JP4606951B2 - Multi-component nickel plating waste sludge recycling method - Google Patents

Multi-component nickel plating waste sludge recycling method Download PDF

Info

Publication number
JP4606951B2
JP4606951B2 JP2005176661A JP2005176661A JP4606951B2 JP 4606951 B2 JP4606951 B2 JP 4606951B2 JP 2005176661 A JP2005176661 A JP 2005176661A JP 2005176661 A JP2005176661 A JP 2005176661A JP 4606951 B2 JP4606951 B2 JP 4606951B2
Authority
JP
Japan
Prior art keywords
nickel
solution
zinc
treatment
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005176661A
Other languages
Japanese (ja)
Other versions
JP2006347815A (en
Inventor
信夫 日下部
正毅 永島
寛 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP2005176661A priority Critical patent/JP4606951B2/en
Publication of JP2006347815A publication Critical patent/JP2006347815A/en
Application granted granted Critical
Publication of JP4606951B2 publication Critical patent/JP4606951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ニッケルめっきで発生するめっき廃液スラッジと他の金属めっきで発生するめっき廃液スラッジが混合した多成分含有ニッケルめっき廃液スラッジから硫酸ニッケル等の有価物を回収して資源化する処理方法に関する。 The present invention relates to a processing method for recovering valuable resources such as nickel sulfate from a multi-component nickel plating waste liquid sludge mixed with a plating waste liquid sludge generated by nickel plating and a plating waste liquid sludge generated by other metal plating. .

ニッケルめっき廃液スラッジ中のニッケル分を回収する方法として、ニッケルめっき廃液スラッジに硫酸を加えて固形分を溶解させて溶解液を調製し、この溶解液から冷却晶析法により硫酸ニッケル結晶を晶析させて回収する方法、及びニッケル分の回収率を更に大きくするために、溶解液から硫酸ニッケル結晶を晶析させて回収すると共に、硫酸ニッケル結晶を濾過した濾液に鉄粉を加えて濾液中に残留するニッケルイオンを鉄粉表面に析出させて回収する冷却晶析処理とセメンテーション処理を組み合わせた方法が提案されている(例えば、特許文献1参照)。 To recover the nickel content in the nickel plating waste sludge, sulfuric acid is added to the nickel plating waste sludge to dissolve the solid, and a solution is prepared. From this solution, nickel sulfate crystals are crystallized by cooling crystallization. In order to further increase the recovery rate of nickel and the recovery rate of nickel, the nickel sulfate crystals are crystallized and recovered from the solution, and iron powder is added to the filtrate obtained by filtering the nickel sulfate crystals. There has been proposed a method in which a cooling crystallization process in which residual nickel ions are deposited and recovered on the iron powder surface and a cementation process are combined (for example, see Patent Document 1).

あるいは、ニッケルめっき廃液スラッジに硫酸を添加して固形分を溶解した溶解液に炭酸カルシウムを加えると共に溶解液中の2価鉄イオンを3価鉄イオンに変えてからpH調整して鉄分を除去したニッケル原液を形成し、このニッケル原液に水酸化カルシウムを添加しpH調整して生成及び回収したニッケル含有石膏に酸を加えて水酸化ニッケルとして溶解させてニッケル分を抽出し、これに硫酸を加えて生成させた硫酸ニッケル溶液に冷却晶析処理を行なって硫酸ニッケル結晶を晶析させて回収する方法が提案されている(例えば、特許文献2参照)。 Alternatively, calcium carbonate is added to a solution obtained by adding sulfuric acid to nickel plating waste sludge to dissolve the solid content, and divalent iron ions in the solution are changed to trivalent iron ions, and then the pH is adjusted to remove iron. Form a nickel stock solution, add calcium hydroxide to this nickel stock solution, adjust the pH, add acid to the nickel-containing gypsum produced and recovered, dissolve it as nickel hydroxide, extract the nickel content, add sulfuric acid to this A method of cooling and crystallizing the nickel sulfate solution produced in this way to crystallize and recover nickel sulfate crystals has been proposed (see, for example, Patent Document 2).

特開2004−284848号公報JP 2004-284848 A 特開2005−15272号公報JP 2005-15272 A

一般に、めっき処理工場では、単一種の金属めっき処理を行なった際に発生するめっき廃液スラッジの量は少なく、しかも、2種類以上の金属めっき処理工程を有している場合が多いため、各金属めっき処理工程で発生するめっき廃液スラッジは混合処理され、めっき処理工場からは多成分の金属成分を含有した状態のめっき廃液スラッジが搬出され最終処分場で埋立処分されているのが現状である。一方、めっき廃液スラッジから有価金属を効率的に回収(再資源化)しようとする場合、発生しためっき廃液スラッジを、例えば、貯留タンク内に貯留しておき、めっき廃液スラッジが一定量に達した時点で一括処理して有価金属を回収することが経済性の観点から望ましい。 Generally, in a plating processing factory, the amount of plating waste liquid sludge generated when a single type of metal plating processing is performed is small, and more than two types of metal plating processing steps are often performed. The plating waste liquid sludge generated in the plating process is mixed, and the plating waste liquid sludge containing a multi-component metal component is taken out from the plating processing factory and disposed at the final disposal site. On the other hand, when trying to efficiently recover (recycle) valuable metals from plating waste sludge, the generated plating waste sludge is stored in, for example, a storage tank, and the plating waste sludge has reached a certain amount. From the viewpoint of economy, it is desirable to collect valuable metals by batch processing at the time.

従って、処理対象となるめっき廃液スラッジは、ニッケルめっきで発生するめっき廃液スラッジに限定されず、例えば、銅めっき、クロムめっき、及び亜鉛めっきを行なった際に発生した各めっき廃液スラッジが混入し多成分含有ニッケルめっき廃液スラッジの状態になっている。ここで、特許文献1及び2に記載した発明を、例えば、銅、クロム、亜鉛、鉄、及びニッケルを含有した多成分含有ニッケルめっき廃液スラッジに適用する場合、回収される鉄及びニッケルにそれぞれ銅、クロム、及び亜鉛が混入することになる。このため、各有価金属の分別回収を精度よく行なうことができないという問題がある。そして、回収されるニッケル及び鉄の純度が低下し資源としての利用価値も低下するという問題も生じる。 Accordingly, the plating waste liquid sludge to be treated is not limited to the plating waste liquid sludge generated by nickel plating. For example, the plating waste liquid sludge generated when performing copper plating, chromium plating, and galvanization is mixed. It is in the state of component-containing nickel plating waste liquid sludge. Here, when the invention described in Patent Documents 1 and 2 is applied to, for example, a multicomponent-containing nickel plating waste liquid sludge containing copper, chromium, zinc, iron, and nickel, the recovered iron and nickel are respectively copper. , Chromium, and zinc will be mixed. For this reason, there exists a problem that the separate collection | recovery of each valuable metal cannot be performed accurately. And the problem that the purity of the nickel and iron collect | recovered falls and the utility value as a resource also arises arises.

本発明はかかる事情に鑑みてなされたもので、ニッケルめっき工程で発生するめっき廃液スラッジに他の金属めっき工程で発生するめっき廃液スラッジが混合した多成分含有ニッケルめっき廃液スラッジから他の金属成分の分別回収を行ないながら硫酸ニッケルを回収することが可能な多成分含有ニッケルめっき廃液スラッジの再資源化処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the plating waste liquid sludge generated in the nickel plating process is mixed with the plating waste liquid sludge generated in the other metal plating process. It is an object of the present invention to provide a method for recycling a multicomponent-containing nickel plating waste liquid sludge capable of collecting nickel sulfate while performing separate collection.

前記目的に沿う第1の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法は、銅、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に鉄粉を加えて酸化還元電位を調整し、該溶解液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液に酸化剤を加え該銅イオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有する。
ここで、銅、鉄、及びニッケルには、銅、鉄、及びニッケルの金属に加えてこれらの化合物も含まれる。
A recycling method for multi-component nickel plating waste liquid sludge according to the first invention in accordance with the above object is to add a mineral acid to a multi-component nickel plating waste liquid sludge containing copper, iron, and nickel to form a dissolved processed product. And an inorganic acid extraction step to remove the insoluble matter from the solution and obtain a solution.
Add copper powder to the solution to adjust the oxidation-reduction potential, replace the copper ion in the solution with iron, separate the copper-attached iron powder with copper deposited on the surface, and use it as a copper ion removal solution A removal step;
An oxidizing agent is added to the copper ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the copper ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
The nickel sulfate solution is subjected to a cooling crystallization treatment to recover the crystallized nickel sulfate crystals.
Here, copper, iron, and nickel include these compounds in addition to copper, iron, and nickel metals.

第1の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記第二鉄中和処理及び前記ニッケル中和処理のいずれか一方又は双方で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合することができる。ここで、前回とは、バッチ処理を行なう場合に限定されず連続処理を行なう場合も含み、連続処理の場合では、時間的に先行したことを指す。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first invention, the alkaline agent used in one or both of the ferric iron neutralization treatment and the nickel neutralization treatment is It is diluted with a part of the residual liquid after recovering the nickel hydroxide starch in the nickel fraction recovery step, and the remaining part of the residual liquid can be mixed with the multicomponent-containing nickel plating waste liquid sludge. Here, the last time is not limited to the case where batch processing is performed, but also includes the case where continuous processing is performed.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

前記目的に沿う第2の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法は、クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に還元剤を加え該溶解液中の3価鉄イオンを2価鉄イオンにする還元処理を行なってからアルカリ剤を加えてpHを調整し、該溶解液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液とするクロムイオン除去工程と、
前記クロムイオン除去液に酸化剤を加え該クロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有する。
ここで、クロムには、クロムの金属に加えてこれらの化合物も含まれる。
The recycling method for multi-component nickel plating waste liquid sludge according to the second invention in accordance with the above object is to form a solution by adding an inorganic acid to the multi-component nickel plating waste liquid sludge containing chromium, iron and nickel. And an inorganic acid extraction step to remove the insoluble matter from the solution and obtain a solution.
A reducing agent is added to the solution to reduce the trivalent iron ions in the solution to divalent iron ions, an alkaline agent is added to adjust the pH, and the chromium ions in the solution are hydroxylated. Chromium ion removal process that performs chromium neutralization treatment to change to chromium, separates the generated chromium hydroxide starch and makes a chromium ion removal solution,
An oxidizing agent is added to the chromium ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the chromium ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
The nickel sulfate solution is subjected to a cooling crystallization treatment to recover the crystallized nickel sulfate crystals.
Here, chromium includes these compounds in addition to the metal of chromium.

前記目的に沿う第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法は、銅、クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に鉄粉を加えて酸化還元電位を調整し、該溶解液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液にアルカリ剤を加えてpHを調整し、該銅イオン除去液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液とするクロムイオン除去工程と、
前記クロムイオン除去液に酸化剤を加え該クロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有する。
A recycling method for multi-component nickel plating waste liquid sludge according to the third aspect of the present invention, in which an inorganic acid is added to the multi-component nickel plating waste liquid sludge containing copper, chromium, iron, and nickel, is dissolved and processed. And an inorganic acid extraction step of removing an insoluble component from the dissolved processed product to obtain a solution.
Add copper powder to the solution to adjust the oxidation-reduction potential, replace the copper ion in the solution with iron, separate the copper-attached iron powder with copper deposited on the surface, and use it as a copper ion removal solution A removal step;
An alkaline agent is added to the copper ion removing solution to adjust the pH, and a chromium neutralization treatment is performed to change chromium ions in the copper ion removing solution into chromium hydroxide. A chromium ion removal step as an ion removal solution;
An oxidizing agent is added to the chromium ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the chromium ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
The nickel sulfate solution is subjected to a cooling crystallization treatment to recover the crystallized nickel sulfate crystals.

第2及び第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記クロム中和処理、前記第二鉄中和処理、及び前記ニッケル中和処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の残りの一部を用いて希釈され、該残液の残りは前記多成分含有ニッケルめっき廃液スラッジに混合することができる。ここで、前回とは、バッチ処理を行なう場合に限定されず連続処理を行なう場合も含み、連続処理の場合では、時間的に先行したことを指す。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the second and third inventions, any one or two of the chromium neutralization treatment, the ferric iron neutralization treatment, and the nickel neutralization treatment The alkaline agent used above is diluted by using the remaining part of the remaining liquid after recovering the nickel hydroxide starch in the previous nickel fraction recovery process, and the remaining liquid is the multi-component nickel Can be mixed with plating waste liquid sludge. Here, the last time is not limited to the case where batch processing is performed, but also includes the case where continuous processing is performed.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

第1〜第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部又は全部を前記処理液に混合することができる。
硫酸根除去液中には晶析で回収できなかったニッケルイオンが含まれているので、硫酸根除去液を処理液に加えることで含有されるニッケルイオン量を大きくすることができ、ニッケル中和処理時の水酸化ニッケル澱物の生成量を大きくすることができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to third inventions, a calcium source is added to the remaining nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step. In addition, the produced gypsum is separated to remove sulfate radicals in the residual nickel sulfate solution to form a sulfate radical removal solution, and a part or all of the sulfate radical removal solution can be mixed with the treatment solution. .
Since the sulfate radical removal liquid contains nickel ions that could not be recovered by crystallization, the amount of nickel ions contained can be increased by adding the sulfate radical removal liquid to the treatment liquid. The amount of nickel hydroxide starch produced during the treatment can be increased.

第1〜第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、残硫酸ニッケル溶液中に残留している各金属成分の再回収を行なうことができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to third inventions, the residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step is used as the multicomponent It can be mixed with the nickel plating waste liquid sludge.
Thereby, each metal component remaining in the residual nickel sulfate solution can be recovered again.

第1の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記多成分含有ニッケルめっき廃液スラッジが更に亜鉛を有する場合は、前記ニッケル分別回収工程で、該ニッケル分別回収工程で使用する前記処理液にアルカリ剤を加えてpHを調整し、該処理液中の亜鉛イオンから水酸化亜鉛澱物を生成させて分離する亜鉛分別回収処理を施してから前記ニッケル中和処理を行なうことが好ましい。
これによって、水酸化ニッケル澱物を生成させる際に、水酸化亜鉛澱物が共沈するのを防止することができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first invention, when the multicomponent-containing nickel plating waste liquid sludge further contains zinc, in the nickel fractional recovery step, the nickel fractional recovery step An alkaline agent is added to the treatment liquid to be used to adjust the pH, and a zinc fraction recovery process is performed in which zinc hydroxide starch is generated and separated from zinc ions in the treatment liquid, and then the nickel neutralization treatment is performed. It is preferable.
Thereby, it is possible to prevent the zinc hydroxide starch from being co-precipitated when the nickel hydroxide starch is produced.

また、前記第二鉄中和処理、前記ニッケル中和処理、及び前記亜鉛分別回収処理で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
In addition, the alkaline agent used in the ferric iron neutralization treatment, the nickel neutralization treatment, and the zinc fraction collection treatment is a residual liquid after the nickel hydroxide starch is collected in the previous nickel fraction collection step. The remaining portion of the residual liquid can be mixed with the multi-component nickel plating waste liquid sludge.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

第2及び第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記多成分含有ニッケルめっき廃液スラッジが更に亜鉛を有する場合は、前記ニッケル分別回収工程で、該ニッケル分別回収工程で使用する前記処理液にアルカリ剤を加えてpHを調整し、該処理液中の亜鉛イオンから水酸化亜鉛澱物を生成させて分離する亜鉛分別回収処理を施してから前記ニッケル中和処理を行なうことが好ましい。
これによって、水酸化ニッケル澱物を生成させる際に、水酸化亜鉛澱物が共沈するのを防止することができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the second and third inventions, when the multicomponent-containing nickel plating waste liquid sludge further contains zinc, the nickel fractionation recovery step, The nickel neutralization is performed after a zinc fraction recovery process is performed in which an alkaline agent is added to the treatment liquid used in the recovery step to adjust the pH, and a zinc hydroxide starch is generated and separated from zinc ions in the treatment liquid. It is preferable to perform processing.
Thereby, it is possible to prevent the zinc hydroxide starch from being co-precipitated when the nickel hydroxide starch is produced.

また、前記クロム中和処理、前記第二鉄中和処理、前記ニッケル中和処理、及び前記亜鉛分別回収処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
Moreover, the alkaline agent used in any one or two or more of the chromium neutralization treatment, the ferric iron neutralization treatment, the nickel neutralization treatment, and the zinc fraction collection treatment is the previous nickel fraction collection step. A portion of the residual liquid after recovering the nickel hydroxide starch is diluted, and the remaining part of the residual liquid can be mixed with the multi-component nickel plating waste liquid sludge.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

第1〜第3の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部又は全部を前記処理液から亜鉛イオンを除去した後のニッケルイオン含有液に混合することができる。
硫酸根除去液中には晶析で回収できなかった硫酸ニッケルが含まれているので、硫酸根除去液にはニッケルイオンが含まれ、この液をニッケルイオン含有液に加えることで含有されるニッケルイオン量を大きくすることができ、ニッケル中和処理時の水酸化ニッケル澱物の生成量を大きくすることができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to third inventions, a calcium source is added to the remaining nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step. In addition, the generated gypsum was separated to remove sulfate radicals in the residual nickel sulfate solution to form a sulfate radical removal solution, and zinc ions were removed from the treatment solution by part or all of the sulfate radical removal solution. It can be mixed in the later nickel ion-containing liquid.
Since the sulfate radical removal liquid contains nickel sulfate that could not be recovered by crystallization, the sulfate radical removal liquid contains nickel ions, and the nickel contained by adding this liquid to the nickel ion-containing liquid The amount of ions can be increased, and the amount of nickel hydroxide starch produced during the nickel neutralization treatment can be increased.

また、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、残硫酸ニッケル溶液中に残留している各金属成分の再回収を行なうことができる。
Moreover, the residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step can be mixed with the multicomponent-containing nickel plating waste sludge.
Thereby, each metal component remaining in the residual nickel sulfate solution can be recovered again.

また、分離された前記水酸化亜鉛澱物に対して、該水酸化亜鉛澱物を無機酸に溶解させて亜鉛含有液を調製する無機酸抽出処理と、
前記亜鉛含有液に鉄粉を加えて酸化還元電位を調整して該亜鉛含有液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離したニッケルイオン除去亜鉛含有液を形成するニッケルイオン分離処理と、
前記ニッケルイオン除去亜鉛含有液に酸化剤を加え該ニッケルイオン除去亜鉛含有液中の2価鉄イオンを3価鉄イオンに酸化してからpHを調整して該3価鉄イオンから生成した水酸化第二鉄澱物を分離して鉄イオン除去亜鉛含有液を形成する鉄イオン分離処理と、
前記鉄イオン除去亜鉛含有液にアルカリ剤を加えてpHを調整し、該鉄イオン除去亜鉛含有液中の亜鉛イオンを水酸化亜鉛に変えて、水酸化亜鉛含有率の高い澱物を回収する水酸化亜鉛再回収処理とを施すことが好ましい。
Further, for the separated zinc hydroxide starch, an inorganic acid extraction treatment in which the zinc hydroxide starch is dissolved in an inorganic acid to prepare a zinc-containing liquid;
A nickel ion-removed zinc-containing liquid in which iron powder is added to the zinc-containing liquid to adjust the oxidation-reduction potential to replace nickel ions and iron in the zinc-containing liquid and nickel is deposited on the surface. Nickel ion separation treatment to be formed;
An oxidizing agent is added to the nickel ion-removed zinc-containing liquid to oxidize divalent iron ions in the nickel-ion-removed zinc-containing liquid to trivalent iron ions, and then the pH is adjusted to generate hydroxyl from the trivalent iron ions. An iron ion separation process for separating ferric starch to form an iron ion-removed zinc-containing liquid;
Water for recovering starch having a high zinc hydroxide content by adjusting the pH by adding an alkaline agent to the iron ion-removed zinc-containing solution and changing zinc ions in the iron ion-removed zinc-containing solution to zinc hydroxide Zinc oxide re-recovery treatment is preferably performed.

前記目的に沿う第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法は、銅、亜鉛、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を回収する無機酸抽出工程と、
前記溶解液にアルカリ剤を加えてpHを調整し、該溶解液中の銅イオンを水酸化銅に変える銅中和処理を行ない、生成した水酸化銅澱物を分離した銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液にアルカリ剤を加えてpHを調整し、該銅イオン除去液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行ない、生成した水酸化亜鉛澱物を分離した亜鉛イオン除去液を形成する亜鉛イオン除去工程と、
前記亜鉛イオン除去液にアルカリ剤を加えてpHを調整し、該亜鉛イオン除去液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有する。
第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記銅中和処理、前記亜鉛中和処理、及び前記ニッケル中和処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
The recycling method for multi-component nickel-plated waste liquid sludge according to the fourth aspect of the present invention that meets the above-mentioned object is to add a mineral acid to the multi-component-containing nickel-plated waste sludge containing copper, zinc, and nickel to form a dissolved treatment product And an inorganic acid extraction step for removing the insoluble matter from the solution and recovering the solution.
An alkaline agent is added to the solution to adjust the pH, and a copper neutralization treatment is performed in which the copper ions in the solution are changed to copper hydroxide, and the resulting copper hydroxide starch is separated into a copper ion removing solution. A copper ion removal step;
Zinc ions obtained by adjusting the pH by adding an alkaline agent to the copper ion removing liquid, and performing zinc neutralization treatment to change the zinc ions in the copper ion removing liquid to zinc hydroxide, and separating the generated zinc hydroxide starch A zinc ion removal step for forming a removal solution;
Nickel separation and recovery step of adjusting the pH by adding an alkaline agent to the zinc ion removing liquid, performing nickel neutralization treatment to change nickel ions in the zinc ion removing liquid into nickel hydroxide, and generating nickel hydroxide starch When,
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
The nickel sulfate solution is subjected to a cooling crystallization treatment to recover the crystallized nickel sulfate crystals.
In the recycling processing method of the multicomponent content nickel plating waste liquid sludge which concerns on 4th invention, it is used by any 1 or 2 or more of the said copper neutralization process, the said zinc neutralization process, and the said nickel neutralization process. The alkaline agent is diluted by using a part of the remaining liquid after the nickel hydroxide starch is recovered in the previous nickel separation and recovery step, and the remaining part of the residual liquid is added to the multicomponent-containing nickel plating waste sludge. Can be mixed.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、分離した前記水酸化亜鉛澱物に対して、該水酸化亜鉛澱物を無機酸に溶解させて亜鉛含有液を調製する無機酸抽出処理と、
前記亜鉛含有液に鉄粉を加えて酸化還元電位を調整して該亜鉛含有液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離したニッケルイオン除去亜鉛含有液を形成するニッケルイオン分離処理と、
前記ニッケルイオン除去亜鉛含有液に酸化剤を加え該ニッケルイオン除去亜鉛含有液中の2価鉄イオンを3価鉄イオンに酸化してからpHを調整して該3価鉄イオンから生成した水酸化第二鉄澱物を分離して鉄イオン除去亜鉛含有液を形成する鉄イオン分離処理と、
前記鉄イオン除去亜鉛含有液にアルカリ剤を加えてpHを調整し、該鉄イオン除去亜鉛含有液中の亜鉛イオンを水酸化亜鉛に変えて、水酸化亜鉛含有率の高い澱物を回収する水酸化亜鉛再回収処理とを施すことが好ましい。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the fourth invention, the zinc hydroxide starch is dissolved in an inorganic acid with respect to the separated zinc hydroxide starch. An inorganic acid extraction treatment to be prepared;
A nickel ion-removed zinc-containing liquid in which iron powder is added to the zinc-containing liquid to adjust the oxidation-reduction potential to replace nickel ions and iron in the zinc-containing liquid and nickel is deposited on the surface. Nickel ion separation treatment to be formed;
An oxidizing agent is added to the nickel ion-removed zinc-containing liquid to oxidize divalent iron ions in the nickel-ion-removed zinc-containing liquid to trivalent iron ions, and then the pH is adjusted to generate hydroxyl from the trivalent iron ions. An iron ion separation process for separating ferric starch to form an iron ion-removed zinc-containing liquid;
Water for recovering starch having a high zinc hydroxide content by adjusting the pH by adding an alkaline agent to the iron ion-removed zinc-containing solution and changing zinc ions in the iron ion-removed zinc-containing solution to zinc hydroxide Zinc oxide re-recovery treatment is preferably performed.

第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記水酸化亜鉛再回収処理で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈されるのが好ましい。
これによって、再資源化処理の各工程から系外に排出される排水量を抑制することができる。更に、アルカリ剤を希釈して加えることにより、アルカリ剤を加えたときに高pH領域が局所的に形成されるのが防止できる。
In the recycling method for multi-component nickel plating waste liquid sludge according to the fourth invention, the alkali agent used in the zinc hydroxide re-recovery process recovers nickel hydroxide starch in the previous nickel fraction recovery process. It is preferable to dilute with a part of the remaining liquid after the treatment.
As a result, the amount of waste water discharged from each process of the recycling process can be suppressed. Furthermore, by diluting the alkali agent, it is possible to prevent a high pH region from being locally formed when the alkali agent is added.

第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部を前記溶解液、前記銅イオン除去液、及び前記亜鉛イオン除去液のいずれか1又は2以上に混合することができる。
硫酸根除去液中には晶析で回収できなかった硫酸ニッケルが含まれているので、硫酸根除去液にはニッケルイオンが含まれ、この液を溶解液、銅イオン除去液、及び亜鉛イオン除去液のいずれか1又は2以上に混合することで含有されるニッケルイオン量を大きくすることができ、ニッケル中和処理時の水酸化ニッケル澱物の生成量を大きくすることができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the fourth aspect of the invention, it is generated by adding a calcium source to the residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step The gypsum is separated to remove sulfate radicals in the residual nickel sulfate solution to form a sulfate radical removal solution. A part of the sulfate radical removal solution is used as the solution, the copper ion removal solution, and the zinc ions. Any one or two or more of the removal liquids can be mixed.
Since the sulfate radical removal solution contains nickel sulfate that could not be recovered by crystallization, the sulfate radical removal solution contains nickel ions. This solution is used as a solution, copper ion removal solution, and zinc ion removal solution. By mixing any one or more of the liquids, the amount of nickel ions contained can be increased, and the amount of nickel hydroxide starch produced during the nickel neutralization treatment can be increased.

第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することができる。
これによって、残硫酸ニッケル溶液中に残留している各金属成分の再回収を行なうことができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the fourth invention, the remaining nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step is used as the multicomponent-containing nickel plating. Can be mixed with waste sludge.
Thereby, each metal component remaining in the residual nickel sulfate solution can be recovered again.

第1〜第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸抽出工程で、前記溶解処理物にカルシウム源を加え該溶解処理物中の硫酸根と反応させて石膏を生成させ、該石膏を前記不溶解分と共に除去することが好ましい。
これによって、不溶解分中に石膏を存在させることができ、不溶解分層の濾過抵抗を低下させて不溶解分層中で溶解液の移動を容易に行なわせることができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to fourth inventions, in the inorganic acid extraction step, a calcium source is added to the dissolved processed product to react with the sulfate radical in the dissolved processed product. It is preferable to form gypsum and remove the gypsum together with the insoluble matter.
As a result, gypsum can be present in the insoluble component, and the filtration resistance of the insoluble component layer can be reduced, and the solution can be easily moved in the insoluble component layer.

第1〜第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸抽出工程で、前記溶解処理物から前記不溶解分を除去してからカルシウム源を加えて硫酸根と反応させて石膏を生成させ、該石膏を除去して前記溶解液とすることもできる。
硫酸根の含有量を低下させることにより、使用できるアルカリ剤の範囲を拡大することができ、例えば、カルシウムを含むアルカリ剤を使用しても、水酸化物中に混入する石膏量を低減させることができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to fourth inventions, in the inorganic acid extraction step, a calcium source is added after removing the insoluble matter from the dissolved processed product. It can also be made to react with a sulfate radical to produce gypsum, and the gypsum can be removed to obtain the solution.
By reducing the content of sulfate radicals, the range of usable alkali agents can be expanded. For example, even if an alkali agent containing calcium is used, the amount of gypsum mixed in the hydroxide is reduced. Can do.

第1〜第4の発明に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸は塩酸とすることができる。
塩酸を使用することで、溶解液中で各金属分を塩化物の状態で存在させることができ、各金属分を水酸化物の状態で容易に回収することができる。
In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the first to fourth inventions, the inorganic acid can be hydrochloric acid.
By using hydrochloric acid, each metal component can be present in a chloride state in the solution, and each metal component can be easily recovered in the hydroxide state.

請求項1〜23記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、多成分含有ニッケルめっき廃液スラッジからニッケルを除く各金属を順次分別回収することができると共に、ニッケル分は硫酸ニッケルとして回収することが可能になる。その結果、回収された各金属分を資源として有効利用することが可能になると共に、回収された硫酸ニッケルをそのままニッケルめっきにおいて再利用することが可能になる。 In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claims 1 to 23, each metal excluding nickel can be sequentially separated and recovered from the multicomponent-containing nickel plating waste liquid sludge, and the nickel content is sulfuric acid. It can be recovered as nickel. As a result, each recovered metal component can be effectively used as a resource, and the recovered nickel sulfate can be reused as it is in nickel plating.

特に、請求項2、5、9、11、16及び18記載の成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、再資源化処理の各工程から系外に排出される排水量を抑制することができ、排水処理コストを低減すると共に、環境に与える負荷も低減することが可能になる。更に、アルカリ剤を希釈して加えて高pH領域が局所的に形成されるのが防止されるので、複数の金属の水酸化物が同時に生成するのを防止することが可能になる。その結果、金属成分の分別回収精度を向上することができる。 In particular, in the recycling method of component-containing nickel plating waste liquid sludge according to claims 2, 5, 9, 11, 16, and 18, the amount of wastewater discharged from the system from each step of the recycling process is suppressed. It is possible to reduce the wastewater treatment cost and the load on the environment. Furthermore, since the alkaline agent is diluted and added to prevent a high pH region from being locally formed, it is possible to prevent the formation of a plurality of metal hydroxides simultaneously. As a result, the separation and collection accuracy of the metal component can be improved.

請求項6、7、12、13、19及び20記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、処理液中のニッケルイオン含有量を大きくして水酸化ニッケル澱物の生成量を大きくすることができ、硫酸ニッケルの生成量を大きくすることが可能になる。その結果、晶析する硫酸ニッケル結晶の量を増大することが可能になる。 In the recycling method of the multi-component-containing nickel plating waste liquid sludge according to claim 6, 7, 12, 13, 19 and 20, the nickel ion content in the processing liquid is increased to produce nickel hydroxide starch. The amount can be increased, and the amount of nickel sulfate produced can be increased. As a result, it is possible to increase the amount of nickel sulfate crystals that crystallize.

請求項8、10記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、水酸化ニッケル澱物を生成させる際に、水酸化亜鉛澱物が共沈するのを防止することができるので、水酸化ニッケルの含有率の高い水酸化ニッケル澱物を得ることが可能になる。 In the recycling method of the multi-component-containing nickel plating waste liquid sludge according to claims 8 and 10, it is possible to prevent coprecipitation of zinc hydroxide starch when producing nickel hydroxide starch. Therefore, a nickel hydroxide starch having a high nickel hydroxide content can be obtained.

請求項14及び17記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、水酸化亜鉛澱物に含まれるニッケル成分を分離して回収するので、回収される水酸化亜鉛の純度を高めることができ、回収された水酸化亜鉛含有率の高い澱物の利用を図ることが可能になると共に、総合ニッケル回収率を大きくすることが可能になる。 In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claim 14 and 17, since the nickel component contained in the zinc hydroxide starch is separated and recovered, the purity of the recovered zinc hydroxide is adjusted. It is possible to increase the total nickel recovery rate while making it possible to use the recovered starch having a high zinc hydroxide content.

請求項21記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、不溶解分中に石膏を存在させることができ、不溶解分層の濾過抵抗を低下させて不溶解分層中で溶解液の移動を容易に行なわせることができ、溶解液を容易に得ることが可能になる。 In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claim 21, gypsum can be present in the insoluble matter, and the filtration resistance of the insoluble matter layer is lowered to reduce the insoluble content in the insoluble matter layer. Thus, the solution can be easily moved, and the solution can be easily obtained.

請求項22記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、硫酸根の含有量が低下するため消石灰等のカルシウムを含む安価なアルカリ剤を使用することができ、安価に処理を行なうことが可能になる。 In the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claim 22, an inexpensive alkaline agent containing calcium such as slaked lime can be used because the content of sulfate radical is reduced, and the treatment is inexpensive. Can be performed.

請求項23記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法においては、溶解液中で各金属分を塩化物の状態で存在させて各金属分を水酸化物の状態で容易に回収することができ、各金属成分の回収精度及び回収率を共に大きくすることが可能になる。 In the recycling method of the multi-component nickel plating waste liquid sludge according to claim 23, each metal component is present in a chloride state in the solution, and each metal component is easily recovered in a hydroxide state. It is possible to increase both the collection accuracy and the collection rate of each metal component.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の第1の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図、図2は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸根除去処理の説明図、図3は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における銅イオン除去工程の説明図、図4は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法におけるクロムイオン除去工程の説明図、図5は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における鉄イオン除去工程の説明図、図6は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における亜鉛分別回収処理の説明図、図7は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における水酸化亜鉛の精製を行なう際の説明図、図8は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法におけるニッケル分別回収工程の説明図、図9は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸抽出工程及び硫酸ニッケル回収工程の説明図、図10は本発明の第2の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図、図11は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸根除去処理の説明図、図12は本発明の第3の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図、図13は同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における銅イオン除去工程の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a process explanatory diagram of a recycling method for multi-component nickel plating waste liquid sludge according to the first embodiment of the present invention, and FIG. 2 is a recycling of the multi-component nickel plating waste liquid sludge. FIG. 3 is an explanatory view of the copper ion removal process in the recycling method of the multi-component nickel-plating waste liquid sludge, and FIG. 4 is a re-treatment of the multi-component nickel-plating waste liquid sludge. FIG. 5 is an explanatory view of the iron ion removal process in the recycling process method of the multicomponent-containing nickel plating waste liquid sludge, and FIG. 6 is the multicomponent-containing nickel plating waste liquid sludge. Fig. 7 is an explanatory diagram of the zinc separation and recovery process in the recycling process method of Fig. 7, and Fig. 7 shows the water in the recycling process method of the nickel component waste liquid sludge containing the same multi-component FIG. 8 is an explanatory view of refining zinc multi-component nickel plating waste liquid sludge, FIG. 8 is an explanatory view of a nickel separation and recovery process in the recycling process of the multi-component nickel plating waste liquid sludge, and FIG. FIG. 10 is an explanatory diagram of the sulfuric acid extraction step and nickel sulfate recovery step in the resource recycling method, and FIG. 10 is a process explanatory diagram of the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to the second embodiment of the present invention. 11 is an explanatory view of the sulfate radical removing process in the recycling method of the multicomponent-containing nickel plating waste liquid sludge, and FIG. 12 is the recycling of the multicomponent-containing nickel plating waste liquid sludge according to the third embodiment of the present invention. Process explanatory drawing of a processing method, FIG. 13 is explanatory drawing of the copper ion removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge.

図1に示すように、本発明の第1の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法(以下、単に廃液スラッジの再資源化処理方法という)は、例えば、銅、クロム、亜鉛、鉄、及びニッケルがいずれも水酸化物の状態で存在する多成分含有ニッケルめっき廃液スラッジに無機酸の一例である塩酸を加えて溶解処理物を形成し、溶解処理物から不溶解分を除去して溶解液とする無機酸抽出工程と、溶解液に鉄粉を加えて酸化還元電位を調整し、溶解液中の銅イオンと鉄を置換して表面に銅が析出した銅付着鉄粉を分離し銅イオン除去液とする銅イオン除去工程とを有している。 As shown in FIG. 1, a recycling method for multi-component nickel plating waste liquid sludge according to the first embodiment of the present invention (hereinafter simply referred to as a waste liquid sludge recycling method) is, for example, copper Then, hydrochloric acid, which is an example of inorganic acid, is added to the multicomponent nickel-plated waste sludge in which all of chromium, zinc, iron, and nickel are present in the form of hydroxide to form a dissolved processed product. Inorganic acid extraction step to remove dissolved components to make a dissolved solution, and to adjust the oxidation-reduction potential by adding iron powder to the dissolved solution, to replace the copper ions and iron in the dissolved solution, copper deposited on the surface A copper ion removing step of separating the adhering iron powder to obtain a copper ion removing solution.

また、廃液スラッジの再資源化処理方法は、銅イオン除去液にアルカリ剤を加えてpHを調整し、銅イオン除去液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液とするクロムイオン除去工程と、クロムイオン除去液に酸化剤の一例である過酸化水素水を加えてクロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化してからアルカリ剤を加えてpHを調整し、3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程とを有している。 In addition, the waste sludge recycling treatment method was performed by adding an alkaline agent to the copper ion removal solution to adjust the pH, and performing a chromium neutralization treatment to change the chromium ions in the copper ion removal solution to chromium hydroxide. Chromium ion removal step that separates chromium hydroxide starch into a chromium ion removal solution, and hydrogen peroxide water, which is an example of an oxidizing agent, is added to the chromium ion removal solution to remove divalent iron ions in the chromium ion removal solution. After oxidizing to trivalent iron ions, an alkaline agent is added to adjust the pH, and ferric hydroxide neutralization treatment is performed to change the trivalent iron ions to ferric hydroxide, And an iron ion removing step as a separated treatment liquid.

更に、廃液スラッジの再資源化処理方法は、処理液にアルカリ剤を加えてpHを調整し、処理液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行ない、生成した水酸化亜鉛澱物を分離する亜鉛分別回収処理を行なってから、更に、アルカリ剤を加えてpHを調整し、ニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない水酸化ニッケル澱物を生成させるニッケル分別回収工程と、回収した水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収し残硫酸ニッケル溶液を形成する硫酸ニッケル回収工程と、残硫酸ニッケル溶液を多成分含有ニッケルめっき廃液スラッジに混合する残硫酸ニッケル溶液循環工程とを有している。以下、これらについて詳細に説明する。 Further, the waste sludge recycling treatment method includes adding an alkali agent to the treatment liquid to adjust the pH, performing a zinc neutralization treatment to change zinc ions in the treatment liquid to zinc hydroxide, and producing the generated zinc hydroxide starch. After the zinc fraction recovery process to separate the product, the pH is adjusted by adding an alkali agent, and the nickel neutralization process is performed to change the nickel ions to nickel hydroxide to produce nickel hydroxide starch. A sulfuric acid extraction step in which sulfuric acid is added to the recovered nickel hydroxide starch to form a nickel sulfate solution, a cooling crystallization treatment is performed on the nickel sulfate solution, and the crystallized nickel sulfate crystals are recovered and the remaining nickel sulfate solution A nickel sulfate recovery step for forming a residual nickel sulfate solution and a residual nickel sulfate solution circulation step for mixing the residual nickel sulfate solution with a multicomponent-containing nickel plating waste sludge There. Hereinafter, these will be described in detail.

図1に示すように、無機酸抽出工程では、先ず、多成分含有ニッケルめっき廃液スラッジを受け入れ加水し撹拌混合して、例えば、固形分濃度が10重量%程度のスラリーを調製する(リパルプ)。次いで、このスラリーに塩酸を加えてpHを2以下、例えば、0.8程度に調整して、5〜20分間撹拌する。このとき、スラリーの温度を30〜80℃、例えば、40℃に調整する。以上の操作により、スラリー中の固形分(各金属の水酸化物)は、下記の反応によりイオンとなって溶解する(以上、塩酸溶解処理)。
Cr(OH)3 +3H+ +3Cl- → Cr3++3Cl- +3H2
Cu(OH)2 +2H+ +2Cl- → Cu2++2Cl- +2H2
Fe(OH)2 +2H+ +2Cl- → Fe2++2Cl- +2H2
Fe(OH)3 +3H+ +3Cl- → Fe3++3Cl- +3H2
Ni(OH)2 +2H+ +2Cl- → Ni2++2Cl- +2H2
Zn(OH)2 +2H+ +2Cl- → Zn2++2Cl- +2H2
As shown in FIG. 1, in the inorganic acid extraction step, first, a multicomponent-containing nickel plating waste liquid sludge is received and mixed with stirring to prepare a slurry having a solid content concentration of about 10% by weight (repulping). Subsequently, hydrochloric acid is added to this slurry, pH is adjusted to 2 or less, for example, about 0.8, and it agitates for 5 to 20 minutes. At this time, the temperature of the slurry is adjusted to 30 to 80 ° C., for example, 40 ° C. By the above operation, the solid content (hydroxide of each metal) in the slurry is dissolved as ions by the following reaction (hereinafter referred to as hydrochloric acid dissolution treatment).
Cr (OH) 3 + 3H + + 3Cl → Cr 3+ + 3Cl + 3H 2 O
Cu (OH) 2 + 2H + + 2Cl → Cu 2 + + 2Cl + 2H 2 O
Fe (OH) 2 + 2H + + 2Cl → Fe 2+ + 2Cl + 2H 2 O
Fe (OH) 3 + 3H + + 3Cl → Fe 3+ + 3Cl + 3H 2 O
Ni (OH) 2 + 2H + + 2Cl → Ni 2+ + 2Cl + 2H 2 O
Zn (OH) 2 + 2H + + 2Cl → Zn 2+ + 2Cl + 2H 2 O

続いて、溶解処理物に消石灰を加え、pHを3以下、例えば、0.9程度に調整しながら、溶解処理物に含まれる硫酸根と反応させて石膏(硫酸カルシウム)を生成させる(石膏生成処理)。そして、石膏を含有している溶解処理物を、例えば、フィルタープレスで処理して不溶解分を固層(以下、ケーキという)として分離して、クロム、銅、鉄、ニッケル、及び亜鉛の各イオンが含まれる溶解処理液を回収する(固液分離処理)。なお、ケーキとして分離した不溶解分は廃棄物として処分する。このとき、生成した石膏はケーキ側に移行するので、ケーキの透水性が大きくなって、溶解処理液の回収率が大きくなる。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率が更に大きくなる。 Subsequently, slaked lime is added to the dissolved processed product, and gypsum (calcium sulfate) is generated by reacting with the sulfate radical contained in the dissolved processed product while adjusting the pH to 3 or less, for example, about 0.9. processing). Then, the processed product containing gypsum is treated with, for example, a filter press to separate the insoluble matter as a solid layer (hereinafter referred to as cake), and each of chromium, copper, iron, nickel, and zinc The dissolution treatment liquid containing ions is collected (solid-liquid separation treatment). The insoluble matter separated as cake is disposed as waste. At this time, since the produced gypsum moves to the cake side, the water permeability of the cake increases, and the recovery rate of the dissolution treatment liquid increases. Here, the separated cake is washed with washing water so that each metal ion remaining on the cake side is washed away. This further increases the recovery rate of each metal ion.

次いで、図2に示すように、回収した溶解処理液にカルシウム源の一例である炭酸カルシウムを加え、温度を30〜80℃、例えば、60℃に保ってpHを1以上で3以下、例えば2程度に調整して、溶解処理液中に残留する硫酸根と反応させて石膏を生成させて、溶解処理液中の硫酸根を除去する。そして、石膏を含む溶解処理液を、例えば、フィルタープレスで固液分離して石膏を取り除いて溶解液とする(硫酸根除去処理)。なお、分離した石膏を洗浄水を用いて洗浄し、石膏側に残留している各金属イオンを洗い流すようにする。これによって、各金属イオンの回収率を大きくすることができる。また、炭酸カルシウムの代りに、塩化カルシウムを使用することもできる。そして、分離した石膏は、石膏ボード等の石膏製品の原料として利用できる。
ここで、石膏生成処理で生成させる石膏量は、ケーキの透水性を改善するのに必要な量に制限することが好ましい。これによって、石膏生成量を抑えてケーキの発生量(不溶解分と石膏の総和)を少なくして廃棄物処理の負担を軽減することができると共に、硫酸根除去処理工程で発生する石膏量を多くして、有効利用可能な石膏の増産を図ることができる。
Next, as shown in FIG. 2, calcium carbonate, which is an example of a calcium source, is added to the recovered dissolution treatment liquid, and the temperature is kept at 30 to 80 ° C., for example, 60 ° C., and the pH is 1 or more and 3 or less, for example, 2 The sulfate radical in the dissolution treatment liquid is removed by reacting with the sulfate radical remaining in the dissolution treatment liquid to produce gypsum. And the dissolution processing liquid containing gypsum is solid-liquid separated with a filter press, for example, and gypsum is removed, and it is set as a solution (sulfuric acid radical removal process). The separated gypsum is washed with washing water so that each metal ion remaining on the gypsum side is washed away. Thereby, the recovery rate of each metal ion can be increased. In addition, calcium chloride can be used in place of calcium carbonate. The separated gypsum can be used as a raw material for gypsum products such as gypsum board.
Here, the amount of gypsum generated in the gypsum generation treatment is preferably limited to an amount necessary to improve the water permeability of the cake. This reduces the amount of gypsum produced and reduces the amount of cake generated (total of insoluble matter and gypsum), thereby reducing the burden of waste treatment and reducing the amount of gypsum generated in the sulfate removal process. Increasing the production of gypsum that can be effectively used can be achieved.

図3に示すように、回収した溶解液に鉄粉を加えると共に、pHが3以下になるように塩酸を加え、更に溶解液の温度を30〜80℃、例えば40℃に保って溶解液の酸化還元電位(ORP)を−400〜−100mV、例えば−250mV程度に調整して所定時間(例えば、15〜30分間)撹拌する(セメンテーション処理)。これによって、溶解液中の銅イオンと鉄の間で下記に示す化学反応が進行し、鉄粉表面に銅が析出した銅付着鉄粉が形成され、溶解液中の銅イオンが除去される。ここで、鉄粉としては、例えば、アトマイズ鉄粉、転炉ダスト精製鉄粉を使用することができる。
2Fe3++Fe → 3Fe2+
Cu2++Fe → Cu↓+Fe2+ (セメンテーション処理)
Fe+2H+ +2Cl- → Fe2++2Cl- +H2
そして、所定時間経過後、銅付着鉄粉が懸濁している液を、例えば、フィルタープレスで固液分離処理して銅付着鉄粉をケーキとして分離し、クロム、鉄、ニッケル、及び亜鉛の各イオンが含まれる銅イオン除去液を回収する(以上、銅イオン除去工程)。分離したケーキは洗浄水で洗浄し、ケーキ側に付着しているクロム、鉄、ニッケル、及び亜鉛の各イオンを洗い流すようにする。ここで、分離した銅付着鉄粉は、例えば、銅精錬原料として利用できる。
As shown in FIG. 3, iron powder is added to the recovered solution, hydrochloric acid is added so that the pH is 3 or less, and the temperature of the solution is kept at 30 to 80 ° C., for example, 40 ° C. The oxidation-reduction potential (ORP) is adjusted to −400 to −100 mV, for example, about −250 mV, and stirred for a predetermined time (for example, 15 to 30 minutes) (cementation treatment). Thereby, the chemical reaction shown below progresses between the copper ions and iron in the solution, copper-attached iron powder in which copper is deposited on the surface of the iron powder is formed, and the copper ions in the solution are removed. Here, as iron powder, atomized iron powder and converter dust refined iron powder can be used, for example.
2Fe 3+ + Fe → 3Fe 2+
Cu 2+ + Fe → Cu ↓ + Fe 2+ (cementation treatment)
Fe + 2H + + 2Cl → Fe 2+ + 2Cl + H 2
Then, after a predetermined time has elapsed, the liquid in which the copper-adhered iron powder is suspended is subjected to, for example, a solid-liquid separation treatment with a filter press to separate the copper-adhered iron powder as a cake, and each of chromium, iron, nickel, and zinc A copper ion removing solution containing ions is collected (the copper ion removing step). The separated cake is washed with washing water so that chromium, iron, nickel and zinc ions adhering to the cake side are washed away. Here, the separated copper-attached iron powder can be used, for example, as a copper refining raw material.

図4に示すように、回収した銅イオン除去液の温度を30〜80℃、例えば60℃に保ち、アルカリ剤の一例である水で希釈した苛性ソーダを加えてpHを3以上で5以下、例えば、4.2程度に調整して所定時間(例えば、15〜30分間)撹拌する(クロム中和処理)。これによって、銅イオン除去液中のクロムイオンと苛性ソーダの間で下記に示す化学反応が進行し、クロムイオンが水酸化クロムに変化する。
Cr3++3Cl- +3Na+ +3OH- → Cr(OH)3 ↓+3Na+ +3Cl-
そして、所定時間経過後、水酸化クロム澱物を含んだ銅イオン除去液を、例えば、フィルタープレスで固液分離処理して水酸化クロム澱物をケーキとして分離し、鉄、ニッケル、及び亜鉛の各イオンが含まれるクロムイオン除去液を回収する(以上、クロムイオン除去工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着している鉄、ニッケル、及び亜鉛の各イオンを洗い流すようにする。これによって、鉄、ニッケル、及び亜鉛の各イオンの回収率を大きくすることができる。なお、分離した水酸化クロム澱物は、例えば、クロム精錬原料として利用できる。
As shown in FIG. 4, the temperature of the recovered copper ion removing solution is kept at 30 to 80 ° C., for example 60 ° C., and caustic soda diluted with water, which is an example of an alkali agent, is added to adjust the pH to 3 or more and 5 or less. Adjust to about 4.2 and stir for a predetermined time (for example, 15 to 30 minutes) (chromium neutralization treatment). Thereby, the chemical reaction shown below progresses between the chromium ions in the copper ion removing solution and caustic soda, and the chromium ions are changed to chromium hydroxide.
Cr 3+ + 3Cl + 3Na + + 3OH → Cr (OH) 3 ↓ + 3Na + + 3Cl
Then, after a predetermined time has elapsed, the copper ion removing liquid containing the chromium hydroxide starch is subjected to solid-liquid separation treatment with, for example, a filter press to separate the chromium hydroxide starch as a cake, and iron, nickel, and zinc The chromium ion removing solution containing each ion is collected (the chromium ion removing step). Here, the separated cake is washed with washing water so that iron, nickel and zinc ions adhering to the cake side are washed away. Thereby, the recovery rate of each ion of iron, nickel, and zinc can be increased. The separated chromium hydroxide starch can be used, for example, as a chromium refining raw material.

図5に示すように、回収したクロムイオン除去液の温度を30〜80℃、例えば60℃に保ち、酸化剤の一例である過酸化水素を加えてクロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化する(酸化処理)。次いで、アルカリ剤の一例である水で希釈した苛性ソーダを加えてpHを2.5以上で5以下、例えば、3.5程度に調整して所定時間(例えば、15〜30分間)撹拌する(第二鉄中和処理)。これによって、クロムイオン除去液中の3価鉄イオンと苛性ソーダの間で下記に示す化学反応が進行し、3価鉄イオンが水酸化第二鉄に変化する。
2Fe2++2Cl- +H22 → 2FeOCl+2Cl- +2H+
FeOCl+Cl- +H+ +2Na+ +2OH-
→ Fe(OH)3 ↓+2Na+ +2Cl-
Fe3++3Cl- +3Na+ +3OH- → Fe(OH)3 ↓+3Na+ +3Cl-
そして、所定時間経過後、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化第二鉄澱物をケーキとして分離し、ニッケル及び亜鉛の各イオンが含まれる処理液を回収する(以上、鉄イオン除去工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着しているニッケル及び亜鉛の各イオンを洗い流すようにする。これによって、ニッケル及び亜鉛の各イオンの回収率を大きくすることができる。なお、回収した水酸化第二鉄澱物は、例えば、塩化鉄原料として利用できる。
As shown in FIG. 5, the temperature of the recovered chromium ion removing liquid is kept at 30 to 80 ° C., for example, 60 ° C., and hydrogen peroxide, which is an example of an oxidizing agent, is added to remove divalent iron ions in the chromium ion removing liquid. Oxidizes to trivalent iron ions (oxidation treatment). Next, caustic soda diluted with water, which is an example of an alkaline agent, is added to adjust the pH to 2.5 or more and 5 or less, for example, about 3.5, and stirred for a predetermined time (for example, 15 to 30 minutes) (No. 1). Ferric iron neutralization treatment). Thereby, the chemical reaction shown below progresses between the trivalent iron ions and the caustic soda in the chromium ion removing solution, and the trivalent iron ions are changed to ferric hydroxide.
2Fe 2+ + 2Cl + H 2 O 2 → 2FeOCl + 2Cl + 2H +
FeOCl + Cl + H + + 2Na + + 2OH
→ Fe (OH) 3 ↓ + 2Na + + 2Cl
Fe 3+ + 3Cl + 3Na + + 3OH → Fe (OH) 3 ↓ + 3Na + + 3Cl
Then, after a predetermined time has elapsed, the liquid containing ferric hydroxide starch is subjected to solid-liquid separation treatment with, for example, a filter press to separate the ferric hydroxide starch as a cake, and each ion of nickel and zinc Is recovered (the iron ion removing step). Here, the separated cake is washed with washing water so that nickel and zinc ions adhering to the cake side are washed away. Thereby, the recovery rate of each ion of nickel and zinc can be increased. The recovered ferric hydroxide starch can be used, for example, as an iron chloride raw material.

図6に示すように、回収した処理液の温度を30〜80℃、例えば60℃に保ち、アルカリ剤の一例である水で希釈した苛性ソーダを加えてpHを4.0以上で7.0以下、例えば、5.7程度に調整して所定時間(例えば、50〜80分間)撹拌する(亜鉛中和)。これによって、処理液中の亜鉛イオンと苛性ソーダの間で下記に示す化学反応が進行し、亜鉛イオンが水酸化亜鉛に変化する。
Zn2++2Cl- +2Na+ +2OH- → Zn(OH)2 ↓+2Na+ +2Cl-
そして、所定時間経過後、水酸化亜鉛澱物を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化亜鉛澱物をケーキとして分離し、ニッケルイオンが含まれるニッケルイオン含有液を回収する(亜鉛分別回収処理)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着しているニッケルイオンを洗い流すようにする。これによって、ニッケルイオンの回収率を大きくすることができる。なお、回収した水酸化亜鉛澱物は、例えば、亜鉛原料として利用できる。
As shown in FIG. 6, the temperature of the recovered treatment liquid is kept at 30 to 80 ° C., for example, 60 ° C., and caustic soda diluted with water, which is an example of an alkaline agent, is added to adjust the pH to 4.0 or more and 7.0 or less. For example, it adjusts to about 5.7 and stirs for a predetermined time (for example, 50 to 80 minutes) (zinc neutralization). As a result, the chemical reaction shown below proceeds between the zinc ions in the treatment liquid and caustic soda, and the zinc ions change to zinc hydroxide.
Zn 2+ + 2Cl + 2Na + + 2OH → Zn (OH) 2 ↓ + 2Na + + 2Cl
Then, after a predetermined time has passed, the liquid containing zinc hydroxide starch is separated into solid cake by, for example, a filter press to separate the zinc hydroxide starch as a cake, and a nickel ion-containing liquid containing nickel ions is obtained. Collect (Zinc fraction collection process). Here, the separated cake is washed with washing water so that nickel ions adhering to the cake side are washed away. Thereby, the recovery rate of nickel ions can be increased. The recovered zinc hydroxide starch can be used, for example, as a zinc raw material.

また、回収した水酸化亜鉛澱物に対して水酸化亜鉛の純度を高める水酸化亜鉛の精製を行なう。水酸化亜鉛の精製工程では、図7に示すように、先ず回収した水酸化亜鉛澱物に加水してスラリーを形成し、このスラリーの温度を30〜80℃、例えば、60℃保持して無機酸の一例である塩酸を加えpHを1以下に調整する。これによって、スラリー中では、下記の反応により水酸化亜鉛澱物と水酸化亜鉛澱物と共に共沈した水酸化ニッケル澱物が溶解し亜鉛含有液が形成される(無機酸抽出処理)。
Ni(OH)2 +2H+ +2Cl- → Ni2++2Cl- +2H2
Zn(OH)2 +2H+ +2Cl- → Zn2++2Cl- +2H2
Further, zinc hydroxide is purified to increase the purity of zinc hydroxide with respect to the recovered zinc hydroxide starch. In the purification process of zinc hydroxide, as shown in FIG. 7, first, the recovered zinc hydroxide starch is added to form a slurry, and the temperature of the slurry is maintained at 30 to 80 ° C., for example, 60 ° C. Hydrochloric acid, which is an example of an acid, is added to adjust the pH to 1 or less. Thus, in the slurry, the zinc hydroxide starch and the nickel hydroxide starch co-precipitated with the zinc hydroxide starch are dissolved by the following reaction to form a zinc-containing liquid (inorganic acid extraction treatment).
Ni (OH) 2 + 2H + + 2Cl → Ni 2+ + 2Cl + 2H 2 O
Zn (OH) 2 + 2H + + 2Cl → Zn 2+ + 2Cl + 2H 2 O

次いで、亜鉛含有液に鉄粉を添加すると共に、塩酸を加えてpHが3以下になるようにして、更に、亜鉛含有液の温度を30〜80℃、例えば60℃に保って、亜鉛含有液の酸化還元電位を−400〜−600mVの範囲に調整して撹拌する。これによって、亜鉛含有液中のニッケルイオンと鉄の間で下記に示す化学反応が進行し、鉄粉表面にニッケルが析出したニッケル付着鉄粉が形成され、亜鉛含有液からニッケルイオンが分離される。
Ni2++Fe → Ni↓+Fe2+
Fe+2H+ +2Cl- → Fe2++2Cl- +H2
そして、ニッケル付着鉄粉が懸濁している液を、例えば、フィルタープレスで固液分離処理してニッケル付着鉄粉をケーキとして分離しニッケルイオン除去亜鉛含有液とする(ニッケルイオン分離処理)。なお、分離したニッケル鉄粉は合金原料として利用できる。
Next, iron powder is added to the zinc-containing liquid and hydrochloric acid is added so that the pH is 3 or less. Further, the temperature of the zinc-containing liquid is kept at 30 to 80 ° C., for example, 60 ° C. The redox potential of is adjusted to a range of -400 to -600 mV and stirred. As a result, the chemical reaction shown below proceeds between nickel ions and iron in the zinc-containing liquid to form nickel-attached iron powder in which nickel is deposited on the iron powder surface, and the nickel ions are separated from the zinc-containing liquid. .
Ni 2+ + Fe → Ni ↓ + Fe 2+
Fe + 2H + + 2Cl → Fe 2+ + 2Cl + H 2
Then, the liquid in which the nickel-adhered iron powder is suspended is subjected to, for example, a solid-liquid separation process using a filter press to separate the nickel-adhered iron powder as a cake to obtain a nickel ion-removed zinc-containing liquid (nickel ion separation process). The separated nickel iron powder can be used as an alloy raw material.

続いて、回収したニッケルイオン除去亜鉛含有液の温度を30〜80℃、例えば60℃に保ち、酸化剤の一例である塩素を加え、下記の反応によりニッケルイオン除去亜鉛含有液中の2価鉄イオンを酸化して3価鉄イオンに酸化処理する。
2Fe2++4Cl- +Cl2 → 2Fe3++6Cl-
そして、アルカリ剤の一例である炭酸カルシウムを加えてpHを2.5以上で5.0以下、例えば、3.5程度に調整する。これによって、ニッケルイオン除去亜鉛含有液中の3価鉄イオンと炭酸カルシウムの間で下記に示す化学反応が進行し、3価鉄イオンが水酸化第二鉄に変化する第二鉄中和が生じる。
2Fe3++6Cl- +3CaCO3 +3H2 O → 2Fe(OH)3 ↓+3Ca2++6Cl- +3CO2
更に、水酸化第二鉄澱物を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化第二鉄澱物をケーキとして分離し、鉄イオン除去亜鉛含有液とする(鉄イオン分離処理)。これによって、ニッケル回収時に加えた鉄を除去することができる。なお、分離した水酸化第二鉄澱物に塩酸を加えて塩化第二鉄溶液を生成させると凝集剤として利用できる。
Subsequently, the temperature of the recovered nickel ion-removed zinc-containing liquid is kept at 30 to 80 ° C., for example 60 ° C., chlorine as an example of an oxidizing agent is added, and divalent iron in the nickel-ion-removed zinc-containing liquid is subjected to the following reaction. The ions are oxidized and oxidized to trivalent iron ions.
2Fe 2+ + 4Cl + Cl 2 → 2Fe 3+ + 6Cl
And calcium carbonate which is an example of an alkaline agent is added, and pH is adjusted to 2.5 or more and 5.0 or less, for example, about 3.5. As a result, the chemical reaction shown below proceeds between the trivalent iron ions and calcium carbonate in the nickel ion-removed zinc-containing liquid, and ferric iron neutralization occurs in which the trivalent iron ions are changed to ferric hydroxide. .
2Fe 3+ + 6Cl + 3CaCO 3 + 3H 2 O → 2Fe (OH) 3 ↓ + 3Ca 2+ + 6Cl + 3CO 2
Furthermore, the liquid containing ferric hydroxide starch is subjected to solid-liquid separation treatment with a filter press, for example, to separate the ferric hydroxide starch as a cake, and to obtain an iron ion-removed zinc-containing liquid (iron ion Separation process). As a result, iron added during nickel recovery can be removed. In addition, when ferric chloride solution is produced by adding hydrochloric acid to the separated ferric hydroxide starch, it can be used as a flocculant.

回収した鉄イオン除去亜鉛含有液の温度を30〜80℃、例えば60℃に保ち、アルカリ剤の一例である苛性ソーダを加えてpHを7〜12の範囲に調整しする。これによって、鉄イオン除去亜鉛含有液中の亜鉛イオンと苛性ソーダの間で下記に示す化学反応が進行し、亜鉛イオンが水酸化亜鉛に変化する。
Zn2++2Cl- +2Na+ +2OH- → Zn(OH)2 ↓+2Na+ +2Cl-
そして、水酸化亜鉛を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化亜鉛澱物をケーキとして回収し液を分離する(水酸化亜鉛再回収処理)。なお、回収した水酸化亜鉛澱物(水酸化亜鉛含有率の高い澱物)は、例えば、亜鉛原料として利用でき、分離した液は水処理設備に搬送し処理してから排水する。
The temperature of the recovered iron ion-removed zinc-containing liquid is kept at 30 to 80 ° C., for example, 60 ° C., and caustic soda as an example of an alkali agent is added to adjust the pH to a range of 7 to 12. As a result, the chemical reaction shown below proceeds between the zinc ions in the iron ion-removed zinc-containing liquid and caustic soda, and the zinc ions change to zinc hydroxide.
Zn 2+ + 2Cl + 2Na + + 2OH → Zn (OH) 2 ↓ + 2Na + + 2Cl
And the liquid containing zinc hydroxide is solid-liquid separated by a filter press, for example, and zinc hydroxide starch is recovered as a cake to separate the liquid (zinc hydroxide re-recovery process). The recovered zinc hydroxide starch (starch having a high zinc hydroxide content) can be used, for example, as a zinc raw material, and the separated liquid is transported to a water treatment facility and then discharged.

図8に示すように、亜鉛分別回収処理を施して得られたニッケルイオン含有液の温度を30〜80℃、例えば60℃に保ち、アルカリ剤の一例である水で希釈した苛性ソーダを加えてpHを7以上で12以下に調整して所定時間(例えば、20〜50分間)撹拌する(ニッケル中和処理)。これによって、ニッケルイオンと苛性ソーダの間で下記に示す化学反応が進行し、ニッケルイオンが水酸化ニッケルに変化する。
Ni2++2Cl- +2Na+ +2OH- → Ni(OH)2 ↓+2Na+ +2Cl-
そして、所定時間経過後、水酸化ニッケル澱物を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化ニッケル澱物をケーキとして回収し、残液を分離する(ニッケル分別回収工程)。ここで、回収したケーキを洗浄水を用いて洗浄し、ケーキ側に付着している残液を洗い流すようにする。これによって、ケーキに付着する残液を少なくして、水酸化ニッケル中に含まれる不純物量を低減することができる。なお、回収した水酸化ニッケル澱物の一部は、例えば、ニッケル原料としても利用できる。
As shown in FIG. 8, the temperature of the nickel ion-containing liquid obtained by performing the zinc separation and recovery treatment is kept at 30 to 80 ° C., for example, 60 ° C., and caustic soda diluted with water, which is an example of an alkali agent, is added to adjust pH Is adjusted to 7 to 12 and stirred for a predetermined time (for example, 20 to 50 minutes) (nickel neutralization treatment). As a result, the following chemical reaction proceeds between the nickel ions and the caustic soda, and the nickel ions change to nickel hydroxide.
Ni 2+ + 2Cl + 2Na + + 2OH → Ni (OH) 2 ↓ + 2Na + + 2Cl
And after predetermined time progress, the liquid containing nickel hydroxide starch is solid-liquid separated by, for example, a filter press to collect nickel hydroxide starch as a cake, and the remaining liquid is separated (nickel fraction collection step) ). Here, the recovered cake is washed with washing water, and the remaining liquid adhering to the cake side is washed away. Thereby, the residual liquid adhering to a cake can be decreased and the amount of impurities contained in nickel hydroxide can be reduced. A part of the recovered nickel hydroxide starch can be used as a nickel raw material, for example.

ここで、残液の一部を、クロム中和処理、第二鉄中和処理、及び亜鉛中和処理でそれぞれ使用される苛性ソーダを希釈する水の代りに使用する。更に、残液の残りの一部を多成分含有ニッケルめっき廃液スラッジからスラリーを調製する際に使用する水の一部として利用し、残部は排水する。これによって、苛性ソーダを希釈する水の使用量、及び多成分含有ニッケルめっき廃液スラッジからスラリーを調製する際の水の使用量を削減して処理コストを低減することができる。更に、水の使用が削減されるため、ニッケル分別回収工程で発生する残液の絶対量を低減することができる。 Here, a part of the residual liquid is used instead of water for diluting caustic soda used in the chromium neutralization treatment, the ferric iron neutralization treatment, and the zinc neutralization treatment, respectively. Furthermore, the remaining part of the remaining liquid is used as a part of water used when preparing a slurry from the multicomponent-containing nickel plating waste liquid sludge, and the remaining part is drained. As a result, the amount of water used for diluting caustic soda and the amount of water used when preparing the slurry from the multicomponent-containing nickel plating waste liquid sludge can be reduced to reduce the processing cost. Furthermore, since the use of water is reduced, the absolute amount of residual liquid generated in the nickel fraction recovery process can be reduced.

図9に示すように、回収した水酸化ニッケル澱物に硫酸を加えてpHを1以下に調整すると共に温度を30〜80℃、例えば60℃に保ち、水酸化ニッケルと硫酸の間で下記に示す化学反応を起こさせて硫酸ニッケル溶液を形成する(硫酸抽出工程)。
Ni(OH)2 +2H+ +SO4 2- → Ni2++SO4 2- +2H2
このとき、水酸化ニッケル澱物に付着して持ち込まれたカルシウムイオンは、硫酸と反応して石膏を生成する。このため、硫酸ニッケル溶液を、例えば、フィルタープレスで固液分離処理して生成した石膏をケーキとして分離し、硫酸ニッケルを含んだ1次濾液を回収する。更に、回収したケーキを洗浄水を用いて洗浄し、再度フィルタープレスを行なって、ケーキ側に付着している硫酸ニッケルを2次濾液とし、硫酸抽出工程に循環使用するか、又は1次濾液に加える。これによって、水酸化ニッケル澱物に付着して持ち込まれたカルシウムイオンを石膏として分離できる。なお、水酸化ニッケル澱物中にカルシウムイオンが実質的に残留していない場合は、この固液分離処理を省略することができる。
As shown in FIG. 9, sulfuric acid is added to the recovered nickel hydroxide starch to adjust the pH to 1 or less, and the temperature is kept at 30 to 80 ° C., for example, 60 ° C. The chemical reaction shown is caused to form a nickel sulfate solution (sulfuric acid extraction step).
Ni (OH) 2 + 2H + + SO 4 2- → Ni 2+ + SO 4 2+ 2H 2 O
At this time, calcium ions brought into the nickel hydroxide starch react with sulfuric acid to form gypsum. For this reason, for example, gypsum produced by solid-liquid separation treatment of the nickel sulfate solution with a filter press is separated as a cake, and the primary filtrate containing nickel sulfate is recovered. Further, the recovered cake is washed with washing water and subjected to filter press again, and the nickel sulfate adhering to the cake side is used as a secondary filtrate, which is circulated for use in the sulfuric acid extraction process, or is used as a primary filtrate. Add. As a result, calcium ions adhering to the nickel hydroxide starch can be separated as gypsum. In addition, this solid-liquid separation process can be abbreviate | omitted when calcium ion does not remain substantially in nickel hydroxide starch.

続いて、1次濾液を、例えば、真空中で加熱して水を蒸発させて、例えば、比重が1.4以上になるまで濃縮を行なう。次いで、濃縮された1次濾液を、−20〜20℃の温度範囲、例えば0℃に保持して冷却晶析処理を行なう。冷却晶析処理中に下記の反応が進行し、硫酸ニッケル結晶が晶析し、晶析した硫酸ニッケル結晶を、例えば、遠心分離を行なって回収して残硫酸ニッケル溶液を分離する(以上、硫酸ニッケル回収工程)。
Ni2++SO4 2- +6H2 O → NiSO4 ・6H2 O↓
Subsequently, the primary filtrate is heated in a vacuum, for example, to evaporate water, and concentrated, for example, until the specific gravity becomes 1.4 or more. The concentrated primary filtrate is then subjected to a cooling crystallization treatment while maintaining a temperature range of -20 to 20 ° C, for example, 0 ° C. The following reaction proceeds during the cooling crystallization treatment, and nickel sulfate crystals are crystallized. The crystallized nickel sulfate crystals are recovered, for example, by centrifuging to separate the remaining nickel sulfate solution. Nickel recovery process).
Ni 2+ + SO 4 2- + 6H 2 O → NiSO 4・ 6H 2 O ↓

そして、分離した残硫酸ニッケル溶液中のソーダとカルシウムの含有量を測定し、ソーダとカルシウムの含有量が少ない内は残硫酸ニッケル溶液を水酸化ニッケル澱物と混合する。また、ソーダとカルシウムの含有量が多くなると、残硫酸ニッケル溶液を多成分含有ニッケルめっき廃液スラッジに混合する。これによって、硫酸ニッケル回収工程でソーダとカルシウムが濃縮されるのが防止でき、回収される硫酸ニッケル結晶中のソーダ及びカルシウムの混入量を抑制できる。また、残硫酸ニッケル溶液を、多成分含有ニッケルめっき廃液スラッジからスラリーを調製する際の水の一部として使用することによって水の使用量を削減して処理コストを低減することができる。更に、水の使用が削減されるため、ニッケル分別回収工程で発生する残液の絶対量を低減することができる。 Then, the content of soda and calcium in the separated residual nickel sulfate solution is measured, and the residual nickel sulfate solution is mixed with the nickel hydroxide starch while the content of soda and calcium is small. Further, when the contents of soda and calcium increase, the residual nickel sulfate solution is mixed with the multicomponent-containing nickel plating waste sludge. As a result, it is possible to prevent soda and calcium from being concentrated in the nickel sulfate recovery step, and to suppress the amount of soda and calcium mixed in the recovered nickel sulfate crystals. Further, by using the residual nickel sulfate solution as a part of water when preparing a slurry from the multicomponent-containing nickel plating waste sludge, the amount of water used can be reduced and the processing cost can be reduced. Furthermore, since the use of water is reduced, the absolute amount of residual liquid generated in the nickel fraction recovery process can be reduced.

図10に示すように、本発明の第2の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法(以下、単に廃液スラッジの再資源化処理方法という)は、残硫酸ニッケル溶液にカルシウム源の一例である炭酸カルシウムを加えて残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、この硫酸根除去液をニッケルイオン含有液に混合して利用する残硫酸ニッケル溶液の硫酸根除去処理と、無機酸抽出工程において溶解処理物に硫酸根除去液を形成する際に生成した石膏を混合する濾過助剤混合処理を設けたことを特徴としており、その他の工程は第1の実施の形態に係る廃液スラッジの再資源化処理方法と実質的に同一である。このため、残硫酸ニッケル溶液の硫酸根除去処理及び濾過助剤混合処理についてのみ説明する。 As shown in FIG. 10, the recycling process method for the multicomponent-containing nickel plating waste liquid sludge according to the second embodiment of the present invention (hereinafter simply referred to as the waste liquid sludge recycling process method) is a residual nickel sulfate. Calcium carbonate, which is an example of a calcium source, is added to the solution to remove sulfate radicals in the remaining nickel sulfate solution to form a sulfate radical removal solution, and this sulfate radical removal solution is mixed with a nickel ion-containing solution for use. It is characterized by the provision of a filter aid mixing process that mixes the sulfate radical removal treatment of the nickel sulfate solution and the gypsum generated when the sulfate radical removal liquid is formed in the dissolved treatment product in the inorganic acid extraction step. The process is substantially the same as the waste sludge recycling treatment method according to the first embodiment. For this reason, only the sulfate radical removal process and the filter aid mixing process of the residual nickel sulfate solution will be described.

図11に示すように、残硫酸ニッケル溶液に対する硫酸根除去処理は、分離した残硫酸ニッケル溶液に炭酸カルシウムを加え、温度を30〜80℃、例えば、60℃に保ってpHを1以上で3以下、例えば2程度に調整して、残硫酸ニッケル溶液中の硫酸根と反応させて石膏を生成させる。これによって、残硫酸ニッケル溶液中の硫酸根を除去することができる。そして、生成した石膏が懸濁している液を、例えば、フィルタープレスで固液分離して石膏を取り除いて硫酸根除去液を回収する。回収された硫酸根除去液中にはニッケルイオンが含まれているため、ニッケルイオン含有液に混合して再度ニッケル中和処理を行なうことにより、水酸化ニッケル澱物の回収率を大きくすることができる。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキに付着したニッケルイオンを洗い流し、硫酸根除去液と混合する。これによって、回収するニッケルイオン量を多くすることができる。なお、炭酸カルシウムの代りに、塩化カルシウムを使用することもできる。 As shown in FIG. 11, the sulfate radical removal treatment for the residual nickel sulfate solution is performed by adding calcium carbonate to the separated residual nickel sulfate solution and maintaining the temperature at 30 to 80 ° C., for example, 60 ° C., at a pH of 1 or more. Hereinafter, for example, it is adjusted to about 2, and reacted with sulfate radicals in the residual nickel sulfate solution to produce gypsum. Thereby, the sulfate radical in the residual nickel sulfate solution can be removed. Then, the liquid in which the generated gypsum is suspended is separated into solid and liquid by a filter press, for example, and the gypsum is removed to recover the sulfate radical removing liquid. Since the recovered sulfate radical removal solution contains nickel ions, the nickel hydroxide starch recovery rate can be increased by mixing with the nickel ion-containing solution and performing nickel neutralization again. it can. Here, the separated cake is washed with washing water, and nickel ions adhering to the cake are washed away and mixed with a sulfate radical removing solution. Thereby, the amount of nickel ions to be recovered can be increased. In place of calcium carbonate, calcium chloride can be used.

また、残硫酸ニッケル溶液に対する硫酸根除去処理で生成した石膏を溶解処理物に加えてから石膏生成処理を行なうことにより、石膏生成処理で生成させる石膏量を少なくしても固液分離処理の効率を高位に維持することができる。更に、石膏生成処理時に生成する石膏量を少なくすることで、硫酸根量の低下を防止することができ、硫酸根除去処理で生成させる石膏量を増加させることができる。このため、有効利用可能な石膏量を多くすることができる。 In addition, the efficiency of solid-liquid separation treatment can be achieved even if the amount of gypsum produced in the gypsum production treatment is reduced by adding gypsum produced by the sulfate radical removal treatment to the residual nickel sulfate solution to the dissolved product and then performing the gypsum production treatment. Can be maintained at a high level. Further, by reducing the amount of gypsum generated during the gypsum generation treatment, it is possible to prevent the amount of sulfate radical from being lowered, and it is possible to increase the amount of gypsum produced by the sulfate radical removal treatment. For this reason, the amount of gypsum which can be used effectively can be increased.

図12に示すように、本発明の第3の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法(以下、単に廃液スラッジの再資源化処理方法という)は、例えば、銅、亜鉛、及びニッケルがいずれも水酸化物の状態で存在する多成分含有ニッケルめっき廃液スラッジに無機酸の一例である塩酸を加えて溶解処理物を形成し、溶解処理物から不溶解分を除去した溶解処理液に消石灰を加えて溶解処理液中の硫酸根と反応させて生成した石膏を除去して溶解液とする硫酸根除去処理を行なう無機酸抽出工程と、溶解液にアルカリ剤を加えてpHを調整し、溶解液中の銅イオンを水酸化銅に変える銅中和処理を行ない、生成した水酸化銅澱物を分離して銅イオン除去液とする銅イオン除去工程とを有している。 As shown in FIG. 12, a recycling method for multi-component nickel plating waste liquid sludge according to the third embodiment of the present invention (hereinafter simply referred to as a waste liquid sludge recycling method) is, for example, copper , Zinc, and nickel are all present in the form of hydroxide. Addition of hydrochloric acid, which is an example of inorganic acid, to a nickel component waste sludge containing multiple components forms a dissolved product, and removes the insoluble matter from the dissolved product. An inorganic acid extraction step that removes gypsum generated by adding slaked lime to the dissolved solution and reacting with the sulfate radicals in the solution to make a solution, and adding an alkaline agent to the solution A copper neutralization process that adjusts the pH and converts the copper ions in the solution to copper hydroxide, and separates the produced copper hydroxide starch to form a copper ion removal solution. ing.

また、廃液スラッジの再資源化処理方法は、銅イオン除去液にアルカリ剤を加えてpHを調整し、銅イオン除去液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行ない、生成した水酸化亜鉛澱物を分離して亜鉛イオン除去液とする亜鉛イオン除去工程と、亜鉛イオン除去液にアルカリ剤を加えてpHを調整し、亜鉛イオン除去液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、生成した水酸化ニッケル澱物を生成するニッケル分別回収工程と、回収した水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収して残硫酸ニッケル溶液を分離する硫酸ニッケル回収工程と、残硫酸ニッケル溶液にカルシウム源の一例である消石灰を加えて残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、この硫酸根除去液を亜鉛イオン除去液に混合(溶解液、銅イオン除去液に混合してもよい)して利用する残硫酸ニッケル溶液の硫酸根除去処理を有している。
ここで、無機酸抽出工程は、第1の実施の形態に係る廃液スラッジの再資源化処理方法における塩酸抽出工程と実質的に同一の処理内容とすることができるので、詳細な説明は省略する。
In addition, the waste sludge recycling treatment method was performed by adding an alkali agent to the copper ion removal solution to adjust the pH, and performing zinc neutralization treatment to change the zinc ions in the copper ion removal solution to zinc hydroxide. A zinc ion removal process that separates zinc hydroxide starch to make a zinc ion removal solution, and an alkaline agent is added to the zinc ion removal solution to adjust the pH, and the nickel ions in the zinc ion removal solution are changed to nickel hydroxide. A nickel fractionation recovery process for performing nickel neutralization treatment to produce the generated nickel hydroxide starch, a sulfuric acid extraction process for forming a nickel sulfate solution by adding sulfuric acid to the recovered nickel hydroxide starch, and a nickel sulfate solution A nickel sulfate recovery step of performing cooling crystallization treatment, recovering the crystallized nickel sulfate crystals and separating the residual nickel sulfate solution, and adding calcium to the residual nickel sulfate solution An example of slaked lime is added to remove sulfate radicals in the remaining nickel sulfate solution to form a sulfate radical removal solution, and this sulfate radical removal solution is mixed with the zinc ion removal solution (mixed with the solution and copper ion removal solution) The residual nickel sulfate solution used for the removal of sulfate radicals.
Here, since the inorganic acid extraction step can have substantially the same processing content as the hydrochloric acid extraction step in the waste liquid sludge recycling method according to the first embodiment, detailed description thereof is omitted. .

そして、図13に示すように、無機酸抽出工程で回収した溶解液の温度を30〜80℃、例えば60℃に保ち、アルカリ剤の一例である水で希釈した苛性ソーダを加えてpHを4以上で6以下、例えば、5程度に調整して所定時間(例えば、20〜50分間)撹拌する(銅中和処理)。これによって、溶解液中の銅イオンと苛性ソーダの間で下記に示す化学反応が進行し、銅イオンが水酸化銅に変化する。
Cu2++2Cl- +2Na+ +2OH- → Cu(OH)2 ↓+2Na+ +2Cl-
そして、所定時間経過後、水酸化銅澱物を含んだ液を、例えば、フィルタープレスで固液分離処理して水酸化銅澱物をケーキとして分離し、ニッケル及び亜鉛の各イオンが含まれる銅イオン除去液を回収する(以上、銅イオン除去工程)。ここで、分離したケーキを洗浄水を用いて洗浄し、ケーキ側に付着しているニッケル及び亜鉛の各イオンを洗い流すようにする。これによって、ニッケル及び亜鉛の各イオンの回収率を大きくすることができる。なお、回収した水酸化銅澱物は、例えば、銅精錬原料として利用できる。
And as shown in FIG. 13, the temperature of the solution collect | recovered at the inorganic acid extraction process is kept at 30-80 degreeC, for example, 60 degreeC, and the pH is set to 4 or more by adding the caustic soda diluted with the water which is an example of an alkaline agent. And adjusted to 6 or less, for example, about 5, and stirred for a predetermined time (for example, 20 to 50 minutes) (copper neutralization treatment). Thereby, the chemical reaction shown below progresses between the copper ion and the caustic soda in the solution, and the copper ion changes to copper hydroxide.
Cu 2+ + 2Cl + 2Na + + 2OH → Cu (OH) 2 ↓ + 2Na + + 2Cl
And after predetermined time progress, the liquid containing a copper hydroxide starch is separated into a cake by, for example, solid-liquid separation treatment with a filter press, and copper containing nickel and zinc ions is separated. The ion removing solution is collected (the copper ion removing step). Here, the separated cake is washed with washing water so that nickel and zinc ions adhering to the cake side are washed away. Thereby, the recovery rate of each ion of nickel and zinc can be increased. The recovered copper hydroxide starch can be used, for example, as a copper refining raw material.

また、銅イオン除去工程に続く亜鉛分別回収工程、ニッケル分別回収工程、硫酸抽出工程、及び硫酸ニッケル回収工程は第1の実施の形態に係る廃液スラッジの再資源化処理方法における亜鉛分別回収処理を含むニッケル分別回収工程、硫酸抽出工程、及び硫酸ニッケル回収工程とそれぞれ実質的に同一の処理内容とすることができ、分離した水酸化亜鉛澱物に対して行なう水酸化亜鉛の精製工程は第1の実施の形態に係る廃液スラッジの再資源化処理方法における水酸化亜鉛精製処理工程と実質的に同一の処理内容とすることができ、残硫酸ニッケル溶液の硫酸根除去処理は第2の実施の形態に係る廃液スラッジの再資源化処理方法における残硫酸ニッケル溶液の硫酸根除去処理と実質的に同一の処理内容とすることができるので、詳細な説明は省略する。
なお、水酸化ニッケル澱物を含んだ液から水酸化ニッケル澱物をケーキとして回収して得られる残液の一部を、銅中和処理、亜鉛中和処理及びニッケル中和処理でそれぞれ使用する苛性ソーダを希釈する水の代りに使用し、残液の残りの一部は多成分含有ニッケルめっきスラッジに混合する。これによって、苛性ソーダを希釈する水の使用量を削減して処理コストを低減することができる。
In addition, the zinc fraction recovery process, the nickel fraction recovery process, the sulfuric acid extraction process, and the nickel sulfate recovery process that follow the copper ion removal process are the zinc fraction recovery process in the waste sludge recycling process method according to the first embodiment. The nickel fraction recovery step, the sulfuric acid extraction step, and the nickel sulfate recovery step can be substantially the same, and the zinc hydroxide purification step performed on the separated zinc hydroxide starch is the first step. The waste water sludge recycling treatment method according to the embodiment of the present invention can be substantially the same as the zinc hydroxide purification treatment step, and the sulfate radical removal treatment of the residual nickel sulfate solution is the second embodiment. Since it can be made into the processing content substantially the same as the sulfate radical removal process of the residual nickel sulfate solution in the recycling process method of the waste liquid sludge which concerns on a form, it is detailed Akira will be omitted.
In addition, a part of residual liquid obtained by recovering nickel hydroxide starch as a cake from a solution containing nickel hydroxide starch is used in copper neutralization treatment, zinc neutralization treatment and nickel neutralization treatment, respectively. Caustic soda is used in place of the diluting water, and the remaining portion of the remaining liquid is mixed with the multi-component nickel plating sludge. As a result, the amount of water used for diluting caustic soda can be reduced to reduce the processing cost.

次に、本発明の作用効果を確認するために行った実施例について説明する。
(実施例1)
銅、クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジから、銅、クロム、鉄、及びニッケルを順に分別回収した。図14に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図、図15〜図17に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細工程説明図を示す。
図15に示すように、多成分含有ニッケルめっき廃液スラッジ(315.6g、固形分は100.0g)に水分を加えて、スラリー濃度が約10重量%程度となるようにスラリーを調製(リパルプ)した(S−1)。使用した多成分含有ニッケルめっき廃液スラッジの組成を表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Example 1
Copper, chromium, iron, and nickel were separately collected in order from the multicomponent-containing nickel plating waste liquid sludge containing copper, chromium, iron, and nickel. FIG. 14 is a process explanatory diagram of a recycling method for multi-component nickel plating waste liquid sludge, and FIGS. 15 to 17 are detailed process explanatory diagrams of a multi-component nickel plating waste liquid sludge recycling method.
As shown in FIG. 15, water is added to the multicomponent-containing nickel plating waste sludge (315.6 g, solid content is 100.0 g) to prepare a slurry so that the slurry concentration is about 10% by weight (repulping). (S-1). The composition of the used multi-component nickel plating waste liquid sludge is shown in Table 1.

Figure 0004606951
Figure 0004606951

ここで、処理開始時では上水を使用するが、水酸化ニッケル澱物を回収して得られる残液及び残硫酸ニッケル溶液が得られるようになった時点で、上水の代りに残液及び残硫酸ニッケル溶液を使用する。定常状態となった時点では、残液508.4g及び残硫酸ニッケル溶液287.0gを組み合わせて使用する。使用した残液及び残硫酸ニッケル溶液の組成を表2に示す。このような操作を行なうと、多成分含有ニッケルめっき廃液スラッジに対して、ニッケルが4.2g添加されたことになる。 Here, clean water is used at the start of the treatment, but when the residual liquid obtained by recovering the nickel hydroxide starch and the residual nickel sulfate solution can be obtained, the residual liquid and Use residual nickel sulfate solution. When the steady state is reached, the remaining liquid 508.4 g and the residual nickel sulfate solution 287.0 g are used in combination. Table 2 shows the composition of the residual liquid and the residual nickel sulfate solution used. When such an operation is performed, 4.2 g of nickel is added to the multicomponent-containing nickel plating waste liquid sludge.

Figure 0004606951
Figure 0004606951

続いて、スラリーの温度が40℃となるように加熱しながら、pHが0.8程度になるように15%塩酸529.1gを添加して10分間撹拌し固形分を溶解させる塩酸溶解処理(S−2)を行なった。塩酸溶解処理中のスラリーのpHは0.8、温度は39℃であった。
次いで、塩酸溶解処理が終了して得られた溶解処理物の温度が60℃となるように加熱しながら、pHが2程度になるように消石灰97.6gを添加して20分間撹拌し、溶解処理物中の硫酸根と反応させて石膏を生成させ硫酸根除去処理を行なった(S−3)。硫酸根除去処理開始時のpHは1.1、温度は65℃であり、硫酸根除去処理が完了したときのpHは1.2、温度は57℃であった。そして、溶解処理物を静置し、生成した石膏を溶解処理物中の不溶解分と共に不溶解残滓として沈降させた(S−4)。
Subsequently, while heating the slurry to 40 ° C., 529.1 g of 15% hydrochloric acid was added so that the pH was about 0.8, and the mixture was stirred for 10 minutes to dissolve the solid content ( S-2) was performed. The pH of the slurry during the hydrochloric acid dissolution treatment was 0.8, and the temperature was 39 ° C.
Next, 97.6 g of slaked lime is added so that the pH is about 2 while heating so that the temperature of the dissolution treatment product obtained after completion of the hydrochloric acid dissolution treatment is 60 ° C., and stirred for 20 minutes to dissolve. It was made to react with the sulfate radical in a processed material, the gypsum was produced | generated, and the sulfate radical removal process was performed (S-3). At the start of the sulfate radical removal treatment, the pH was 1.1 and the temperature was 65 ° C. When the sulfate radical removal treatment was completed, the pH was 1.2 and the temperature was 57 ° C. And the dissolution treatment thing was left still and the produced gypsum was settled as an insoluble residue with the insoluble matter in a dissolution treatment thing (S-4).

溶解処理物の上澄み液を回収すると共に、不溶解残滓をフィルタープレスを用いて圧搾して不溶解残滓に付着している液を回収すると共に、ケーキ状の不溶解残滓に洗浄水150gを供給し再度フィルタープレスで圧搾して洗浄水を回収して上澄み液に混合して溶解液とする固液分離処理を行なった(S−5)。不溶解残滓及び溶解液の組成を表1及び表2にそれぞれ示す(以上、無機酸抽出工程)。 The supernatant of the dissolved processed product is recovered, the insoluble residue is squeezed using a filter press to recover the liquid adhering to the insoluble residue, and 150 g of washing water is supplied to the cake-like insoluble residue. It was squeezed again with a filter press, and the washing water was collected and mixed with the supernatant to perform a solid-liquid separation process to obtain a solution (S-5). The compositions of insoluble residue and solution are shown in Tables 1 and 2, respectively (inorganic acid extraction step).

回収した溶解液(1471.2g)に鉄粉18.0gを添加すると共に、pHが3以下になるようにして、更に、溶解液の温度を40℃に保って、溶解液の酸化還元電位が−250mV程度となるようにして20分間撹拌し、鉄粉表面に銅を析出させて銅付着鉄粉を形成する銅回収処理を行なった(S−6)。なお、鉄粉投入時の液の酸化還元電位は−270mV、pHは0.9、液の温度は45℃であり、銅回収処理が終了したときの液の酸化還元電位は−305mV、pHは1.1、温度は43℃であった。次いで、銅回収処理の終了後、液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の銅付着鉄粉に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収し、搾液に混合して銅イオン除去液とする固液分離処理を行なった(S−7)。銅付着鉄粉及び銅イオン除去液の組成を表1及び表2にそれぞれ示す(以上、銅イオン除去工程)。 While adding 18.0 g of iron powder to the recovered solution (1471.2 g), the pH of the solution is adjusted to 3 or less, the temperature of the solution is kept at 40 ° C., and the redox potential of the solution is increased. It stirred for 20 minutes so that it might become about -250mV, and the copper collection | recovery process which precipitates copper on the iron powder surface and forms copper adhesion iron powder was performed (S-6). In addition, the oxidation-reduction potential of the liquid when iron powder is charged is −270 mV, the pH is 0.9, the temperature of the liquid is 45 ° C., and the oxidation-reduction potential of the liquid when the copper recovery process is completed is −305 mV, and the pH is 1.1. The temperature was 43 ° C. Next, after the copper recovery process is completed, the liquid is separated into solid and liquid with a filter press to recover the squeezed liquid, and 50 g of washing water is supplied to the cake-like copper-adhered iron powder and again squeezed with a filter press to obtain the washing water The solid-liquid separation process which collect | recovered and mixed with squeezed liquid and makes it a copper ion removal liquid was performed (S-7). The compositions of the copper-adhered iron powder and the copper ion removing solution are shown in Tables 1 and 2, respectively (the copper ion removing step).

回収した銅イオン除去液(1481.3g)の温度が60℃となるように加熱しながら、10%苛性ソーダ409.2gを添加してpHを4.2程度に調整し30分間撹拌してクロムイオンを水酸化クロムに変えるクロム中和処理を行なった(S−8)。なお、クロム中和処理開始時のpHは4.4、温度は61℃であり、クロム中和処理が終了したときのpHは3.9、液の温度は61℃であった。ここで、10%苛性ソーダは処理開始時では上水を使用して調製するが、残液が得られるようになった時点では、残液を使用する。
次いで、クロム中和処理が終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化クロム澱物に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収し、搾液と混合してクロムイオン除去液とする固液分離処理を行なった(S−9)。水酸化クロム澱物及びクロムイオン除去液の組成を表1及び表2にそれぞれ示す。
While heating the recovered copper ion removal liquid (1481.3 g) to 60 ° C., add 409.2 g of 10% caustic soda to adjust the pH to about 4.2 and stir for 30 minutes to make chromium ions. The chromium neutralization process which changes to chromium hydroxide was performed (S-8). The pH at the start of the chromium neutralization treatment was 4.4, the temperature was 61 ° C., the pH at the end of the chromium neutralization treatment was 3.9, and the temperature of the solution was 61 ° C. Here, 10% caustic soda is prepared using clean water at the start of the treatment, but when the residual liquid is obtained, the residual liquid is used.
Next, the liquid after the chrome neutralization treatment is separated into solid and liquid by a filter press to collect the squeezed liquid, and 50 g of washing water is supplied to the cake-like chromium hydroxide starch and is again squeezed by the filter press and washed. Water was collected and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a chromium ion removing liquid (S-9). The compositions of the chromium hydroxide starch and the chromium ion removing solution are shown in Tables 1 and 2, respectively.

図16に示すように、回収したクロムイオン除去液1667.4gの温度が40℃となるように加熱しながら、過酸化水素水6.7gを添加して10分間撹拌し、クロムイオン除去液中の第一鉄を第二鉄にする酸化処理を行なった(S−10)。なお、第一鉄の酸化処理開始時の酸化還元電位は662mV、pHは2.6、温度は24℃であり、酸化処理終了後の酸化還元電位は673mV、pHは2.6、温度は26℃であった。
次いで、酸化処理が終了した液の温度を60℃となるように加熱しながら、pHが3.5程度となるように48%苛性ソーダ14.5g及びpH調整用の15%塩酸を加えて30分間撹拌し、第二鉄イオンを水酸化第二鉄に変化させる第二鉄中和処理を行なった(S−11)。なお、第二鉄中和処理開始時のpHは3.5、液の温度は63℃であり、第二鉄中和処理が終了後のpHは3.5、温度は62℃であった。
そして、第二鉄中和処理の終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化第二鉄澱物に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収し搾液と混合して処理液とする固液分離を行なった(S−12)。水酸化第二鉄澱物及び処理液の組成を表1及び表2にそれぞれ示す(以上、鉄イオン除去工程)。
As shown in FIG. 16, while heating the recovered chromium ion removal solution 1667.4 g to 40 ° C., 6.7 g of hydrogen peroxide water was added and stirred for 10 minutes, An oxidation treatment was carried out to convert ferrous iron to ferric iron (S-10). The oxidation-reduction potential at the start of the oxidation treatment of ferrous iron is 662 mV, the pH is 2.6, the temperature is 24 ° C., the oxidation-reduction potential after the oxidation treatment is 673 mV, the pH is 2.6, and the temperature is 26 ° C.
Next, 14.5 g of 48% caustic soda and 15% hydrochloric acid for pH adjustment are added for 30 minutes so that the pH becomes about 3.5 while heating the temperature of the liquid after the oxidation treatment to 60 ° C. Stirring was performed, and ferric iron neutralization treatment was performed to change ferric ions to ferric hydroxide (S-11). In addition, pH at the time of a ferric iron neutralization process was 3.5, the temperature of the liquid was 63 degreeC, pH after the completion of a ferric iron neutralization process was 3.5, and temperature was 62 degreeC.
Then, the liquid after the ferric iron neutralization treatment is separated into solid and liquid with a filter press to collect the squeezed liquid, and 50 g of washing water is supplied to the cake-like ferric hydroxide starch and again with the filter press. Solid-liquid separation was performed by collecting the washing water and mixing with the squeezed liquid to obtain a treatment liquid (S-12). The compositions of ferric hydroxide starch and the treatment liquid are shown in Tables 1 and 2, respectively (the iron ion removal step).

回収した処理液の温度を60℃となるように加熱しながら、pHが10程度となるように48%苛性ソーダ56.2gを加えて30分間撹拌し、ニッケルイオンを水酸化ニッケルに変化させるニッケル中和処理を行なった(S−13)。なお、ニッケル中和処理開始時のpHは10、温度は58℃であり、ニッケル中和処理の終了後のpHは10、温度は61℃であった。
次いで、ニッケル中和処理が終了した液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化ニッケル澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収搾液と混合して残液とする固液分離処理を行なった(S−14)。水酸化ニッケル澱物及び残液の組成を表1及び表2にそれぞれ示す(以上、ニッケル分別回収工程)。
While heating the recovered processing solution to 60 ° C., add 56.2 g of 48% sodium hydroxide so that the pH is about 10 and stir for 30 minutes to change nickel ions into nickel hydroxide. Sum processing was performed (S-13). The pH at the start of the nickel neutralization treatment was 10, and the temperature was 58 ° C. The pH after the completion of the nickel neutralization treatment was 10, and the temperature was 61 ° C.
Next, the liquid after the nickel neutralization treatment is separated into solid and liquid with a filter press to recover the squeezed liquid, and 200 g of washing water is supplied to the cake-like nickel hydroxide starch and again squeezed with a filter press to wash the washing water. A solid-liquid separation process was performed by mixing the recovered squeezed liquid with the recovered squeezed liquid (S-14). The compositions of the nickel hydroxide starch and the residual liquid are shown in Tables 1 and 2, respectively (Nickel fraction recovery step).

回収した水酸化ニッケル澱物(211.1g、固形分43.0g)に水211.0gを加えて、スラリー濃度が約10重量%程度となるようにスラリーを調製(リパルプ)した(S−15)。次いで、図17に示すように、水酸化ニッケル澱物のスラリーの温度が60℃になるように加熱しながら、pHが0.7程度になるように70%硫酸196.7gを添加して10分間撹拌し、水酸化ニッケル澱物を硫酸に溶解させる硫酸抽出処理を行なった(S−16)。なお、硫酸抽出処理開始時のpHは0.8、温度は62℃であり、硫酸抽出処理が終了したときの液のpHは0.9、温度は62℃であった。
また、水酸化ニッケル澱物が硫酸と反応して硫酸ニッケルが生成する際に、水酸化ニッケル澱物と共に持ち込まれたカルシウムイオンと硫酸が反応して石膏が生成する。このため、硫酸抽出処理が終了した液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の石膏を主体とする不溶解残滓に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収し搾液に混合して硫酸ニッケル溶液とする固液分離処理を行なった(S−17)。石膏を主体とする不溶解残滓及び硫酸ニッケル溶液の組成を表1及び表2にそれぞれ示す。
211.0 g of water was added to the recovered nickel hydroxide starch (211.1 g, solid content 43.0 g), and a slurry was prepared (repulped) so that the slurry concentration was about 10% by weight (S-15). ). Next, as shown in FIG. 17, while heating so that the temperature of the nickel hydroxide starch slurry is 60 ° C., 196.7 g of 70% sulfuric acid is added so that the pH becomes about 0.7. The mixture was stirred for 5 minutes, and a sulfuric acid extraction treatment for dissolving the nickel hydroxide starch in sulfuric acid was performed (S-16). The pH at the start of the sulfuric acid extraction treatment was 0.8 and the temperature was 62 ° C. The pH of the liquid at the end of the sulfuric acid extraction treatment was 0.9 and the temperature was 62 ° C.
In addition, when nickel hydroxide starch reacts with sulfuric acid to produce nickel sulfate, calcium ions brought together with the nickel hydroxide starch react with sulfuric acid to produce gypsum. For this reason, the liquid after the sulfuric acid extraction treatment is separated into solid and liquid by a filter press to collect the squeezed liquid, and 50 g of washing water is supplied to the insoluble residue mainly composed of cake-like gypsum and squeezed again by the filter press. Then, the washing water was collected and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a nickel sulfate solution (S-17). Tables 1 and 2 show the compositions of the insoluble residue mainly composed of gypsum and the nickel sulfate solution, respectively.

続いて、回収した硫酸ニッケル溶液644.7gを加熱して水分を346.2g蒸発させて濃縮し(S−18)、硫酸ニッケル濃縮液を作製した。そして、得られた硫酸ニッケル濃縮液を間接冷却して温度を0℃に保持して硫酸ニッケル結晶を晶析させ(S−19)、遠心分離して硫酸ニッケル結晶を回収すると共に残硫酸ニッケル溶液を分離した(S−20)。硫酸ニッケル結晶及び残硫酸ニッケル溶液の組成を表1及び表2にそれぞれ示す(以上、硫酸ニッケル回収工程)。なお、回収した硫酸ニッケルは66.8gで総合ニッケル回収率は62.6%であった。 Subsequently, 644.7 g of the recovered nickel sulfate solution was heated to evaporate 346.2 g of water and concentrated (S-18) to prepare a nickel sulfate concentrate. The resulting nickel sulfate concentrate is indirectly cooled to maintain the temperature at 0 ° C. to crystallize nickel sulfate crystals (S-19), and the nickel sulfate crystals are recovered by centrifugation and the remaining nickel sulfate solution. Was separated (S-20). The compositions of the nickel sulfate crystals and the remaining nickel sulfate solution are shown in Tables 1 and 2, respectively (the nickel sulfate recovery step). The recovered nickel sulfate was 66.8 g, and the total nickel recovery rate was 62.6%.

(実施例2)
実施例1で使用したのと同一の多成分含有ニッケルめっき廃液スラッジから、銅、クロム、鉄、及びニッケルを順に分別回収した。このとき、無機酸抽出工程で、溶解処理物に消石灰を加え溶解処理物中の硫酸根と反応させて石膏を生成させる石膏生成処理と、生成した石膏を不溶解分と共に除去して溶解処理液を形成する固液分離処理と、溶解処理液に更に消石灰を加えて残留する硫酸根と反応させて石膏を生成させて除去して溶解液とする硫酸根除去処理を行なった。図18に実施例2における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の無機酸抽出工程の説明図を示す。
図18に示すように、多成分含有ニッケルめっき廃液スラッジに水分を加えて、スラリー濃度が約10重量%程度となるようにスラリーを調製(リパルプ)した(T−1)。ここで、処理開始時では上水を使用するが、残液及び残硫酸ニッケル溶液が得られるようになった時点で、上水の代りに残液及び残硫酸ニッケル溶液を使用する。定常状態となった時点では、残液601.2g及び残硫酸ニッケル溶液194.2gを組み合わせて使用する。
(Example 2)
From the same multicomponent-containing nickel plating waste liquid sludge used in Example 1, copper, chromium, iron, and nickel were separately collected in order. At this time, in the inorganic acid extraction step, a gypsum generation process in which slaked lime is added to the dissolved processed product and reacted with the sulfate radicals in the dissolved processed product to generate gypsum, and the generated gypsum is removed together with the insoluble matter to be dissolved. A solid-liquid separation process for forming a solution and a sulfate radical removal process for adding a slaked lime to the dissolution treatment liquid and reacting with the remaining sulfate radical to form and remove gypsum to obtain a solution. FIG. 18 is an explanatory diagram of the inorganic acid extraction step of the recycling method for multicomponent-containing nickel plating waste liquid sludge in Example 2.
As shown in FIG. 18, water was added to the multicomponent-containing nickel plating waste liquid sludge to prepare (repulp) the slurry so that the slurry concentration was about 10% by weight (T-1). Here, clean water is used at the start of the treatment, but when the residual liquid and the residual nickel sulfate solution can be obtained, the residual liquid and the residual nickel sulfate solution are used instead of the clean water. When the steady state is reached, 601.2 g of the remaining liquid and 194.2 g of the remaining nickel sulfate solution are used in combination.

続いて、スラリーの温度が40℃となるように加熱しながら、pHが0.8程度になるように15%塩酸を初めに952.7g、続いて205.0gを添加して10分間撹拌し固形分を溶解させる塩酸溶解処理を行なった(T−2)。塩酸溶解処理中のスラリーのpHは0.9、温度は58℃であった。次いで、塩酸溶解処理が終了して得られた溶解処理物の温度が60℃となるように加熱しながら、pHが1程度になるように消石灰56.1gを添加して20分間撹拌し、溶解処理物中の硫酸根と反応させて濾過助剤用の石膏を生成させた(T−3)。石膏生成時の溶解処理物のpHは0.9、温度は72℃であった。そして、石膏生成が終了したときのpHは0.9、温度は62℃であった。続いて、石膏生成後の溶解処理物をフィルタープレスで固液分離して搾液を回収し、ケーキ状の石膏を含む不溶解残滓に洗浄水150gを供給し再度フィルタープレスで圧搾して洗浄水を回収した。そして、搾液と回収した洗浄水をまとめて溶解処理液とした(T−4)。不溶解残滓及び溶解処理液の組成を表3に示す。 Subsequently, while heating the slurry to 40 ° C., first add 952.7 g of 15% hydrochloric acid so that the pH is about 0.8, then add 205.0 g and stir for 10 minutes. Hydrochloric acid dissolution treatment for dissolving the solid content was performed (T-2). The pH of the slurry during the hydrochloric acid dissolution treatment was 0.9, and the temperature was 58 ° C. Next, 56.1 g of slaked lime is added so that the pH becomes about 1 while heating so that the temperature of the dissolution treatment product obtained after completion of the hydrochloric acid dissolution treatment is 60 ° C., and stirred for 20 minutes to dissolve. It reacted with the sulfate radical in the treated product to produce a gypsum for filter aid (T-3). When the gypsum was produced, the solution treated product had a pH of 0.9 and a temperature of 72 ° C. And when gypsum production | generation was complete | finished, pH was 0.9 and temperature was 62 degreeC. Subsequently, the dissolved processed product after the gypsum production is separated into solid and liquid by a filter press to collect the squeezed liquid, 150 g of washing water is supplied to the insoluble residue containing cake-like gypsum, and the squeezed water is again squeezed by the filter press. Was recovered. Then, the squeezed solution and the recovered washing water were collectively used as a dissolution treatment solution (T-4). Table 3 shows the composition of the insoluble residue and the dissolution treatment liquid.

Figure 0004606951
Figure 0004606951

次いで、溶解処理液の温度が60℃となるように加熱しながら、pHが2程度になるように消石灰113.1gと48%苛性ソーダ14.1gを添加して20分間撹拌し、溶解処理液に残留する硫酸根と反応させて石膏を生成させ溶解処理液中の硫酸根除去を行なった(T−5)。硫酸根除去処理の開始時のpHは1.5、温度は77℃であった。そして、硫酸根除去処理が終了した時点のpHは2.0、温度は65℃であった。続いて、硫酸根除去処理が終了した溶解処理液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の石膏に洗浄水150gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して溶解液とする固液分離処理を行なった(T−6)。石膏及び溶解液の組成を表3に示す。 Next, 113.1 g of slaked lime and 14.1 g of 48% caustic soda are added so that the pH becomes about 2 while heating so that the temperature of the dissolution treatment liquid becomes 60 ° C., and stirred for 20 minutes. Reaction with the remaining sulfate radicals produced gypsum, and the sulfate radicals in the solution were removed (T-5). The pH at the start of the sulfate radical removal treatment was 1.5, and the temperature was 77 ° C. And pH at the time of a sulfate radical removal process being complete | finished was 2.0, and temperature was 65 degreeC. Subsequently, the solution obtained by removing the sulfate radical is solid-liquid separated with a filter press to recover the squeezed solution, and 150 g of washing water is supplied to the cake-like gypsum and again squeezed with the filter press to obtain the washing water. The solid-liquid separation process which collect | recovered and mixed with squeezed solution to make a solution was performed (T-6). Table 3 shows the composition of gypsum and the solution.

回収した溶解液(2225.2g)の温度が40℃となるように加熱しながら、pHが3以下になるようにして、酸化還元電位が−250mV程度となるように鉄粉19.8gを添加して20分間撹拌し、鉄粉表面に銅が析出させて銅回収を行なった(T−7)。ここで、銅回収完了後に回収した銅イオン除去液に対して順次行なうクロムイオン除去工程以降の各工程における処理は実施例1の場合と実質的に同様であるので詳細な説明を省略する。なお、実施例2の場合、総合ニッケル回収率は57.0%であった。 While heating so that the temperature of the recovered solution (2225.2 g) is 40 ° C., 19.8 g of iron powder is added so that the redox potential is about −250 mV while the pH is 3 or less. And it stirred for 20 minutes, copper was deposited on the iron powder surface, and copper collection | recovery was performed (T-7). Here, the processing in each step after the chromium ion removing step sequentially performed on the copper ion removing solution recovered after the copper recovery is completed is substantially the same as in the case of the first embodiment, and thus detailed description thereof is omitted. In the case of Example 2, the total nickel recovery rate was 57.0%.

(実施例3)
実施例1で使用したのと同一の多成分含有ニッケルめっき廃液スラッジから、銅、クロム、鉄、及びニッケルを順に分別回収した。図19に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図、図20〜図23に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細工程説明図を示す。
図20に示すように、前回の処理時において残硫酸ニッケル溶液に消石灰を加えて生成させた石膏20.3gを多成分含有ニッケルめっき廃液スラッジに加えると共に、pHが0.8になるように15%塩酸34.0gを前回の処理時に発生した残液684.5gに希釈して加え、スラリー濃度が約10重量%程度のスラリーを調製(リパルプ)した(U−1)。
(Example 3)
From the same multicomponent-containing nickel plating waste liquid sludge used in Example 1, copper, chromium, iron, and nickel were separately collected in order. FIG. 19 is a process explanatory diagram of a method for recycling a multicomponent-containing nickel plating waste liquid sludge, and FIGS. 20 to 23 are detailed process explanatory diagrams of a method for recycling a multicomponent-containing nickel plating waste liquid sludge.
As shown in FIG. 20, 20.3 g of gypsum produced by adding slaked lime to the remaining nickel sulfate solution in the previous treatment is added to the multicomponent-containing nickel plating waste sludge, and the pH is adjusted to 0.8. 34.0 g of% hydrochloric acid was diluted and added to 684.5 g of the residual liquid generated during the previous treatment to prepare (repulp) a slurry having a slurry concentration of about 10% by weight (U-1).

続いて、スラリーの温度が40℃となるように加熱しながら、pHが1程度になるように15%塩酸346.9gを添加して30分間撹拌し固形分を溶解させる塩酸溶解処理(U−2)を行なって溶解処理物を形成した。塩酸溶解処理開始時のスラリーのpHは1.0、温度は47℃であり、塩酸溶解処理終了時のスラリーのpHは1.0、温度は42℃であった。次いで、塩酸溶解処理が終了して得られた溶解処理物の温度が60℃となるように加熱しながら、pHが2程度になるように消石灰9.8gを添加して15分間撹拌し、溶解処理物中の硫酸根と反応させて石膏を生成させて溶解処理物中の硫酸根除去処理を行なった(U−3)。硫酸根除去処理開始時の溶解処理物のpHは2.1、温度は43℃であり、硫酸根除去処理が終了した時点でのpHは2.7、温度は41℃であった。そして、硫酸根除去処理が終了した後の溶解処理物をフィルタープレスを用いて固液分離し、搾液回収すると共に、ケーキ状の石膏を含む不溶解残滓に洗浄水150gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合して溶解液とする固液分離処理を行なった(U−4)。不溶解残滓及び溶解液の組成を表4及び表5にそれぞれ示す。 Subsequently, hydrochloric acid dissolution treatment (U-) in which 346.9 g of 15% hydrochloric acid is added so that the pH becomes about 1 while heating so that the temperature of the slurry becomes 40 ° C., and the solid content is dissolved by stirring for 30 minutes. 2) was performed to form a dissolved product. The pH of the slurry at the start of the hydrochloric acid dissolution treatment was 1.0 and the temperature was 47 ° C. The pH of the slurry at the end of the hydrochloric acid dissolution treatment was 1.0 and the temperature was 42 ° C. Next, 9.8 g of slaked lime is added so that the pH becomes about 2 while heating so that the temperature of the dissolution treatment product obtained after the hydrochloric acid dissolution treatment is 60 ° C., and stirred for 15 minutes to dissolve. It was made to react with the sulfate radical in a processed material, the gypsum was produced | generated, and the sulfate radical removal process in a melt | dissolution processed material was performed (U-3). The pH of the dissolution treatment product at the start of the sulfate radical removal treatment was 2.1 and the temperature was 43 ° C. The pH at the time of completion of the sulfate radical removal treatment was 2.7 and the temperature was 41 ° C. Then, the dissolved processed product after the sulfate radical removal treatment is solid-liquid separated using a filter press and recovered by squeezing, and 150 g of washing water is supplied to the undissolved residue containing cake-like gypsum and the filter press again. A solid-liquid separation process was performed by collecting the washing water and mixing with the squeezed solution to obtain a solution (U-4). The compositions of the insoluble residue and the solution are shown in Table 4 and Table 5, respectively.

Figure 0004606951
Figure 0004606951

Figure 0004606951
Figure 0004606951

回収した溶解液(1348.1g)の温度が40℃となるように加熱しながら、pHが3以下になるようにして、酸化還元電位が−250mV程度となるように鉄粉3.8gを添加して10分間撹拌し、鉄粉表面に銅を析出させて銅回収を行なった(U−5)。なお、銅回収開始時の溶解液の酸化還元電位は−310mV、pHは2.9、温度は41℃であり、銅回収が終了した時点での酸化還元電位は−311mV、pHは2.9、温度は45℃であった。
次いで、銅回収の終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、鉄粉表面に銅が析出したケーキ状の銅付着鉄粉に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して銅イオン除去液とする固液分離処理を行なった(U−6)。銅付着鉄粉及び銅イオン除去液の組成を表4及び表5にそれぞれ示す。
While heating so that the temperature of the recovered solution (1348.1 g) is 40 ° C., 3.8 g of iron powder is added so that the pH is 3 or less and the redox potential is about −250 mV. And it stirred for 10 minutes, copper was deposited on the iron powder surface, and copper collection | recovery was performed (U-5). The redox potential of the solution at the start of copper recovery was −310 mV, the pH was 2.9, the temperature was 41 ° C., the redox potential at the time of completion of copper recovery was −311 mV, and the pH was 2.9. The temperature was 45 ° C.
Next, the liquid after completion of copper recovery is solid-liquid separated with a filter press to recover the squeezed liquid, and 50 g of washing water is supplied to the cake-like copper-attached iron powder with copper deposited on the surface of the iron powder, and the filter press again. The solid was subjected to solid-liquid separation treatment by collecting the washing water and mixing with the squeezed liquid to obtain a copper ion removing liquid (U-6). The compositions of the copper-adhered iron powder and the copper ion removing solution are shown in Tables 4 and 5, respectively.

図21に示すように、回収した銅イオン除去液(1345.3g)の温度が60℃となるように加熱しながら、pHが4.2程度になるように10%苛性ソーダ146.1gを添加して10分間撹拌し、クロムイオンを水酸化クロムに変えるクロム中和処理を行なった(U−7)。クロム中和処理開始時の銅イオン除去液のpHは4.2、温度は63℃であり、クロム中和処理が終了したときのpHは4.2、温度は62℃であった。ここで、10%苛性ソーダは、前回の処理時に発生した残液を使用して調製する。
次いで、クロム中和処理が終了した後の銅イオン除去液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化クロム澱物に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合してクロムイオン除去液とする固液分離処理を行なった(U−8)。水酸化クロム澱物及びクロムイオン除去液の組成を表4及び表5にそれぞれ示す。
As shown in FIG. 21, while heating the recovered copper ion removal liquid (1345.3 g) to 60 ° C., add 146.1 g of 10% sodium hydroxide so that the pH is about 4.2. Then, the mixture was stirred for 10 minutes to perform chromium neutralization treatment to change chromium ions to chromium hydroxide (U-7). The pH of the copper ion removing solution at the start of the chromium neutralization treatment was 4.2 and the temperature was 63 ° C. The pH at the end of the chromium neutralization treatment was 4.2 and the temperature was 62 ° C. Here, 10% caustic soda is prepared using the residual liquid generated during the previous treatment.
Next, the copper ion removal solution after the chromium neutralization treatment is completed is separated into solid and liquid by a filter press to collect the squeezed solution, and 50 g of washing water is supplied to the cake-like chromium hydroxide starch and again by the filter press. The solid was subjected to solid-liquid separation treatment by collecting the washing water by pressing and mixing with the squeezed liquid to obtain a chromium ion removing liquid (U-8). Tables 4 and 5 show the compositions of the chromium hydroxide starch and the chromium ion removing solution, respectively.

図21に示すように、回収したクロムイオン除去液(1337.1g)の温度が40℃となるように加熱しながら、過酸化水素水2.2gを添加して10分間撹拌し、クロムイオン除去液中の第一鉄イオンを酸化して第二鉄イオンに変化させた(U−9)。ここで、濾過助剤として、前回の処理時に発生した水酸化第二鉄澱物を20.0g加えた。なお、第一鉄イオンの酸化処理開始時のクロムイオン除去液の酸化還元電位は613mV、pHは2.3、温度は41℃であり、第一鉄イオンの酸化処理が終了したときの酸化還元電位は617mV、pHは2.1、温度は50℃であった。 As shown in FIG. 21, while heating the recovered chromium ion removing solution (1337.1 g) to 40 ° C., 2.2 g of hydrogen peroxide was added and stirred for 10 minutes to remove chromium ions. Ferrous ions in the liquid were oxidized to change to ferric ions (U-9). Here, 20.0 g of ferric hydroxide starch generated during the previous treatment was added as a filter aid. The oxidation-reduction potential of the chromium ion removing solution at the start of the ferrous ion oxidation treatment is 613 mV, the pH is 2.3, and the temperature is 41 ° C. The oxidation-reduction when the ferrous ion oxidation treatment is completed. The potential was 617 mV, the pH was 2.1, and the temperature was 50 ° C.

次いで、第一鉄イオンの酸化処理が終了した液の温度を60℃となるように加熱しながら、pHが3.5程度となるように48%苛性ソーダ6.4gを加えて30分間撹拌し、第二鉄イオンを水酸化第二鉄に変化させる第二鉄中和処理を行なった(U−10)。なお、第二鉄中和処理時の液のpHは2.8、温度は64℃であり、第二鉄中和処理が終了したときの液のpHは3.4、温度は62℃であった。そして、第二鉄中和処理終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化第二鉄澱物に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して処理液とする固液分離処理を行なった(U−11)。水酸化第二鉄澱物及び処理液の組成を表4及び表5にそれぞれ示す。 Next, 6.4 g of 48% caustic soda is added to the pH of about 3.5 while stirring so that the temperature of the liquid after the oxidation treatment of ferrous ions is 60 ° C., and the mixture is stirred for 30 minutes. Ferric iron neutralization treatment was performed to change ferric ions to ferric hydroxide (U-10). The pH of the solution during ferric iron neutralization was 2.8 and the temperature was 64 ° C. The pH of the solution after ferric iron neutralization was 3.4 and the temperature was 62 ° C. It was. Then, the liquid after the ferric iron neutralization treatment is separated into solid and liquid by a filter press to collect the squeezed liquid, and 50 g of washing water is supplied to the cake-like ferric hydroxide starch and pressed again by the filter press. Then, the washing water was collected and mixed with the squeezed liquid to carry out a solid-liquid separation treatment to obtain a treatment liquid (U-11). The compositions of ferric hydroxide starch and the treatment liquid are shown in Table 4 and Table 5, respectively.

図22に示すように、回収した処理液の温度が60℃となるように加熱しながら、pHが10程度となるように48%苛性ソーダ48.1gを前回の処理時に発生した残液428.6gで希釈して加え30分間撹拌し、ニッケルイオンを水酸化ニッケルに変化させるニッケル中和処理を行なった(U−12)。なお、ニッケル中和処理開始時の液のpHは10.5、温度は56℃であり、ニッケル中和処理が終了したときの液のpHは10.2、温度は62℃であった。
次いで、ニッケル中和処理終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化ニッケル澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合して残液とする固液分離処理を行なった(U−13)。水酸化ニッケル澱物及び残液の組成を表4及び表5にそれぞれ示す。
As shown in FIG. 22, while heating the recovered processing solution to 60 ° C., 488.1 g of 48% caustic soda so as to have a pH of about 10 was obtained by 428.6 g of residual liquid generated during the previous processing. Then, the mixture was stirred for 30 minutes, and nickel neutralization treatment was performed to change nickel ions to nickel hydroxide (U-12). The pH of the solution at the start of the nickel neutralization treatment was 10.5 and the temperature was 56 ° C. The pH of the solution at the end of the nickel neutralization treatment was 10.2 and the temperature was 62 ° C.
Next, the liquid after completion of the nickel neutralization treatment is separated into solid and liquid with a filter press to collect the squeezed liquid, and 200 g of washing water is supplied to the cake-like nickel hydroxide starch and again squeezed with a filter press to obtain washing water. Was collected and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a residual liquid (U-13). The compositions of nickel hydroxide starch and residual liquid are shown in Table 4 and Table 5, respectively.

回収した水酸化ニッケル澱物(225.1g、固形分35.5g)に水225.0gを加えて、スラリー濃度が約10重量%程度となるようにスラリーを調製(リパルプ)した(U−14)。次いで、水酸化ニッケル澱物のスラリーの温度が60℃になるように加熱しながら、pHが0.7程度になるように70%硫酸82.4gを添加して15分間撹拌し、水酸化ニッケル澱物を硫酸に溶解させる硫酸抽出処理を行なった(U−15)。なお、硫酸抽出処理開始時のスラリーのpHは0.7、温度は64℃であった。また、硫酸抽出処理が終了したときのpHは0.7、温度は63℃であった。
次いで、硫酸抽出処理が終了したスラリーをフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の不溶解分に洗浄水50gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して硫酸ニッケル溶液とする固液分離処理を行なった(U−16)。不溶解残滓び硫酸ニッケル溶液の組成を表4及び表5にそれぞれ示す。
225.0 g of water was added to the recovered nickel hydroxide starch (225.1 g, solid content 35.5 g), and a slurry was prepared (repulped) so that the slurry concentration was about 10% by weight (U-14). ). Next, while heating so that the temperature of the nickel hydroxide starch slurry is 60 ° C., 82.4 g of 70% sulfuric acid is added so that the pH is about 0.7, and the mixture is stirred for 15 minutes. The sulfuric acid extraction process which dissolves a starch in a sulfuric acid was performed (U-15). The pH of the slurry at the start of the sulfuric acid extraction treatment was 0.7, and the temperature was 64 ° C. When the sulfuric acid extraction treatment was completed, the pH was 0.7 and the temperature was 63 ° C.
Next, the slurry after the sulfuric acid extraction treatment is solid-liquid separated with a filter press to collect the squeezed solution, and 50 g of washing water is supplied to the cake-like insoluble matter and again squeezed with a filter press to collect the washing water. Then, it was mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a nickel sulfate solution (U-16). Tables 4 and 5 show the compositions of the insoluble residue and the nickel sulfate solution, respectively.

図23に示すように、回収した硫酸ニッケル溶液を加熱して水分を393g蒸発させて濃縮し(U−17)、硫酸ニッケル濃縮液を作製した。そして、得られた硫酸ニッケル濃縮液を間接冷却して温度を0℃に保持して硫酸ニッケル結晶を晶析させ(U−18)、遠心分離して硫酸ニッケル結晶を回収すると共に残硫酸ニッケル溶液を分離した(U−19)。次いで、残硫酸ニッケル溶液に30%苛性ソーダ46.6gと水200gを加えてpHを2程度調整すると共に温度を60℃に保って10分間保持した(U−20)。pH調整開始時の液のpHは2.0、温度は76℃であり、10分間保持後の液のpHは1.9、温度は65℃であった。 As shown in FIG. 23, the recovered nickel sulfate solution was heated to evaporate 393 g of water and concentrated (U-17) to prepare a nickel sulfate concentrate. The resulting nickel sulfate concentrate is indirectly cooled to maintain the temperature at 0 ° C. to crystallize nickel sulfate crystals (U-18), and the nickel sulfate crystals are recovered by centrifugation and the remaining nickel sulfate solution. Was separated (U-19). Next, 46.6 g of 30% caustic soda and 200 g of water were added to the remaining nickel sulfate solution to adjust the pH to about 2, and the temperature was maintained at 60 ° C. and maintained for 10 minutes (U-20). The pH of the liquid at the start of pH adjustment was 2.0, the temperature was 76 ° C., the pH of the liquid after being held for 10 minutes was 1.9, and the temperature was 65 ° C.

続いて、液に30%塩化カルシウム100.0gを加えて温度を60℃、pHを2程度に調整して20分間保持して、液中に存在する硫酸根と塩化カルシウムを反応させて石膏を生成させた(U−21)。石膏生成開始時の液のpHは2.0、温度は60℃であり、石膏生成完了時の液のpHは1.9、温度は58℃であった。
次いで、液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の石膏に洗浄水100gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して硫酸根除去液とする固液分離処理を行なった(U−22)。硫酸ニッケル結晶、残硫酸ニッケル溶液、石膏、及び硫酸根除去液の組成を表4及び表5にそれぞれ示す。ここで、回収した硫酸根除去液の一部は次回の処理時にニッケル分別回収工程で使用する苛性ソーダの希釈液として保存する。なお、実施例3の場合、総合ニッケル回収率は61.4%であった。
Subsequently, 100.0 g of 30% calcium chloride is added to the liquid, the temperature is adjusted to 60 ° C., the pH is adjusted to about 2, and maintained for 20 minutes, and the sulfate radical and calcium chloride present in the liquid are reacted to form gypsum. (U-21). The pH of the liquid at the start of gypsum production was 2.0 and the temperature was 60 ° C. The pH of the liquid at the completion of gypsum production was 1.9 and the temperature was 58 ° C.
Next, the liquid is separated into solid and liquid with a filter press to collect the squeezed solution, and 100 g of washing water is supplied to the cake-like gypsum, and squeezed again with the filter press to collect the washing water and mix with the squeezed sulfuric acid A solid-liquid separation process was performed as a root removal liquid (U-22). The compositions of nickel sulfate crystals, residual nickel sulfate solution, gypsum, and sulfate radical removal solution are shown in Tables 4 and 5, respectively. Here, a part of the recovered sulfate radical removal solution is stored as a dilute solution of caustic soda used in the nickel fraction recovery step at the next processing. In the case of Example 3, the total nickel recovery rate was 61.4%.

(実施例4)
銅、亜鉛、及びニッケルを含有する多成分含有ニッケルめっき廃液スラッジ(単に、めっきスラッジともいう)から、銅、亜鉛、及びニッケルを順に分別回収した。図24に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細工程説明図、図25〜図28に多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の各操作説明を示す。
図25に示すように、めっきスラッジ(5000.0g、固形分1825.0g)を解砕し(V−1)、pHが0.5になるように15%塩酸9184.0gを加えてスラリーを調製し、スラリーの温度が40℃となるように加熱しながら60分間撹拌し固形分を溶解させて溶解処理液を得る塩酸溶解処理を行なった(V−2)。塩酸溶解処理開始時のスラリーのpHは0.5、温度は43℃であり、塩酸抽出終了時の溶解処理物のpHは0.5、温度は42℃であった。次いで、溶解処理物をフィルタープレスを用いて固液分離して搾液回収すると共に、ケーキ状の不溶解残滓に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して溶解液とする固液分離処理を行なった(V−3)。不溶解残滓及び溶解液の組成を表6及び表7にそれぞれ示す。
Example 4
Copper, zinc, and nickel were separately collected in order from a multicomponent-containing nickel plating waste liquid sludge containing copper, zinc, and nickel (also simply referred to as plating sludge). FIG. 24 is a detailed process explanatory diagram of the recycling method for multicomponent-containing nickel plating waste liquid sludge, and FIGS. 25 to 28 show the operations of the recycling method for multicomponent-containing nickel plating waste liquid sludge.
As shown in FIG. 25, the plating sludge (5000.0 g, solid content 1825.0 g) is crushed (V-1), and 15% hydrochloric acid 9184.0 g is added so that the pH is 0.5. It was prepared and stirred for 60 minutes while heating so that the temperature of the slurry was 40 ° C., and the hydrochloric acid dissolution treatment was performed to dissolve the solid content to obtain a dissolution treatment liquid (V-2). The pH of the slurry at the start of the hydrochloric acid dissolution treatment was 0.5 and the temperature was 43 ° C. The pH of the dissolution treatment product at the end of hydrochloric acid extraction was 0.5 and the temperature was 42 ° C. Next, the dissolved processed product is separated into solid and liquid using a filter press and collected by squeezing, and 200 g of washing water is supplied to the cake-like insoluble residue and squeezed again by the filter press to collect the washing water and squeezed The solid-liquid separation process which made it a solution by mixing with (V-3) was performed. The compositions of the insoluble residue and the solution are shown in Table 6 and Table 7, respectively.

Figure 0004606951
Figure 0004606951

Figure 0004606951
Figure 0004606951

続いて、回収した溶解液500.0gに、前回の処理時に発生した残液1069.0g及び硫酸根除去液436.5gを加えて希釈して処理希釈液を形成した(V−4)。次いで、図26に示すように、処理希釈液(1988.1g)の温度が60℃となるように加熱しながら、pHが5程度になるように炭酸カルシウム26.2gを加えて30分間撹拌し、銅イオンを水酸化銅に変える銅中和処理を行なった(V−5)。なお、銅中和処理開始時の処理希釈液のpHは4.7、温度は57℃であり、銅中和処理の終了した時点でのpHは5.4、温度は62℃であった。処理希釈液の組成を表7に示す。
次いで、銅中和処理の終了後の処理希釈液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化銅澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合して銅イオン除去液とする固液分離処理を行なった(V−6)。水酸化銅澱物及び銅イオン除去液の組成を表6及び表7にそれぞれ示す。
Subsequently, the remaining solution 1069.0 g and sulfate radical removal solution 436.5 g generated during the previous treatment were added to the collected solution 500.0 g and diluted to form a treatment diluted solution (V-4). Next, as shown in FIG. 26, while heating so that the temperature of the treatment diluted solution (1988. 1 g) is 60 ° C., 26.2 g of calcium carbonate is added so that the pH is about 5, and the mixture is stirred for 30 minutes. The copper neutralization process which changes a copper ion into copper hydroxide was performed (V-5). In addition, pH of the process dilution liquid at the time of a copper neutralization process start was 4.7, temperature was 57 degreeC, pH at the time of completion | finish of copper neutralization process was 5.4, and temperature was 62 degreeC. The composition of the treatment diluent is shown in Table 7.
Next, the processing diluted solution after completion of the copper neutralization treatment is separated into solid and liquid by a filter press to recover the squeezed solution, and 200 g of washing water is supplied to the cake-like copper hydroxide starch and squeezed again by the filter press. Then, the washing water was recovered and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a copper ion removing liquid (V-6). The compositions of the copper hydroxide starch and the copper ion removing solution are shown in Tables 6 and 7, respectively.

また、回収した銅イオン除去液(2070.9g)の温度が60℃となるように加熱しながら、48%苛性ソーダ31.6gを前回の処理時に発生した残液534gで希釈して加えると共に補給水を42.2g加えて60分間撹拌し、亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なった(V−7)。亜鉛中和処理開始時の銅イオン除去液のpHは6.8、温度は43℃であり、亜鉛中和処理が終了したときのpHは6.2、温度は61℃であった。
次いで、亜鉛中和処理の終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化亜鉛澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合して亜鉛イオン除去液とする固液分離処理を行なった。水酸化亜鉛澱物及び亜鉛イオン除去液の組成を表6及び表7にそれぞれ示す。
In addition, while heating the recovered copper ion removing liquid (2070.9 g) to 60 ° C., 31.6 g of 48% caustic soda is diluted with 534 g of residual liquid generated during the previous treatment and added to the makeup water. 42.2g was added, and it stirred for 60 minutes, and the zinc neutralization process which changes a zinc ion into zinc hydroxide was performed (V-7). The pH of the copper ion removing solution at the start of the zinc neutralization treatment was 6.8, the temperature was 43 ° C., the pH at the end of the zinc neutralization treatment was 6.2, and the temperature was 61 ° C.
Next, the solution after completion of the zinc neutralization treatment is separated into solid and liquid with a filter press to recover the squeezed solution, and 200 g of washing water is supplied to the cake-like zinc hydroxide starch and again squeezed with a filter press to be washed. Water was collected, mixed with the squeezed solution, and subjected to solid-liquid separation treatment to obtain a zinc ion removing solution. The compositions of the zinc hydroxide starch and zinc ion removing solution are shown in Tables 6 and 7, respectively.

図27に示すように、回収した亜鉛イオン除去液(2619.9g)の温度が60℃となるように加熱しながら、48%苛性ソーダ65.2gを加え60分間撹拌し、ニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行なった(V−9)。ニッケル中和処理開始時の亜鉛イオン除去液のpHは11.4、温度は44℃であり、ニッケル中和処理が終了したときの液のpHは10.6、温度は61℃であった。
次いで、ニッケル中和処理が終了した液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化ニッケル澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を分離して搾液に混合して残液とする固液分離を行なった(V−10)。水酸化ニッケル澱物及び残液の組成を表6及び表7にそれぞれ示す。なお、回収した残液の一部は、溶解液から処理希釈液を調製する際の希釈液として、また亜鉛中和処理時に加える苛性ソーダの希釈液として保存し、残部は廃棄液として処理する。
As shown in FIG. 27, while heating the recovered zinc ion removal solution (2619.9 g) to 60 ° C., 65.2 g of 48% caustic soda was added and stirred for 60 minutes to convert nickel ions to nickel hydroxide. The nickel neutralization process which changes to (V-9) was performed. The pH of the zinc ion removing solution at the start of the nickel neutralization treatment was 11.4 and the temperature was 44 ° C. The pH of the solution when the nickel neutralization treatment was completed was 10.6 and the temperature was 61 ° C.
Next, the liquid after the nickel neutralization treatment is separated into solid and liquid with a filter press to recover the squeezed liquid, and 200 g of washing water is supplied to the cake-like nickel hydroxide starch and again squeezed with a filter press to wash the washing water. Were separated and mixed with the squeezed liquid to obtain a residual liquid (V-10). The compositions of nickel hydroxide starch and residual liquid are shown in Tables 6 and 7, respectively. A part of the recovered residual liquid is stored as a diluted liquid when preparing a processing diluted liquid from the dissolved liquid, or as a diluted liquid of caustic soda added during the zinc neutralization process, and the remaining part is processed as a waste liquid.

回収した水酸化ニッケル澱物(143.1g、固形分30.0g)に水150gを加えてスラリーを調製(リパルプ)した(V−11)。次いで、水酸化ニッケル澱物のスラリーの温度が60℃になるように加熱しながら、pHが0.7程度になるように70%硫酸60.6gを添加して10分間撹拌し、水酸化ニッケル澱物を硫酸に溶解させる硫酸抽出処理(V−12)を行なった。なお、硫酸抽出処理開始時のスラリーのpHは0.4、温度は58℃であり、硫酸抽出処理が終了したときのpHは0.5、温度は60℃であった。次いで、硫酸抽出処理が終了したスラリーをフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の不溶解残滓に洗浄水100gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して硫酸ニッケル溶液とする固液分離処理を行なった(V−13)。不溶解残滓及び硫酸ニッケル溶液の組成を表6及び表7にそれぞれ示す。 A slurry was prepared (repulped) by adding 150 g of water to the recovered nickel hydroxide starch (143.1 g, solid content 30.0 g) (V-11). Next, while heating so that the temperature of the nickel hydroxide starch slurry is 60 ° C., 60.6 g of 70% sulfuric acid is added so that the pH is about 0.7, and the mixture is stirred for 10 minutes. The sulfuric acid extraction process (V-12) which dissolves a starch in a sulfuric acid was performed. The pH of the slurry at the start of the sulfuric acid extraction treatment was 0.4 and the temperature was 58 ° C. The pH at the end of the sulfuric acid extraction treatment was 0.5 and the temperature was 60 ° C. Next, the slurry after the sulfuric acid extraction treatment is solid-liquid separated with a filter press to collect the squeezed solution, and 100 g of washing water is supplied to the cake-like insoluble residue and again squeezed with a filter press to collect the washing water. Then, it was mixed with the squeezed liquid and subjected to solid-liquid separation treatment to obtain a nickel sulfate solution (V-13). The compositions of insoluble residue and nickel sulfate solution are shown in Table 6 and Table 7, respectively.

図28に示すように、回収した硫酸ニッケル溶液391.5gを加熱して水分を259g蒸発させて濃縮し(V−14)、硫酸ニッケル濃縮液を作製した。そして、得られた硫酸ニッケル濃縮液を間接冷却して温度を0℃に保持して硫酸ニッケル結晶を晶析させてから遠心分離を行なって、硫酸ニッケル結晶を回収すると共に残硫酸ニッケル溶液を分離した(V−15)。硫酸ニッケル結晶と残硫酸ニッケル溶液の組成を表6、表7に示す。
次いで、残硫酸ニッケル溶液に水200gを加えて希釈し(V−16)、温度が60℃になるように加熱しながら30%塩化カルシウム133.6gを加えた。塩化カルシウムを加えることで、残硫酸ニッケル溶液のpHは0.3、温度は58℃になった。更に、炭酸カルシウム29.4gを加えて30分間撹拌し、残硫酸ニッケル溶液中に存在する硫酸根とカルシウムイオンを反応させて石膏を生成させる硫酸根除去処理を行なった(V−17)。炭酸カルシウム添加直後の液のpHは1.2、温度は68℃であり、30分間撹拌後のpHは1.1、温度は61℃であった。
As shown in FIG. 28, 391.5 g of the recovered nickel sulfate solution was heated to evaporate 259 g of water and concentrated (V-14) to prepare a nickel sulfate concentrate. The resulting nickel sulfate concentrate is indirectly cooled to maintain the temperature at 0 ° C. to crystallize the nickel sulfate crystals and then centrifuged to collect the nickel sulfate crystals and separate the remaining nickel sulfate solution. (V-15). Tables 6 and 7 show the compositions of the nickel sulfate crystals and the remaining nickel sulfate solution.
Next, 200 g of water was added to the residual nickel sulfate solution to dilute it (V-16), and 133.6 g of 30% calcium chloride was added while heating to a temperature of 60 ° C. By adding calcium chloride, the pH of the remaining nickel sulfate solution was 0.3 and the temperature was 58 ° C. Furthermore, 29.4 g of calcium carbonate was added and stirred for 30 minutes, and sulfate radical removal treatment was performed to react the sulfate radicals present in the residual nickel sulfate solution with calcium ions to produce gypsum (V-17). The solution immediately after the addition of calcium carbonate had a pH of 1.2 and a temperature of 68 ° C., and after stirring for 30 minutes, the pH was 1.1 and the temperature was 61 ° C.

硫酸根除去処理後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の石膏に洗浄水100gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して硫酸根除去液とする固液分離処理を行なった(V−18)。石膏及び硫酸根除去液の組成を表6及び表7にそれぞれ示す。ここで、回収した硫酸根除去液の一部は溶解液から処理希釈液を調製する際の希釈液として使用するために保存し、残部は廃棄液として処理する。なお、実施例4の場合、総合ニッケル回収率は36.4%であった。 The liquid after the sulfate radical removal treatment is separated into solid and liquid with a filter press to collect the squeezed liquid, and 100 g of washing water is supplied to the cake-like gypsum and squeezed again with the filter press to collect the washing water and Solid-liquid separation treatment was performed by mixing to make a sulfate radical removal solution (V-18). The compositions of the gypsum and sulfate radical removal solution are shown in Table 6 and Table 7, respectively. Here, a part of the recovered sulfate radical removal solution is stored for use as a diluent when preparing a treatment diluent from the solution, and the remainder is treated as a waste solution. In the case of Example 4, the total nickel recovery rate was 36.4%.

(実施例5)
実施例4で回収した水酸化亜鉛澱物(以下、被精製処理水酸化亜鉛澱物という)に対して水酸化亜鉛の精製を行なって、水酸化亜鉛澱物の亜鉛含有率及び総合ニッケル回収率の向上を図った。図29、図30に水酸化亜鉛の精製を行なう際の詳細説明図を示す。
図29に示すように、被精製処理水酸化亜鉛澱物(527.8g、固形分99.2g)に水1000gを加えてスラリー調製(リパルプ)を行なった(W−1)。次いで、スラリーのpHが1程度になるように15%塩酸477.1gを加え温度が60℃となるように加熱しながら30分間撹拌し被精製処理水酸化亜鉛澱物を溶解させてスラリーを調製する無機酸抽出処理(塩酸溶解処理)を行なった(W−2)。無機酸抽出処理開始時のスラリーのpHは1.0、温度は61℃であった。次いで、無機酸抽出処理が終了した溶解処理物をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の不溶解分に洗浄水100gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して亜鉛含有液とする固液分離処理を行なった(W−3)。被精製処理水酸化亜鉛澱物及び亜鉛含有液の組成を表8及び表9にそれぞれ示す。
(Example 5)
The zinc hydroxide starch recovered in Example 4 (hereinafter referred to as the to-be-purified zinc hydroxide starch) is purified with zinc hydroxide, and the zinc content of the zinc hydroxide starch and the overall nickel recovery rate Improved. FIG. 29 and FIG. 30 show detailed explanatory views when refining zinc hydroxide.
As shown in FIG. 29, slurry preparation (repulping) was performed by adding 1000 g of water to a to-be-purified zinc hydroxide starch (527.8 g, solid content 99.2 g) (W-1). Next, 477.1 g of 15% hydrochloric acid was added so that the pH of the slurry was about 1, and the mixture was stirred for 30 minutes while heating to a temperature of 60 ° C. to dissolve the treated zinc hydroxide starch to prepare a slurry. Inorganic acid extraction treatment (hydrochloric acid dissolution treatment) was performed (W-2). The pH of the slurry at the start of the inorganic acid extraction treatment was 1.0, and the temperature was 61 ° C. Next, the dissolved processed product that has been subjected to the inorganic acid extraction treatment is solid-liquid separated with a filter press to collect the squeezed solution, and 100 g of washing water is supplied to the cake-like insoluble matter and is again squeezed with the filter press to obtain washing water. Was collected and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a zinc-containing liquid (W-3). Tables 8 and 9 show the compositions of the to-be-purified zinc hydroxide starch and the zinc-containing liquid, respectively.

Figure 0004606951
Figure 0004606951

Figure 0004606951
Figure 0004606951

回収した亜鉛含有液482.0gに対して鉄粉482.0gを加えると共に、pHが4以下になるように15%塩酸85.0gを加え、温度を40℃に保って、亜鉛含有液の酸化還元電位が−470mV程度となるようにして180分間撹拌し、撹拌中に亜鉛含有液中のニッケルイオンと鉄を置換して、鉄粉の表面にニッケルが析出したニッケル付着鉄粉が生成するニッケル回収セメンテーション処理(W−4)を行なった。なお、撹拌中にpHが4以下になるように、撹拌を開始してから30分毎に塩酸を2ミリリットルずつ投入した。ニッケル回収セメンテーション処理が終了したとき液の酸化還元電位は−592mV、pHは3.6、温度は43℃であった。そして、ニッケル回収セメンテーション処理が終了後の液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状のニッケル付着鉄粉に洗浄水100gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合してニッケルイオン除去亜鉛含有液とする固液分離処理を行なった(W−5)。ニッケル付着鉄粉及びニッケルイオン除去亜鉛含有液の組成を表8、表9にそれぞれ示す。 Add 482.0 g of iron powder to 482.0 g of the recovered zinc-containing solution, add 85.0 g of 15% hydrochloric acid so that the pH is 4 or less, and maintain the temperature at 40 ° C. to oxidize the zinc-containing solution. Nickel produced by stirring for 180 minutes so that the reduction potential is about -470 mV, replacing nickel ions and iron in the zinc-containing liquid during stirring, and forming nickel-attached iron powder in which nickel is deposited on the surface of the iron powder A recovery cementation process (W-4) was performed. In addition, 2 ml of hydrochloric acid was added every 30 minutes from the start of stirring so that the pH would be 4 or less during stirring. When the nickel recovery cementation process was completed, the oxidation-reduction potential of the liquid was −592 mV, pH was 3.6, and temperature was 43 ° C. Then, the liquid after completion of the nickel recovery cementation process is separated into solid and liquid by a filter press to recover the squeezed liquid, and 100 g of washing water is supplied to the cake-like nickel-attached iron powder and again compressed by the filter press and washed. Water was collected and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain a nickel ion-removed zinc-containing liquid (W-5). The compositions of the nickel-adhered iron powder and nickel ion-removed zinc-containing liquid are shown in Tables 8 and 9, respectively.

図30に示すように、回収したニッケルイオン除去亜鉛含有液(561.3g)の温度を40℃に加熱し過酸化水素水42.3gを添加して酸化還元電位が600mV以上になるように調整して2分間撹拌し、ニッケルイオン除去亜鉛含有液中の第一鉄イオンを第二鉄イオンに変化させる酸化処理を行なった(W−6)。酸化処理終了後の液の酸化還元電位は569mV、pHは1.8、温度は30℃であった。
次いで、酸化処理が完了したニッケルイオン除去亜鉛含有液の温度を60℃となるように加熱しながら、pHが4.5以下となるように炭酸カルシウム29.8gを加えて15分間撹拌し、第二鉄イオンを水酸化第二鉄に変化させる第二鉄中和処理(W−7)を行なった。第二鉄中和処理が終了したときの液のpHは4.1、温度は60℃であった。そして、第二鉄中和処理が終了した液をフィルタープレスで固液分離して搾液を回収すると共に、ケーキ状の水酸化第二鉄澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液に混合して鉄イオン除去亜鉛含有液とする固液分離処理を行なった(W−8)。水酸化第二鉄澱物及び鉄イオン除去亜鉛含有液の組成を表8及び表9にそれぞれ示す。
As shown in FIG. 30, the temperature of the recovered nickel ion-removed zinc-containing liquid (561.3 g) is heated to 40 ° C. and 42.3 g of hydrogen peroxide solution is added to adjust the redox potential to 600 mV or higher. Then, the mixture was stirred for 2 minutes, and an oxidation treatment was performed to change the ferrous ions in the nickel-containing zinc-containing liquid to ferric ions (W-6). The oxidation-reduction potential of the liquid after completion of the oxidation treatment was 569 mV, pH was 1.8, and temperature was 30 ° C.
Next, 29.8 g of calcium carbonate is added so that the pH is 4.5 or lower while heating the nickel ion-removed zinc-containing liquid that has undergone the oxidation treatment to 60 ° C., and the mixture is stirred for 15 minutes. Ferric iron neutralization treatment (W-7) was carried out to change the ferric ion to ferric hydroxide. When the ferric iron neutralization treatment was completed, the pH of the solution was 4.1 and the temperature was 60 ° C. Then, the liquid after the ferric iron neutralization treatment is separated into solid and liquid with a filter press to collect the squeezed liquid, and 200 g of washing water is supplied to the cake-like ferric hydroxide starch and pressed again with the filter press. Then, the washing water was recovered and mixed with the squeezed liquid to perform a solid-liquid separation process to obtain an iron ion-removed zinc-containing liquid (W-8). The compositions of the ferric hydroxide starch and the iron ion-removed zinc-containing liquid are shown in Table 8 and Table 9, respectively.

回収した鉄イオン除去亜鉛含有液(555.5g)の温度が60℃となるように加熱しながら、消石灰15.9gを加えてpHを8〜12の範囲に調整して15分間撹拌し、亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行なった(W−9)。亜鉛中和処理が終了したときの液のpHは10.6、温度は64℃であった。
次いで、亜鉛中和処理が終了した液をフィルタープレスで固液分離して搾液(塩化カルシウム溶液)を回収すると共に、ケーキ状の再回収水酸化亜鉛澱物に洗浄水200gを供給し再度フィルタープレスで圧搾して洗浄水を回収して搾液と混合して廃棄液とする固液分離処理を行なった(W−10)。再回収水酸化亜鉛澱物(水酸化亜鉛含有率の高い澱物)及び廃棄液の組成を表8及び表9にそれぞれ示す。表8に示すように、被精製処理水酸化亜鉛澱物中にはニッケルが35重量%含まれているのに対して、再回収水酸化亜鉛澱物中のニッケル含有量は0.1重量%となり、再回収水酸化亜鉛澱物中の水酸化亜鉛の含有率を向上させることができた。
While heating so that the temperature of the recovered iron ion-removed zinc-containing liquid (555.5 g) is 60 ° C., 15.9 g of slaked lime is added to adjust the pH to the range of 8 to 12, and the mixture is stirred for 15 minutes. The zinc neutralization process which changes ion to zinc hydroxide was performed (W-9). When the zinc neutralization treatment was completed, the pH of the solution was 10.6 and the temperature was 64 ° C.
Next, the solution after completion of the zinc neutralization treatment is solid-liquid separated with a filter press to collect the squeezed solution (calcium chloride solution), and supply 200 g of washing water to the cake-like re-recovered zinc hydroxide starch and filter again. A solid-liquid separation process was performed by pressing with a press to collect washing water and mixing with the squeezed liquid to obtain a waste liquid (W-10). Tables 8 and 9 show the compositions of the re-recovered zinc hydroxide starch (starch having a high zinc hydroxide content) and the waste liquid, respectively. As shown in Table 8, 35% by weight of nickel is contained in the refined treated zinc hydroxide starch, whereas the nickel content in the re-recovered zinc hydroxide starch is 0.1% by weight. Thus, the content of zinc hydroxide in the re-recovered zinc hydroxide starch could be improved.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法を構成する場合も本発明の権利範囲に含まれる。
例えば、第1及び第3の実施の形態で無機酸抽出工程で石膏生成処理及び固液分離処理を行なったが、これらの処理を省略してもよい。第2の実施の形態で、濾過助剤混合処理、石膏生成処理、及び固液分離処理を行なったが、濾過助剤混合処理と石膏生成処理のいずれか一方を省略することも、濾過助剤混合処理、石膏生成処理、及び固液分離処理の全てを省略することもできる。更に、第1〜第3の実施の形態で、硫酸根除去処理工程及を省略することもできる。また、無機酸抽出工程で、無機酸として塩酸を使用したが、硫酸及び硝酸のいずれかを使用することもできる。
更に、第1及び第2の実施の形態では、銅、クロム、亜鉛、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジについて説明したが、銅、鉄及びニッケル、又は、銅、鉄、ニッケル及び亜鉛、又は、銅、クロム、鉄及びニッケル、又は、クロム、鉄及びニッケル、又は、クロム、鉄、ニッケル及び亜鉛を含む多成分含有ニッケルめっき廃液スラッジに対しても適用することができる。
なお、クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジを使用する場合のクロムイオン除去工程では、無機酸抽出工程で得た溶解液に還元剤を加え溶解液中の3価鉄イオンを2価鉄イオンにする還元処理を行なってからアルカリ剤を加えてpHを調整し、溶解液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液としている。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. The case where the recycling method of the multi-component-containing nickel plating waste liquid sludge according to the present invention is configured by combining some or all of the forms and modifications is also included in the scope of the present invention.
For example, in the first and third embodiments, the gypsum generation process and the solid-liquid separation process are performed in the inorganic acid extraction step, but these processes may be omitted. In the second embodiment, the filter aid mixing process, the gypsum generation process, and the solid-liquid separation process are performed. However, either one of the filter aid mixing process and the gypsum generation process may be omitted. All of the mixing process, the gypsum generation process, and the solid-liquid separation process can be omitted. Furthermore, in the first to third embodiments, the sulfate radical removing treatment step and the like can be omitted. Moreover, although hydrochloric acid was used as an inorganic acid in the inorganic acid extraction step, either sulfuric acid or nitric acid can be used.
Further, in the first and second embodiments, the multicomponent-containing nickel plating waste liquid sludge containing copper, chromium, zinc, iron, and nickel has been described. However, copper, iron and nickel, or copper, iron, nickel And zinc, or copper, chromium, iron and nickel, or chromium, iron and nickel, or multi-component nickel plating waste liquid sludge containing chromium, iron, nickel and zinc.
In addition, in the chromium ion removal process in the case of using a multicomponent-containing nickel plating waste liquid sludge containing chromium, iron, and nickel, a reducing agent is added to the solution obtained in the inorganic acid extraction step to add trivalent iron ions in the solution. Is reduced to divalent iron ions, an alkaline agent is added to adjust the pH, and chromium neutralization treatment is performed to change chromium ions in the solution to chromium hydroxide. Separated and used as a chromium ion removal solution.

本発明の第1の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図である。It is process explanatory drawing of the recycling processing method of the multicomponent content nickel plating waste liquid sludge which concerns on the 1st Embodiment of this invention. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸根除去処理の説明図である。It is explanatory drawing of the sulfate radical removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における銅イオン除去工程の説明図である。It is explanatory drawing of the copper ion removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法におけるクロムイオン除去工程の説明図である。It is explanatory drawing of the chromium ion removal process in the recycling processing method of the same multicomponent containing nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における鉄イオン除去工程の説明図である。It is explanatory drawing of the iron ion removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における亜鉛分別回収処理の説明図である。It is explanatory drawing of the zinc separation collection process in the recycling processing method of the same multicomponent containing nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における水酸化亜鉛の精製を行なう際の説明図である。It is explanatory drawing at the time of performing refinement | purification of the zinc hydroxide in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法におけるニッケル分別回収工程の説明図である。It is explanatory drawing of the nickel fraction collection process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸抽出工程及び硫酸ニッケル回収工程の説明図である。It is explanatory drawing of the sulfuric acid extraction process and the nickel sulfate recovery process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 本発明の第2の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図である。It is process explanatory drawing of the recycling processing method of the multicomponent content nickel plating waste liquid sludge which concerns on the 2nd Embodiment of this invention. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における硫酸根除去処理の説明図である。It is explanatory drawing of the sulfate radical removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 本発明の第3の実施の形態に係る多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図である。It is process explanatory drawing of the recycling processing method of the multicomponent content nickel plating waste liquid sludge which concerns on the 3rd Embodiment of this invention. 同多成分含有ニッケルめっき廃液スラッジの再資源化処理方法における銅イオン除去工程の説明図である。It is explanatory drawing of the copper ion removal process in the recycling processing method of the same multicomponent content nickel plating waste liquid sludge. 実施例1における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の工程説明図である。It is process explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 1. FIG. 実施例1における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。FIG. 3 is a detailed explanatory diagram of a method for recycling a multicomponent-containing nickel plating waste liquid sludge in Example 1; 実施例1における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。FIG. 3 is a detailed explanatory diagram of a method for recycling a multicomponent-containing nickel plating waste liquid sludge in Example 1; 実施例1における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。FIG. 3 is a detailed explanatory diagram of a method for recycling a multicomponent-containing nickel plating waste liquid sludge in Example 1; 実施例2における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の無機酸抽出工程の説明図である。It is explanatory drawing of the inorganic acid extraction process of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 2. FIG. 実施例3における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is a detailed explanatory view of the recycling processing method of the multicomponent content nickel plating waste liquid sludge in Example 3. 実施例3における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is a detailed explanatory view of the recycling processing method of the multicomponent content nickel plating waste liquid sludge in Example 3. 実施例3における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is a detailed explanatory view of the recycling processing method of the multicomponent content nickel plating waste liquid sludge in Example 3. 実施例3における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is a detailed explanatory view of the recycling processing method of the multicomponent content nickel plating waste liquid sludge in Example 3. 実施例3における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is a detailed explanatory view of the recycling processing method of the multicomponent content nickel plating waste liquid sludge in Example 3. 実施例4における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is detailed explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 4. FIG. 実施例4における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is detailed explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 4. FIG. 実施例4における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is detailed explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 4. FIG. 実施例4における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is detailed explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 4. FIG. 実施例4における多成分含有ニッケルめっき廃液スラッジの再資源化処理方法の詳細説明図である。It is detailed explanatory drawing of the recycling processing method of the multicomponent containing nickel plating waste liquid sludge in Example 4. FIG. 実施例5における水酸化亜鉛精製処理の詳細説明図である。6 is a detailed explanatory diagram of zinc hydroxide purification treatment in Example 5. FIG. 実施例5における水酸化亜鉛精製処理の詳細説明図である。6 is a detailed explanatory diagram of zinc hydroxide purification treatment in Example 5. FIG.

Claims (23)

銅、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に鉄粉を加えて酸化還元電位を調整し、該溶解液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液に酸化剤を加え該銅イオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
Inorganic acid extraction step of forming a dissolved treatment product by adding an inorganic acid to a multicomponent-containing nickel plating waste liquid sludge containing copper, iron, and nickel, and removing an insoluble matter from the dissolution treatment product to obtain a solution,
Add copper powder to the solution to adjust the oxidation-reduction potential, replace the copper ion in the solution with iron, separate the copper-attached iron powder with copper deposited on the surface, and use it as a copper ion removal solution A removal step;
An oxidizing agent is added to the copper ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the copper ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
A method of recycling a multi-component nickel plating waste liquid sludge, comprising: a nickel sulfate recovery step of performing a cooling crystallization process on the nickel sulfate solution and recovering the crystallized nickel sulfate crystals.
請求項1記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記第二鉄中和処理及び前記ニッケル中和処理のいずれか一方又は双方で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 2. The recycling method for multi-component nickel plating waste liquid sludge according to claim 1, wherein the alkaline agent used in either one or both of the ferric iron neutralization treatment and the nickel neutralization treatment is the previous nickel. It is diluted with a part of the residual liquid after recovering nickel hydroxide starch in the fractional recovery step, and the remaining part of the residual liquid is mixed with the multicomponent-containing nickel plating waste liquid sludge. Recycling method for multi-component nickel plating waste liquid sludge. クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に還元剤を加え該溶解液中の3価鉄イオンを2価鉄イオンにする還元処理を行なってからアルカリ剤を加えてpHを調整し、該溶解液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液とするクロムイオン除去工程と、
前記クロムイオン除去液に酸化剤を加え該クロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
An inorganic acid extraction step of forming a dissolved treatment product by adding an inorganic acid to a multicomponent-containing nickel plating waste liquid sludge containing chromium, iron, and nickel, and removing an insoluble matter from the dissolved treatment product to obtain a solution;
A reducing agent is added to the solution to reduce the trivalent iron ions in the solution to divalent iron ions, an alkaline agent is added to adjust the pH, and the chromium ions in the solution are hydroxylated. Chromium ion removal process that performs chromium neutralization treatment to change to chromium, separates the generated chromium hydroxide starch and makes a chromium ion removal solution,
An oxidizing agent is added to the chromium ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the chromium ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
A method of recycling a multi-component nickel plating waste liquid sludge, comprising: a nickel sulfate recovery step of performing a cooling crystallization process on the nickel sulfate solution and recovering the crystallized nickel sulfate crystals.
銅、クロム、鉄、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を得る無機酸抽出工程と、
前記溶解液に鉄粉を加えて酸化還元電位を調整し、該溶解液中の銅イオンと鉄を置換し表面に銅が析出した銅付着鉄粉を分離して銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液にアルカリ剤を加えてpHを調整し、該銅イオン除去液中のクロムイオンを水酸化クロムに変えるクロム中和処理を行ない、生成した水酸化クロム澱物を分離してクロムイオン除去液とするクロムイオン除去工程と、
前記クロムイオン除去液に酸化剤を加え該クロムイオン除去液中の2価鉄イオンを3価鉄イオンに酸化する酸化処理を行なってからアルカリ剤を加えてpHを調整し、該3価鉄イオンを水酸化第二鉄に変える第二鉄中和処理を行ない、生成した水酸化第二鉄澱物を分離した処理液とする鉄イオン除去工程と、
前記処理液にアルカリ剤を加えてpHを調整し、該処理液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
An inorganic acid extraction step of forming a dissolved processed product by adding an inorganic acid to a sludge sludge containing multicomponents containing copper, chromium, iron, and nickel to obtain a dissolved solution by removing an insoluble matter from the processed solution; ,
Add copper powder to the solution to adjust the oxidation-reduction potential, replace the copper ion in the solution with iron, separate the copper-attached iron powder with copper deposited on the surface, and use it as a copper ion removal solution A removal step;
An alkaline agent is added to the copper ion removing solution to adjust the pH, and a chromium neutralization treatment is performed to change chromium ions in the copper ion removing solution into chromium hydroxide. A chromium ion removal step as an ion removal solution;
An oxidizing agent is added to the chromium ion removing solution, an oxidation treatment is performed to oxidize divalent iron ions in the chromium ion removing solution to trivalent iron ions, an alkaline agent is added to adjust the pH, and the trivalent iron ions are adjusted. A ferric hydroxide neutralization treatment to convert ferric hydroxide into ferric hydroxide, and a ferric hydroxide starch produced as a separated treatment solution,
A nickel fractionation and recovery step of adjusting the pH by adding an alkaline agent to the treatment liquid, performing nickel neutralization treatment to change nickel ions in the treatment liquid to nickel hydroxide, and generating nickel hydroxide starch;
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
A method of recycling a multi-component nickel plating waste liquid sludge, comprising: a nickel sulfate recovery step of performing a cooling crystallization process on the nickel sulfate solution and recovering the crystallized nickel sulfate crystals.
請求項3及び4のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記クロム中和処理、前記第二鉄中和処理、及び前記ニッケル中和処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 3 and 4, wherein any of the chromium neutralization treatment, the ferric iron neutralization treatment, and the nickel neutralization treatment is performed. The alkaline agent used in 1 or 2 or more is diluted with a part of the remaining liquid after recovering the nickel hydroxide starch in the previous nickel fraction recovery process, and the remaining part of the residual liquid is A method for recycling a multicomponent-containing nickel plating waste liquid sludge, wherein the multicomponent-containing nickel plating waste liquid sludge is mixed. 請求項1〜5のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部又は全部を前記処理液に混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 In the recycling method of the multicomponent content nickel plating waste liquid sludge of any one of Claims 1-5, the residual nickel sulfate solution after collect | recovering the nickel sulfate crystal | crystallization crystallized in the last nickel sulfate recovery process The calcium source is added to the gypsum and the generated gypsum is separated to remove the sulfate radicals in the remaining nickel sulfate solution to form a sulfate radical removal solution, and part or all of the sulfate radical removal solution is mixed with the treatment solution A method for recycling a multi-component nickel-plated waste liquid sludge. 請求項1〜5いずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 In the recycling method of the multicomponent content nickel plating waste liquid sludge of any one of Claims 1-5, the residual nickel sulfate solution after collect | recovering the nickel sulfate crystal | crystallization crystallized in the last nickel sulfate recovery process is used. A method for recycling a multicomponent-containing nickel plating waste liquid sludge, wherein the multicomponent-containing nickel plating waste liquid sludge is mixed. 請求項1記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記多成分含有ニッケルめっき廃液スラッジが更に亜鉛を有する場合は、前記ニッケル分別回収工程で、該ニッケル分別回収工程で使用する前記処理液にアルカリ剤を加えてpHを調整し、該処理液中の亜鉛イオンから水酸化亜鉛澱物を生成させて分離する亜鉛分別回収処理を施してから前記ニッケル中和処理を行なうことを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claim 1, wherein when the multicomponent-containing nickel plating waste liquid sludge further contains zinc, it is used in the nickel fractional recovery step in the nickel fractional recovery step. The alkali neutralization agent is added to the treatment liquid to adjust the pH, and the zinc neutralization treatment is performed to generate and separate zinc hydroxide starch from the zinc ions in the treatment liquid, and then the nickel neutralization treatment is performed. Recycling method of nickel component waste liquid sludge containing multiple components. 請求項8記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記第二鉄中和処理、前記ニッケル中和処理、及び前記亜鉛分別回収処理で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multi-component-containing nickel plating waste liquid sludge according to claim 8, wherein the alkali agent used in the ferric iron neutralization treatment, the nickel neutralization treatment, and the zinc fraction collection treatment is It is diluted with a part of the residual liquid after recovering the nickel hydroxide starch in the nickel fraction recovery step, and the remaining part of the residual liquid is mixed with the multicomponent-containing nickel plating waste liquid sludge. Recycling method for multi-component nickel plating waste liquid sludge. 請求項3及び4のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記多成分含有ニッケルめっき廃液スラッジが更に亜鉛を有する場合は、前記ニッケル分別回収工程で、該ニッケル分別回収工程で使用する前記処理液にアルカリ剤を加えてpHを調整し、該処理液中の亜鉛イオンから水酸化亜鉛澱物を生成させて分離する亜鉛分別回収処理を施してから前記ニッケル中和処理を行なうことを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 In the recycling method of the multi-component-containing nickel plating waste liquid sludge according to any one of claims 3 and 4, in the case where the multi-component-containing nickel plating waste liquid sludge further contains zinc, Then, an alkaline agent is added to the treatment liquid used in the nickel separation and recovery step to adjust the pH, and after performing a zinc separation and recovery treatment that generates and separates zinc hydroxide starch from zinc ions in the treatment liquid. A method for recycling a multicomponent nickel-plated waste liquid sludge, wherein the nickel neutralization treatment is performed. 請求項10記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記クロム中和処理、前記第二鉄中和処理、前記ニッケル中和処理、及び前記亜鉛分別回収処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent-containing nickel plating waste liquid sludge according to claim 10, wherein any one of the chromium neutralization treatment, the ferric iron neutralization treatment, the nickel neutralization treatment, and the zinc fraction collection treatment Alternatively, the alkali agent used in two or more is diluted with a part of the remaining liquid after the nickel hydroxide starch is recovered in the previous nickel fraction recovery step, and the remaining part of the residual liquid is A method for recycling a multi-component nickel plating waste liquid sludge, which is mixed with the component-containing nickel plating waste liquid sludge. 請求項8〜11のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部又は全部を前記処理液から亜鉛イオンを除去した後のニッケルイオン含有液に混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step in the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 8 to 11 The gypsum produced by adding a calcium source is separated to remove sulfate radicals in the residual nickel sulfate solution to form a sulfate radical removal solution, and a part or all of the sulfate radical removal solution is zinc from the treatment solution. A recycling method for multi-component nickel plating waste liquid sludge, which is mixed with a nickel ion-containing liquid after removing ions. 請求項8〜11のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step in the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 8 to 11 Is mixed with the multicomponent-containing nickel plating waste liquid sludge. A method for recycling the multicomponent-containing nickel plating waste liquid sludge. 請求項8〜13のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、分離された前記水酸化亜鉛澱物に対して、該水酸化亜鉛澱物を無機酸に溶解させて亜鉛含有液を調製する無機酸抽出処理と、
前記亜鉛含有液に鉄粉を加えて酸化還元電位を調整して該亜鉛含有液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離したニッケルイオン除去亜鉛含有液を形成するニッケルイオン分離処理と、
前記ニッケルイオン除去亜鉛含有液に酸化剤を加え該ニッケルイオン除去亜鉛含有液中の2価鉄イオンを3価鉄イオンに酸化してからpHを調整して該3価鉄イオンから生成した水酸化第二鉄澱物を分離して鉄イオン除去亜鉛含有液を形成する鉄イオン分離処理と、
前記鉄イオン除去亜鉛含有液にアルカリ剤を加えてpHを調整し、該鉄イオン除去亜鉛含有液中の亜鉛イオンを水酸化亜鉛に変えて、水酸化亜鉛含有率の高い澱物を回収する水酸化亜鉛再回収処理とを施すことを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
The recycling method of the multi-component nickel plating waste liquid sludge according to any one of claims 8 to 13, wherein the zinc hydroxide starch is treated with an inorganic acid with respect to the separated zinc hydroxide starch. Inorganic acid extraction treatment to prepare a zinc-containing solution by dissolving in,
A nickel ion-removed zinc-containing liquid in which iron powder is added to the zinc-containing liquid to adjust the oxidation-reduction potential to replace nickel ions and iron in the zinc-containing liquid and nickel is deposited on the surface. Nickel ion separation treatment to be formed;
An oxidizing agent is added to the nickel ion-removed zinc-containing liquid to oxidize divalent iron ions in the nickel-ion-removed zinc-containing liquid to trivalent iron ions, and then the pH is adjusted to generate hydroxyl from the trivalent iron ions. An iron ion separation process for separating ferric starch to form an iron ion-removed zinc-containing liquid;
Water for recovering starch having a high zinc hydroxide content by adjusting the pH by adding an alkaline agent to the iron ion-removed zinc-containing solution and changing zinc ions in the iron ion-removed zinc-containing solution to zinc hydroxide A method of recycling a multi-component nickel plating waste liquid sludge characterized by performing a zinc oxide re-recovery treatment.
銅、亜鉛、及びニッケルを含む多成分含有ニッケルめっき廃液スラッジに無機酸を加え溶解処理物を形成し、該溶解処理物から不溶解分を除去して溶解液を回収する無機酸抽出工程と、
前記溶解液にアルカリ剤を加えてpHを調整し、該溶解液中の銅イオンを水酸化銅に変える銅中和処理を行ない、生成した水酸化銅澱物を分離した銅イオン除去液とする銅イオン除去工程と、
前記銅イオン除去液にアルカリ剤を加えてpHを調整し、該銅イオン除去液中の亜鉛イオンを水酸化亜鉛に変える亜鉛中和処理を行ない、生成した水酸化亜鉛澱物を分離した亜鉛イオン除去液を形成する亜鉛イオン除去工程と、
前記亜鉛イオン除去液にアルカリ剤を加えてpHを調整し、該亜鉛イオン除去液中のニッケルイオンを水酸化ニッケルに変えるニッケル中和処理を行ない、水酸化ニッケル澱物を生成させるニッケル分別回収工程と、
回収した前記水酸化ニッケル澱物に硫酸を加えて硫酸ニッケル溶液を形成する硫酸抽出工程と、
前記硫酸ニッケル溶液に冷却晶析処理を行ない、晶析した硫酸ニッケル結晶を回収する硫酸ニッケル回収工程とを有することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
An inorganic acid extraction step for forming a dissolved treatment product by adding an inorganic acid to a multicomponent-containing nickel plating waste liquid sludge containing copper, zinc, and nickel, removing an insoluble matter from the dissolved treatment product, and collecting the solution.
An alkaline agent is added to the solution to adjust the pH, and a copper neutralization treatment is performed in which the copper ions in the solution are changed to copper hydroxide, and the resulting copper hydroxide starch is separated into a copper ion removing solution. A copper ion removal step;
Zinc ions obtained by adjusting the pH by adding an alkaline agent to the copper ion removing liquid, and performing zinc neutralization treatment to change the zinc ions in the copper ion removing liquid to zinc hydroxide, and separating the generated zinc hydroxide starch A zinc ion removal step for forming a removal solution;
Nickel separation and recovery step of adjusting the pH by adding an alkaline agent to the zinc ion removing liquid, performing nickel neutralization treatment to change nickel ions in the zinc ion removing liquid into nickel hydroxide, and generating nickel hydroxide starch When,
A sulfuric acid extraction step of adding sulfuric acid to the recovered nickel hydroxide starch to form a nickel sulfate solution;
A method of recycling a multi-component nickel plating waste liquid sludge, comprising: a nickel sulfate recovery step of performing a cooling crystallization process on the nickel sulfate solution and recovering the crystallized nickel sulfate crystals.
請求項15記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記銅中和処理、前記亜鉛中和処理、及び前記ニッケル中和処理のいずれか1又は2以上で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈され、該残液の残りの一部は前記多成分含有ニッケルめっき廃液スラッジに混合されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 16. The recycling method for multi-component nickel plating waste liquid sludge according to claim 15, wherein the alkali used in any one or more of the copper neutralization treatment, the zinc neutralization treatment, and the nickel neutralization treatment. The agent is diluted with a part of the residual liquid after the nickel hydroxide starch is recovered in the previous nickel fraction recovery step, and the remaining part of the residual liquid is mixed with the multi-component nickel plating waste liquid sludge. A method for recycling a multi-component nickel plating waste liquid sludge, characterized in that: 請求項15及び16のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、分離した前記水酸化亜鉛澱物に対して、該水酸化亜鉛澱物を無機酸に溶解させて亜鉛含有液を調製する無機酸抽出処理と、
前記亜鉛含有液に鉄粉を加えて酸化還元電位を調整して該亜鉛含有液中のニッケルイオンと鉄を置換し表面にニッケルが析出したニッケル付着鉄粉を分離したニッケルイオン除去亜鉛含有液を形成するニッケルイオン分離処理と、
前記ニッケルイオン除去亜鉛含有液に酸化剤を加え該ニッケルイオン除去亜鉛含有液中の2価鉄イオンを3価鉄イオンに酸化してからpHを調整して該3価鉄イオンから生成した水酸化第二鉄澱物を分離して鉄イオン除去亜鉛含有液を形成する鉄イオン分離処理と、
前記鉄イオン除去亜鉛含有液にアルカリ剤を加えてpHを調整し、該鉄イオン除去亜鉛含有液中の亜鉛イオンを水酸化亜鉛に変えて、水酸化亜鉛含有率の高い澱物を回収する水酸化亜鉛再回収処理とを施すことを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。
The recycling method of the multi-component nickel plating waste liquid sludge according to any one of claims 15 and 16, wherein the zinc hydroxide starch is converted into an inorganic acid with respect to the separated zinc hydroxide starch. An inorganic acid extraction treatment to prepare a zinc-containing solution by dissolving;
A nickel ion-removed zinc-containing liquid in which iron powder is added to the zinc-containing liquid to adjust the oxidation-reduction potential to replace nickel ions and iron in the zinc-containing liquid and nickel is deposited on the surface. Nickel ion separation treatment to be formed;
An oxidizing agent is added to the nickel ion-removed zinc-containing liquid to oxidize divalent iron ions in the nickel-ion-removed zinc-containing liquid to trivalent iron ions, and then the pH is adjusted to generate hydroxyl from the trivalent iron ions. An iron ion separation process for separating ferric starch to form an iron ion-removed zinc-containing liquid;
Water for recovering starch having a high zinc hydroxide content by adjusting the pH by adding an alkaline agent to the iron ion-removed zinc-containing solution and changing zinc ions in the iron ion-removed zinc-containing solution to zinc hydroxide A method of recycling a multi-component nickel plating waste liquid sludge characterized by performing a zinc oxide re-recovery treatment.
請求項17記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記水酸化亜鉛再回収処理で使用されるアルカリ剤は、前回のニッケル分別回収工程で水酸化ニッケル澱物を回収した後の残液の一部を用いて希釈されることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 In the recycling method of the multicomponent nickel plating waste liquid sludge of Claim 17, the alkaline agent used by the said zinc hydroxide re-recovery process collect | recovered nickel hydroxide starch in the last nickel fraction collection process. A method for recycling a multicomponent-containing nickel plating waste liquid sludge, wherein a part of the remaining liquid is diluted. 請求項15〜18のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液にカルシウム源を加えて生成した石膏を分離して該残硫酸ニッケル溶液中の硫酸根を除去して硫酸根除去液を形成し、該硫酸根除去液の一部を前記溶解液、前記銅イオン除去液、及び前記亜鉛イオン除去液のいずれか1又は2以上に混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step in the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 15 to 18 The gypsum produced by adding a calcium source is separated to remove sulfate radicals in the residual nickel sulfate solution to form a sulfate radical removal solution, and a part of the sulfate radical removal solution is used as the solution, the copper ion A recycling method for multicomponent-containing nickel plating waste liquid sludge, wherein the removal liquid and any one or more of the zinc ion removal liquid are mixed. 請求項15〜18のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前回の硫酸ニッケル回収工程で晶析した硫酸ニッケル結晶を回収した後の残硫酸ニッケル溶液を前記多成分含有ニッケルめっき廃液スラッジに混合することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The residual nickel sulfate solution after recovering the nickel sulfate crystals crystallized in the previous nickel sulfate recovery step in the recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 15 to 18 Is mixed with the multicomponent-containing nickel plating waste liquid sludge. A method for recycling the multicomponent-containing nickel plating waste liquid sludge. 請求項1〜20のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸抽出工程で、前記溶解処理物にカルシウム源を加え該溶解処理物中の硫酸根と反応させて石膏を生成させ、該石膏を前記不溶解分と共に除去することを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 1 to 20, wherein in the inorganic acid extraction step, a calcium source is added to the dissolved processed product, A method of recycling a multi-component nickel plating waste liquid sludge comprising reacting with a sulfate group to produce gypsum and removing the gypsum together with the insoluble matter. 請求項1〜20のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸抽出工程で、前記溶解処理物から前記不溶解分を除去してからカルシウム源を加えて硫酸根と反応させて石膏を生成させ、該石膏を除去して前記溶解液とすることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 21. The recycling method for multi-component nickel plating waste liquid sludge according to any one of claims 1 to 20, wherein in the inorganic acid extraction step, the insoluble matter is removed from the dissolved product, and then calcium is removed. A method for recycling a multicomponent nickel-plated waste liquid sludge, wherein a source is added to react with sulfate radicals to form gypsum, and the gypsum is removed to obtain the solution. 請求項1〜22のいずれか1項に記載の多成分含有ニッケルめっき廃液スラッジの再資源化処理方法において、前記無機酸は塩酸であることを特徴とする多成分含有ニッケルめっき廃液スラッジの再資源化処理方法。 The recycling method of the multicomponent-containing nickel plating waste liquid sludge according to any one of claims 1 to 22, wherein the inorganic acid is hydrochloric acid. Processing method.
JP2005176661A 2005-06-16 2005-06-16 Multi-component nickel plating waste sludge recycling method Expired - Fee Related JP4606951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176661A JP4606951B2 (en) 2005-06-16 2005-06-16 Multi-component nickel plating waste sludge recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176661A JP4606951B2 (en) 2005-06-16 2005-06-16 Multi-component nickel plating waste sludge recycling method

Publications (2)

Publication Number Publication Date
JP2006347815A JP2006347815A (en) 2006-12-28
JP4606951B2 true JP4606951B2 (en) 2011-01-05

Family

ID=37644044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176661A Expired - Fee Related JP4606951B2 (en) 2005-06-16 2005-06-16 Multi-component nickel plating waste sludge recycling method

Country Status (1)

Country Link
JP (1) JP4606951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923795A (en) * 2012-11-22 2013-02-13 赣州市豪鹏科技有限公司 Method for preparing nickel sulfate
KR101510532B1 (en) 2013-09-12 2015-04-10 주식회사 포스코 The method for recovering Fe from Iron chloride solution acquired during hydrometallurgical process

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054832B1 (en) * 2009-09-30 2011-08-05 한국세라믹기술원 Manufacturing method of zinc oxide powder recycled zinc-containing waste acid
JP5642987B2 (en) * 2010-03-31 2014-12-17 パンパシフィック・カッパー株式会社 Method for recovering nickel from copper electrolyte
JP5539851B2 (en) * 2010-12-28 2014-07-02 Jx日鉱日石金属株式会社 Method for preparing purified nickel solution, method for producing nickel metal, and method for producing nickel carbonate
JP5822959B2 (en) * 2014-02-03 2015-11-25 パンパシフィック・カッパー株式会社 Crude nickel sulfate recovery method and crude nickel sulfate recovery system from copper removal electrolyte
CN104593598A (en) * 2014-12-18 2015-05-06 北京矿冶研究总院 Method for resource utilization of multiple metals in electroplating sludge
CN105200238B (en) * 2015-09-29 2017-12-19 广西银亿再生资源有限公司 A kind of method that copper and mickel is reclaimed in the plating piece from plastics
CN105543477B (en) * 2015-12-30 2017-05-31 中南大学 A kind of hydrometallurgy purification process controlling cycle computational methods based on oxidation-reduction potential
CN106435174A (en) * 2016-10-08 2017-02-22 珠海格力电器股份有限公司 Copper dipping method by gas-liquid emulsification method
CN106902546B (en) * 2017-04-10 2019-02-15 湖南中伟新能源科技有限公司 One kind extracting nickel sulfate hydraulic mixing energy conservation extraction equipment from old and useless battery
KR101949769B1 (en) * 2017-11-03 2019-02-20 (주)케이엠씨 Manufacturing method of nickel carbonate using waste etching solution
KR102152923B1 (en) * 2018-12-21 2020-09-07 케이지에너켐(주) Manufacturing Method of Highly Purified Nickel Sulfate from the raw materials of Nickel, Cobalt and Manganese Mixed Sulfide Precipitation
JP7232119B2 (en) * 2019-04-26 2023-03-02 Jx金属株式会社 Method for processing lithium-ion battery waste and method for producing sulfate
JP6757922B1 (en) * 2019-11-20 2020-09-23 公信 山▲崎▼ Metal recovery method from sludge
CN111558606B (en) * 2020-06-05 2021-10-29 瀜矿环保科技(上海)有限公司 Hydrometallurgical multistage reaction and separation system based on carbon dioxide
CN112708765A (en) * 2020-12-16 2021-04-27 天津华庆百胜能源有限公司 Electroplating sludge recycling treatment method
KR102266892B1 (en) * 2021-01-26 2021-06-18 (주)세화이에스 method for recovering nickel sulfate from waste comprising nickel
CN113717223B (en) * 2021-09-03 2023-07-21 西南科技大学 Resource utilization method of industrial ferrite-containing solution
CN114480883B (en) * 2021-12-16 2023-11-21 成都先进金属材料产业技术研究院股份有限公司 Method for preparing high-purity vanadium pentoxide by removing silicon and chromium in vanadium solution through nickel ion cooperation
CN115058597B (en) * 2022-06-30 2024-06-04 盛隆资源再生(无锡)有限公司 Recovery treatment method of electroplating sludge containing calcium, iron, cobalt and nickel
CN115386730B (en) * 2022-08-29 2023-10-20 广东飞南资源利用股份有限公司 Method for recycling copper and nickel from copper and nickel-containing sludge
KR102496184B1 (en) * 2022-10-06 2023-02-06 한국지질자원연구원 Method for recovering nickel hydroxide and nickel sulfate from multilayer ceramic capacitor sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2003095660A (en) * 2001-09-20 2003-04-03 Sumitomo Metal Mining Co Ltd Method of removing impurities from aqueous solution of nickel sulfate
JP2005015272A (en) * 2003-06-26 2005-01-20 Nippon Steel Corp Recovery method of nickel salt from nickel-containing waste solution sludge

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956590A (en) * 1982-09-22 1984-04-02 Sumitomo Metal Mining Co Ltd Method for recovering nickel sulfate from waste liquid of copper electrolysis
JP3255736B2 (en) * 1992-10-16 2002-02-12 株式会社アステック入江 Treatment method of iron chloride waste liquid
JP3226634B2 (en) * 1992-10-16 2001-11-05 株式会社アステック入江 Purification method of iron chloride waste liquid containing a small amount of chromium ion
JP3739845B2 (en) * 1995-12-11 2006-01-25 鶴見曹達株式会社 Treatment method of ferric chloride waste liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2003095660A (en) * 2001-09-20 2003-04-03 Sumitomo Metal Mining Co Ltd Method of removing impurities from aqueous solution of nickel sulfate
JP2005015272A (en) * 2003-06-26 2005-01-20 Nippon Steel Corp Recovery method of nickel salt from nickel-containing waste solution sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923795A (en) * 2012-11-22 2013-02-13 赣州市豪鹏科技有限公司 Method for preparing nickel sulfate
CN102923795B (en) * 2012-11-22 2015-11-18 赣州市豪鹏科技有限公司 The preparation method of single nickel salt
KR101510532B1 (en) 2013-09-12 2015-04-10 주식회사 포스코 The method for recovering Fe from Iron chloride solution acquired during hydrometallurgical process

Also Published As

Publication number Publication date
JP2006347815A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4606951B2 (en) Multi-component nickel plating waste sludge recycling method
JP5444024B2 (en) Recycling of zinc plating waste liquid
KR100866824B1 (en) Method for processing electro-precipitation copper
KR102556133B1 (en) Wastewater Treatment Method
JP4710034B2 (en) Arsenic-containing material treatment method
JP2014208338A (en) Method for separating and immobilizing arsenic
JP2004284848A (en) Method of recovering nickel sulfate from nickel-containing waste water sludge
JP4826532B2 (en) Processing method of molten fly ash
JP7016463B2 (en) How to collect tellurium
TW200524828A (en) Production of titania
AU2012212381B2 (en) Precipitation of zinc from solution
JP2018193588A (en) Method for leaching sulfide
JP2012082458A (en) Method for separating and recovering zinc from zinc plating waste liquid
KR102543786B1 (en) Wastewater Treatment Method
AU2012212381A1 (en) Precipitation of zinc from solution
JP2007237054A (en) Method of recycling multicomponent metal plating waste liquid sludge
AU2015384689B2 (en) Wet smelting method for nickel oxide ore
WO2013187367A1 (en) Neutralization method
JP2012513536A (en) Method for recovering secondary zinc oxide rich in fluoride and chloride
JP5704410B2 (en) Method for producing hematite for iron making
CN104755640B (en) Zinc is reclaimed from lead ore residue
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP2008246398A (en) Method for recovering gypsum from molten fly ash
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
KR20120090116A (en) Method for manufacturing zinc coating solution using high purity zinc oxide recovered from recyling secondary dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees