化剤は過酸化水素であることが好ましい。また、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることが好ましい。更に、前記第1の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, ferrous iron can be added together with an oxidant to the chromium hydroxide dispersion treatment liquid, and the oxidant added to the fourth treatment liquid Is preferably hydrogen peroxide. The oxidizing agent added to the chromium hydroxide dispersion treatment liquid is preferably hydrogen peroxide. Further, the first iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中に存在する有機物を分解すると共に該分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル、及び亜鉛を含有する第3処理液とする第3A工程を行なうことができる。ここで、前記第1Bの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, instead of the third step, a pH adjuster is added to the second treatment liquid to adjust the pH, and the second treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to decompose organic substances present in the chromium removal solution and to oxidize a part of the ferrous ions present in the chromium removal solution. Further, a 1A iron neutralization treatment is carried out by adding a pH adjuster to adjust the pH to ferric hydroxide to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed. Add oxidant to make redox potential 600m While maintaining the above, the organic substances present in the dispersion treatment liquid are decomposed and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions, and then a pH adjuster is added to the dispersion treatment liquid. In addition, a ferrous hydroxide starch is formed by adjusting the pH and changing to ferric hydroxide to form a ferric hydroxide starch, separating the ferric hydroxide starch into nickel, and The 3rd A process used as the 3rd processing liquid containing zinc can be performed. The 1B iron neutralization treatment is preferably performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower.

第1の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル、及び亜鉛を含有する第3処理液とする第3B工程を行なうこともできる。ここで、前記第1Cの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the first invention, instead of the third step, a pH adjuster is added to the second treatment liquid to adjust the pH, and the second treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 600 mV or more to decompose organic substances present in the chromium removal solution, and ferrous ions in the chromium removal solution are oxidized to ferric ions, and then a pH adjuster is added. To adjust the pH to ferric hydroxide to neutralize the 1C iron to produce ferric hydroxide starch, and separate the ferric hydroxide starch into nickel and zinc 3B process is carried out with the third treatment liquid containing And it can also be. Here, the 1C iron neutralization treatment is preferably performed at 60 ° C. or more, preferably 75 ° C. or more, and less than 100 ° C., preferably 85 ° C. or less.

前記目的に沿う第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、及びクロムを含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、
前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離してニッケル、及び亜鉛を含有する第3処理液とする第3工程と、
前記第3処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛及び鉄を含有する第4処理液とする第4工程と、
前記第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、該中間処理液にpH調整剤を加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、
前記第5処理液のpHを調整し、該第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有し、
前記多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムを分別回収する。
ここで、ニッケル、銅、亜鉛、鉄、及びクロムには、ニッケル、銅、亜鉛、鉄、及びクロムの金属に加えてこれらの化合物も含まれる。
A recycling method for multicomponent plating waste liquid sludge according to the second invention in accordance with the above object comprises adding an inorganic acid to a multicomponent plating waste liquid sludge containing nickel, copper, zinc, iron, and chromium, and A sludge dissolution treatment is performed to dissolve the component-based plating waste liquid sludge to form a dissolution treatment product. The first treatment solution in which nickel, copper, zinc, iron, and chromium are mixed by removing the insoluble matter from the dissolution treatment product A first step provided with an insoluble matter removal process to obtain;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step as a second treatment liquid containing zinc, iron, and chromium;
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjuster to the second treatment solution to adjust the pH, and performing chromium neutralization treatment to change chromium ions in the second treatment solution to chromium hydroxide. And oxidize the chromium hydroxide dispersion treatment solution to oxidize ferrous ions in the chromium hydroxide dispersion treatment solution to ferric ions, and then adjust the pH by adding a pH adjuster. Then, ferric hydroxide starch is produced by performing a first iron neutralization treatment for converting ferric ions to ferric hydroxide, and separating the ferric hydroxide starch together with the chromium hydroxide. And a third step of making a third treatment liquid containing nickel and zinc,
The iron powder is added to the third treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the third treatment liquid are replaced with iron, and the nickel-attached iron powder on which nickel is deposited is separated, and zinc is separated. And a fourth step as a fourth treatment liquid containing iron,
An intermediate treatment solution is prepared by oxidizing the ferrous ions in the fourth treatment solution to ferric ions, and a pH adjuster is added to the intermediate treatment solution to adjust the pH. A second iron neutralization treatment for converting ferric ions to ferric hydroxide is performed to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. A fifth step as a treatment liquid;
Zinc neutralization treatment is performed by adjusting the pH of the fifth treatment liquid and changing zinc ions in the fifth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And a sixth step of making a sixth treatment liquid from which zinc has been removed,
Nickel, copper, zinc, iron and chromium are separated and recovered from the multi-component plating waste sludge.
Here, nickel, copper, zinc, iron, and chromium include these compounds in addition to nickel, copper, zinc, iron, and chromium metals.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the second invention, the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. Good to do.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理では、前記第4処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して、該第4処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることができる。ここで、前記第4処理液に加える酸化剤は過酸化水素であることが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the second invention, in the intermediate treatment, an oxidizing agent is added to the fourth treatment liquid to maintain an oxidation-reduction potential at 600 mV or more. All ferrous ions in the treatment liquid can be oxidized to ferric ions. Here, the oxidizing agent added to the fourth treatment liquid is preferably hydrogen peroxide.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理は、前記第4処理液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して前記第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤を加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、該鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることができる。ここで、前記第4処理液及び前記鉄中和処理液に加える酸化剤は過酸化水素であることが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the second invention, the intermediate treatment is performed by adding an oxidizing agent to the fourth treatment liquid and maintaining the oxidation-reduction potential at 400 mV or more and 500 mV or less. Iron neutralization to convert ferric ions to ferric hydroxide by oxidizing a part of ferrous ions in the fourth treatment liquid to ferric ions and adjusting the pH by adding a pH adjuster. As an iron neutralization treatment liquid in which ferric hydroxide is dispersed, an oxidizing agent is added to the iron neutralization treatment liquid so that the oxidation-reduction potential is maintained at 600 mV or more, and the ferrous iron in the iron neutralization treatment liquid All ions can be oxidized to ferric ions. Here, the oxidizing agent added to the fourth treatment liquid and the iron neutralization treatment liquid is preferably hydrogen peroxide.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることが好ましい。また、前記第1の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multicomponent plating waste liquid sludge according to the second invention, it is preferable that the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide. Further, the first iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3A工程を行なうことができる。ここで、前記第1Bの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the second invention, instead of the third step, a pH adjuster is added to the second processing solution to adjust the pH, and the second processing solution A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to oxidize part of the ferrous ions present in the chromium removal solution to ferric ions, and further adjust the pH by adding a pH adjuster. 1A iron neutralization treatment to convert to ferric hydroxide is performed to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed, and an oxidizing agent is added to the dispersion treatment liquid to keep the oxidation-reduction potential at 600 mV or more. The residue of ferrous ions in the dispersion treatment liquid Is oxidized to ferric ions, and then a pH adjusting agent is added to the dispersion treatment solution to adjust the pH to ferric hydroxide to perform 1B iron neutralization treatment, thereby ferric hydroxide A 3A process which makes a starch and isolate | separates this ferric hydroxide starch and makes it the 3rd process liquid containing nickel and zinc can be performed. Here, the 1B iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

第2の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3B工程を行なうこともできる。ここで、前記第1Cの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the second invention, instead of the third step, a pH adjuster is added to the second processing solution to adjust the pH, and the second processing solution A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 600 mV or more to oxidize ferrous ions in the chromium removal solution to ferric ions, and then a pH adjuster is added to adjust the pH to ferric hydroxide. Step 3B, wherein the iron neutralization treatment of 1C to be changed is performed to produce ferric hydroxide starch, and the ferric hydroxide starch is separated to form a third treatment liquid containing nickel and zinc. It can also be done. Here, the iron neutralization treatment of 1C is preferably performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

前記目的に沿う第3の発明に係る多成分系めっき廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、クロム、及び有機物を含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程と、
前記第2処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛、鉄、クロム、及び有機物を含有する第3処理液とする第3工程と、
前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中に存在する有機物を分解すると共に前記水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程と、
前記第4処理液のpHを調整し、該第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有し、
前記多成分系めっき廃液スラッジから有機物を分解しニッケル、銅、亜鉛、鉄、及びクロムを分別回収する。
ここで、ニッケル、銅、亜鉛、鉄、及びクロムには、ニッケル、銅、亜鉛、鉄、及びクロムの金属に加えてこれらの化合物も含まれる。また有機物には、有機高分子系の凝集剤等が含まれる。
The method for recycling multi-component plating waste liquid sludge according to the third aspect of the present invention is to add an inorganic acid to the multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, chromium, and organic matter. A sludge dissolution treatment is performed to dissolve the multi-component plating waste liquid sludge to form a dissolution treatment product, and the insoluble matter is removed from the dissolution treatment product so that a part of nickel, copper, zinc, iron, chromium, and organic matter is removed. A first step provided with an insoluble matter removal treatment for obtaining a mixed first treatment liquid;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step of forming a second treatment liquid containing zinc, iron, chromium, and organic matter;
The iron powder is added to the second treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the second treatment liquid are replaced with iron, and the nickel-adhered iron powder on which nickel is deposited is separated, and zinc is separated. , A third step as a third treatment liquid containing iron, chromium, and organic matter,
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjusting agent to the third treatment solution to adjust the pH, and performing a chromium neutralization treatment in which chromium ions in the third treatment solution are changed to chromium hydroxide. And an oxidizing agent is added to the chromium hydroxide dispersion treatment solution to decompose organic substances present in the chromium hydroxide dispersion treatment solution and oxidize ferrous ions in the chromium hydroxide dispersion treatment solution. Then, a ferric hydroxide starch is formed by carrying out an iron neutralization treatment by adjusting the pH by adding a pH adjusting agent to convert the ferric ion to ferric hydroxide. A fourth step of separating ferric oxide starch together with the chromium hydroxide to form a fourth treatment liquid containing zinc;
Zinc neutralization treatment is performed by adjusting the pH of the fourth treatment liquid and changing zinc ions in the fourth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And having a fifth step as a fifth treatment liquid from which zinc has been removed,
Organic substances are decomposed from the multicomponent plating waste sludge to separate and recover nickel, copper, zinc, iron, and chromium.
Here, nickel, copper, zinc, iron, and chromium include these compounds in addition to nickel, copper, zinc, iron, and chromium metals. The organic substance includes an organic polymer-based flocculant and the like.

第3の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。更に、前記水酸化クロム分散処理液に、酸化剤と共に第一鉄を加えることができる。また、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the third invention, the iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. Good. Furthermore, ferrous iron can be added together with an oxidizing agent to the chromium hydroxide dispersion treatment solution. The oxidizing agent added to the chromium hydroxide dispersion treatment liquid is preferably hydrogen peroxide.

第3の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中に存在する有機物を分解すると共に該分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことができる。ここで、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the third invention, instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to decompose organic substances present in the chromium removal solution and to oxidize a part of the ferrous ions present in the chromium removal solution. In addition, a first iron neutralization treatment is performed by adding a pH adjuster to adjust the pH to ferric hydroxide, thereby obtaining a dispersion treatment liquid in which ferric hydroxide is dispersed. Oxidizing agent added to reduce oxidation potential to 600 mV The organic substances present in the dispersion treatment liquid are decomposed while being held on the top, and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions, and then a pH adjuster is added to the dispersion treatment liquid. In addition, a second iron neutralization treatment is performed to adjust the pH to ferric hydroxide to produce ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc The 4A process which makes the 4th processing liquid to perform can be performed. Here, the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower.

第3の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なうこともできる。ここで、前記第3の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multi-component plating waste liquid sludge according to the third invention, instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 600 mV or more to decompose organic substances present in the chromium removal solution, and ferrous ions in the chromium removal solution are oxidized to ferric ions, and then a pH adjuster is added. A third iron neutralization treatment is performed to adjust the pH to ferric hydroxide to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. The 4B process which makes a 4th processing liquid can also be performed. Here, the third iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

前記目的に沿う第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、及びクロムを含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、
前記第2処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛、鉄、及びクロムを含有する第3処理液とする第3工程と、
前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程と、
前記第4処理液のpHを調整し、該第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有し、
前記多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムを分別回収する。
ここで、ニッケル、銅、亜鉛、鉄、及びクロムには、ニッケル、銅、亜鉛、鉄、及びクロムの金属に加えてこれらの化合物も含まれる。
A recycling method for multi-component plating waste liquid sludge according to the fourth aspect of the present invention in accordance with the above object comprises adding an inorganic acid to a multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, and chromium, and A sludge dissolution treatment is performed to dissolve the component-based plating waste liquid sludge to form a dissolution treatment product. The first treatment solution in which nickel, copper, zinc, iron, and chromium are mixed by removing insolubles from the dissolution treatment product A first step provided with an insoluble matter removal process to obtain;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step as a second treatment liquid containing zinc, iron, and chromium;
The iron powder is added to the second treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the second treatment liquid are replaced with iron, and the nickel-adhered iron powder on which nickel is deposited is separated, and zinc is separated. A third step as a third treatment liquid containing iron, chromium, and
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjusting agent to the third treatment solution to adjust the pH, and performing a chromium neutralization treatment in which chromium ions in the third treatment solution are changed to chromium hydroxide. And oxidize the chromium hydroxide dispersion treatment solution to oxidize ferrous ions in the chromium hydroxide dispersion treatment solution to ferric ions, and then adjust the pH by adding a pH adjuster. Then, ferric hydroxide starch is produced by performing iron neutralization treatment to convert ferric ions to ferric hydroxide, and the ferric hydroxide starch is separated together with the chromium hydroxide to form zinc. A fourth step as a fourth treatment liquid containing
Zinc neutralization treatment is performed by adjusting the pH of the fourth treatment liquid and changing zinc ions in the fourth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And having a fifth step as a fifth treatment liquid from which zinc has been removed,
Nickel, copper, zinc, iron and chromium are separated and recovered from the multi-component plating waste sludge.
Here, nickel, copper, zinc, iron, and chromium include these compounds in addition to nickel, copper, zinc, iron, and chromium metals.

第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。また、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることが好ましい。 In the recycling method for multi-component plating waste liquid sludge according to the fourth invention, the iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. Good. The oxidizing agent added to the chromium hydroxide dispersion treatment liquid is preferably hydrogen peroxide.

第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことができる。ここで、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multicomponent plating waste liquid sludge according to the fourth invention, instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to oxidize part of the ferrous ions present in the chromium removal solution to ferric ions, and further adjust the pH by adding a pH adjuster. The first iron neutralization process to convert to ferric hydroxide is performed to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed, and an oxidizing agent is added to the dispersion treatment liquid to maintain the oxidation-reduction potential at 600 mV or higher. The balance of ferrous ions in the dispersion treatment liquid Oxidized to ferric ions, and then a second iron neutralization treatment was performed by adding a pH adjuster to the dispersion treatment liquid to adjust the pH to ferric hydroxide, thereby converting to ferric hydroxide starch. The 4th A process which makes a product and can separate this ferric hydroxide starch and makes it the 4th processing liquid containing zinc can be performed. Here, the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なうこともできる。ここで、前記第3の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうのがよい。 In the recycling method for multicomponent plating waste liquid sludge according to the fourth invention, instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid A chromium neutralization treatment is carried out by changing the chromium ions into chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 600 mV or more to oxidize ferrous ions in the chromium removal solution to ferric ions, and then a pH adjuster is added to adjust the pH to ferric hydroxide. Performing the fourth iron neutralization treatment to produce ferric hydroxide starch, and separating the ferric hydroxide starch into a fourth treatment solution containing zinc. You can also. Here, the third iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, and less than 100 ° C., preferably 85 ° C. or lower.

第1〜第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記pH調整剤は弱アルカリ剤であることが好ましい。 In the recycling method for multicomponent plating waste liquid sludge according to the first to fourth inventions, the pH adjuster is preferably a weak alkali agent.

第1〜第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第1工程で、前記無機酸に塩酸を使用し、前記スラッジ溶解処理は、pHを0.5以上で2以下、温度を80℃以上で100℃未満の条件で行なうことができる。また、前記スラッジ溶解処理と前記不溶分除去処理の間に、前記溶解処理物に硫酸を加え、更にカルシウム源を加えてpHを1以上で2以下、温度を80℃以上で100℃未満にして、石膏を生成させることが好ましい。 In the recycling method of multi-component plating waste liquid sludge according to the first to fourth inventions, hydrochloric acid is used as the inorganic acid in the first step, and the sludge dissolution treatment has a pH of 0.5 or more. At a temperature of 80 ° C. or higher and lower than 100 ° C. In addition, between the sludge dissolution treatment and the insoluble matter removal treatment, sulfuric acid is added to the dissolution treatment product, and a calcium source is further added so that the pH is 1 or more and 2 or less, and the temperature is 80 ° C or more and less than 100 ° C. It is preferable to produce gypsum.

第1〜第4の発明に係る多成分系めっき廃液スラッジの再資源化処理方法において、前記第1工程で、前記無機酸に硫酸を使用し、前記前記スラッジ溶解処理は、pHを0.5以上で2以下、温度を80℃以上で100℃未満の条件で行ない、該スラッジ溶解処理と前記不溶分除去処理の間に、前記溶解処理物にカルシウム源を加えてpHを1以上で2以下、温度を80℃以上で100℃未満にして該溶解処理物中の硫酸根を石膏として除去する硫酸根除去処理を設けることもできる。 In the recycling method of multicomponent plating waste liquid sludge according to the first to fourth inventions, sulfuric acid is used as the inorganic acid in the first step, and the sludge dissolution treatment has a pH of 0.5. 2 or less at a temperature of 80 ° C. or more and less than 100 ° C. Between the sludge dissolution treatment and the insoluble matter removal treatment, a calcium source is added to the dissolution treatment product to adjust the pH to 1 or more and 2 or less. Further, it is possible to provide a sulfate radical removing treatment in which the temperature is set to 80 ° C. or higher and lower than 100 ° C. to remove sulfate radicals in the dissolved processed product as gypsum.

請求項1〜44記載の多成分系めっき廃液スラッジの再資源化処理方法においては、多成分系めっき廃液スラッジから各金属を順次分別回収することができ、回収された各金属分を資源として有効利用することが可能になる。ここで、ニッケルを分別回収してから亜鉛の分別回収を行なうので、回収したニッケル及び亜鉛の品位を上げることができる。 In the recycling method of the multi-component plating waste liquid sludge according to claims 1 to 44, each metal can be sequentially separated and recovered from the multi-component plating waste liquid sludge, and each recovered metal is effective as a resource. It becomes possible to use. Here, since the nickel is separately collected after the zinc is separated and collected, the quality of the recovered nickel and zinc can be improved.

特に、請求項2、9、11、13、15、21、23、25、27、31、33、35、38、及び40記載の多成分系めっき廃液スラッジの再資源化処理方法においては、水酸化第二鉄澱物の生成速度が速くなって水酸化第二鉄澱物の粒子の粗大化を図ることができ、濾過性を改善することが可能になる。 In particular, in the recycling method for multicomponent plating waste liquid sludge according to claims 2, 9, 11, 13, 15, 21, 23, 25, 27, 31, 33, 35, 38, and 40, water The production rate of ferric oxide starch is increased, and the particles of ferric hydroxide starch can be coarsened, and the filterability can be improved.

請求項3記載の多成分系めっき廃液スラッジの再資源化処理方法においては、第4処理液中の全ての第一鉄イオンの酸化を行なうので、第4工程で鉄の回収を効率的に行なうことができる。ここで、第4処理液中に有機物が存在する場合は、第4処理液中の第一鉄イオンの酸化と同時に有機物の分解が行なわれるので、有機物が第5処理液中に混入するのを防止できる。 In the recycling method for multi-component plating waste liquid sludge according to claim 3, since all ferrous ions in the fourth treatment liquid are oxidized, iron is efficiently recovered in the fourth step. be able to. Here, when the organic substance is present in the fourth treatment liquid, the organic substance is decomposed simultaneously with the oxidation of the ferrous ion in the fourth treatment liquid, so that the organic substance is mixed in the fifth treatment liquid. Can be prevented.

請求項4記載の多成分系めっき廃液スラッジの再資源化処理方法においては、第4処理液中の第一鉄イオンの一部から水酸化第二鉄の核を生成させ、次いで残りの第一鉄イオンを全て酸化させて水酸化第二鉄の核と第二鉄イオンが共存する状態にしてから更に鉄中和を行なうので、生成する水酸化第二鉄が予め存在する水酸化第二鉄の核を中心にして析出し、水酸化第二鉄澱物の粒子の粗大化を達成することができる。その結果、水酸化第二鉄澱物の濾過性が改善されて、水酸化第二鉄澱物の分離を効率的に行なうことが可能になる。ここで、第4処理液中に有機物が存在する場合は、第一鉄イオンの酸化と有機物の分解が同時に行なわれ、有機物が第5処理液中に混入するのを防止することが可能になる。
請求項5、6記載の多成分系めっき廃液スラッジの再資源化処理方法においては、過酸化水素を使用するので、第一鉄イオンを効率的に酸化することができると共に、第4処理液中の第一鉄イオンにより過酸化水素からヒドロキシラジカルを効率的に発生させることができ、第4処理液中に有機物が残存している場合は有機物の分解も効率的に行なうことができ、第5処理液中に有機物が混入するのを防止できる。
In the recycling method of the multicomponent plating waste liquid sludge according to claim 4, ferric hydroxide nuclei are generated from a part of ferrous ions in the fourth processing liquid, and then the remaining first Since all iron ions are oxidized to make the ferric hydroxide nucleus and ferric ions coexist, iron neutralization is further performed, so the ferric hydroxide in which the ferric hydroxide produced is pre-existing It is possible to achieve coarsening of the particles of ferric hydroxide starch. As a result, the filterability of the ferric hydroxide starch is improved, and it becomes possible to efficiently separate the ferric hydroxide starch. Here, when an organic substance is present in the fourth treatment liquid, oxidation of ferrous ions and decomposition of the organic substance are performed at the same time, and it becomes possible to prevent the organic substance from being mixed into the fifth treatment liquid. .
In the recycling method of the multicomponent plating waste liquid sludge according to claim 5 and 6, since hydrogen peroxide is used, ferrous ions can be efficiently oxidized and in the fourth processing liquid. The hydroxyl radicals can be efficiently generated from hydrogen peroxide by the ferrous ions, and when the organic matter remains in the fourth treatment liquid, the organic matter can be efficiently decomposed. It is possible to prevent organic substances from being mixed into the treatment liquid.

請求項7記載の多成分系めっき廃液スラッジの再資源化処理方法においては、酸化剤と共に第一鉄を加えるので、第3処理液中の有機物の分解を促進することができる。
請求項8載の多成分系めっき廃液スラッジの再資源化処理方法においては、水酸化クロム分散処理液に加える酸化剤が過酸化水素なので、過酸化水素からヒドロキシラジカルを効率的に発生させて、有機物を効率的に分解することができる。
In the recycling processing method for multi-component plating waste liquid sludge according to claim 7, since ferrous iron is added together with the oxidizing agent, decomposition of organic substances in the third processing liquid can be promoted.
In the recycling method of the multicomponent plating waste liquid sludge according to claim 8, since the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide, hydroxy radicals are efficiently generated from the hydrogen peroxide, Organic matter can be decomposed efficiently.

請求項10記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、酸化剤により有機物が分解されるので、第4工程におけるニッケルの回収率を向上させることができる。更に、第1Aの鉄中和処理を行なって水酸化第二鉄の核を生成させてから、第1B鉄中和処理を行なうので、第1Bの鉄中和処理で生成する水酸化第二鉄を第1Aの鉄中和処理で生成した水酸化第二鉄の核を中心にして析出させることができ、水酸化第二鉄澱物の粒子の粗大化が達成されて濾過性を改善することが可能になる。 In the recycling processing method of the multi-component plating waste liquid sludge according to claim 10, chromium and iron can be separated and recovered, so that they can be effectively used as a chromium raw material and an iron raw material. Moreover, since the organic substance is decomposed by the oxidizing agent, the recovery rate of nickel in the fourth step can be improved. Further, since ferric hydroxide nuclei are generated by performing the 1A iron neutralization treatment, and then the 1B iron neutralization treatment is performed, the ferric hydroxide produced by the 1B iron neutralization treatment is performed. Can be precipitated around the nucleus of ferric hydroxide produced by the iron neutralization treatment of 1A, and the coarsening of the particles of ferric hydroxide starch is achieved to improve filterability Is possible.

請求項12記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、酸化剤により有機物が分解されるので、第4工程におけるニッケルの回収率を向上させることができる。更に、クロム除去液中の全ての第一鉄イオンの酸化を行なうので、第3処理液の回収を効率的に行なうことができる。 In the recycling method for multi-component plating waste liquid sludge according to claim 12, chromium and iron can be separated and recovered, so that they can be effectively used as a chromium raw material and an iron raw material. Moreover, since the organic substance is decomposed by the oxidizing agent, the recovery rate of nickel in the fourth step can be improved. Furthermore, since all the ferrous ions in the chromium removal solution are oxidized, the third treatment solution can be efficiently recovered.

請求項16記載の多成分系めっき廃液スラッジの再資源化処理方法においては、第4処理液中の全ての第一鉄イオンの酸化を行なうので、第4工程で混入した鉄の回収を効率的に行なうことができる。
請求項17記載の多成分系めっき廃液スラッジの再資源化処理方法においては、過酸化水素で第一鉄イオンを効率的に酸化することができる。
In the multi-component plating waste liquid sludge recycling treatment method according to claim 16, since all ferrous ions in the fourth treatment liquid are oxidized, the recovery of iron mixed in the fourth step is efficient. Can be done.
In the recycling method of the multicomponent plating waste liquid sludge according to claim 17, ferrous ions can be efficiently oxidized with hydrogen peroxide.

請求項18記載の多成分系めっき廃液スラッジの再資源化処理方法においては、第4処理液中の第一鉄イオンの一部から水酸化第二鉄の核を生成させ、次いで残りの第一鉄イオンを全て酸化させて水酸化第二鉄の核と第二鉄イオンが共存する状態にしてから更に鉄中和を行なうので、生成する水酸化第二鉄が予め存在する水酸化第二鉄の核を中心にして析出し、水酸化第二鉄澱物の粒子の粗大化を達成することができる。その結果、水酸化第二鉄澱物の濾過性が改善されて、水酸化第二鉄澱物の分離を効率的に行なうことが可能になる。
請求項19記載の多成分系めっき廃液スラッジの再資源化処理方法においては、過酸化水素で第一鉄イオンを効率的に酸化することができる。
請求項20記載の多成分系めっき廃液スラッジの再資源化処理方法においては、水酸化クロム分散処理液に加える酸化剤が過酸化水素なので、水酸化クロム分散処理液中の第一鉄イオンを効率的に酸化して第二鉄イオンにすることができる。
In the recycling method of the multi-component plating waste liquid sludge according to claim 18, ferric hydroxide nuclei are generated from a part of ferrous ions in the fourth processing liquid, and then the remaining first Since all iron ions are oxidized to make the ferric hydroxide nucleus and ferric ions coexist, iron neutralization is further performed, so the ferric hydroxide in which the ferric hydroxide produced is pre-existing It is possible to achieve coarsening of the particles of ferric hydroxide starch. As a result, the filterability of the ferric hydroxide starch is improved, and it becomes possible to efficiently separate the ferric hydroxide starch.
In the recycling method for multi-component plating waste liquid sludge according to claim 19, ferrous ions can be efficiently oxidized with hydrogen peroxide.
In the recycling method of the multicomponent plating waste liquid sludge according to claim 20, since the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide, ferrous ions in the chromium hydroxide dispersion treatment liquid are efficiently used. Can be oxidized to ferric ions.

請求項22記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、第1Aの鉄中和処理を行なって水酸化第二鉄の核を生成させてから、第1B鉄中和処理を行なうので、第1Bの鉄中和処理で生成する水酸化第二鉄を第1Aの鉄中和処理で生成した水酸化第二鉄の核を中心にして析出させることができ、水酸化第二鉄澱物の粒子の粗大化が達成されて濾過性を改善することが可能になる。 In the recycling method of the multicomponent plating waste liquid sludge according to claim 22, since chromium and iron can be separated and recovered, they can be effectively used as a chromium raw material and an iron raw material. In addition, since ferrous hydroxide nuclei are generated by performing the 1A iron neutralization treatment, and then the 1B iron neutralization treatment is performed, the ferric hydroxide produced by the 1B iron neutralization treatment is performed. Can be precipitated around the nucleus of ferric hydroxide produced by the iron neutralization treatment of 1A, and the coarsening of the particles of ferric hydroxide starch is achieved to improve filterability Is possible.

請求項24記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、クロム除去液中の全ての第一鉄イオンの酸化を行なうので、第3処理液の回収を効率的に行なうことができる。 In the recycling method of the multicomponent plating waste liquid sludge according to the twenty-fourth aspect, chromium and iron can be separated and recovered, so that they can be effectively used as a chromium raw material and an iron raw material. In addition, since all ferrous ions in the chromium removal solution are oxidized, the third treatment solution can be efficiently recovered.

請求項28記載の多成分系めっき廃液スラッジの再資源化処理方法においては、酸化剤と共に第一鉄を加えるので、有機物の分解を促進することができる。
請求項29記載の多成分系めっき廃液スラッジの再資源化処理方法においては、水酸化クロム分散処理液に加える酸化剤が過酸化水素なので、過酸化水素からヒドロキシラジカルを効率的に発生させて、有機物を効率的に分解することができる。
In the recycling method of the multicomponent plating waste liquid sludge according to the twenty-eighth aspect, ferrous iron is added together with the oxidizing agent, so that the decomposition of the organic matter can be promoted.
In the recycling treatment method for multi-component plating waste liquid sludge according to claim 29, since the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide, hydroxy radicals are efficiently generated from hydrogen peroxide, Organic matter can be decomposed efficiently.

請求項30記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、第1の鉄中和処理を行なって水酸化第二鉄の核を生成させてから、第2の鉄中和処理を行なうので、第2の鉄中和処理で生成する水酸化第二鉄を第1の鉄中和処理で生成した水酸化第二鉄の核を中心にして析出させることができ、水酸化第二鉄澱物の粒子の粗大化が達成されて濾過性を改善することが可能になる。更に、酸化剤により有機物が分解されるので、第4処理液中に有機物が混入するのを防止することができる。 In the recycling method of the multicomponent plating waste liquid sludge according to the thirty-third aspect, since chromium and iron can be separately collected, it can be effectively used as a chromium raw material and an iron raw material. Moreover, since the 2nd iron neutralization process is performed after performing the 1st iron neutralization process and producing | generating the nucleus of ferric hydroxide, the 2nd hydroxide produced | generated by the 2nd iron neutralization process Iron can be precipitated centering around the ferric hydroxide nucleus produced by the first iron neutralization treatment, and the coarsening of the ferric hydroxide starch particles is achieved, thereby improving the filterability. It becomes possible. Furthermore, since the organic substance is decomposed by the oxidizing agent, it is possible to prevent the organic substance from being mixed into the fourth treatment liquid.

請求項32記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、クロム除去液中の全ての第一鉄イオンの酸化を行なうので、第4処理液の回収を効率的に行なうことができる。更に、酸化剤により有機物が分解されるので、第4処理液中に有機物が混入するのを防止することができる。 In the recycling method of the multicomponent plating waste liquid sludge according to the thirty-second aspect, chromium and iron can be separated and recovered, so that they can be effectively used as a chromium raw material and an iron raw material. In addition, since all ferrous ions in the chromium removal solution are oxidized, the fourth treatment solution can be efficiently recovered. Furthermore, since the organic substance is decomposed by the oxidizing agent, it is possible to prevent the organic substance from being mixed into the fourth treatment liquid.

請求項36記載の多成分系めっき廃液スラッジの再資源化処理方法においては、水酸化クロム分散処理液に加える酸化剤が過酸化水素なので、水酸化クロム分散処理液中の第一鉄イオンを効率的に酸化して第二鉄イオンにすることができる。 In the recycling method of the multicomponent plating waste liquid sludge according to claim 36, since the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide, ferrous ions in the chromium hydroxide dispersion treatment liquid are efficiently used. Can be oxidized to ferric ions.

請求項37記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、第1の鉄中和処理を行なって水酸化第二鉄の核を生成させてから、第2の鉄中和処理を行なうので、第2の鉄中和処理で生成する水酸化第二鉄を第1の鉄中和処理で生成した水酸化第二鉄の核を中心にして析出させることができ、水酸化第二鉄澱物の粒子の粗大化が達成されて濾過性を改善することが可能になる。 In the recycling method of the multicomponent plating waste liquid sludge according to claim 37, since chromium and iron can be separated and recovered, they can be effectively used as a chromium raw material and an iron raw material. Moreover, since the 2nd iron neutralization process is performed after performing the 1st iron neutralization process and producing | generating the nucleus of ferric hydroxide, the 2nd hydroxide produced | generated by the 2nd iron neutralization process Iron can be precipitated centering around the ferric hydroxide nucleus produced by the first iron neutralization treatment, and the coarsening of the ferric hydroxide starch particles is achieved, thereby improving the filterability. It becomes possible.

請求項39記載の多成分系めっき廃液スラッジの再資源化処理方法においては、クロムと鉄を分別回収できるので、クロム原料、鉄原料として有効利用することができる。また、クロム除去液中の全ての第一鉄イオンの酸化を行なうので、第4処理液の回収を効率的に行なうことができる。 In the recycling method of the multicomponent plating waste liquid sludge according to claim 39, chromium and iron can be separated and recovered, so that they can be effectively used as a chromium raw material and an iron raw material. In addition, since all ferrous ions in the chromium removal solution are oxidized, the fourth treatment solution can be efficiently recovered.

請求項41記載の多成分系めっき廃液スラッジの再資源化処理方法においては、pH調整剤に弱アルカリ剤を使用するので、中和を行なう際に、局所的な高pH領域の生成を抑えることが可能になる。これによって、所望の金属の水酸化物のみを生成させることが可能になり、ニッケル、銅、亜鉛、鉄、及びクロムの精度の高い分別回収を行なうことができる。 In the recycling method for multi-component plating waste liquid sludge according to claim 41, since a weak alkaline agent is used as a pH adjuster, the generation of a local high pH region is suppressed during neutralization. Is possible. Thereby, it becomes possible to produce only a desired metal hydroxide, and it is possible to carry out fractional recovery of nickel, copper, zinc, iron, and chromium with high accuracy.

請求項42記載の多成分系めっき廃液スラッジの再資源化処理方法においては、塩酸を使用することで溶解処理物中で各金属分を塩化物の状態で存在させて各金属分を水酸化物の状態で容易に回収することができ、各金属成分の回収精度及び回収率を共に大きくすることが可能になる。また、温度を80℃以上100℃未満にすることで、多成分系めっき廃液スラッジ中に有機物が存在していても、有機物を分解することができる。 In the recycling method of the multi-component plating waste liquid sludge according to claim 42, each metal component is made to exist in a chloride state in the dissolved processed product by using hydrochloric acid, and each metal component is converted into a hydroxide. In this state, it is possible to easily recover, and it is possible to increase both the recovery accuracy and recovery rate of each metal component. Moreover, even if organic substance exists in multicomponent plating waste liquid sludge by making temperature into 80 to 100 degreeC, organic substance can be decomposed | disassembled.

請求項43記載の多成分系めっき廃液スラッジの再資源化処理方法においては、不溶分中に石膏が存在することになり、不溶分層の濾過抵抗を低下させて不溶分層中で液の移動を容易に行なわせることができ、不溶分を容易に除去することが可能になる。その結果、不溶分の分離を効率的に行なうことが可能になる。また、塩酸で分解されなかった有機物が生成する石膏に付着するので、有機物を効率的に分離することもできる。 In the recycling method of the multicomponent plating waste liquid sludge according to claim 43, gypsum is present in the insoluble matter, and the filtration resistance of the insoluble matter layer is lowered to move the liquid in the insoluble matter layer. This makes it possible to easily remove the insoluble matter. As a result, it becomes possible to efficiently separate insoluble components. Moreover, since the organic substance which was not decomposed | disassembled with hydrochloric acid adheres to the gypsum which produces | generates, an organic substance can also be isolate | separated efficiently.

請求項44記載の多成分系めっき廃液スラッジの再資源化処理方法においては、硫酸を使用することにより、安価に溶解処理物を得ることができる。また、温度を80℃以上100℃未満にすることで、多成分系めっき廃液スラッジ中に有機物が存在していても、有機物の分解を行なうことができる。また、硫酸で分解されなかった有機物が生成する石膏に付着するので、有機物を効率的に分離することもできる。そして、硫酸根除去処理を行なうことで、不溶分層中に石膏を存在させ濾過抵抗を低下させて不溶分層中で液の移動を容易に行なわせることができ、不溶分を容易に除去することが可能になる。更に、第1処理液中の硫酸根の含有量を低下することができ、消石灰等のカルシウムを含む安価なアルカリ剤の使用が可能になって、処理コストの低減を図ることが可能になる。 In the recycling method for multi-component plating waste liquid sludge according to claim 44, a dissolved processed product can be obtained at low cost by using sulfuric acid. Further, by setting the temperature to 80 ° C. or more and less than 100 ° C., the organic matter can be decomposed even if the organic matter is present in the multicomponent plating waste liquid sludge. Moreover, since the organic substance which was not decomposed | disassembled with a sulfuric acid adheres to the gypsum which produces | generates, organic substance can also be isolate | separated efficiently. Then, by performing the sulfate radical removal treatment, gypsum is present in the insoluble content layer, the filtration resistance is lowered, and the liquid can be easily moved in the insoluble content layer, and the insoluble content is easily removed. It becomes possible. Furthermore, the content of sulfate radicals in the first treatment liquid can be reduced, and an inexpensive alkaline agent containing calcium such as slaked lime can be used, so that the treatment cost can be reduced.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1、図2は本発明の第1の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図3は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図、図4、図5は本発明の第2の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図6は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図、図7、図8は本発明の第3の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図9は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図、図10、図11は本発明の第4の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図12は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図、図13、図14は本発明の第5の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図15、図16は本発明の第6の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図17は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図、図18、図19は本発明の第7の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図20、図21は本発明の第8の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図、図22は同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 and FIG. 2 are partial process explanatory views of the method for recycling the multi-component plating waste liquid sludge according to the first embodiment of the present invention, and FIG. 3 shows the recycling of the multi-component plating waste liquid sludge. FIG. 4 and FIG. 5 are partial process explanatory views of a multi-component plating waste liquid sludge recycling process method according to the second embodiment of the present invention, and FIG. 6 is a partial process explanatory view according to a modified example of the recycling method of the multi-component plating waste liquid sludge, and FIGS. 7 and 8 show the re-treatment of the multi-component plating waste liquid sludge according to the third embodiment of the present invention. FIG. 9 is a partial process explanatory diagram according to a modified example of the multi-component plating waste liquid sludge recycling process method, and FIGS. 10 and 11 illustrate the fourth embodiment of the present invention. Partial process of recycling method of multi-component plating waste liquid sludge according to form FIG. 12 is an explanatory diagram of partial processes according to a modification of the recycling method for multi-component plating waste liquid sludge, and FIGS. 13 and 14 are multi-component plating according to the fifth embodiment of the present invention. FIG. 15 and FIG. 16 are partial process explanatory views of a multi-component plating waste liquid sludge recycling treatment method according to the sixth embodiment of the present invention. 17 is a partial process explanatory diagram according to a modification of the multi-component plating waste liquid sludge recycling method, and FIGS. 18 and 19 are drawings of the multi-component plating waste liquid sludge according to the seventh embodiment of the present invention. FIG. 20 and FIG. 21 are partial process explanatory views of a recycling process method for multi-component plating waste liquid sludge according to the eighth embodiment of the present invention, and FIG. Changes in recycling method of component plating waste liquid sludge It is a partial process diagram according to the embodiment.

図1、図2に示すように、本発明の第1の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法(以下、単にスラッジの再資源化処理方法という)は、例えば、有機物と、ニッケル、銅、亜鉛、鉄、及びクロムがいずれも水酸化物の状態で存在する多成分系めっき廃液スラッジ(以下、単にスラッジという)に無機酸として塩酸を加えて有機物を分解すると共に溶解処理物を形成するスラッジ溶解処理を行ない、溶解処理物から不溶分を除去して、ニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、第1処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を形成(銅回収セメンテーション)させ、銅付着鉄粉を分離してニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程とを有している。ここで、有機物とは、例えば、めっき事業所で排出されためっき廃液を中和して水酸化物として凝集沈澱させる際に凝集剤として使用した有機系ポリマーを指す。 As shown in FIGS. 1 and 2, the multi-component plating waste liquid sludge recycling method (hereinafter simply referred to as sludge recycling method) according to the first embodiment of the present invention is, for example, While adding organic acid and hydrochloric acid as an inorganic acid to multi-component plating waste sludge (hereinafter simply referred to as sludge) in which nickel, copper, zinc, iron, and chromium are all present in the state of hydroxide, the organic substance is decomposed. Insoluble content removal that obtains the first treatment liquid in which nickel, copper, zinc, iron, chromium, and a part of organic matters are mixed by performing sludge dissolution treatment to form a dissolution treatment product and removing insoluble matter from the dissolution treatment product The first step in which the treatment is provided, and hydrochloric acid, which is an example of iron powder and acid, are added to the first treatment liquid to adjust the oxidation-reduction potential and the pH, and the copper ions and iron in the first treatment liquid are replaced on the surface. Forms copper-adhered iron powder with deposited copper Copper recovery cementation) is, by separating the copper deposited iron powder has nickel, zinc, iron, chromium, and a second step of the second processing solution containing an organic material. Here, the organic substance refers to, for example, an organic polymer used as a flocculant when neutralizing a plating waste liquid discharged from a plating establishment and aggregating and precipitating it as a hydroxide.

また、廃液スラッジの再資源化処理方法は、第2処理液にpH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、水酸化クロム分散処理液に酸化剤として過酸化水素を加えて水酸化クロム分散処理液中に残存する有機物を分解すると共に水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を水酸化クロムと共に分離してニッケル及び亜鉛を含有する第3処理液とする第3工程とを有している。 In addition, the waste sludge recycling treatment method adds a weak alkaline agent such as calcium carbonate to the second treatment liquid as a pH adjuster to adjust the pH, and converts chromium ions in the second treatment liquid to chromium hydroxide. Change the chromium neutralization treatment to make a chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed, add hydrogen peroxide as an oxidizing agent to the chromium hydroxide dispersion treatment liquid, and remove the organic matter remaining in the chromium hydroxide dispersion treatment liquid. It decomposes and oxidizes ferrous ions in the chromium hydroxide dispersion treatment solution to ferric ions, and then adjusts the pH by adding a weak alkaline agent such as calcium carbonate as a pH adjuster to adjust the pH. A first ferrous hydroxide neutralization treatment is performed to convert the ions to ferric hydroxide to produce ferric hydroxide starch, and the ferric hydroxide starch is separated together with chromium hydroxide to contain nickel and zinc. First And a third step of the process liquid.

更に、廃液スラッジの再資源化処理方法は、第3処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を形成(ニッケル回収セメンテーション)させ、ニッケル付着鉄粉を分離して亜鉛、鉄を含有する第4処理液とする第4工程と、第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、中間処理液にpH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、第5処理液にアルカリ剤、例えば、消石灰を加えてpHを調整し、第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有している。以下、これらについて詳細に説明する。 Furthermore, the waste sludge recycling treatment method adds iron powder and hydrochloric acid, which is an example of an acid, to the third treatment liquid to adjust the oxidation-reduction potential and pH to replace nickel ions and iron in the third treatment liquid. And forming a nickel-attached iron powder with nickel deposited on the surface (nickel recovery cementation), separating the nickel-attached iron powder into a fourth treatment liquid containing zinc and iron, and a fourth treatment liquid Intermediate treatment solution is prepared by oxidizing intermediate ferrous ions to ferric ions, and a weak alkaline agent such as calcium carbonate is added to the intermediate treatment solution to adjust the pH. Then, a second iron neutralization treatment is performed to convert ferric ions to ferric hydroxide to produce ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. The fifth step as the fifth treatment liquid and the fifth treatment liquid with alkali For example, pH is adjusted by adding slaked lime, zinc neutralization treatment is performed by changing zinc ions in the fifth treatment liquid to zinc hydroxide to produce zinc hydroxide starch, and zinc hydroxide starch is separated. And a sixth step as a sixth treatment liquid from which zinc has been removed. Hereinafter, these will be described in detail.

図1、図2に示すように、第1工程では、先ず、多成分系めっき廃液スラッジを受け入れ加水し撹拌混合して、例えば、固形分濃度が10重量%程度のスラリーを調製する。次いで、このスラリーに塩酸を加えてpHを0.5以上で2以下、例えば1程度に調整して、60分以上撹拌する。このとき、スラリーの温度を80℃以上100℃未満に調整する。以上の操作により、スラリー中の固形分(各金属の水酸化物)は、下記の反応によりイオンとなって溶解する(以上、スラッジ溶解処理)。
Cr(OH)3+3H++3Cl- → Cr3++3Cl-+3H2
Cu(OH)2+2H++2Cl- → Cu2++2Cl-+2H2
Fe(OH)2+2H++2Cl- → Fe2++2Cl-+2H2
Fe(OH)3+3H++3Cl- → Fe3++3Cl-+3H2
Ni(OH)2+2H++2Cl- → Ni2++2Cl-+2H2
Zn(OH)2+2H++2Cl- → Zn2++2Cl-+2H2
ここで、pHを0.5〜2としたのは、pHが2を超えると未溶解のスラッジ量が多くなり、回収される金属量が減少するので好ましくなく、pHを0.5未満にすると酸の使用量が極めて増大し非経済的となるためである。また、スラリーの温度を80℃以上100℃未満にして、60分以上撹拌することで、有機物を分解することができる。
As shown in FIG. 1 and FIG. 2, in the first step, first, multi-component plating waste liquid sludge is received and mixed with stirring to prepare a slurry having a solid content concentration of about 10 wt%, for example. Next, hydrochloric acid is added to the slurry to adjust the pH to 0.5 or more and 2 or less, for example, about 1, and the mixture is stirred for 60 minutes or more. At this time, the temperature of the slurry is adjusted to 80 ° C. or more and less than 100 ° C. By the above operation, the solid content (hydroxide of each metal) in the slurry is dissolved as ions by the following reaction (hereinafter, sludge dissolution treatment).
Cr (OH) 3 + 3H + + 3Cl → Cr 3+ + 3Cl + 3H 2 O
Cu (OH) 2 + 2H + + 2Cl → Cu 2 + + 2Cl + 2H 2 O
Fe (OH) 2 + 2H + + 2Cl → Fe 2+ + 2Cl + 2H 2 O
Fe (OH) 3 + 3H + + 3Cl → Fe 3+ + 3Cl + 3H 2 O
Ni (OH) 2 + 2H + + 2Cl → Ni 2+ + 2Cl + 2H 2 O
Zn (OH) 2 + 2H + + 2Cl → Zn 2+ + 2Cl + 2H 2 O
Here, the pH is set to 0.5 to 2 because when the pH exceeds 2, the amount of undissolved sludge increases and the amount of recovered metal decreases, which is not preferable. This is because the amount of acid used is extremely increased and becomes uneconomical. Moreover, organic substance can be decomposed | disassembled by making temperature of a slurry into 80 degreeC or more and less than 100 degreeC, and stirring for 60 minutes or more.

続いて、溶解処理物を、例えば、固液分離の一例であるフィルタープレスで処理して不溶分を固層(以下、ケーキという)として分離して、第1処理液を回収する(不溶分除去処理)。なお、ケーキとして分離した不溶分(不溶解残渣)は廃棄物として処分する。ここでスラッジに含まれている有機物は分解されているので、フィルタープレスを行なう際に、濾布の目詰りを抑制することができる。そして、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる(以上、第1工程)。 Subsequently, the dissolved processed product is treated with, for example, a filter press which is an example of solid-liquid separation, and the insoluble matter is separated as a solid layer (hereinafter referred to as cake), and the first treatment liquid is recovered (insoluble matter removal). processing). Insoluble matter (insoluble residue) separated as a cake is disposed of as waste. Here, since the organic matter contained in the sludge is decomposed, clogging of the filter cloth can be suppressed when performing the filter press. Then, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion (the first step).

回収した第1処理液に鉄粉を加えると共に、pHが3以下になるように塩酸を加え、更に第1処理液の温度を30〜80℃、例えば40℃に保って溶解液の酸化還元電位(ORP)を−400mV以上に調整して所定時間(20〜60分間、例えば30分間)撹拌する(銅回収セメンテーション)。これによって、第1処理液の銅イオンと鉄の間で下記に示す化学反応が進行し、鉄粉表面に銅が析出した銅付着鉄粉が形成され、溶解液中の銅イオンが除去される。鉄粉としては、例えば、アトマイズ鉄粉、転炉ダスト精製鉄粉を使用することができる。
2Fe3++Fe → 3Fe2+
Cu2++Fe → Cu↓+Fe2+ (銅回収セメンテーション)
Fe+2H++2Cl- → Fe2++2Cl-+H2
ここで、pHを3以下にすることで、銅回収セメンテーションを行なっているときに第1処理液中のクロムイオンが水酸化クロム澱物として沈澱するのを防止できる。また、ORPを−400mV以上にすることで、ニッケルイオンと鉄が置換して鉄粉表面にニッケルが析出するのを防止できる。そして、所定時間経過後、銅付着鉄粉が懸濁している第1処理液を、例えばフィルタープレスで固液分離して銅付着鉄粉をケーキとして分離し、第2処理液を回収する(以上、第2工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。なお、分離した銅付着鉄粉は、例えば、銅精錬原料として利用できる。
While adding iron powder to the recovered first treatment liquid, hydrochloric acid is added so that the pH is 3 or less, and the temperature of the first treatment liquid is maintained at 30 to 80 ° C., for example, 40 ° C. (ORP) is adjusted to −400 mV or more and stirred for a predetermined time (20 to 60 minutes, for example, 30 minutes) (copper recovery cementation). Thereby, the chemical reaction shown below progresses between the copper ions and iron in the first treatment liquid, copper-adhered iron powder in which copper is deposited on the surface of the iron powder is formed, and the copper ions in the solution are removed. . As iron powder, for example, atomized iron powder or converter dust refined iron powder can be used.
2Fe 3+ + Fe → 3Fe 2+
Cu 2+ + Fe → Cu ↓ + Fe 2+ (Copper recovery cementation)
Fe + 2H + + 2Cl → Fe 2+ + 2Cl + H 2
Here, by setting the pH to 3 or less, it is possible to prevent the chromium ions in the first treatment liquid from being precipitated as chromium hydroxide starch during copper recovery cementation. Moreover, it can prevent that nickel ion and iron substitute and nickel precipitates on the iron powder surface by making ORP into -400mV or more. And after predetermined time progress, the 1st processing liquid in which copper adhesion iron powder is suspended is separated into solid and liquid, for example with a filter press, and copper adhesion iron powder is separated as a cake, and the 2nd processing liquid is collected (above). , The second step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion. The separated copper-attached iron powder can be used as a copper refining raw material, for example.

回収した第2処理液の温度を30〜80℃、例えば60℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、第2処理液中のクロムイオンと炭酸カルシウムの間で下記に示す化学反応が進行し、クロムイオンが水酸化クロムに変化して、水酸化クロムが分散した水酸化クロム分散処理液が形成される。
Cr3++3Cl-+3CaCO3+3H2
→ Cr(OH)3↓+3Cl-+3Ca2+ + 3HCO3 -*
ここで、HCO3 -*は、HCO3 -等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。また、pHを3〜5としたのは、pHが3未満であるとクロムの中和量が少なくなり、pHが5を超えると水酸化クロムと共に水酸化ニッケルが生成するためである。そして、弱アルカリである炭酸カルシウムを使用することで、クロム中和を行なう際に、局所的な高pH領域の生成を抑えて、水酸化ニッケルの生成を防止できる。
The temperature of the recovered second treatment liquid is kept at 30 to 80 ° C., for example 60 ° C., and a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 3 or more and 5 or less, for example, about 4.2. And stirring for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, the chemical reaction shown below proceeds between the chromium ions and calcium carbonate in the second treatment liquid, the chromium ions are changed to chromium hydroxide, and the chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed is obtained. It is formed.
Cr 3+ + 3Cl + 3CaCO 3 + 3H 2 O
→ Cr (OH) 3 ↓ + 3Cl + 3Ca 2+ + 3HCO 3 − *
Here, HCO 3 - * may, HCO 3 - is obtained by collectively underwater carbon dioxide produced by the decomposition of various carbon component and calcium carbonate are dissolved, such as. The reason why the pH is 3 to 5 is that when the pH is less than 3, the neutralization amount of chromium decreases, and when the pH exceeds 5, nickel hydroxide is generated together with chromium hydroxide. By using calcium carbonate, which is a weak alkali, it is possible to suppress the formation of a local high pH region and prevent the formation of nickel hydroxide when performing chromium neutralization.

次いで、水酸化クロム分散処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて水酸化クロム分散処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、水酸化クロム分散処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、水酸化クロム分散処理液中に残存している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。また、水酸化クロム分散処理液中に多量の有機物が存在する場合は、第一鉄を加える。これにより、ヒドロキシラジカルが多量に発生して、有機物の分解が促進される。
Subsequently, the temperature of the chromium hydroxide dispersion treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the chromium hydroxide dispersion treatment liquid to 600 mV or more for a predetermined time (20 Stir for ~ 60 minutes, eg 25 minutes. As a result, the chemical reaction shown below proceeds, and all the ferrous ions in the chromium hydroxide dispersion treatment liquid are oxidized to change to ferric ions, and remain in the chromium hydroxide dispersion treatment liquid. Organic substances are also oxidized and decomposed.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance. Further, when a large amount of organic substance is present in the chromium hydroxide dispersion treatment liquid, ferrous iron is added. Thereby, a large amount of hydroxy radicals are generated, and the decomposition of the organic matter is promoted.

そして、水酸化クロム分散処理液の温度を60℃以上100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(第1の鉄中和)。これによって、水酸化クロム分散処理液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the chromium hydroxide dispersion treatment liquid is maintained at 60 ° C. or more and less than 100 ° C., for example, 80 ° C., and a weak alkali agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less. Adjust to about 3.5 and stir for a predetermined time (20 to 60 minutes, for example, 30 minutes) (first iron neutralization). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the chromium hydroxide dispersion treatment liquid, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄は一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、生成した水酸化第二鉄は、予め水酸化クロム分散処理液中に存在する水酸化クロムを核として凝集することにより、水酸化第二鉄澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離する際の濾過性が向上して、水酸化第二鉄澱物を水酸化クロム澱物と共にケーキとして分離し第3処理液を容易に回収することができる(以上第3工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 Moreover, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only part of the ferric iron became ferric hydroxide, and when the pH exceeded 5, This is because zinc oxide is generated. By setting the temperature to 60 ° C. or higher and lower than 100 ° C., preferably 75 ° C. or higher and 85 ° C. or lower, the production rate of ferric hydroxide can be increased. By agglomerating chromium hydroxide present in the dispersion treatment liquid as a nucleus, particles of ferric hydroxide starch can be coarsened. For this reason, after a predetermined time has passed, the filterability when a liquid containing ferric hydroxide starch is solid-liquid separated by, for example, a filter press is improved, and the ferric hydroxide starch is converted to chromium hydroxide. It is separated as a cake together with the starch, and the third treatment liquid can be easily recovered (the third step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

回収した第3処理液に鉄粉を加えると共に、pHが5以下になるように塩酸を加え、更に第3処理液の温度を30〜80℃、例えば60℃に保って第3処理液のORPを−400mV以下、例えば、−500mVに調整して所定時間(180〜300分間、例えば240分間)撹拌する(ニッケル回収セメンテーション)。これによって、第3処理液のニッケルイオンと鉄の間で下記に示す化学反応が進行し、鉄粉表面にニッケルが析出したニッケル付着鉄粉が形成され、第3処理液中のニッケルイオンが除去される。鉄粉としては、例えば、アトマイズ鉄粉、転炉ダスト精製鉄粉を使用することができる。
2Fe3++Fe → 3Fe2+
Ni2++Fe → Ni↓+Fe2+ (ニッケル回収セメンテーション)
Fe+2H++2Cl- → Fe2++2Cl-+H2
なお、第1及び第3工程で有機物の分解を行なって有機物の含有量を低下させているので、ニッケル回収セメンテーションを効率的に行なうことができる。
While adding iron powder to the recovered third treatment liquid, hydrochloric acid is added so that the pH is 5 or less, and the temperature of the third treatment liquid is kept at 30 to 80 ° C., for example, 60 ° C., and the ORP of the third treatment liquid. Is adjusted to −400 mV or less, for example, −500 mV, and stirred for a predetermined time (180 to 300 minutes, for example, 240 minutes) (nickel recovery cementation). As a result, the chemical reaction shown below proceeds between the nickel ions and iron in the third treatment liquid to form nickel-attached iron powder in which nickel is deposited on the iron powder surface, and the nickel ions in the third treatment liquid are removed. Is done. As iron powder, for example, atomized iron powder or converter dust refined iron powder can be used.
2Fe 3+ + Fe → 3Fe 2+
Ni 2+ + Fe → Ni ↓ + Fe 2+ (nickel recovery cementation)
Fe + 2H + + 2Cl → Fe 2+ + 2Cl + H 2
In addition, since organic substance is decomposed | disassembled in the 1st and 3rd process and the content of organic substance is reduced, nickel recovery cementation can be performed efficiently.

pHを5以下にすることで、ニッケル回収セメンテーションを行なっているときに第3処理液中の亜鉛イオンが水酸化亜鉛澱物として沈澱するのが防止できる。また、ORPが−400mVを超えると、ニッケルイオンと鉄の置換が行なわれず好ましくない。温度を30〜80℃としたのは、30℃未満ではニッケル回収セメンテーションの進行速度が遅く、80℃を超えると鉄の溶解が顕著になって鉄の消費量が増大するため好ましくない。そして、所定時間経過後、ニッケル付着鉄粉が懸濁している第3処理液を、例えばフィルタープレスで固液分離してニッケル付着鉄粉をケーキとして分離し、第4処理液を回収する(以上、第4工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。なお、分離したニッケル付着鉄粉は、例えば、ステンレス精錬原料として利用できる。 By adjusting the pH to 5 or less, it is possible to prevent zinc ions in the third treatment liquid from being precipitated as zinc hydroxide starch during nickel recovery cementation. Moreover, when ORP exceeds -400 mV, substitution of nickel ion and iron is not performed, which is not preferable. The temperature of 30 to 80 ° C. is not preferable when the temperature is lower than 30 ° C., and the rate of progress of nickel recovery cementation is slow, and when the temperature exceeds 80 ° C., iron dissolution becomes remarkable and iron consumption increases. Then, after a predetermined time has elapsed, the third treatment liquid in which the nickel-adhered iron powder is suspended is solid-liquid separated by, for example, a filter press to separate the nickel-attached iron powder as a cake, and the fourth treatment liquid is recovered (above). , The fourth step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion. The separated nickel-adhered iron powder can be used as, for example, a stainless steel refining raw material.

次いで、回収した第4処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて第4処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、第4処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化する。なお、第4処理液中に有機物が残存していても、第一鉄イオンが第二鉄イオンに酸化される際に有機物も同時に酸化されて分解される。次いで、第4処理液の温度を60℃以上100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(30〜90分間、例えば60分間)撹拌する(第2の鉄中和)。これによって、第4処理液中の第二鉄イオンと炭酸カルシウムの間で化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化した中間処理液が調製される。 Subsequently, the temperature of the recovered fourth treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., hydrogen peroxide is added as an oxidizing agent, and the ORP of the fourth treatment liquid is adjusted to 600 mV or more for a predetermined time (20 to 60). Stir for minutes, eg 25 minutes. Thereby, all the ferrous ions in the fourth treatment liquid are oxidized and changed to ferric ions. Even if organic matter remains in the fourth treatment liquid, the organic matter is simultaneously oxidized and decomposed when ferrous ions are oxidized to ferric ions. Next, the temperature of the fourth treatment liquid is maintained at 60 ° C. or higher and lower than 100 ° C., for example, 80 ° C., and a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or higher and 5 or lower, for example, 3. Adjust to about 5 and stir for a predetermined time (30 to 90 minutes, for example, 60 minutes) (second iron neutralization). As a result, a chemical reaction proceeds between the ferric ions and calcium carbonate in the fourth treatment liquid, and an intermediate treatment liquid in which the ferric ions are changed to ferric hydroxide is prepared.

ここで、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、生成する水酸化第二鉄澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離した際の濾過性を向上することができ、水酸化第二鉄澱物をケーキとして容易に分離して、第5処理液を容易に回収することができる(以上第5工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。なお、分離した水酸化第二鉄は、塩酸に溶解させて塩化第二鉄にして利用する。 Here, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only a part of the ferric ion became ferric hydroxide, and when the pH exceeded 5, ferric hydroxide. This is because zinc hydroxide is produced. By setting the temperature to 60 ° C. or more and less than 100 ° C., preferably 75 ° C. or more and 85 ° C. or less, the production rate of ferric hydroxide can be increased, and the resulting ferric hydroxide starch particles are coarse. Can be For this reason, the filterability at the time of solid-liquid separation of the liquid containing ferric hydroxide starch after, for example, a filter press can be improved. And the fifth treatment liquid can be easily recovered (the fifth step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion. The separated ferric hydroxide is dissolved in hydrochloric acid and used as ferric chloride.

回収した第5処理液の温度を20〜80℃、好ましくは60℃以上80℃以下に保ち、アルカリ剤として消石灰を加えてpHを9以上で11以下、例えば9.5程度に調整して所定時間(15〜60分間、例えば、30分間)撹拌する(亜鉛中和)。これによって、第5処理液中の亜鉛イオンと消石灰の間で下記に示す化学反応が進行し、亜鉛イオンが水酸化亜鉛に変化する。
Zn2++2Cl-+Ca(OH)2 → Zn(OH)2↓+Ca2++2Cl-
ここで、pHを9〜11としたのは、pHが9未満では亜鉛は一部しか水酸化亜鉛にならず、pHが11を超えると水酸化亜鉛が再溶解するためである。また、温度を60℃以上80℃以下とすることで、水酸化亜鉛の生成速度を大きくすることができ、生成する水酸化亜鉛澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化亜鉛澱物を含んだ液を、例えば、フィルタープレスで固液分離した際の濾過性を向上することができ、水酸化亜鉛澱物をケーキとして容易に回収して、第6処理液を容易に分離することができる(以上第6工程)。なお、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着している残液を少なくする。これによって、水酸化亜鉛に含まれる不純物量を低減することができる。
そして、分離した第6処理液(プロセス排水)は、水処理設備に供給して、化学的酸素要求量(COD)、pH等が排出基準値以下になるように処理して、例えば、海域に排水する。
The temperature of the recovered fifth treatment liquid is kept at 20 to 80 ° C., preferably 60 ° C. or more and 80 ° C. or less, and slaked lime is added as an alkaline agent to adjust the pH to 9 or more and 11 or less, for example, about 9.5, and predetermined Stir for time (15-60 minutes, eg 30 minutes) (zinc neutralization). Thereby, the chemical reaction shown below progresses between the zinc ions and the slaked lime in the fifth treatment liquid, and the zinc ions change to zinc hydroxide.
Zn 2+ + 2Cl + Ca (OH) 2 → Zn (OH) 2 ↓ + Ca 2+ + 2Cl
Here, the reason why the pH is set to 9 to 11 is that when the pH is less than 9, only a part of zinc becomes zinc hydroxide, and when the pH exceeds 11, the zinc hydroxide is redissolved. Moreover, the production | generation rate of zinc hydroxide can be enlarged by making temperature into 60 to 80 degreeC, and the particle | grains of the zinc hydroxide starch to produce | generate can be coarsened. For this reason, after a predetermined time, the filterability when the liquid containing zinc hydroxide starch is solid-liquid separated by, for example, a filter press can be improved, and the zinc hydroxide starch can be easily recovered as a cake. Thus, the sixth processing liquid can be easily separated (sixth step). The separated cake is washed with washing water to reduce the residual liquid adhering to the cake side. Thereby, the amount of impurities contained in zinc hydroxide can be reduced.
Then, the separated sixth treatment liquid (process wastewater) is supplied to the water treatment facility and treated so that the chemical oxygen demand (COD), pH, etc. are below the emission standard value. Drain.

図3に示すように、本発明の第1の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法(以下、単に廃液スラッジの再資源化処理方法という)の変形例では、第5工程の中間処理で、第4処理液に酸化剤として過酸化水素を加えて酸化還元電位を400mV以上で500mV以下に保持して第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤として弱アルカリを加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンにする中間処理Aを行なって中間処理液を調製している。以下、中間処理Aについて詳しく説明する。 As shown in FIG. 3, in the modified example of the multi-component plating waste liquid sludge recycling method (hereinafter simply referred to as the waste sludge recycling process method) according to the first embodiment of the present invention, In 5 steps of intermediate treatment, hydrogen peroxide is added to the fourth treatment liquid as an oxidant to keep the oxidation-reduction potential at 400 mV or more and 500 mV or less to oxidize a part of ferrous ions in the fourth treatment liquid. Iron neutralization in which ferric hydroxide is dispersed by converting the ferric ion to ferric hydroxide by adjusting the pH by adding a weak alkali as a pH adjuster. As a treatment liquid, an intermediate treatment is performed by adding an oxidizing agent to the iron neutralization treatment liquid and maintaining the oxidation-reduction potential at 600 mV or more to oxidize all ferrous ions in the iron neutralization treatment liquid to ferric ions. A is performed to prepare an intermediate processing solution. Hereinafter, the intermediate process A will be described in detail.

第4処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて第4処理液のORPを400〜500mV、例えば450mV程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する。これによって、下記に示す化学反応が進行し、第4処理液中の第一鉄イオンの一部が酸化されて第二鉄イオンになる。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
The temperature of the fourth treatment liquid is kept at 20 to 80 ° C., for example 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the fourth treatment liquid to about 400 to 500 mV, for example about 450 mV, for a predetermined time (3 to 3 Stir for 10 minutes, eg 6 minutes. As a result, the chemical reaction shown below proceeds, and part of the ferrous ions in the fourth treatment liquid is oxidized to become ferric ions.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、第4処理液の温度を20〜80℃、例えば60℃に保ち、弱アルカリ剤として炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する。これによって、第4処理液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化して、この水酸化第二鉄の核が分散した(水酸化第二鉄のシーズが生成した)鉄中和処理液となる(鉄中和(シーズ生成))。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the fourth treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., and calcium carbonate is added as a weak alkaline agent to adjust the pH to 2.5 or more and 5 or less, for example, about 3.5. Stir for time (3-10 minutes, eg 6 minutes). As a result, the chemical reaction shown below proceeds between the ferric ion and calcium carbonate in the fourth treatment liquid, and the ferric ion is changed to ferric hydroxide. It becomes an iron neutralization treatment liquid in which nuclei are dispersed (seeds of ferric hydroxide are generated) (iron neutralization (seeds generation)).
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

次いで、鉄中和処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて鉄中和処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、鉄中和処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化した中間処理液が形成される。なお、第4処理液中に有機物が残存していても、有機物は第一鉄イオンが第二鉄イオンに酸化される際に同時に酸化されて分解し、中間処理液中に有機物が残るのが防止できる。 Next, the temperature of the iron neutralization treatment solution is kept at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the iron neutralization treatment solution to 600 mV or more for a predetermined time (20 to 60). Stir for minutes, eg 25 minutes. As a result, an intermediate treatment liquid is formed in which all of the ferrous ions in the iron neutralization treatment liquid are oxidized and changed to ferric ions. In addition, even if organic matter remains in the fourth treatment liquid, the organic matter is oxidized and decomposed simultaneously when ferrous ions are oxidized to ferric ions, and the organic matter remains in the intermediate treatment liquid. Can be prevented.

図4、図5に示すように、本発明の第2の実施の形態に係る廃液スラッジの再資源化処理方法は、第1の実施の形態に係る廃液スラッジの再資源化処理方法の第1工程において、スラッジ溶解処理と不溶分除去処理の間に、石膏を生成させる石膏生成処理を設けたことが特徴となっている。また、本発明の第2の実施の形態に係る廃液スラッジの再資源化処理方法は、第1の実施の形態に係る廃液スラッジの再資源化処理方法の第3工程の代りに、第2処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを400mV以上で500mV以下に保持してクロム除去液中に存在する有機物の一部を分解すると共にクロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、分散処理液に酸化剤を加えてORPを600mV以上に保持して分散処理液中に残存する有機物の残部を分解すると共に分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、分散処理液に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3A工程を行なうことを特徴としており、その他の工程は第1の実施の形態に係る廃液スラッジの再資源化処理方法と実質的に同一である。このため、石膏生成処理及び第3A工程についてのみ説明する。 As shown in FIGS. 4 and 5, the waste liquid sludge recycling process method according to the second embodiment of the present invention is the first of the waste liquid sludge recycling process method according to the first embodiment. The process is characterized in that a gypsum generation process for generating gypsum is provided between the sludge dissolution process and the insoluble matter removal process. In addition, the waste sludge recycling treatment method according to the second embodiment of the present invention uses the second treatment instead of the third step of the waste liquid sludge recycling treatment method according to the first embodiment. A weak alkaline agent is added to the solution as a pH adjuster to adjust the pH, a chromium neutralization treatment is performed by changing chromium ions in the second treatment solution to chromium hydroxide, and a chromium hydroxide starch is produced. The starch is separated into a chromium removal solution, an oxidant is added to the chromium removal solution, and ORP is maintained at 400 mV to 500 mV to decompose a part of organic substances present in the chromium removal solution and in the chromium removal solution. A part of the ferrous ions present in the iron is oxidized to ferric ions, and a weak alkaline agent is added to adjust the pH to ferric hydroxide to perform the iron neutralization treatment of 1A, Dispersion treatment liquid in which ferric hydroxide is dispersed Then, an oxidizing agent is added to the dispersion treatment liquid to maintain ORP at 600 mV or more to decompose the remaining organic matter remaining in the dispersion treatment liquid and oxidize the remaining ferrous ions in the dispersion treatment liquid to ferric iron. Then, a weak alkaline agent is added to the dispersion treatment solution to adjust the pH to ferric hydroxide, which is converted to ferric hydroxide to produce ferric hydroxide starch. It is characterized by performing the 3A process of separating ferric starch to form a third treatment liquid containing nickel and zinc, and other processes are recycling waste sludge according to the first embodiment. It is substantially the same as the processing method. For this reason, only a gypsum production | generation process and 3rd A process are demonstrated.

石膏生成処理においては、スラッジ溶解処理で得られた溶解処理物に硫酸を加え、次いでカルシウム源の一例である炭酸カルシウムを加えてpHを1以上で2以下、例えば1.5程度に調整して、所定時間(15〜60分間、例えば30分間)撹拌する。このとき、スラリーの温度を80℃以上100℃未満に調整する。溶解処理物中では、炭酸カルシウムと硫酸が反応して石膏が生成し、このとき溶解処理物中に存在する有機物が石膏にからめ取られて凝集する。このため、固液分離の一例であるフィルタープレスにより不溶分除去処理を行なう際に、有機物による濾布の目詰りが防止される。更に、不溶分除去処理で生成した石膏はケーキ側に移行するので、ケーキの透水性が大きくなって、第1処理液の回収率が大きくなる。ここで、石膏生成処理で生成させる石膏量は、ケーキの透水性を改善するのに必要な量に制限することが好ましく、加える硫酸の重量は、例えば、乾燥したスラッジ100gに対して0.5〜5gである。これによって、石膏生成量を抑えてケーキの発生量(不溶分と石膏の総和)を少なくして廃棄物処理の負担を軽減することができる。 In the gypsum generation process, sulfuric acid is added to the dissolved product obtained by the sludge dissolution process, and then calcium carbonate, which is an example of a calcium source, is added to adjust the pH to 1 or more and 2 or less, for example, about 1.5. And stirring for a predetermined time (15 to 60 minutes, for example, 30 minutes). At this time, the temperature of the slurry is adjusted to 80 ° C. or more and less than 100 ° C. In the dissolved processed product, calcium carbonate and sulfuric acid react to form gypsum. At this time, organic substances present in the dissolved processed product are taken up by the gypsum and aggregate. For this reason, when performing the insoluble matter removal process by the filter press which is an example of solid-liquid separation, the filter cloth is prevented from being clogged with organic substances. Furthermore, since the gypsum produced | generated by the insoluble content removal process transfers to the cake side, the water permeability of a cake becomes large and the collection rate of a 1st process liquid becomes large. Here, the amount of gypsum produced in the gypsum production treatment is preferably limited to the amount necessary to improve the water permeability of the cake, and the weight of sulfuric acid added is, for example, 0.5 g per 100 g of dried sludge. ~ 5g. As a result, the amount of cake generated (the total amount of insoluble matter and gypsum) can be reduced by reducing the amount of gypsum produced, and the burden of waste treatment can be reduced.

第3A工程では、先ず、第2処理液の温度を30〜80℃、例えば60℃に保ち、弱アルカリ剤として炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、第2処理液中のクロムイオンと炭酸カルシウムの間で化学反応が進行し、クロムイオンが水酸化クロムに変化して、水酸化クロム澱物を含んだ液が形成される。そして、所定時間経過後、水酸化クロム澱物を含んだ液を、例えば、フィルタープレスで固液分離して、水酸化クロム澱物をケーキとして分離しクロム除去液を回収する。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 In the 3A step, first, the temperature of the second treatment liquid is maintained at 30 to 80 ° C., for example, 60 ° C., and calcium carbonate is added as a weak alkaline agent to adjust the pH to 3 or more and 5 or less, for example, about 4.2. And stirring for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, a chemical reaction proceeds between the chromium ions and calcium carbonate in the second treatment liquid, and the chromium ions are changed to chromium hydroxide to form a liquid containing chromium hydroxide starch. And after predetermined time progress, the liquid containing a chromium hydroxide starch is solid-liquid separated, for example with a filter press, chromium hydroxide starch is isolate | separated as a cake, and chromium removal liquid is collect | recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

次いで、水酸化クロム澱物が分離されたクロム除去液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えてクロム除去液のORPを400〜500mV、例えば450mV程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する。これによって、下記に示す化学反応が進行し、クロム除去液中に存在する有機物の一部が分解され、更にクロム除去液中に存在する第一鉄イオンの一部が酸化されて第二鉄イオンになる。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Next, the temperature of the chromium removal liquid from which the chromium hydroxide starch is separated is maintained at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent, so that the ORP of the chromium removal liquid is about 400 to 500 mV, for example, about 450 mV. And stirring for a predetermined time (3 to 10 minutes, for example, 6 minutes). As a result, the chemical reaction shown below proceeds, a part of the organic matter present in the chromium removal solution is decomposed, and a part of the ferrous ions present in the chromium removal solution is oxidized to ferric ions. become.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、クロム除去液の温度を20〜80℃、例えば60℃に保ち、弱アルカリ剤として炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する(第1Aの鉄中和処理)。これによって、クロム除去液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化して、この水酸化第二鉄の核が分散した(水酸化第二鉄のシーズが生成した)分散処理液となる。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
And the temperature of chromium removal liquid is maintained at 20-80 degreeC, for example, 60 degreeC, calcium carbonate is added as a weak alkaline agent, pH is adjusted to 2.5 or more and 5 or less, for example, about 3.5, and predetermined time. Stir (3 to 10 minutes, for example, 6 minutes) (1A iron neutralization treatment). As a result, the chemical reaction shown below proceeds between the ferric ion and calcium carbonate in the chromium removal solution, and the ferric ion is changed to ferric hydroxide. Becomes a dispersion treatment liquid in which ferrous hydroxide seeds are produced.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

次いで、分散処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて分散処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、分散処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、分散処理液中に残存している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Subsequently, the temperature of the dispersion treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the dispersion treatment liquid to 600 mV or more for a predetermined time (20 to 60 minutes, for example, 25 Stir for minutes). As a result, the chemical reaction shown below proceeds, and all the ferrous ions in the dispersion treatment liquid are oxidized to change to ferric ions, and the organic matter remaining in the dispersion treatment liquid is also oxidized and decomposed. To do.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、分散処理液の温度を60℃以下100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(第1Bの鉄中和処理)。これによって、分散処理液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、HCO3 -*は、HCO3 -等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the dispersion treatment liquid is kept at 60 ° C. or less and less than 100 ° C., for example, 80 ° C., and a weak alkali agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less, for example, 3.5 It adjusts to a grade and it stirs for a predetermined time (20-60 minutes, for example, 30 minutes) (1B iron neutralization process). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the dispersion treatment liquid, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, HCO 3 - * may, HCO 3 - is obtained by collectively underwater carbon dioxide produced by the decomposition of various carbon component and calcium carbonate are dissolved, such as.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、生成した水酸化第二鉄は分散処理液中に予め存在していた水酸化第二鉄を核として凝集することにより、水酸化第二鉄澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離する際の濾過性が向上して、水酸化第二鉄澱物をケーキとして分離し第3処理液を容易に回収することができる。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 Moreover, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only a part of the ferric ion became ferric hydroxide, and when the pH exceeded 5, the ferric hydroxide was used. This is because zinc hydroxide is generated. By setting the temperature to 60 ° C. or more and less than 100 ° C., preferably 75 ° C. or more and 85 ° C. or less, the production rate of ferric hydroxide can be increased, and the produced ferric hydroxide is contained in the dispersion treatment liquid. By agglomerating the existing ferric hydroxide as a nucleus, the particles of ferric hydroxide starch can be coarsened. For this reason, after a predetermined time has passed, the filterability when the liquid containing ferric hydroxide starch is solid-liquid separated by, for example, a filter press is improved, and the ferric hydroxide starch is separated as a cake. The third treatment liquid can be easily recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

図6に示すように、本発明の第2の実施の形態に係る廃液スラッジの再資源化処理方法の変形例では、第3A工程の代りに、第2処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを600mV以上に保持してクロム除去液中に残存する有機物を分解すると共にクロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3B工程を行なっている。以下、第3B工程について説明する。 As shown in FIG. 6, in the modified example of the waste sludge recycling treatment method according to the second embodiment of the present invention, a weak alkaline agent is used as a pH adjuster in the second treatment liquid instead of the 3A step. Is added to adjust the pH, and the chromium ion in the second treatment liquid is changed to chromium hydroxide to carry out chromium neutralization to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to remove the chromium hydroxide. An oxidant is added to the chromium removal solution to maintain ORP at 600 mV or more to decompose organic substances remaining in the chromium removal solution and oxidize ferrous ions in the chromium removal solution to ferric ions, Then, a weak alkaline agent is added as a pH adjuster to adjust the pH to ferric hydroxide to perform 1C iron neutralization treatment to produce ferric hydroxide starch, and ferric hydroxide starch The product is separated and contains nickel and zinc. And performing the 3B step of the processing solution. Hereinafter, the 3B process will be described.

第3B工程では、先ず、第2処理液の温度を30〜80℃、例えば60℃に保ち、弱アルカリ剤、例えば炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、クロムイオンが水酸化クロムに変化して、水酸化クロム澱物を含んだ液が形成される。そして、所定時間経過後、水酸化クロム澱物を含んだ液を、例えば、フィルタープレスで固液分離して、水酸化クロム澱物をケーキとして分離しクロム除去液を回収する。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。 In the 3B step, first, the temperature of the second treatment liquid is maintained at 30 to 80 ° C., for example, 60 ° C., and a weak alkaline agent, for example, calcium carbonate is added to adjust the pH to 3 or more and 5 or less, for example, about 4.2. Adjust and stir for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, the chromium ion is changed to chromium hydroxide, and a liquid containing chromium hydroxide starch is formed. And after predetermined time progress, the liquid containing a chromium hydroxide starch is solid-liquid separated, for example with a filter press, chromium hydroxide starch is isolate | separated as a cake, and chromium removal liquid is collect | recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away.

次いで、水酸化クロム澱物が分離されたクロム除去液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えてクロム除去液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、クロム除去液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、クロム除去液中に存在している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Next, the temperature of the chromium removal liquid from which the chromium hydroxide starch has been separated is maintained at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the chromium removal liquid to 600 mV or more to obtain a predetermined value. Stir for time (20-60 minutes, eg 25 minutes). As a result, the chemical reaction shown below proceeds and all the ferrous ions in the chromium removal solution are oxidized to ferric ions, and organic substances present in the chromium removal solution are also oxidized and decomposed. To do.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、クロム除去液の温度を60℃以下100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(第1Cの鉄中和処理)。これによって、クロム除去液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、HCO3 -*は、HCO3 -等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the chromium removal solution is kept at 60 ° C. or less and less than 100 ° C., for example, 80 ° C., and a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less, for example, 3.5 It adjusts to a grade and it stirs for a predetermined time (20 to 60 minutes, for example, 30 minutes) (1C iron neutralization process). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the chromium removal solution, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, HCO 3 - * may, HCO 3 - is obtained by collectively underwater carbon dioxide produced by the decomposition of various carbon component and calcium carbonate are dissolved, such as.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、水酸化第二鉄澱物の粒子を粗大化することができる。 Moreover, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only a part of the ferric ion became ferric hydroxide, and when the pH exceeded 5, the ferric hydroxide was used. This is because zinc hydroxide is generated. By setting the temperature to 60 ° C. or more and less than 100 ° C., preferably 75 ° C. or more and 85 ° C. or less, the production rate of ferric hydroxide can be increased, and the particles of ferric hydroxide starch are coarsened. be able to.

図7、図8に示す本発明の第3の実施の形態に係る廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、及びクロムを含む多成分系めっき廃液スラッジに無機酸として塩酸を加えて多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、第2処理液にpH調整剤を加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、水酸化クロム分散処理液に酸化剤を加えて水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を水酸化クロムと共に分離してニッケル、及び亜鉛を含有する第3処理液とする第3工程と、第3処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛及び鉄を含有する第4処理液とする第4工程と、第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、中間処理液にpH調整剤を加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、第5処理液のpHを調整し、第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有し、多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムの分別回収を行なうことが特徴となっている。ここで、第1の実施の形態で説明したスラッジに含まれる有機物の分解処理は、スラッジを無機酸に溶解する際、及び第一鉄イオンを酸化して第二鉄イオンにする際に同時に行なうことができるので、第3の実施の形態の廃液スラッジの再資源化処理方法は、第1の実施の形態に係る廃液スラッジの再資源化処理方法例と有機物の分解処理を除いて実質的に同一とすることができる。 The waste sludge recycling treatment method according to the third embodiment of the present invention shown in FIG. 7 and FIG. 8 is applied to the multicomponent plating waste liquid sludge containing nickel, copper, zinc, iron, and chromium as an inorganic acid. Sludge dissolution treatment is performed to dissolve the multi-component plating waste liquid sludge by adding hydrochloric acid to form a dissolution treatment product. The insoluble matter is removed from the dissolution treatment product and nickel, copper, zinc, iron, and chromium are mixed. 1st process which provided the insoluble matter removal process which obtains 1 process liquid, while adding iron powder to 1st process liquid, adjusting oxidation-reduction potential and pH, substituting the copper ion and iron in the 1st process liquid, and the surface The second step of separating the copper-deposited iron powder on which copper has been deposited to form a second treatment liquid containing nickel, zinc, iron, and chromium, and adjusting the pH by adding a pH adjuster to the second treatment liquid And the chromium ions in the second treatment liquid are converted to chromium hydroxide. Chromium neutralization treatment is performed to obtain a chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed, and an oxidizing agent is added to the chromium hydroxide dispersion treatment liquid to oxidize ferrous ions in the chromium hydroxide dispersion treatment liquid. Ferric hydroxide starch is then formed by adding a pH adjuster to adjust the pH and converting the ferric ion to ferric hydroxide to neutralize the iron. A third step of separating ferric hydroxide starch together with chromium hydroxide to form a third treatment solution containing nickel and zinc; adding iron powder to the third treatment solution; A fourth step of replacing the nickel ions and iron in the third treatment liquid and separating the nickel-attached iron powder on which nickel is deposited on the surface to obtain a fourth treatment liquid containing zinc and iron; 4 Oxidize ferrous ions in the processing solution to ferric ions An intermediate treatment solution is prepared by preparing an intermediate treatment solution, a pH adjuster is added to the intermediate treatment solution to adjust the pH, and a second iron neutralization treatment is performed to convert ferric ions to ferric hydroxide. 5th process which produces | generates ferric oxide starch, isolate | separates ferric hydroxide starch, and makes it the 5th process liquid containing zinc, adjusts the pH of a 5th process liquid, 5th process liquid A zinc neutralization treatment in which zinc ions are changed to zinc hydroxide to produce a zinc hydroxide starch, and a sixth treatment solution is obtained by separating the zinc hydroxide starch and removing zinc. It is characterized by the separate recovery of nickel, copper, zinc, iron, and chromium from multicomponent plating waste liquid sludge. Here, the organic substance contained in the sludge described in the first embodiment is decomposed simultaneously when the sludge is dissolved in an inorganic acid and when ferrous ions are oxidized to ferric ions. Therefore, the waste sludge recycling process method of the third embodiment is substantially the same except for the waste sludge recycling process example and the organic matter decomposition process according to the first embodiment. Can be the same.

また、図9に示す第3の実施の形態の廃液スラッジの再資源化処理方法の変形例は、第5工程の中間処理で、第4処理液に酸化剤として過酸化水素を加えて酸化還元電位を400mV以上で500mV以下に保持して第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤として弱アルカリを加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンにする中間処理Aを行なって中間処理液を調製することが特徴で、第1の実施の形態に係る廃液スラッジの再資源化処理方法の変形例と実質的に同一とすることができる。このため、第3の実施の形態の廃液スラッジの再資源化処理方法及びその変形例についての説明は省略する。 Further, a modified example of the waste sludge recycling treatment method of the third embodiment shown in FIG. 9 is an intermediate treatment of the fifth step, in which hydrogen peroxide is added to the fourth treatment solution as an oxidant to reduce oxidation. The potential is kept at 400 mV or more and 500 mV or less by oxidizing part of ferrous ions in the fourth treatment liquid to ferric ions, and adding a weak alkali as a pH adjuster to adjust pH. As an iron neutralization treatment liquid in which ferric hydroxide is dispersed by performing iron neutralization to convert ferric hydroxide to ferric hydroxide, an oxidizing agent is added to the iron neutralization treatment liquid to maintain the redox potential at 600 mV or higher. Then, an intermediate treatment liquid is prepared by performing an intermediate treatment A that oxidizes all ferrous ions in the iron neutralization treatment liquid to ferric ions, and relates to the first embodiment. It should be substantially the same as the modification of the waste sludge recycling process. Kill. For this reason, the description about the waste liquid sludge recycling processing method of the third embodiment and its modification are omitted.

更に、図10、図11に示す本発明の第4の実施の形態に係る廃液スラッジの再資源化処理方法は、第3の実施の形態に係る廃液スラッジの再資源化処理方法の第3工程の代りに、第2処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを400mV以上で500mV以下に保持してクロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、分散処理液に酸化剤を加えてORPを600mV以上に保持して分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、分散処理液に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3A工程を行なうことを特徴としており、第4の実施の形態の廃液スラッジの再資源化処理方法は、第2の実施の形態に係る廃液スラッジの再資源化処理方法例と第1工程の石膏生成処理を除いて実質的に同一とすることができる。 Further, the waste sludge recycling process method according to the fourth embodiment of the present invention shown in FIGS. 10 and 11 is the third step of the waste sludge recycling process method according to the third embodiment. Instead of adding a weak alkaline agent as a pH adjuster to the second treatment liquid, the pH is adjusted, and a chromium neutralization treatment is performed by changing chromium ions in the second treatment liquid to chromium hydroxide. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution to maintain the ORP at 400 mV or more and 500 mV or less to remove ferrous ions present in the chromium removal solution. Part 1 was oxidized to ferric ion, further weak alkaline agent was added to adjust pH to ferric hydroxide 1A iron neutralization treatment, ferric hydroxide was dispersed Add the oxidizing agent to the dispersion treatment liquid. RP is maintained at 600 mV or more, and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions. Then, a weak alkaline agent is added to the dispersion treatment liquid to adjust the pH, thereby adding a second hydroxide. Step 3A, wherein the iron neutralization treatment of 1B to be converted to iron is performed to produce ferric hydroxide starch, and the ferric hydroxide starch is separated to form a third treatment liquid containing nickel and zinc. The waste sludge recycling process method according to the fourth embodiment is a waste sludge recycling process example according to the second embodiment and the gypsum generation process of the first step. Can be substantially the same except for.

また、図12に示す第4の実施の形態の廃液スラッジの再資源化処理方法の変形例は、第3A工程の代りに、第2処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを600mV以上に保持してクロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3B工程を行なうことが特徴で、第2の実施の形態に係る廃液スラッジの再資源化処理方法の変形例と実質的に同一とすることができる。このため、第4の実施の形態の廃液スラッジの再資源化処理方法及びその変形例についての説明は省略する。 Further, in the modified example of the waste sludge recycling method of the fourth embodiment shown in FIG. 12, instead of the 3A step, a weak alkaline agent is added to the second treatment liquid as a pH adjuster to adjust the pH. The chromium ion in the second treatment liquid is changed to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated into a chromium removal liquid. Add an oxidizing agent to keep ORP at 600 mV or more to oxidize ferrous ions in the chromium removal solution to ferric ions, and then adjust the pH by adding a weak alkaline agent as a pH adjusting agent. Performing a 1C iron neutralization treatment to convert to ferric hydroxide to produce ferric hydroxide starch, separating the ferric hydroxide starch, and a third treatment liquid containing nickel and zinc; It is a feature that the 3B process is performed, and the second implementation It can be modified example substantially identical to the recycling processing method of the waste sludge according to state. For this reason, the description about the waste liquid sludge recycling processing method of the fourth embodiment and its modification are omitted.

図13、図14に示すように、本発明の第5の実施の形態に係るスラッジの再資源化処理方法は、例えば、有機物と、ニッケル、銅、亜鉛、鉄、及びクロムがいずれも水酸化物の状態で存在する多成分系めっき廃液スラッジ(以下、単にスラッジという)に無機酸として塩酸を加えて有機物を分解すると共に溶解処理物を形成するスラッジ溶解処理を行ない、溶解処理物から不溶分を除去して、ニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、第1処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を形成(銅回収セメンテーション)させ、銅付着鉄粉を分離してニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程とを有している。ここで、有機物とは、例えば、めっき事業所で排出されためっき廃液を中和して水酸化物として凝集沈澱させる際に凝集剤として使用した有機系ポリマーを指す。 As shown in FIGS. 13 and 14, the sludge recycling method according to the fifth embodiment of the present invention is such that, for example, organic matter and nickel, copper, zinc, iron, and chromium are all hydroxylated. Sludge dissolution treatment that decomposes organic matter by adding hydrochloric acid as an inorganic acid to multi-component plating waste sludge (hereinafter simply referred to as sludge) that exists in the state of the product to form a solution treatment product, and insoluble matter from the solution treatment product A first step of providing an insoluble matter removal treatment to obtain a first treatment liquid in which nickel, copper, zinc, iron, chromium, and a part of organic matter are mixed, and iron powder and acid in the first treatment liquid Hydrochloric acid is added as an example to adjust the oxidation-reduction potential and pH, replace copper ions and iron in the first treatment liquid, and form copper-attached iron powder with copper deposited on the surface (copper recovery cementation), Separation of copper adhering iron powder and nickel Zinc has iron, chromium, and a second step of the second treatment liquid containing organic matter. Here, the organic substance refers to, for example, an organic polymer used as a flocculant when neutralizing a plating waste liquid discharged from a plating establishment and aggregating and precipitating it as a hydroxide.

また、第5の実施の形態に係る廃液スラッジの再資源化処理方法は、第2処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を形成(ニッケル回収セメンテーション)させ、ニッケル付着鉄粉を分離して亜鉛、鉄、クロム、及び有機物を含有する第3処理液とする第3工程と、第3処理液にpH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、水酸化クロム分散処理液に酸化剤として過酸化水素を加えて水酸化クロム分散処理液中に存在する有機物を分解すると共に水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程とを有している。 In addition, the waste sludge recycling treatment method according to the fifth embodiment adjusts the oxidation-reduction potential and pH by adding hydrochloric acid, which is an example of iron powder and acid, to the second treatment liquid, thereby adjusting the second treatment liquid. A nickel adhering iron powder in which nickel ions and iron are substituted and nickel is deposited on the surface is formed (nickel recovery cementation), and the nickel adhering iron powder is separated to contain zinc, iron, chromium, and organic matter. In the third step of making the treatment liquid, and adding a weak alkaline agent, for example, calcium carbonate, to the third treatment liquid as a pH adjuster to adjust the pH and changing the chromium ions in the third treatment liquid to chromium hydroxide A chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed by performing a summing treatment, and hydrogen peroxide as an oxidizing agent is added to the chromium hydroxide dispersion treatment liquid to decompose organic substances present in the chromium hydroxide dispersion treatment liquid. Both ferrous ions in the chromium hydroxide dispersion treatment are oxidized to ferric ions, and then a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH. Ferric hydroxide starch is produced by performing iron neutralization treatment to change to ferric hydroxide, and ferric hydroxide starch is separated together with chromium hydroxide to form a fourth treatment liquid containing zinc. And a fourth step.

更に、第5の実施の形態に係る廃液スラッジの再資源化処理方法は、第4処理液にアルカリ剤として、例えば消石灰を加えてpHを調整し、第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有している。ここで、第1及び第2工程は、それぞれ第1の実施の形態の廃液スラッジの再資源化処理方法における第1及び第2工程と実質的に同一とすることができる。このため、第5の実施の形態に係る廃液スラッジの再資源化処理方法における第3〜第5工程に関して説明する。 Furthermore, the waste sludge recycling treatment method according to the fifth embodiment adjusts the pH by adding, for example, slaked lime as an alkaline agent to the fourth treatment liquid, and hydroxylates zinc ions in the fourth treatment liquid. A zinc neutralization treatment for changing to zinc to produce a zinc hydroxide starch, and a fifth step of separating the zinc hydroxide starch and removing the zinc to form a fifth treatment solution. Here, the first and second steps can be substantially the same as the first and second steps in the waste liquid sludge recycling treatment method of the first embodiment, respectively. For this reason, the 3rd-5th process in the recycling processing method of the waste liquid sludge concerning a 5th embodiment is explained.

回収した第2処理液に鉄粉を加えると共に、pHが3以下になるように塩酸を加え、更に第2処理液の温度を30〜80℃、例えば60℃に保って第2処理液のORPを−400mV以下、例えば、−500mVに調整して所定時間(180〜300分間、例えば240分間)撹拌する(ニッケル回収セメンテーション)。これによって、第2処理液のニッケルイオンと鉄の間で下記に示す化学反応が進行し、鉄粉表面にニッケルが析出したニッケル付着鉄粉が形成され、第2処理液中のニッケルイオンが除去される。鉄粉としては、例えば、アトマイズ鉄粉、転炉ダスト精製鉄粉を使用することができる。
2Fe3++Fe → 3Fe2+
Ni2++Fe → Ni↓+Fe2+ (ニッケル回収セメンテーション)
Fe+2H++2Cl- → Fe2++2Cl-+H2
なお、第1工程で有機物の分解を行なって有機物の含有量を低下させているので、ニッケル回収セメンテーションを効率的に行なうことができる。
While adding iron powder to the recovered second treatment liquid, hydrochloric acid is added so that the pH is 3 or less, and the temperature of the second treatment liquid is kept at 30 to 80 ° C., for example, 60 ° C., and the ORP of the second treatment liquid. Is adjusted to −400 mV or less, for example, −500 mV, and stirred for a predetermined time (180 to 300 minutes, for example, 240 minutes) (nickel recovery cementation). As a result, the chemical reaction shown below proceeds between nickel ions and iron in the second treatment liquid to form nickel-attached iron powder in which nickel is deposited on the iron powder surface, and the nickel ions in the second treatment liquid are removed. Is done. As iron powder, for example, atomized iron powder or converter dust refined iron powder can be used.
2Fe 3+ + Fe → 3Fe 2+
Ni 2+ + Fe → Ni ↓ + Fe 2+ (nickel recovery cementation)
Fe + 2H + + 2Cl → Fe 2+ + 2Cl + H 2
In addition, since organic substance is decomposed | disassembled in the 1st process and content of organic substance is reduced, nickel recovery cementation can be performed efficiently.

pHを3以下にすることで、ニッケル回収セメンテーションを行なっているときに第2処理液中のクロムイオンが水酸化クロム澱物として沈澱するのが防止できる。また、ORPが−400mVを超えると、ニッケルイオンと鉄の置換が行なわれず好ましくない。温度を30〜80℃としたのは、30℃未満ではニッケル回収セメンテーションの進行速度が遅く、80℃を超えると鉄の溶解が顕著になって鉄の消費量が増大するため好ましくない。そして、所定時間経過後、ニッケル付着鉄粉が懸濁している第2処理液を、例えばフィルタープレスで固液分離してニッケル付着鉄粉をケーキとして分離し、第3処理液を回収する(以上、第3工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。なお、分離したニッケル付着鉄粉は、例えば、ステンレス精錬原料として利用できる。 By setting the pH to 3 or less, it is possible to prevent the chromium ions in the second treatment liquid from being precipitated as chromium hydroxide starch during nickel recovery cementation. Moreover, when ORP exceeds -400 mV, substitution of nickel ion and iron is not performed, which is not preferable. The temperature of 30 to 80 ° C. is not preferable when the temperature is lower than 30 ° C., and the rate of progress of nickel recovery cementation is slow, and when the temperature exceeds 80 ° C., iron dissolution becomes remarkable and iron consumption increases. Then, after a predetermined time has elapsed, the second treatment liquid in which the nickel-adhered iron powder is suspended is solid-liquid separated by, for example, a filter press to separate the nickel-attached iron powder as a cake, and the third treatment liquid is recovered (above). , Third step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion. The separated nickel-adhered iron powder can be used as, for example, a stainless steel refining raw material.

回収した第3処理液の温度を30〜80℃、例えば60℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、第3処理液中のクロムイオンと炭酸カルシウムの間で下記に示す化学反応が進行し、クロムイオンが水酸化クロムに変化して、水酸化クロムが分散した水酸化クロム分散処理液が形成される。
Cr3++3Cl-+3CaCO3+3H2
→ Cr(OH)3↓+3Cl-+3Ca2+ + 3HCO3 -*
ここで、HCO3 -*は、HCO3 -等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。また、pHを3〜5としたのは、pHが3未満であるとクロムの中和量が少なくなり、pHが5を超えると水酸化クロムと共に水酸化亜鉛が生成するためである。そして、弱アルカリである炭酸カルシウムを使用することで、クロム中和を行なう際に、局所的な高pH領域の生成を抑えて、水酸化亜鉛の生成を防止できる。
The temperature of the recovered third treatment liquid is kept at 30 to 80 ° C., for example, 60 ° C., and a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 3 or more and 5 or less, for example, about 4.2. And stirring for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, the chemical reaction shown below proceeds between the chromium ions and calcium carbonate in the third treatment liquid, the chromium ions are changed to chromium hydroxide, and the chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed is obtained. It is formed.
Cr 3+ + 3Cl + 3CaCO 3 + 3H 2 O
→ Cr (OH) 3 ↓ + 3Cl + 3Ca 2+ + 3HCO 3 − *
Herein, HCO 3 - * may, HCO 3 - is obtained by collectively underwater carbon dioxide produced by the decomposition of various carbon component and calcium carbonate are dissolved, such as. Further, the reason why the pH was set to 3 to 5 is that when the pH is less than 3, the neutralization amount of chromium decreases, and when the pH exceeds 5, zinc hydroxide is generated together with chromium hydroxide. And by using calcium carbonate which is a weak alkali, when carrying out chromium neutralization, the production | generation of a local high pH area | region can be suppressed and the production | generation of zinc hydroxide can be prevented.

次いで、水酸化クロム分散処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて水酸化クロム分散処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、水酸化クロム分散処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、水酸化クロム分散処理液中に残存している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。また、水酸化クロム分散処理液中に多量の有機物が存在する場合は、第一鉄を加える。これにより、ヒドロキシラジカルが多量に発生して、有機物の分解が促進される。
Subsequently, the temperature of the chromium hydroxide dispersion treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the chromium hydroxide dispersion treatment liquid to 600 mV or more for a predetermined time (20 Stir for ~ 60 minutes, eg 25 minutes. As a result, the chemical reaction shown below proceeds, and all the ferrous ions in the chromium hydroxide dispersion treatment liquid are oxidized to change to ferric ions, and remain in the chromium hydroxide dispersion treatment liquid. Organic substances are also oxidized and decomposed.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance. Further, when a large amount of organic substance is present in the chromium hydroxide dispersion treatment liquid, ferrous iron is added. Thereby, a large amount of hydroxy radicals are generated, and the decomposition of the organic matter is promoted.

そして、水酸化クロム分散処理液の温度を60℃以上100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(鉄中和)。これによって、水酸化クロム分散処理液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the chromium hydroxide dispersion treatment liquid is maintained at 60 ° C. or more and less than 100 ° C., for example, 80 ° C., and a weak alkali agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less. Adjust to about 3.5 and stir for a predetermined time (20 to 60 minutes, for example, 30 minutes) (iron neutralization). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the chromium hydroxide dispersion treatment liquid, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、生成した水酸化第二鉄は、予め水酸化クロム分散処理液中に存在する水酸化クロムを核として凝集することにより、水酸化第二鉄澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離する際の濾過性が向上して、水酸化第二鉄澱物を水酸化クロム澱物と共にケーキとして分離し第4処理液を容易に回収することができる(以上第4工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 Moreover, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only a part of the ferric ion became ferric hydroxide, and when the pH exceeded 5, the ferric hydroxide was used. This is because zinc hydroxide is generated. By setting the temperature to 60 ° C. or higher and lower than 100 ° C., preferably 75 ° C. or higher and 85 ° C. or lower, the production rate of ferric hydroxide can be increased. By agglomerating chromium hydroxide present in the dispersion treatment liquid as a nucleus, particles of ferric hydroxide starch can be coarsened. For this reason, after a predetermined time has passed, the filterability when a liquid containing ferric hydroxide starch is solid-liquid separated by, for example, a filter press is improved, and the ferric hydroxide starch is converted to chromium hydroxide. The fourth treatment liquid can be easily recovered by separating it as a cake together with the starch (the fourth step). Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

回収した第4処理液の温度を20〜80℃、好ましくは60℃以上に保ち、アルカリ剤として消石灰を加えてpHを9以上で11以下、例えば9.5程度に調整して所定時間(15〜60分間、例えば、30分間)撹拌する(亜鉛中和)。これによって、第4処理液中の亜鉛イオンと消石灰の間で下記に示す化学反応が進行し、亜鉛イオンが水酸化亜鉛に変化する。
Zn2++2Cl-+Ca(OH)2 → Zn(OH)2↓+Ca2++2Cl-
ここで、pHを9〜11としたのは、pHが9未満では亜鉛は一部しか水酸化亜鉛にならず、pHが11を超えると水酸化亜鉛が再溶解するためである。また、温度を60℃以上とすることで、水酸化亜鉛の生成速度を大きくすることができ、生成する水酸化亜鉛澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化亜鉛澱物を含んだ液を、例えば、フィルタープレスで固液分離した際の濾過性を向上することができ、水酸化亜鉛澱物をケーキとして容易に回収して、第5処理液を容易に分離することができる(以上第5工程)。なお、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着している残液を少なくする。これによって、水酸化亜鉛に含まれる不純物量を低減することができる。
そして、分離した第5処理液(プロセス排水)は、水処理設備に供給して、化学的酸素要求量(COD)、pH等が排出基準値以下になるように処理して、例えば、海域に排水する。
The temperature of the recovered fourth treatment liquid is kept at 20 to 80 ° C., preferably 60 ° C. or more, and slaked lime is added as an alkaline agent to adjust the pH to 9 or more and 11 or less, for example, about 9.5 for a predetermined time (15 Stir (Zinc neutralization) for ~ 60 minutes, e.g., 30 minutes. Thereby, the chemical reaction shown below progresses between the zinc ions and the slaked lime in the fourth treatment liquid, and the zinc ions change to zinc hydroxide.
Zn 2+ + 2Cl + Ca (OH) 2 → Zn (OH) 2 ↓ + Ca 2+ + 2Cl
Here, the reason why the pH is set to 9 to 11 is that when the pH is less than 9, only a part of zinc becomes zinc hydroxide, and when the pH exceeds 11, the zinc hydroxide is redissolved. Moreover, the production | generation speed | rate of zinc hydroxide can be enlarged by making temperature into 60 degreeC or more, and the particle | grains of the zinc hydroxide starch to produce | generate can be coarsened. For this reason, after a predetermined time, the filterability when the liquid containing zinc hydroxide starch is solid-liquid separated by, for example, a filter press can be improved, and the zinc hydroxide starch can be easily recovered as a cake. Thus, the fifth processing liquid can be easily separated (the fifth step). The separated cake is washed with washing water to reduce the residual liquid adhering to the cake side. Thereby, the amount of impurities contained in zinc hydroxide can be reduced.
Then, the separated fifth treatment liquid (process wastewater) is supplied to the water treatment facility and processed so that the chemical oxygen demand (COD), pH, etc. are below the emission standard value. Drain.

図15、図16に示すように、本発明の第6の実施の形態に係る廃液スラッジの再資源化処理方法は、第5の実施の形態に係る廃液スラッジの再資源化処理方法の第4工程の代りに、第3処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを400mV以上で500mV以下に保持してクロム除去液中に存在する有機物の一部を分解すると共にクロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、分散処理液に酸化剤を加えてORPを600mV以上に保持して分散処理液中に残存する有機物の残部を分解すると共に分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、分散処理液に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことを特徴としており、その他の工程は第5の実施の形態に係る廃液スラッジの再資源化処理方法と実質的に同一である。このため、第4A工程についてのみ説明する。 As shown in FIGS. 15 and 16, the waste sludge recycling process method according to the sixth embodiment of the present invention is the fourth of the waste liquid sludge recycling process method according to the fifth embodiment. Instead of the process, a weak alkaline agent is added to the third treatment liquid as a pH adjuster to adjust the pH, and a chromium neutralization treatment is performed by changing chromium ions in the third treatment liquid to chromium hydroxide. Part of the organic matter present in the chromium removal solution by separating the chromium hydroxide starch into a chromium removal solution and adding an oxidizing agent to the chromium removal solution to maintain the ORP at 400 mV to 500 mV. The first ferrous ions present in the chromium removal solution are oxidized to ferric ions, and a weak alkaline agent is added to adjust the pH to ferric hydroxide. Iron neutralization treatment, ferric hydroxide The dispersed dispersion is made into a dispersed dispersion, and an oxidizing agent is added to the dispersion to keep ORP at 600 mV or more to decompose the remaining organic matter remaining in the dispersion and to oxidize the remainder of ferrous ions in the dispersion. Then, ferric hydroxide starch is obtained by performing a second iron neutralization treatment in which the pH is adjusted by adding a weak alkaline agent to the dispersion treatment liquid and changing to ferric hydroxide. It is characterized in that the step 4A is carried out by separating the ferric hydroxide starch into a fourth treatment liquid containing zinc, and the other steps are the waste liquid sludge according to the fifth embodiment. This is substantially the same as the recycling processing method. For this reason, only the 4th A process is explained.

第4A工程では、先ず、第3処理液の温度を30〜80℃、例えば60℃に保ち、弱アルカリ剤として炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、第3処理液中のクロムイオンと炭酸カルシウムの間で化学反応が進行し、クロムイオンが水酸化クロムに変化して、水酸化クロム澱物を含んだ液が形成される。そして、所定時間経過後、水酸化クロム澱物を含んだ液を、例えば、フィルタープレスで固液分離して、水酸化クロム澱物をケーキとして分離しクロム除去液を回収する。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 In the 4A step, first, the temperature of the third treatment liquid is maintained at 30 to 80 ° C., for example, 60 ° C., and calcium carbonate is added as a weak alkaline agent to adjust the pH to 3 or more and 5 or less, for example, about 4.2. And stirring for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, a chemical reaction proceeds between the chromium ions and calcium carbonate in the third treatment liquid, and the chromium ions are changed to chromium hydroxide to form a liquid containing chromium hydroxide starch. And after predetermined time progress, the liquid containing a chromium hydroxide starch is solid-liquid separated, for example with a filter press, chromium hydroxide starch is isolate | separated as a cake, and chromium removal liquid is collect | recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

次いで、水酸化クロム澱物が分離されたクロム除去液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えてクロム除去液のORPを400〜500mV、例えば450mV程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する。これによって、下記に示す化学反応が進行し、クロム除去液中に存在する有機物の一部が分解され、更にクロム除去液中に存在する第一鉄イオンの一部が酸化されて第二鉄イオンになる。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Next, the temperature of the chromium removal liquid from which the chromium hydroxide starch is separated is maintained at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent, so that the ORP of the chromium removal liquid is about 400 to 500 mV, for example, about 450 mV. And stirring for a predetermined time (3 to 10 minutes, for example, 6 minutes). As a result, the chemical reaction shown below proceeds, a part of the organic matter present in the chromium removal solution is decomposed, and a part of the ferrous ions present in the chromium removal solution is oxidized to ferric ions. become.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、クロム除去液の温度を20〜80℃、例えば60℃に保ち、弱アルカリ剤として炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(3〜10分間、例えば6分間)撹拌する(第1の鉄中和処理)。これによって、クロム除去液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化して、この水酸化第二鉄の核が分散した(水酸化第二鉄のシーズが生成した)分散処理液となる。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
And the temperature of chromium removal liquid is maintained at 20-80 degreeC, for example, 60 degreeC, calcium carbonate is added as a weak alkaline agent, pH is adjusted to 2.5 or more and 5 or less, for example, about 3.5, and predetermined time. Stir (3 to 10 minutes, for example, 6 minutes) (first iron neutralization treatment). As a result, the chemical reaction shown below proceeds between the ferric ion and calcium carbonate in the chromium removal solution, and the ferric ion is changed to ferric hydroxide. Becomes a dispersion treatment liquid in which ferrous hydroxide seeds are produced.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

次いで、分散処理液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えて分散処理液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、分散処理液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、分散処理液中に残存している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Subsequently, the temperature of the dispersion treatment liquid is kept at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the dispersion treatment liquid to 600 mV or more for a predetermined time (20 to 60 minutes, for example, 25 Stir for minutes). As a result, the chemical reaction shown below proceeds, and all the ferrous ions in the dispersion treatment liquid are oxidized to change to ferric ions, and the organic matter remaining in the dispersion treatment liquid is also oxidized and decomposed. To do.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、分散処理液の温度を60℃以下100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(第2の鉄中和処理)。これによって、分散処理液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the dispersion treatment liquid is kept at 60 ° C. or less and less than 100 ° C., for example, 80 ° C., and a weak alkali agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less, for example, 3.5 It adjusts to a grade and it stirs for the predetermined time (20-60 minutes, for example, 30 minutes) (2nd iron neutralization process). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the dispersion treatment liquid, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、生成した水酸化第二鉄は分散処理液中に予め存在していた水酸化第二鉄を核として凝集することにより、水酸化第二鉄澱物の粒子を粗大化することができる。このため、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離する際の濾過性が向上して、水酸化第二鉄澱物をケーキとして分離し第4処理液を容易に回収することができる。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 In addition, the pH was set to 2.5 to 5 because when the pH was less than 2.5, only a portion of the ferric ion became ferric hydroxide, and when the pH exceeded 5, This is because zinc hydroxide is generated. By setting the temperature to 60 ° C. or more and less than 100 ° C., preferably 75 ° C. or more and 85 ° C. or less, the production rate of ferric hydroxide can be increased, and the produced ferric hydroxide is contained in the dispersion treatment liquid. By agglomerating the existing ferric hydroxide as a nucleus, the ferric hydroxide starch particles can be coarsened. For this reason, after a predetermined time has passed, the filterability when the liquid containing ferric hydroxide starch is solid-liquid separated by, for example, a filter press is improved, and the ferric hydroxide starch is separated as a cake. The fourth treatment liquid can be easily recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

図17に示すように、本発明の第6の実施の形態に係る廃液スラッジの再資源化処理方法の変形例では、第4A工程の代りに、第3処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを600mV以上に保持してクロム除去液中に存在する有機物を分解すると共にクロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なっている。以下、第4B工程について説明する。 As shown in FIG. 17, in the modified example of the waste sludge recycling treatment method according to the sixth embodiment of the present invention, a weak alkaline agent is used as a pH adjuster in the third treatment liquid instead of the 4A step. Is added to adjust the pH, and chromium neutralization treatment is performed by changing chromium ions in the third treatment liquid to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to remove the chromium hydroxide. Then, an oxidant is added to the chrome removal liquid to maintain ORP at 600 mV or more to decompose organic substances present in the chrome removal liquid and oxidize ferrous ions in the chrome removal liquid to ferric ions, Then, a third alkali neutralization treatment is performed by adding a weak alkaline agent as a pH adjuster to adjust the pH to ferric hydroxide to produce ferric hydroxide starch. The fourth treatment liquid containing zinc is separated. And performing the 4B step. Hereinafter, the step 4B will be described.

第4B程では、先ず、第3処理液の温度を30〜80℃、例えば60℃に保ち、弱アルカリ剤、例えば炭酸カルシウムを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(クロム中和)。これによって、クロムイオンが水酸化クロムに変化して、水酸化クロム澱物を含んだ液が形成される。そして、所定時間経過後、水酸化クロム澱物を含んだ液を、例えば、フィルタープレスで固液分離して、水酸化クロム澱物をケーキとして分離しクロム除去液を回収する。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。 In about 4B, first, the temperature of the third treatment liquid is maintained at 30 to 80 ° C., for example, 60 ° C., and a weak alkaline agent, for example, calcium carbonate is added to adjust the pH to 3 or more and 5 or less, for example, about 4.2. Adjust and stir for a predetermined time (20 to 60 minutes, for example, 30 minutes) (chromium neutralization). As a result, the chromium ion is changed to chromium hydroxide, and a liquid containing chromium hydroxide starch is formed. And after predetermined time progress, the liquid containing a chromium hydroxide starch is solid-liquid separated, for example with a filter press, chromium hydroxide starch is isolate | separated as a cake, and chromium removal liquid is collect | recovered. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away.

次いで、水酸化クロム澱物が分離されたクロム除去液の温度を20〜80℃、例えば60℃に保ち、酸化剤として過酸化水素を加えてクロム除去液のORPを600mV以上に調整して所定時間(20〜60分間、例えば25分間)撹拌する。これによって、下記に示す化学反応が進行し、クロム除去液中の第一鉄イオンが全量酸化されて第二鉄イオンに変化すると共に、クロム除去液中に存在している有機物も酸化されて分解する。
2Fe2++4Cl-+H22
→ 2Fe3++4Cl-+2OH-+2・OH (第一鉄酸化反応)
R+・OH → xCO2+yH2O (有機物分解反応)
ここで、・OHはヒドロキシラジカル、Rは有機物を示す。
Next, the temperature of the chromium removal liquid from which the chromium hydroxide starch has been separated is maintained at 20 to 80 ° C., for example, 60 ° C., and hydrogen peroxide is added as an oxidizing agent to adjust the ORP of the chromium removal liquid to 600 mV or more to obtain a predetermined value. Stir for time (20-60 minutes, eg 25 minutes). As a result, the chemical reaction shown below proceeds and all the ferrous ions in the chromium removal solution are oxidized to ferric ions, and organic substances present in the chromium removal solution are also oxidized and decomposed. To do.
2Fe 2+ + 4Cl + H 2 O 2
→ 2Fe 3+ + 4Cl + 2OH + 2 · OH (Ferrous iron oxidation reaction)
R + · OH → xCO 2 + yH 2 O (organic matter decomposition reaction)
Here, .OH represents a hydroxy radical, and R represents an organic substance.

そして、クロム除去液の温度を60℃以下100℃未満、例えば80℃に保ち、pH調整剤として弱アルカリ剤、例えば炭酸カルシウムを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(20〜60分間、例えば30分間)撹拌する(第3の鉄中和処理)。これによって、クロム除去液中の第二鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、第二鉄イオンが水酸化第二鉄に変化する。
Fe3++2Cl-+OH-+CaCO3+2H2
→ Fe(OH)3↓+Ca2++2Cl-+H2CO3 *
ここで、H2CO3 *は、H2CO3等の水中に溶存している各種炭酸成分と炭酸カルシウムの分解により生成した炭酸ガスを総称したものである。
Then, the temperature of the chromium removal solution is kept at 60 ° C. or less and less than 100 ° C., for example, 80 ° C., and a weak alkaline agent such as calcium carbonate is added as a pH adjuster to adjust the pH to 2.5 or more and 5 or less, for example, 3.5 It adjusts to a grade and it stirs for a predetermined time (20-60 minutes, for example, 30 minutes) (3rd iron neutralization process). Thereby, the chemical reaction shown below progresses between the ferric ion and calcium carbonate in the chromium removal solution, and the ferric ion changes to ferric hydroxide.
Fe 3+ + 2Cl + OH + CaCO 3 + 2H 2 O
→ Fe (OH) 3 ↓ + Ca 2+ + 2Cl + H 2 CO 3 *
Here, H 2 CO 3 * is a general term for various carbonic acid components dissolved in water such as H 2 CO 3 and carbon dioxide gas generated by decomposition of calcium carbonate.

また、pHを2.5〜5としたのは、pHが2.5未満では第二鉄イオンは一部しか水酸化第二鉄にならず、pHが5を超えると水酸化第二鉄と共に水酸化亜鉛が生成するためである。温度を60℃以上100℃未満、好ましくは75℃以上85℃以下とすることで、水酸化第二鉄の生成速度を大きくすることができ、水酸化第二鉄澱物の粒子を粗大化することができる。 Moreover, the pH was adjusted to 2.5 to 5 because when the pH was less than 2.5, only a part of the ferric ion became ferric hydroxide, and when the pH exceeded 5, the ferric hydroxide was used. This is because zinc hydroxide is generated. By setting the temperature to 60 ° C. or more and less than 100 ° C., preferably 75 ° C. or more and 85 ° C. or less, the production rate of ferric hydroxide can be increased, and the particles of ferric hydroxide starch are coarsened. be able to.

図18、図19に示す本発明の第7の実施の形態に係る廃液スラッジの再資源化処理方法は、ニッケル、銅、亜鉛、鉄、及びクロムがいずれも水酸化物の状態で存在する多成分系めっき廃液スラッジ(以下、単にスラッジという)に無機酸として塩酸を加えて溶解処理物を形成するスラッジ溶解処理を行ない、溶解処理物から不溶分を除去して、ニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、第1処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を形成(銅回収セメンテーション)させ、銅付着鉄粉を分離してニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、第2処理液に鉄粉及び酸の一例である塩酸を加えて酸化還元電位及びpHを調整し、第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を形成(ニッケル回収セメンテーション)させ、ニッケル付着鉄粉を分離して亜鉛、鉄、クロムを含有する第3処理液とする第3工程と、第3処理液にpH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、水酸化クロム分散処理液に酸化剤として過酸化水素を加えて水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤、例えば、炭酸カルシウムを加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程と、第4処理液にアルカリ剤として、例えば消石灰を加えてpHを調整し、第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有し、多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムの分別回収を行なうことが特徴となっている。ここで、第5の実施の形態で説明したスラッジに含まれる有機物の分解処理は、スラッジを無機酸に溶解する際及び第一鉄イオンを酸化して第二鉄イオンにする際に同時に行なうことができるので、第7の実施の形態の廃液スラッジの再資源化処理方法は、第5の実施の形態に係る廃液スラッジの再資源化処理方法例と有機物の分解処理を除いて実質的に同一とすることができる。 The waste liquid sludge recycling method according to the seventh embodiment of the present invention shown in FIG. 18 and FIG. 19 is a process in which nickel, copper, zinc, iron, and chromium are all present in a hydroxide state. Sludge dissolution treatment is performed by adding hydrochloric acid as an inorganic acid to component-based plating waste sludge (hereinafter referred to simply as "sludge") to form a dissolution treatment product. The insoluble matter is removed from the dissolution treatment product, and nickel, copper, zinc, iron And the first step of providing an insoluble matter removal treatment to obtain a first treatment liquid mixed with chromium, and adjusting the oxidation-reduction potential and pH by adding hydrochloric acid as an example of iron powder and acid to the first treatment solution, Replace the copper ions and iron in the first treatment liquid to form copper-adhered iron powder with copper deposited on the surface (copper recovery cementation), separate the copper-adhered iron powder, and add nickel, zinc, iron, and chromium A second step of containing a second treatment liquid; Add iron powder and hydrochloric acid as an example of acid to the second treatment liquid to adjust the oxidation-reduction potential and pH, replace the nickel ions and iron in the second treatment liquid and deposit nickel on the surface. Forming (nickel recovery cementation), separating the nickel-adhered iron powder into a third treatment liquid containing zinc, iron and chromium, and a weak alkaline agent as a pH adjuster in the third treatment liquid, for example, Then, the pH is adjusted by adding calcium carbonate, and the chromium neutralization treatment is performed to change the chromium ions in the third treatment liquid to chromium hydroxide to obtain a chromium hydroxide dispersion treatment liquid in which chromium hydroxide is dispersed. Hydrogen peroxide is added to the treatment liquid as an oxidizing agent to oxidize ferrous ions in the chromium hydroxide dispersion treatment liquid to ferric ions, and then a weak alkaline agent such as calcium carbonate as a pH adjuster. To adjust the pH and neutralize the ferric hydroxide by changing ferric ions to ferric hydroxide to produce ferric hydroxide starch. And a fourth step of separating into a fourth treatment liquid containing zinc, and adjusting the pH by adding, for example, slaked lime as an alkaline agent to the fourth treatment liquid, and converting zinc ions in the fourth treatment liquid to zinc hydroxide A zinc neutralization treatment to produce a zinc hydroxide starch, a fifth treatment solution for separating the zinc hydroxide starch and removing the zinc to form a fifth treatment solution, and a multi-component plating waste solution It is characterized by the separate recovery of nickel, copper, zinc, iron and chromium from sludge. Here, the organic substance contained in the sludge described in the fifth embodiment is decomposed simultaneously when the sludge is dissolved in an inorganic acid and when ferrous ions are oxidized to ferric ions. Therefore, the waste sludge recycling method according to the seventh embodiment is substantially the same as the waste sludge recycling method according to the fifth embodiment except for the organic matter decomposition treatment. It can be.

また、図20、図21に示す本発明の第8の実施の形態に係る廃液スラッジの再資源化処理方法は、第7の実施の形態に係る廃液スラッジの再資源化処理方法の第3工程の代りに、第4処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを400mV以上で500mV以下に保持してクロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、分散処理液に酸化剤を加えてORPを600mV以上に保持して分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、分散処理液に弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことを特徴としており、第8の実施の形態の廃液スラッジの再資源化処理方法は、第6の実施の形態に係る廃液スラッジの再資源化処理方法例と有機物の分解処理を除いて実質的に同一とすることができる。 Further, the waste sludge recycling treatment method according to the eighth embodiment of the present invention shown in FIGS. 20 and 21 is the third step of the waste liquid sludge recycling treatment method according to the seventh embodiment. Instead of adding a weak alkaline agent as a pH adjuster to the fourth treatment liquid, the pH is adjusted, and chromium neutralization treatment is performed by changing chromium ions in the third treatment liquid to chromium hydroxide to perform chromium hydroxide starch. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution to maintain the ORP at 400 mV or more and 500 mV or less to remove ferrous ions present in the chromium removal solution. Partly oxidized to ferric ions, further weak alkaline agent added to adjust pH to ferric hydroxide to perform first iron neutralization treatment, ferric hydroxide was dispersed A dispersion treatment liquid is obtained, and an oxidizing agent is added to the dispersion treatment liquid. P is maintained at 600 mV or more, and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions. Then, a weak alkaline agent is added to the dispersion treatment liquid to adjust the pH, thereby adding a second hydroxide. 2nd iron neutralization process which changes to iron is performed, ferric hydroxide starch is produced | generated, and the 4th A process which makes a 4th process liquid which isolate | separates ferric hydroxide starch and contains zinc is performed The waste sludge recycling treatment method according to the eighth embodiment is substantially the same except for the waste liquid sludge recycling treatment method and the organic matter decomposition treatment according to the sixth embodiment. Can be the same.

また、図22に示す第8の実施の形態の廃液スラッジの再資源化処理方法の変形例は、第4A工程の代りに、第3処理液にpH調整剤として弱アルカリ剤を加えてpHを調整し、第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、水酸化クロム澱物を分離してクロム除去液とし、クロム除去液に酸化剤を加えてORPを600mV以上に保持してクロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤として弱アルカリ剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なうことが特徴で、第6の実施の形態に係る廃液スラッジの再資源化処理方法の変形例と有機物の分解処理を除いて実質的に同一とすることができる。このため、第8の実施の形態の廃液スラッジの再資源化処理方法及びその変形例についての説明は省略する。 Further, in the modified example of the waste liquid sludge recycling treatment method of the eighth embodiment shown in FIG. 22, instead of the 4A step, a weak alkaline agent is added to the third treatment liquid as a pH adjuster to adjust the pH. The chromium ion in the third treatment liquid is changed to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to form a chromium removal liquid. Add an oxidizing agent to keep ORP at 600 mV or more to oxidize ferrous ions in the chromium removal solution to ferric ions, and then adjust the pH by adding a weak alkaline agent as a pH adjusting agent. A third iron neutralization treatment that converts to ferric hydroxide is performed to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to form a fourth treatment solution containing zinc. The waste liquid according to the sixth embodiment is characterized by performing the 4B process. It can be substantially identical except for the decomposition process of the variation example and organic matter recycling processing method sludge. For this reason, the explanation about the recycling method of waste liquid sludge of the 8th embodiment and its modification is omitted.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ニッケル、銅、亜鉛、鉄、クロム、及び有機物を含む多成分系めっき廃液スラッジから、銅、クロム及び鉄、ニッケル、鉄、並びに亜鉛を順に分別回収した。先ず、多成分系めっき廃液スラッジ(167.86g、固形分は50g)に水を112.14g加えてスラリーを調製した。多成分系めっき廃液スラッジの組成を表1に示す。なお、T.Cは全炭素量である。
Next, examples carried out for confirming the effects of the present invention will be described.
Copper, chromium and iron, nickel, iron, and zinc were separately collected in order from the multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, chromium, and organic matter. First, 112.14 g of water was added to multi-component plating waste liquid sludge (167.86 g, solid content was 50 g) to prepare a slurry. Table 1 shows the composition of the multicomponent plating waste liquid sludge. T. T. C is the total carbon content.

Figure 2007237054
Figure 2007237054

続いて、スラリーの温度が80℃となるように加熱しながら、pHが1.0程度になるように15%塩酸220gを添加して60分間撹拌しスラッジを溶解させるスラッジ溶解処理を行なった。スラッジ溶解処理を開始した時点の温度は81.1℃、ORPは515mV、pHは1.03であった。開始してから20分経過後に補給水を50g加えた。これにより、温度は78.1℃に低下し、ORPは481mV、pHは1.11となった。スラッジ溶解処理を開始してから40分経過後に温度は84.0℃、ORPは487mV、pHは1.10となり、スラッジ溶解処理終了(スラッジ溶解処理を開始してから60分後)温度は79.5℃、ORPは478mV、pHは1.06であった。スラッジ溶解処理終了後の溶解処理物の全炭素量の定量から、スラッジ溶解処理によりスラッジに含まれていた全有機物量の32%が分解されたことが確認された。溶解処理物を真空濾過して濾過液を回収し、不溶分には洗浄水100gを供給して再度真空濾過を行なって洗浄水を回収して濾過液に混合して第1処理液とした。不溶分及び第1処理液の組成を表1及び表2にそれぞれ示す(以上、第1工程)。 Subsequently, while heating so that the temperature of the slurry became 80 ° C., 220 g of 15% hydrochloric acid was added so that the pH was about 1.0, and the slurry was stirred for 60 minutes to dissolve the sludge. The temperature at the start of the sludge dissolution treatment was 81.1 ° C., the ORP was 515 mV, and the pH was 1.03. 50 g of make-up water was added 20 minutes after the start. Thereby, temperature fell to 78.1 degreeC, ORP was 481 mV, and pH became 1.11. After 40 minutes from the start of the sludge dissolution treatment, the temperature was 84.0 ° C., the ORP was 487 mV, the pH was 1.10, and the sludge dissolution treatment was completed (60 minutes after the start of the sludge dissolution treatment). 0.5 ° C., ORP was 478 mV, and pH was 1.06. From the quantification of the total carbon amount of the dissolved processed product after the sludge dissolution treatment, it was confirmed that 32% of the total organic matter contained in the sludge was decomposed by the sludge dissolution treatment. The dissolved treated product was vacuum filtered to collect the filtrate, and 100 g of washing water was supplied to the insoluble matter and vacuum filtration was performed again to collect the washing water and mixed with the filtrate to obtain a first treatment liquid. The insoluble content and the composition of the first treatment liquid are shown in Tables 1 and 2, respectively (first step).

Figure 2007237054
Figure 2007237054

回収した第1処理液(518.83g)に鉄粉15.0gを添加すると共に、塩酸を加えてpHを2以下になるようにして、更に、第1処理液の温度を40℃に保って、ORPが−400mV以上となるようにして15分間撹拌し、鉄粉表面に銅を析出させて銅付着鉄粉を形成した。なお、鉄粉投入時の液のORPは355mV、pHは1.09、温度は37.7℃であり、15分経過後の液のORPは−88mV、pHは1.10、温度は40.7℃であった。次いで、真空濾過して濾過液を回収し、分離した銅付着鉄粉には洗浄水25gを供給して再度真空濾過を行なって洗浄水を回収して濾過液に混合して第2処理液とした。銅付着鉄粉及び第2処理液の組成を表1及び表2にそれぞれ示す(以上、第2工程)。 While adding 15.0 g of iron powder to the recovered first treatment liquid (518.83 g), hydrochloric acid is added so that the pH is 2 or less, and the temperature of the first treatment liquid is kept at 40 ° C. Then, stirring was performed for 15 minutes so that the ORP became −400 mV or more, and copper was deposited on the surface of the iron powder to form a copper-adhered iron powder. The ORP of the liquid at the time of iron powder charging was 355 mV, the pH was 1.09, and the temperature was 37.7 ° C. The ORP of the liquid after 15 minutes was −88 mV, the pH was 1.10, and the temperature was 40. 7 ° C. Next, the filtrate is recovered by vacuum filtration, and 25 g of cleaning water is supplied to the separated copper-attached iron powder, and vacuum filtration is performed again to recover the cleaning water, which is mixed with the filtrate and mixed with the second treatment liquid. did. The compositions of the copper-adhered iron powder and the second treatment liquid are shown in Tables 1 and 2, respectively (the second step).

回収した第2処理液(511.23g)の温度が60℃となるように加熱しながら、炭酸カルシウム15.26gを添加してpHを4.2程度に調整し30分間撹拌してクロムイオンを水酸化クロムに変えるクロム中和を行なった。なお、クロム中和開始時のORPは−93mV、pHは4.03、温度は64.3℃であり、クロム中和が終了したときのORPは52mV、pHは4.19、温度は60.4℃であった。次いで、温度が60℃となるように加熱しながら、35%過酸化水素水8.64gを添加して20分間撹拌し、第一鉄イオンを酸化して第二鉄イオンにした。第一鉄イオンの酸化開始時のORPは627mV、pHは2.27、温度は63.8℃であり、酸化終了後のORPは603mV、pHは2.16、温度は61.5℃であった。続いて、温度を60℃に保持してpHが3.5程度となるように炭酸カルシウム4.78gを加え、その後温度を80℃に保持して30分間撹拌し、第二鉄イオンを水酸化第二鉄に変化させた(第1の鉄中和処理)。なお、第1の鉄中和処理開始時のORPは459mV、pHは3.41、温度は61.1℃であり、第1の鉄中和処理の終了時のORPは276mV、pHは3.49、温度は82.0℃であった。
そして、第1の鉄中和処理の終了後の液を真空濾過して濾過液を回収し、分離した水酸化クロム及び水酸化第二鉄の混合澱物に洗浄水150gを供給し再度真空濾過を行なって洗浄水を回収して濾過液に混合して第3処理液とした。水酸化クロム及び水酸化第二鉄の混合澱物及び第3処理液の組成を表1及び表2にそれぞれ示す(以上、第3工程)。
While heating so that the temperature of the recovered second treatment liquid (511.23 g) is 60 ° C., 15.26 g of calcium carbonate is added to adjust the pH to about 4.2 and stirred for 30 minutes to remove chromium ions. Chromium neutralization was performed to change to chromium hydroxide. The ORP at the start of chromium neutralization was −93 mV, the pH was 4.03, and the temperature was 64.3 ° C. The ORP when the neutralization of chromium was completed was 52 mV, the pH was 4.19, and the temperature was 60. It was 4 ° C. Next, while heating to a temperature of 60 ° C., 8.64 g of 35% aqueous hydrogen peroxide was added and stirred for 20 minutes to oxidize ferrous ions to ferric ions. The ORP at the start of oxidation of ferrous ions was 627 mV, the pH was 2.27, the temperature was 63.8 ° C, the ORP after the oxidation was 603 mV, the pH was 2.16, and the temperature was 61.5 ° C. It was. Subsequently, 4.78 g of calcium carbonate is added so that the temperature is kept at 60 ° C. so that the pH is about 3.5, and then the temperature is kept at 80 ° C. and stirred for 30 minutes to hydroxylate ferric ions. It was changed to ferric iron (first iron neutralization treatment). The ORP at the start of the first iron neutralization treatment is 459 mV, the pH is 3.41, the temperature is 61.1 ° C., the ORP at the end of the first iron neutralization treatment is 276 mV, and the pH is 3. 49, the temperature was 82.0 ° C.
And the liquid after completion | finish of a 1st iron neutralization process is vacuum-filtered, filtrate is collect | recovered, 150g of washing water is supplied to the isolate | separated mixture of chromium hydroxide and ferric hydroxide, and it vacuum-filters again. The washing water was collected and mixed with the filtrate to obtain a third treatment liquid. The composition of the mixed starch of chromium hydroxide and ferric hydroxide and the composition of the third treatment liquid are shown in Tables 1 and 2, respectively (the third step).

回収した第3処理液(456.66g)に鉄粉457.0gを添加すると共に、15%塩酸91.4gを加えてpHを5以下になるようにして、更に、第3処理液の温度を60℃に保って、ORPが−450mVとなるようにして180分間撹拌し、鉄粉表面にニッケルを析出させてニッケル付着鉄粉を形成した(ニッケル回収セメンテーション)。なお、鉄粉投入時の液のORPは−497mV、pHは5.32、温度は62.8℃であり、60分経過後の液のORPは−566mV、pHは4.82、温度は60.5℃、120分経過後の液のORPは−563mV、pHは4.87、温度は61.2℃、180分経過後(ニッケル回収セメンテーション終了時)の液のORPは−568mV、pHは4.86、温度は61.3℃であった。次いで、真空濾過して濾過液を回収し、分離したニッケル付着鉄粉には洗浄水100gを供給して再度真空濾過を行なって洗浄水を回収して濾過液に混合して第4処理液とした。ニッケル付着鉄粉及び第4処理液の組成を表1及び表2にそれぞれ示す(以上、第4工程)。 457.0 g of iron powder is added to the recovered third treatment liquid (456.66 g), and 91.4 g of 15% hydrochloric acid is added so that the pH is 5 or less. Further, the temperature of the third treatment liquid is increased. It was kept at 60 ° C. and stirred for 180 minutes so that the ORP was −450 mV, and nickel was deposited on the surface of the iron powder to form nickel-adhered iron powder (nickel recovery cementation). The ORP of the liquid at the time of iron powder charging was −497 mV, the pH was 5.32, and the temperature was 62.8 ° C. The ORP of the liquid after 60 minutes was −566 mV, the pH was 4.82, and the temperature was 60. The ORP of the solution after lapse of 120 ° C. at −5 ° C. is −563 mV, the pH is 4.87, the temperature is 61.2 ° C., the ORP of the solution after 180 minutes (at the end of nickel recovery cementation) is −568 mV, pH Was 4.86 and the temperature was 61.3 ° C. Next, the filtrate is recovered by vacuum filtration, and 100 g of cleaning water is supplied to the separated nickel-adhered iron powder, and vacuum filtration is performed again to recover the cleaning water, which is mixed with the filtrate and mixed with the fourth treatment liquid. did. The compositions of the nickel-adhered iron powder and the fourth treatment liquid are shown in Tables 1 and 2, respectively (the fourth step).

第4処理液(445.22g)の温度を65℃に保って35%過酸化水素12.82gを加えてORPを450mVに6分間保持して第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにした。次いで、炭酸カルシウム5.65gを加えてpHを3.5に調整し温度を60℃で6分間保持して第二鉄イオンを水酸化第二鉄に変えて水酸化第二鉄が分散する鉄中和処理液を形成した。続いて、鉄中和処理液を60℃にして35%過酸化水素水34.43gを加えてORPを600mV以上にして20分間保持した。ここで、ORPを450mVに6分間保持したときのORPは450mV、pHは2.03、温度は65.0℃であり、炭酸カルシウムを加えて6分間保持して形成した鉄中和処理液のORPは158mV、pHは3.50、温度は61.4℃であり、鉄中和処理液に過酸化水素水を加えた際のORPは654mV、pHは1.85、温度は71.4℃、鉄中和処理液に過酸化水素水を加えて20分経過後の中間処理液のORPは641mV、pHは1.70、温度は61.8℃であった。 Part of ferrous ions in the fourth treatment liquid by maintaining the temperature of the fourth treatment liquid (445.22 g) at 65 ° C., adding 12.82 g of 35% hydrogen peroxide and holding ORP at 450 mV for 6 minutes. Was oxidized to ferric ions. Next, 5.65 g of calcium carbonate is added to adjust the pH to 3.5, and the temperature is maintained at 60 ° C. for 6 minutes to change the ferric ion to ferric hydroxide and disperse ferric hydroxide. A neutralizing solution was formed. Subsequently, the iron neutralization treatment solution was brought to 60 ° C., 34.43 g of 35% hydrogen peroxide solution was added, and the ORP was raised to 600 mV or more and held for 20 minutes. Here, when ORP is held at 450 mV for 6 minutes, ORP is 450 mV, pH is 2.03, temperature is 65.0 ° C., and the iron neutralization treatment solution formed by adding calcium carbonate and holding for 6 minutes ORP is 158 mV, pH is 3.50, temperature is 61.4 ° C., ORP is 654 mV, pH is 1.85, temperature is 71.4 ° C. when hydrogen peroxide solution is added to the iron neutralization solution. Then, the hydrogen peroxide solution was added to the iron neutralization treatment solution, and after 20 minutes, the ORP of the intermediate treatment solution was 641 mV, the pH was 1.70, and the temperature was 61.8 ° C.

そして、中間処理液のpHが3.5程度となるように炭酸カルシウム17.48gを加え、その後温度を80℃に保持して60分間撹拌し、第二鉄イオンを水酸化第二鉄に変化させた(第2の鉄中和処理)。なお、第2の鉄中和処理開始時のORPは332mV、pHは3.47、温度は80.1℃であり、第2の鉄中和処理の終了時のORPは243mV、pHは3.50、温度は80.5℃であった。
そして、第2の鉄中和処理の終了後の液を真空濾過して濾過液を回収し、分離した水酸化第二鉄澱物に洗浄水100gを供給し再度真空濾過を行なって洗浄水を回収して濾過液に混合して第5処理液とした。水酸化第二鉄澱物及び第5処理液の組成を表1及び表2にそれぞれ示す(以上、第5工程)。
Then, 17.48 g of calcium carbonate is added so that the pH of the intermediate treatment solution becomes about 3.5, and then the temperature is kept at 80 ° C. and stirred for 60 minutes, and the ferric ion is changed to ferric hydroxide. (Second iron neutralization treatment). The ORP at the start of the second iron neutralization treatment is 332 mV, the pH is 3.47, the temperature is 80.1 ° C., the ORP at the end of the second iron neutralization treatment is 243 mV, and the pH is 3. 50, the temperature was 80.5 ° C.
And the liquid after completion | finish of a 2nd iron neutralization process is vacuum-filtered, filtrate is collect | recovered, 100g of washing water is supplied to the separated ferric hydroxide starch, vacuum filtration is performed again, and washing water is supplied. It collect | recovered and mixed with the filtrate, and it was set as the 5th process liquid. The compositions of ferric hydroxide starch and the fifth treatment liquid are shown in Tables 1 and 2, respectively (the fifth step).

回収した第5処理液(325.15g)の温度を60℃に保って、pHは10程度になるように48%水酸化ナトリウム9.78gを加えて30分間撹拌し、水酸化亜鉛澱物を生成させた(亜鉛中和処理)。水酸化ナトリウムを加えた直後の液のORPは−520mV、pHは10.43、温度は68.5℃であり、30分経過後(亜鉛中和処理終了時)の液のORPは−508mV、pHは10.36、温度は66.3℃であった。次いで、真空濾過して濾過液を回収し、分離した水酸化亜鉛澱物には洗浄水100gを供給して再度真空濾過を行なって洗浄水を回収して濾過液に混合して第6処理液とした。水酸化亜鉛澱物及び第6処理液の組成を表1及び表2にそれぞれ示す(以上、第6工程)。
第6処理液の組成から、多成分系めっき廃液スラッジに当初含まれていたニッケル、銅、亜鉛、鉄、クロム、及び有機物は、いずれも除去されることが確認できた。また、回収した銅付着鉄粉、水酸化クロム及び水酸化第二鉄の混合澱物、ニッケル付着鉄粉、水酸化第二鉄澱物、及び水酸化亜鉛澱物から求めた、各金属の回収率は、ニッケルが91.0%、クロムが99.4%、銅が96.4%、亜鉛が64.1%となった。なお、第2工程で銅を回収する際に第1処理液に、第4工程でニッケルを回収する際に第3処理液に、それぞれ鉄が溶解するので、鉄の回収率は求めていない。
Maintaining the temperature of the recovered fifth treatment liquid (325.15 g) at 60 ° C., adding 9.78 g of 48% sodium hydroxide so that the pH is about 10, and stirring for 30 minutes, (Zinc neutralization treatment). The ORP of the liquid immediately after adding sodium hydroxide is −520 mV, the pH is 10.43, the temperature is 68.5 ° C., and the ORP of the liquid after 30 minutes (when the zinc neutralization treatment is completed) is −508 mV, The pH was 10.36 and the temperature was 66.3 ° C. Next, the filtrate is recovered by vacuum filtration, and 100 g of washing water is supplied to the separated zinc hydroxide starch, vacuum filtration is performed again to collect the washing water, and the filtrate is mixed with the filtrate. It was. The compositions of the zinc hydroxide starch and the sixth treatment liquid are shown in Tables 1 and 2, respectively (the sixth step).
From the composition of the sixth treatment liquid, it was confirmed that all of nickel, copper, zinc, iron, chromium, and organic substances originally contained in the multicomponent plating waste liquid sludge were removed. In addition, recovery of each metal obtained from the collected copper-adhered iron powder, mixed starch of chromium hydroxide and ferric hydroxide, nickel-adhered iron powder, ferric hydroxide starch, and zinc hydroxide starch The rates were 91.0% for nickel, 99.4% for chromium, 96.4% for copper, and 64.1% for zinc. In addition, since iron melt | dissolves in a 1st process liquid when collect | recovering copper by a 2nd process and a 3rd process liquid when collect | recovering nickel by a 4th process, respectively, the recovery rate of iron is not calculated | required.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の多成分系めっき廃液スラッジの再資源化処理方法を構成する場合も本発明の権利範囲に含まれる。
例えば、第1〜第8の実施の形態では、第1工程で塩酸に多成分系めっき廃液スラッジを溶解させたが、硫酸を使用することもできる。この場合、スラッジ溶解処理は、pHを0.5以上で2以下、温度を80℃以上で100℃未満の条件で行ない、スラッジ溶解処理と不溶分除去処理の間に、溶解処理物にカルシウム源として、例えば塩化カルシウムを加えてpHを1以上で2以下、温度を80℃以上で100℃未満にして溶解処理物中の硫酸根を石膏として除去する硫酸根除去処理を設ける必要がある。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. A case where the recycling method for multi-component plating waste liquid sludge according to the present invention is configured by combining some or all of the forms and modifications is also included in the scope of the present invention.
For example, in the first to eighth embodiments, multi-component plating waste liquid sludge is dissolved in hydrochloric acid in the first step, but sulfuric acid can also be used. In this case, the sludge dissolution treatment is performed under the conditions of pH of 0.5 or more and 2 or less, and the temperature of 80 ° C. or more and less than 100 ° C., and between the sludge dissolution treatment and the insoluble matter removal treatment, For example, it is necessary to provide a sulfate radical removal treatment in which calcium chloride is added to remove the sulfate radical in the dissolved treatment product as gypsum by setting the pH to 1 to 2 and the temperature to 80 ° C. to less than 100 ° C.

本発明の第1の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 1st Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge. 本発明の第2の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 2nd Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge. 本発明の第3の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 3rd Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge. 本発明の第4の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 4th Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge. 本発明の第5の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 5th Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 本発明の第6の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 6th Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge. 本発明の第7の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 7th Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 本発明の第8の実施の形態に係る多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge which concerns on the 8th Embodiment of this invention. 同多成分系めっき廃液スラッジの再資源化処理方法の部分工程説明図である。It is partial process explanatory drawing of the recycling processing method of the multicomponent plating waste liquid sludge. 同多成分系めっき廃液スラッジの再資源化処理方法の変形例に係る部分工程説明図である。It is partial process explanatory drawing which concerns on the modification of the recycling processing method of the multi-component plating waste liquid sludge.

Claims (44)

ニッケル、銅、亜鉛、鉄、クロム、及び有機物を含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程と、
前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中に存在する有機物を分解すると共に前記水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離してニッケル、及び亜鉛を含有する第3処理液とする第3工程と、
前記第3処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛及び鉄を含有する第4処理液とする第4工程と、
前記第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、該中間処理液にpH調整剤を加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、
前記第5処理液のpHを調整し、該第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有し、
前記多成分系めっき廃液スラッジから有機物を分解しニッケル、銅、亜鉛、鉄、及びクロムを分別回収することを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。
Sludge dissolution treatment is performed by adding an inorganic acid to a multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, chromium, and organic matter to dissolve the multi-component plating waste liquid sludge to form a dissolved processed product. A first step of providing an insoluble matter removal treatment for removing the insoluble matter from the dissolved treatment product to obtain a first treatment liquid in which a part of nickel, copper, zinc, iron, chromium, and organic matter is mixed;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step of forming a second treatment liquid containing zinc, iron, chromium, and organic matter;
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjuster to the second treatment solution to adjust the pH, and performing chromium neutralization treatment to change chromium ions in the second treatment solution to chromium hydroxide. And an oxidizing agent is added to the chromium hydroxide dispersion treatment solution to decompose organic substances present in the chromium hydroxide dispersion treatment solution and oxidize ferrous ions in the chromium hydroxide dispersion treatment solution. Then, ferric hydroxide starch is produced by performing a first iron neutralization treatment in which a ferric ion is added and then a pH adjusting agent is added to adjust the pH to convert the ferric ion to ferric hydroxide. A third step of separating the ferric hydroxide starch together with the chromium hydroxide into a third treatment liquid containing nickel and zinc;
The iron powder is added to the third treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the third treatment liquid are replaced with iron, and the nickel-attached iron powder on which nickel is deposited is separated, and zinc is separated. And a fourth step as a fourth treatment liquid containing iron,
An intermediate treatment solution is prepared by oxidizing the ferrous ions in the fourth treatment solution to ferric ions, and a pH adjuster is added to the intermediate treatment solution to adjust the pH. A second iron neutralization treatment for converting ferric ions to ferric hydroxide is performed to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. A fifth step as a treatment liquid;
Zinc neutralization treatment is performed by adjusting the pH of the fifth treatment liquid and changing zinc ions in the fifth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And a sixth step of making a sixth treatment liquid from which zinc has been removed,
An organic material is decomposed from the multi-component plating waste liquid sludge to separate and recover nickel, copper, zinc, iron, and chromium, and a method for recycling multi-component plating waste sludge.
請求項1記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method for multi-component plating waste liquid sludge according to claim 1, wherein the second iron neutralization treatment is performed at 60 ° C or higher, preferably 75 ° C or higher, less than 100 ° C, preferably 85 ° C or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項1及び2のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理は、前記第4処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して、該第4処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 3. The recycling method for multi-component plating waste liquid sludge according to claim 1, wherein the intermediate treatment is performed by adding an oxidizing agent to the fourth treatment liquid so that an oxidation-reduction potential is 600 mV or more. A method for recycling a multi-component plating waste liquid sludge, characterized in that the ferrous ions in the fourth treatment liquid are all oxidized to ferric ions. 請求項1及び2のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理は、前記第4処理液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して前記第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤を加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、該鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 3. The recycling method for multi-component plating waste liquid sludge according to claim 1, wherein the intermediate treatment is performed by adding an oxidizing agent to the fourth treatment liquid so that an oxidation-reduction potential is 400 mV or more. A part of the ferrous ions in the fourth treatment solution is oxidized to a ferric ion by holding at 500 mV or less, and the pH is adjusted by adding a pH adjusting agent to convert the ferric ions to the second hydroxide. As an iron neutralization treatment liquid in which ferric hydroxide is dispersed by performing iron neutralization to convert to iron, an oxidizing agent is added to the iron neutralization treatment solution to maintain a redox potential at 600 mV or more, thereby neutralizing the iron. A recycling method for multi-component plating waste liquid sludge, characterized in that all ferrous ions in the treatment liquid are oxidized to ferric ions. 請求項4記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記鉄中和処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 5. The recycling method for multicomponent plating waste liquid sludge according to claim 4, wherein the oxidizing agent added to the iron neutralization processing liquid is hydrogen peroxide. Processing method. 請求項3〜5のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The multicomponent plating waste liquid sludge recycling treatment method according to any one of claims 3 to 5, wherein the oxidizing agent added to the fourth treatment liquid is hydrogen peroxide. Recycling method of plating waste liquid sludge. 請求項1〜6のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に、酸化剤と共に第一鉄を加えることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The multicomponent plating waste liquid sludge recycling treatment method according to any one of claims 1 to 6, wherein ferrous iron is added together with an oxidizing agent to the chromium hydroxide dispersion treatment liquid. Recycling method of component plating waste liquid sludge. 請求項1〜7のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method for multi-component plating waste liquid sludge according to any one of claims 1 to 7, wherein an oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide. Recycling method of component plating waste liquid sludge. 請求項1〜8のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent plating waste liquid sludge according to any one of claims 1 to 8, wherein the first iron neutralization treatment is 60 ° C or higher, preferably 75 ° C or higher, and 100 ° C. Less preferably, it is performed at 85 degrees C or less, The recycling processing method of the multicomponent type plating waste liquid sludge characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中に存在する有機物を分解すると共に該分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル、及び亜鉛を含有する第3処理液とする第3A工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 In the recycling processing method of the multi-component plating waste liquid sludge according to any one of claims 1 to 6, a pH adjuster is added to the second treatment liquid instead of the third step to adjust the pH. Then, a chromium neutralization treatment is performed by changing chromium ions in the second treatment liquid to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to form a chromium removal liquid. An oxidizing agent is added to the removal liquid to keep the oxidation-reduction potential at 400 mV or more and 500 mV or less to decompose organic substances present in the chromium removal liquid and to remove some of the ferrous ions present in the chromium removal liquid. Dispersion treatment liquid in which ferric hydroxide is dispersed by performing iron neutralization treatment of 1A, which is oxidized to ferric ions, and further adjusted to pH by adding a pH adjuster to change to ferric hydroxide And oxidize by adding an oxidizing agent to the dispersion treatment liquid. While maintaining the original potential at 600 mV or more, the organic substances present in the dispersion treatment liquid are decomposed and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions. A ferric hydroxide starch is formed by adding a pH adjuster to adjust the pH to ferric hydroxide to produce ferric hydroxide starch, and separating the ferric hydroxide starch. A method of recycling the sludge of multi-component plating waste liquid, comprising performing step 3A of making a third treatment solution containing nickel and zinc. 請求項10記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1Bの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method for multi-component plating waste liquid sludge according to claim 10, wherein the iron neutralization treatment of 1B is performed at 60 ° C or higher, preferably 75 ° C or higher, less than 100 ° C, preferably 85 ° C or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項1〜6のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル、及び亜鉛を含有する第3処理液とする第3B工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 In the recycling processing method of the multi-component plating waste liquid sludge according to any one of claims 1 to 6, a pH adjuster is added to the second treatment liquid instead of the third step to adjust the pH. Then, a chromium neutralization treatment is performed by changing chromium ions in the second treatment liquid to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to form a chromium removal liquid. An oxidizing agent is added to the removal liquid to maintain an oxidation-reduction potential at 600 mV or more to decompose organic substances present in the chromium removal liquid and oxidize ferrous ions in the chromium removal liquid to ferric ions. Next, a 1 C iron neutralization treatment is performed by adding a pH adjuster to adjust the pH to ferric hydroxide to produce a ferric hydroxide starch. Separately to be a third treatment liquid containing nickel and zinc Recycling processing method of the multi-component plating waste sludge and performing 3B step. 請求項12記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1Cの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 13. The recycling method for multicomponent plating waste liquid sludge according to claim 12, wherein the 1C iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. ニッケル、銅、亜鉛、鉄、及びクロムを含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、
前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える第1の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離してニッケル、及び亜鉛を含有する第3処理液とする第3工程と、
前記第3処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第3処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛及び鉄を含有する第4処理液とする第4工程と、
前記第4処理液中の第一鉄イオンを酸化して第二鉄イオンにする中間処理を行なって中間処理液を調製し、該中間処理液にpH調整剤を加えてpHを調整し、第二鉄イオンを水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第5処理液とする第5工程と、
前記第5処理液のpHを調整し、該第5処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第6処理液とする第6工程とを有し、
前記多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムを分別回収することを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。
Sludge dissolution treatment is performed by adding an inorganic acid to multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, and chromium to dissolve the multi-component plating waste liquid sludge to form a dissolved treatment product, and the dissolution treatment A first step of providing an insoluble content removal treatment for removing a insoluble content from the product to obtain a first treatment liquid in which nickel, copper, zinc, iron, and chromium are mixed;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step as a second treatment liquid containing zinc, iron, and chromium;
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjuster to the second treatment solution to adjust the pH, and performing chromium neutralization treatment to change chromium ions in the second treatment solution to chromium hydroxide. And oxidize the chromium hydroxide dispersion treatment solution to oxidize ferrous ions in the chromium hydroxide dispersion treatment solution to ferric ions, and then adjust the pH by adding a pH adjuster. Then, ferric hydroxide starch is produced by performing a first iron neutralization treatment for converting ferric ions to ferric hydroxide, and separating the ferric hydroxide starch together with the chromium hydroxide. And a third step of making a third treatment liquid containing nickel and zinc,
The iron powder is added to the third treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the third treatment liquid are replaced with iron, and the nickel-attached iron powder on which nickel is deposited is separated, and zinc is separated. And a fourth step as a fourth treatment liquid containing iron,
An intermediate treatment solution is prepared by oxidizing the ferrous ions in the fourth treatment solution to ferric ions, and a pH adjuster is added to the intermediate treatment solution to adjust the pH. A second iron neutralization treatment for converting ferric ions to ferric hydroxide is performed to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. A fifth step as a treatment liquid;
Zinc neutralization treatment is performed by adjusting the pH of the fifth treatment liquid and changing zinc ions in the fifth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And a sixth step of making a sixth treatment liquid from which zinc has been removed,
A method for recycling a multicomponent plating waste liquid sludge, wherein nickel, copper, zinc, iron, and chromium are separated and recovered from the multicomponent plating waste liquid sludge.
請求項14記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 15. The recycling method for multi-component plating waste liquid sludge according to claim 14, wherein the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項14及び15のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理は、前記第4処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して、該第4処理液中の第一鉄イオンを全て酸化して第二鉄イオンにすることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 16. The recycling method for multi-component plating waste liquid sludge according to claim 14, wherein the intermediate treatment is performed by adding an oxidizing agent to the fourth treatment liquid so that the oxidation-reduction potential is 600 mV or more. A method for recycling a multi-component plating waste liquid sludge, characterized in that the ferrous ions in the fourth treatment liquid are all oxidized to ferric ions. 請求項16記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling process for multicomponent plating waste liquid sludge according to claim 16, wherein the oxidizing agent added to the fourth processing liquid is hydrogen peroxide. Method. 請求項14及び15のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記中間処理は、前記第4処理液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して前記第4処理液中の第一鉄イオンの一部を酸化して第二鉄イオンにし、pH調整剤を加えてpH調整することで第二鉄イオンを水酸化第二鉄に変える鉄中和を行なって水酸化第二鉄が分散する鉄中和処理液として、該鉄中和処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該鉄中和処理液中の第一鉄イオンを全て酸化して第二鉄イオンすることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 16. The recycling method for multi-component plating waste liquid sludge according to claim 14, wherein the intermediate treatment is performed by adding an oxidizing agent to the fourth treatment liquid so that an oxidation-reduction potential is 400 mV or more. A part of the ferrous ions in the fourth treatment solution is oxidized to a ferric ion by holding at 500 mV or less, and the pH is adjusted by adding a pH adjusting agent to convert the ferric ions to the second hydroxide. As an iron neutralization treatment liquid in which ferric hydroxide is dispersed by performing iron neutralization to convert to iron, an oxidizing agent is added to the iron neutralization treatment solution to maintain a redox potential at 600 mV or more, thereby neutralizing the iron. A recycling method for multi-component plating waste liquid sludge, characterized in that all ferrous ions in a processing solution are oxidized to ferric ions. 請求項18記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4処理液及び前記鉄中和処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The multi-component plating waste liquid sludge recycling treatment method according to claim 18, wherein the oxidizing agent added to the fourth treatment liquid and the iron neutralization treatment liquid is hydrogen peroxide. A method for recycling waste sludge. 請求項14〜19のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 20. The recycling method for multi-component plating waste liquid sludge according to claim 14, wherein an oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide. Recycling method of component plating waste liquid sludge. 請求項14〜20のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method of the multi-component plating waste liquid sludge according to any one of claims 14 to 20, wherein the first iron neutralization treatment is 60 ° C or higher, preferably 75 ° C or higher, and 100 ° C. Less preferably, it is performed at 85 degrees C or less, The recycling processing method of the multicomponent type plating waste liquid sludge characterized by the above-mentioned. 請求項14〜19のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Aの鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Bの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3A工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 In the recycling method of the multi-component plating waste liquid sludge according to any one of claims 14 to 19, the pH is adjusted by adding a pH adjuster to the second treatment liquid instead of the third step. Then, a chromium neutralization treatment is performed by changing chromium ions in the second treatment liquid to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to form a chromium removal liquid. An oxidizing agent is added to the removal liquid, and the oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to oxidize part of the ferrous ions present in the chromium removal liquid to form ferric ions, and further a pH adjuster Is added to the ferric hydroxide to adjust the pH to perform ferrous hydroxide neutralization treatment to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed, and an oxidizing agent is added to the dispersion treatment liquid to oxidize it. The dispersion treatment is performed while maintaining the reduction potential at 600 mV or higher. 1B iron neutralization treatment in which the remaining ferrous ions in the mixture are oxidized to ferric ions, and then the pH is adjusted to ferric hydroxide by adding a pH adjuster to the dispersion treatment liquid. To produce ferric hydroxide starch, and to separate the ferric hydroxide starch into a third treatment solution containing nickel and zinc, and to perform step 3A. To recycle waste plating sludge. 請求項22記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1Bの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 23. The recycling method for multicomponent plating waste liquid sludge according to claim 22, wherein the 1B iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項14〜19のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3工程の代りに、前記第2処理液にpH調整剤を加えてpHを調整し、該第2処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第1Cの鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離してニッケル及び亜鉛を含有する第3処理液とする第3B工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 In the recycling method of the multi-component plating waste liquid sludge according to any one of claims 14 to 19, the pH is adjusted by adding a pH adjuster to the second treatment liquid instead of the third step. Then, a chromium neutralization treatment is performed by changing chromium ions in the second treatment liquid to chromium hydroxide to produce a chromium hydroxide starch, and the chromium hydroxide starch is separated to form a chromium removal liquid. An oxidizing agent is added to the removal solution to maintain the oxidation-reduction potential at 600 mV or more to oxidize ferrous ions in the chromium removal solution to ferric ions, and then a pH adjuster is added to adjust the pH. The ferrous hydroxide starch is produced by carrying out the 1C iron neutralization treatment for converting to ferric hydroxide, and the ferric hydroxide starch is separated and the third treatment containing nickel and zinc. A multi-component system characterized by performing step 3B as a liquid Recycling processing method can waste sludge. 請求項24記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1Cの鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 25. The recycling method for multi-component plating waste liquid sludge according to claim 24, wherein the 1C iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. ニッケル、銅、亜鉛、鉄、クロム、及び有機物を含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、クロム、及び有機物の一部が混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、クロム、及び有機物を含有する第2処理液とする第2工程と、
前記第2処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛、鉄、クロム、及び有機物を含有する第3処理液とする第3工程と、
前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中に存在する有機物を分解すると共に前記水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程と、
前記第4処理液のpHを調整し、該第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有し、
前記多成分系めっき廃液スラッジから有機物を分解しニッケル、銅、亜鉛、鉄、及びクロムを分別回収することを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。
Sludge dissolution treatment is performed by adding an inorganic acid to a multi-component plating waste liquid sludge containing nickel, copper, zinc, iron, chromium, and organic matter to dissolve the multi-component plating waste liquid sludge to form a dissolved processed product. A first step of providing an insoluble matter removal treatment for removing the insoluble matter from the dissolved treatment product to obtain a first treatment liquid in which a part of nickel, copper, zinc, iron, chromium, and organic matter is mixed;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step of forming a second treatment liquid containing zinc, iron, chromium, and organic matter;
The iron powder is added to the second treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the second treatment liquid are replaced with iron, and the nickel-adhered iron powder on which nickel is deposited is separated, and zinc is separated. , A third step as a third treatment liquid containing iron, chromium, and organic matter,
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjusting agent to the third treatment solution to adjust the pH, and performing a chromium neutralization treatment in which chromium ions in the third treatment solution are changed to chromium hydroxide. And an oxidizing agent is added to the chromium hydroxide dispersion treatment solution to decompose organic substances present in the chromium hydroxide dispersion treatment solution and oxidize ferrous ions in the chromium hydroxide dispersion treatment solution. Then, a ferric hydroxide starch is formed by carrying out an iron neutralization treatment by adjusting the pH by adding a pH adjusting agent to convert the ferric ion to ferric hydroxide. A fourth step of separating ferric oxide starch together with the chromium hydroxide to form a fourth treatment liquid containing zinc;
Zinc neutralization treatment is performed by adjusting the pH of the fourth treatment liquid and changing zinc ions in the fourth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And having a fifth step as a fifth treatment liquid from which zinc has been removed,
An organic material is decomposed from the multi-component plating waste liquid sludge to separate and recover nickel, copper, zinc, iron, and chromium, and a method for recycling multi-component plating waste sludge.
請求項26記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 27. The recycling method for multi-component plating waste liquid sludge according to claim 26, wherein the iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. Recycling method of multi-component plating waste liquid sludge. 請求項26及び27のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に、酸化剤と共に第一鉄を加えることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method for multi-component plating waste liquid sludge according to any one of claims 26 and 27, wherein ferrous iron is added together with an oxidizing agent to the chromium hydroxide dispersion treatment liquid. Recycling method of component plating waste liquid sludge. 請求項26〜28のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 29. The recycling method for multi-component plating waste liquid sludge according to any one of claims 26 to 28, wherein an oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide. Recycling method of component plating waste liquid sludge. 請求項26記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中に存在する有機物を分解すると共に該分散処理液の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 27. In the recycling method for multi-component plating waste liquid sludge according to claim 26, instead of the fourth step, a pH adjusting agent is added to the third treatment liquid to adjust the pH, and the third treatment liquid contains Chromium neutralization treatment is carried out by changing chromium ions into chromium hydroxide to produce a chromium hydroxide starch. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. An oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to decompose organic substances present in the chromium removing solution and to oxidize a part of ferrous ions present in the chromium removing solution to form ferric ions. Further, a first iron neutralization treatment is performed by adding a pH adjusting agent to adjust the pH to ferric hydroxide to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed, and the dispersion treatment liquid is oxidized. To the redox potential of 600 mV The organic substances present in the dispersion treatment liquid are decomposed while being held on the top, and the remaining ferrous ions in the dispersion treatment liquid are oxidized to ferric ions, and then a pH adjuster is added to the dispersion treatment liquid. In addition, a second iron neutralization treatment is performed to adjust the pH to ferric hydroxide to produce ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc A method of recycling a multi-component plating waste liquid sludge, comprising performing the step 4A as a fourth treatment liquid. 請求項30記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 31. The recycling method for multi-component plating waste liquid sludge according to claim 30, wherein the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項26記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中に存在する有機物を分解すると共に該クロム除去液の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 27. In the recycling method for multi-component plating waste liquid sludge according to claim 26, instead of the fourth step, a pH adjusting agent is added to the third treatment liquid to adjust the pH, and the third treatment liquid contains Chromium neutralization treatment is carried out by changing chromium ions into chromium hydroxide to produce a chromium hydroxide starch. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. An oxidation-reduction potential is maintained at 600 mV or more to decompose organic substances present in the chromium removal solution, ferrous ions in the chromium removal solution are oxidized to ferric ions, and then a pH adjuster is added. A third iron neutralization treatment is performed to adjust the pH to ferric hydroxide to produce a ferric hydroxide starch, and the ferric hydroxide starch is separated to contain zinc. 4B process which makes 4 process liquid is performed, It is characterized by the above-mentioned Recycling processing method for component plating waste sludge. 請求項32記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 33. The recycling method for multicomponent plating waste liquid sludge according to claim 32, wherein the third iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. ニッケル、銅、亜鉛、鉄、及びクロムを含む多成分系めっき廃液スラッジに無機酸を加えて該多成分系めっき廃液スラッジを溶解させて溶解処理物を形成するスラッジ溶解処理を行ない、該溶解処理物から不溶分を除去してニッケル、銅、亜鉛、鉄、及びクロムが混入した第1処理液を得る不溶分除去処理を設けた第1工程と、
前記第1処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第1処理液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して、ニッケル、亜鉛、鉄、及びクロムを含有する第2処理液とする第2工程と、
前記第2処理液に鉄粉を加えると共に酸化還元電位及びpHを調整し、該第2処理液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離して、亜鉛、鉄、及びクロムを含有する第3処理液とする第3工程と、
前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロムが分散した水酸化クロム分散処理液とし、該水酸化クロム分散処理液に酸化剤を加えて該水酸化クロム分散処理液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して第二鉄イオンを水酸化第二鉄に変える鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を前記水酸化クロムと共に分離して亜鉛を含有する第4処理液とする第4工程と、
前記第4処理液のpHを調整し、該第4処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なって水酸化亜鉛澱物を生成させ、該水酸化亜鉛澱物を分離して亜鉛を除去した第5処理液とする第5工程とを有し、
前記多成分系めっき廃液スラッジからニッケル、銅、亜鉛、鉄、及びクロムを分別回収することを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。
Sludge dissolution treatment is performed by adding an inorganic acid to a multicomponent plating waste liquid sludge containing nickel, copper, zinc, iron, and chromium to dissolve the multicomponent plating waste liquid sludge to form a dissolution treatment product, and the dissolution treatment A first step of providing an insoluble content removal treatment for removing the insoluble content from the product to obtain a first treatment liquid mixed with nickel, copper, zinc, iron, and chromium;
Add iron powder to the first treatment liquid and adjust the oxidation-reduction potential and pH, replace the copper ions and iron in the first treatment liquid and separate the copper-attached iron powder on which copper is deposited, A second step as a second treatment liquid containing zinc, iron, and chromium;
The iron powder is added to the second treatment liquid and the oxidation-reduction potential and pH are adjusted, the nickel ions in the second treatment liquid are replaced with iron, and the nickel-adhered iron powder on which nickel is deposited is separated, and zinc is separated. A third step as a third treatment liquid containing iron, chromium, and
A chromium hydroxide dispersion treatment in which chromium hydroxide is dispersed by adding a pH adjusting agent to the third treatment solution to adjust the pH, and performing a chromium neutralization treatment in which chromium ions in the third treatment solution are changed to chromium hydroxide. And oxidize the chromium hydroxide dispersion treatment solution to oxidize ferrous ions in the chromium hydroxide dispersion treatment solution to ferric ions, and then adjust the pH by adding a pH adjuster. Then, ferric hydroxide starch is produced by performing iron neutralization treatment to convert ferric ions to ferric hydroxide, and the ferric hydroxide starch is separated together with the chromium hydroxide to form zinc. A fourth step as a fourth treatment liquid containing
Zinc neutralization treatment is performed by adjusting the pH of the fourth treatment liquid and changing zinc ions in the fourth treatment liquid to zinc hydroxide to produce a zinc hydroxide starch, and the zinc hydroxide starch is separated. And having a fifth step as a fifth treatment liquid from which zinc has been removed,
A method for recycling a multicomponent plating waste liquid sludge, wherein nickel, copper, zinc, iron, and chromium are separated and recovered from the multicomponent plating waste liquid sludge.
請求項34記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 35. The recycling method for multi-component plating waste liquid sludge according to claim 34, wherein the iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. Recycling method of multi-component plating waste liquid sludge. 請求項34及び35のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記水酸化クロム分散処理液に加える酸化剤は過酸化水素であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 36. The recycling method for multicomponent plating waste liquid sludge according to any one of claims 34 and 35, wherein the oxidizing agent added to the chromium hydroxide dispersion treatment liquid is hydrogen peroxide. Recycling method of component plating waste liquid sludge. 請求項34記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を400mV以上で500mV以下に保持して該クロム除去液中に存在する第一鉄イオンの一部を酸化して第二鉄イオンにし、更にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第1の鉄中和処理を行なって、水酸化第二鉄が分散した分散処理液とし、該分散処理液に酸化剤を加えて酸化還元電位を600mV以上に保持して該分散処理液中の第一鉄イオンの残部を酸化して第二鉄イオンにし、次いで、該分散処理液にpH調整剤を加えてpHを調整して水酸化第二鉄に変える第2の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4A工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 35. The recycling method for multi-component plating waste liquid sludge according to claim 34, wherein instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid contains Chromium neutralization treatment is carried out by changing chromium ions into chromium hydroxide to produce a chromium hydroxide starch. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. The oxidation-reduction potential is maintained at 400 mV or more and 500 mV or less to oxidize a part of ferrous ions present in the chromium removal solution to ferric ions, and further adjust the pH by adding a pH adjuster. The first iron neutralization treatment to be converted to ferric hydroxide is performed to obtain a dispersion treatment liquid in which ferric hydroxide is dispersed, and an oxidizing agent is added to the dispersion treatment liquid to maintain the oxidation-reduction potential at 600 mV or more. The remainder of the ferrous ion in the dispersion treatment liquid Oxidized to ferric ions, and then a second iron neutralization treatment was performed by adding a pH adjuster to the dispersion treatment liquid to adjust the pH to ferric hydroxide, thereby converting to ferric hydroxide starch. And a step 4A of separating the ferric hydroxide starch into a fourth treatment solution containing zinc, and performing a recycling process for the multicomponent plating waste liquid sludge. 請求項37記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第2の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 38. The recycling method of multi-component plating waste liquid sludge according to claim 37, wherein the second iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項34記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第4工程の代りに、前記第3処理液にpH調整剤を加えてpHを調整し、該第3処理液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行なって水酸化クロム澱物を生成させ、該水酸化クロム澱物を分離してクロム除去液とし、該クロム除去液に酸化剤を加えて酸化還元電位を600mV以上に保持して該クロム除去液中の第一鉄イオンを酸化して第二鉄イオンにし、次いで、pH調整剤を加えてpHを調整して水酸化第二鉄に変える第3の鉄中和処理を行なって水酸化第二鉄澱物を生成させ、該水酸化第二鉄澱物を分離して亜鉛を含有する第4処理液とする第4B工程を行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 35. The recycling method for multi-component plating waste liquid sludge according to claim 34, wherein instead of the fourth step, a pH adjuster is added to the third treatment liquid to adjust the pH, and the third treatment liquid contains Chromium neutralization treatment is carried out by changing chromium ions into chromium hydroxide to produce a chromium hydroxide starch. The chromium hydroxide starch is separated into a chromium removal solution, and an oxidizing agent is added to the chromium removal solution. Maintaining the oxidation-reduction potential at 600 mV or more, ferrous ions in the chromium removal solution are oxidized to ferric ions, and then a pH adjuster is added to adjust the pH to change to ferric hydroxide. Performing a third iron neutralization treatment to produce ferric hydroxide starch, separating the ferric hydroxide starch, and performing step 4B as a fourth treatment liquid containing zinc. A recycling method for multi-component plating waste liquid sludge that is characterized. 請求項39記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第3の鉄中和処理は、60℃以上、好ましくは75℃以上で、100℃未満好ましくは85℃以下で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 40. The recycling method for multi-component plating waste liquid sludge according to claim 39, wherein the third iron neutralization treatment is performed at 60 ° C. or higher, preferably 75 ° C. or higher, less than 100 ° C., preferably 85 ° C. or lower. A recycling method for multi-component plating waste sludge characterized by the above. 請求項1〜40のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記pH調整剤は弱アルカリ剤であることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 41. The recycling method for multi-component plating waste liquid sludge according to claim 1, wherein the pH adjuster is a weak alkali agent. Recycling method. 請求項1〜41のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1工程で、前記無機酸に塩酸を使用し、前記スラッジ溶解処理は、pHを0.5以上で2以下、温度を80℃以上で100℃未満の条件で行なうことを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method for multi-component plating waste liquid sludge according to any one of claims 1 to 41, wherein in the first step, hydrochloric acid is used as the inorganic acid, and the sludge dissolution treatment is performed by adjusting the pH. A recycling method for multi-component plating waste liquid sludge, which is performed under conditions of 0.5 to 2 and a temperature of 80 ° C. to less than 100 ° C. 請求項42記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記スラッジ溶解処理と前記不溶分除去処理の間に、前記溶解処理物に硫酸を加え、更にカルシウム源を加えてpHを1以上で2以下、温度を80℃以上で100℃未満にして、石膏を生成させることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent plating waste liquid sludge according to claim 42, wherein between the sludge dissolution treatment and the insoluble matter removal treatment, sulfuric acid is added to the dissolution treatment product, and a calcium source is further added to adjust the pH. A recycling method for multi-component plating waste liquid sludge, wherein gypsum is produced by setting the temperature to 1 to 2 and the temperature to 80 ° C. to less than 100 ° C. 請求項1〜41のいずれか1項に記載の多成分系めっき廃液スラッジの再資源化処理方法において、前記第1工程で、前記無機酸に硫酸を使用し、前記前記スラッジ溶解処理は、pHを0.5以上で2以下、温度を80℃以上で100℃未満の条件で行ない、該スラッジ溶解処理と前記不溶分除去処理の間に、前記溶解処理物にカルシウム源を加えてpHを1以上で2以下、温度を80℃以上で100℃未満にして該溶解処理物中の硫酸根を石膏として除去する硫酸根除去処理を設けることを特徴とする多成分系めっき廃液スラッジの再資源化処理方法。 In the recycling method of the multicomponent plating waste liquid sludge according to any one of claims 1 to 41, sulfuric acid is used as the inorganic acid in the first step, and the sludge dissolution treatment is performed at a pH of 0.5 to 2 and the temperature is 80 ° C. to less than 100 ° C., and between the sludge dissolution treatment and the insoluble matter removal treatment, a calcium source is added to the dissolution treatment product to adjust the pH to 1. Recycling of multi-component plating waste liquid sludge characterized by providing a sulfate radical removal treatment in which the temperature is 80 ° C. or higher and lower than 100 ° C. and the sulfate radical in the dissolved treatment product is removed as gypsum. Processing method.
JP2006061498A 2006-03-07 2006-03-07 Recycling method of multi-component plating waste sludge Active JP5063013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061498A JP5063013B2 (en) 2006-03-07 2006-03-07 Recycling method of multi-component plating waste sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061498A JP5063013B2 (en) 2006-03-07 2006-03-07 Recycling method of multi-component plating waste sludge

Publications (2)

Publication Number Publication Date
JP2007237054A true JP2007237054A (en) 2007-09-20
JP5063013B2 JP5063013B2 (en) 2012-10-31

Family

ID=38583123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061498A Active JP5063013B2 (en) 2006-03-07 2006-03-07 Recycling method of multi-component plating waste sludge

Country Status (1)

Country Link
JP (1) JP5063013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343229A (en) * 2013-06-28 2013-10-09 江西理工大学 Method for comprehensively recovering valuable metals from electroplating waste mud
JP2015226860A (en) * 2014-05-30 2015-12-17 勇 原澤 Method for treating mine waste water or penetration water
CN106219804A (en) * 2016-08-12 2016-12-14 星特殊化学品(新加坡)有限公司 The recovery and treatment method of chemical copper precipitation waste liquid
CN107986526A (en) * 2017-11-30 2018-05-04 北京天维宝辰科贸有限公司 The recovery and treatment method of copper ion in a kind of HEDP copper plating wastewaters
CN114772869A (en) * 2022-05-23 2022-07-22 安徽绿洲危险废物综合利用有限公司 Copper-containing waste liquid metal recovery treatment process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673550A (en) * 1992-08-27 1994-03-15 Nippon Chem Ind Co Ltd Treatment of deteriorated electroless-plating solution
JPH06279875A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Method for recovering valuable metal from ni-containing acidic waste liquid
JPH10230283A (en) * 1997-02-18 1998-09-02 Able Kk Copper ion absorbing device and absorbing method
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2003213342A (en) * 2002-01-17 2003-07-30 Nippon Steel Corp Method for recovering metal from neutralized sludge or neutralized slurry
JP2004284848A (en) * 2003-03-20 2004-10-14 Nippon Steel Corp Method of recovering nickel sulfate from nickel-containing waste water sludge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673550A (en) * 1992-08-27 1994-03-15 Nippon Chem Ind Co Ltd Treatment of deteriorated electroless-plating solution
JPH06279875A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Method for recovering valuable metal from ni-containing acidic waste liquid
JPH10230283A (en) * 1997-02-18 1998-09-02 Able Kk Copper ion absorbing device and absorbing method
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2003213342A (en) * 2002-01-17 2003-07-30 Nippon Steel Corp Method for recovering metal from neutralized sludge or neutralized slurry
JP2004284848A (en) * 2003-03-20 2004-10-14 Nippon Steel Corp Method of recovering nickel sulfate from nickel-containing waste water sludge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343229A (en) * 2013-06-28 2013-10-09 江西理工大学 Method for comprehensively recovering valuable metals from electroplating waste mud
JP2015226860A (en) * 2014-05-30 2015-12-17 勇 原澤 Method for treating mine waste water or penetration water
CN106219804A (en) * 2016-08-12 2016-12-14 星特殊化学品(新加坡)有限公司 The recovery and treatment method of chemical copper precipitation waste liquid
CN106219804B (en) * 2016-08-12 2019-04-05 星特殊化学品(新加坡)有限公司 The recovery and treatment method of chemical copper precipitation waste liquid
CN107986526A (en) * 2017-11-30 2018-05-04 北京天维宝辰科贸有限公司 The recovery and treatment method of copper ion in a kind of HEDP copper plating wastewaters
CN114772869A (en) * 2022-05-23 2022-07-22 安徽绿洲危险废物综合利用有限公司 Copper-containing waste liquid metal recovery treatment process
CN114772869B (en) * 2022-05-23 2024-03-29 安徽绿洲危险废物综合利用有限公司 Copper-containing waste liquid metal recovery treatment process

Also Published As

Publication number Publication date
JP5063013B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4606951B2 (en) Multi-component nickel plating waste sludge recycling method
CN107324303B (en) Method for separating refined iron and chromium from multi-metal hazardous waste
JP2011206757A (en) Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
JP2008081784A (en) Electrolyzed sediment copper treatment method
JP5063013B2 (en) Recycling method of multi-component plating waste sludge
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
JP2009050769A (en) Treatment method of arsenic-containing solution
CN110775998A (en) System and method for producing nano zinc oxide by industrially recycling zinc
JP2007297243A (en) Arsenic-containing material treatment method
JP7016463B2 (en) How to collect tellurium
CN102191378B (en) Electrolyte preparation process for electrolyzing manganese
JP6260332B2 (en) Method and apparatus for treating waste-based combustion ash used in cement production
JP2011129336A (en) Recovery method of manganese from battery
JP5790525B2 (en) Impurity removal method
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP2009215611A (en) Method for purifying nickel chloride aqueous solution
JP2005246226A (en) Treating method for fly ash
WO2019131827A1 (en) Wastewater treatment method
CN110844932A (en) Method for producing nano zinc oxide by recovering zinc in zinc-containing solid waste of steel plant
JP4405281B2 (en) Recycling method of electroless nickel plating waste liquid
JP5124824B2 (en) Method for treating a compound containing gallium
JP2008246398A (en) Method for recovering gypsum from molten fly ash
CN108996752B (en) Method for recovering low-concentration nickel from nickel extraction waste water
JP3794260B2 (en) Waste disposal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250