JP2018193588A - Method for leaching sulfide - Google Patents

Method for leaching sulfide Download PDF

Info

Publication number
JP2018193588A
JP2018193588A JP2017098839A JP2017098839A JP2018193588A JP 2018193588 A JP2018193588 A JP 2018193588A JP 2017098839 A JP2017098839 A JP 2017098839A JP 2017098839 A JP2017098839 A JP 2017098839A JP 2018193588 A JP2018193588 A JP 2018193588A
Authority
JP
Japan
Prior art keywords
sulfide
leaching
nickel
sulfuric acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098839A
Other languages
Japanese (ja)
Other versions
JP6898586B2 (en
Inventor
浩史 庄司
Hiroshi Shoji
浩史 庄司
松本 伸也
Shinya Matsumoto
伸也 松本
工藤 敬司
Takashi Kudo
敬司 工藤
小林 宙
Chu Kobayashi
宙 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017098839A priority Critical patent/JP6898586B2/en
Publication of JP2018193588A publication Critical patent/JP2018193588A/en
Application granted granted Critical
Publication of JP6898586B2 publication Critical patent/JP6898586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for leaching a sulfide that can suppress costs by inhibiting sulfur from being completely oxidized in a reaction vessel into which a sulfide slurry including a sulfide containing nickel or cobalt has been supplied.SOLUTION: The method for leaching a sulfide comprises supplying an oxygen-containing gas into a reaction vessel into which a sulfide slurry prepared by mixing a sulfide containing at least one of nickel and cobalt with a sulfuric acid acidic solution containing an iron ion has been supplied while controlling a temperature of the sulfide slurry to 80°C or more to less than 115°C to thereby produce a liquid after leaching and sulfur under conditions that an oxygen partial pressure in the reaction vessel is more than 0 MPa to 1 MPa or less. By the method, sulfur can be inhibited from being completely oxidized in leaching nickel and the like from a sulfide. Consequently, the generation of sulfuric acid can be suppressed and therefore, the amount of sulfuric acid to be treated can be reduced and the cost required for treatment of sulfuric acid can be suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、硫化物の浸出方法に関する。さらに詳しくは、所定の硫化物に含まれるニッケル等を硫酸酸性溶液に浸出すると同時に、硫黄が完全に酸化されるのを抑制する、硫化物の浸出方法に関する。   The present invention relates to a sulfide leaching method. More specifically, the present invention relates to a sulfide leaching method in which nickel or the like contained in a predetermined sulfide is leached into a sulfuric acid acidic solution, and at the same time, sulfur is prevented from being completely oxidized.

ニッケルやコバルトを精錬する方法の一部として、ニッケル酸化鉱石を硫酸溶液とともにオートクレーブなどの反応溶液に入れ、高温高圧下でニッケル酸化鉱石に含有するニッケルやコバルトを硫酸溶液中に浸出するHPAL(High Pressure Acid Leach)プロセスがある。このHPALプロセスで得られた浸出液は、ニッケルやコバルトを含有する硫酸酸性溶液である。この浸出液は、次にアルカリ等が添加されて中和澱物として不純物が沈殿分離された中和後液となり、次いでこの中和後液に硫化剤が添加されて混合硫化物(Mixed Sulfide:以下、本明細書において「MS」と称することがある)が析出する。そして、硫化後液とMSが固液分離されてMSが回収される。   As part of the method of refining nickel and cobalt, HPAL (High) is used in which nickel oxide ore is put in a reaction solution such as an autoclave together with a sulfuric acid solution, and nickel and cobalt contained in the nickel oxide ore are leached into the sulfuric acid solution at high temperature and high pressure. There is a Pressure Acid Leach) process. The leachate obtained by this HPAL process is a sulfuric acid acidic solution containing nickel and cobalt. This leachate is then neutralized and added to the neutralized starch, where impurities are precipitated and separated, and then the neutralized solution is added with a sulfiding agent to form a mixed sulfide (hereinafter referred to as “Mixed Sulfide”). , Sometimes referred to herein as “MS”). Then, the liquid after sulfiding and MS are separated into solid and liquid, and MS is recovered.

上述の回収されたMSに、硫酸や塩酸などの酸を加えて浸出すると、ニッケルやコバルトの硫酸塩溶液や塩化物溶液(以下、本明細書において「浸出後液」と称することがある)を得ることができ、これらの溶液に中和剤を添加し、溶媒抽出等の手段を用いて不純物を分離した後、ニッケルやコバルトを含む酸性溶液を電解採取などの方法に供することで、ニッケルメタルやコバルトメタルが精製され、これらが高純度のメタルとして取引される。   When an acid such as sulfuric acid or hydrochloric acid is added to the recovered MS and leached, a sulfate solution or chloride solution of nickel or cobalt (hereinafter sometimes referred to as “post-leaching solution” in this specification). Nickel metal can be obtained by adding a neutralizing agent to these solutions, separating impurities using means such as solvent extraction, and then subjecting an acidic solution containing nickel or cobalt to a method such as electrowinning. And cobalt metal is refined and these are traded as high purity metal.

上記の酸を加えて浸出する工程で、塩化物溶液が用いられると、その後の電解採取では、アノードから塩素ガスが発生するため、設備をこの塩素ガスに耐えうるものにする必要がある。しかし、硫酸塩溶液を用いた電解採取では、アノードから発生するのは酸素になるので、塩化物溶液を用いる場合と比較して設備を特殊にする必要がなく、これにより製造費用を抑えることができるとともに、製造が容易であるという効果を有する。   If a chloride solution is used in the leaching step by adding the acid, chlorine gas is generated from the anode in the subsequent electrowinning. Therefore, the equipment must be able to withstand this chlorine gas. However, in the electrowinning using a sulfate solution, oxygen is generated from the anode, so there is no need for special equipment as compared with the case of using a chloride solution, thereby reducing the manufacturing cost. In addition, it has the effect of being easy to manufacture.

上記のニッケルやコバルトを精錬する方法の一部を構成している、MSを硫酸で浸出する方法として、例えば特許文献1に開示された方法がある。   As a method of leaching MS with sulfuric acid, which constitutes a part of the above-described method for refining nickel and cobalt, there is a method disclosed in Patent Document 1, for example.

特許文献1の方法は、数1に示すように、硫化物(ここではニッケル硫化物)を溶液中でスラリーとし、酸素を用いて硫酸塩(ここでは硫酸ニッケル)を得るものである。浸出時の反応温度を110〜165℃、反応容器内の酸素分圧を0.05〜2.0MPaの範囲とすることで、スラリー中の硫化物に含有された硫化物イオン(S2−)全量を硫酸イオン(SO 2−)にまで酸化させている。 In the method of Patent Document 1, as shown in Equation 1, a sulfide (here, nickel sulfide) is made into a slurry in a solution, and a sulfate (here, nickel sulfate) is obtained using oxygen. By setting the reaction temperature during leaching to 110 to 165 ° C. and the oxygen partial pressure in the reaction vessel to the range of 0.05 to 2.0 MPa, sulfide ions contained in the sulfide in the slurry (S 2− ) The whole amount is oxidized to sulfate ion (SO 4 2− ).

(数1)
NiS + 2O → NiSO
(Equation 1)
NiS + 2O 2 → NiSO 4

しかしながら、上記の硫化物を酸素によって完全に酸化させる、所謂「完全酸化浸出法」を用いた場合、硫黄のバランスが取れなくなり、発生する硫酸の処理に要する費用が大きくなるという問題がある。   However, when the so-called “complete oxidation leaching method” in which the sulfide is completely oxidized with oxygen is used, there is a problem in that sulfur cannot be balanced and the cost required for the treatment of the generated sulfuric acid increases.

「硫黄のバランスが取れなくなる」と言う点を以下に具体的に説明する。上記の完全酸化浸出法で得た硫酸ニッケルを含有する酸性溶液を、上述のように電解液として用いて電解採取によってニッケルメタルを回収する場合は、数2に示したように、ニッケルがカソード上に析出した後に電解液内で硫酸が生成する。生成した硫酸をそのまま放置すると、ニッケルの電析に伴って電解液の硫酸濃度が許容限界以上に増加して最後には操業できなくなる。このため、電解液の一部を抜き出して消石灰などの中和剤を加えて硫酸を中和し電解液を処分する作業が必要となる。この結果、処理に用いる中和剤や発生する澱物を処理するための費用がかかる。   The point that “the sulfur balance is lost” will be specifically described below. When nickel metal is recovered by electrowinning using the acidic solution containing nickel sulfate obtained by the above-described complete oxidation leaching method as the electrolytic solution as described above, as shown in Equation 2, nickel is on the cathode. Then, sulfuric acid is generated in the electrolytic solution. If the produced sulfuric acid is left as it is, the sulfuric acid concentration of the electrolytic solution increases beyond the allowable limit with the electrodeposition of nickel, and it becomes impossible to operate at the end. For this reason, the work which extracts a part of electrolyte solution, adds neutralizing agents, such as slaked lime, neutralizes sulfuric acid, and disposes of electrolyte solution is needed. As a result, there is a cost for treating the neutralizing agent used in the treatment and the generated starch.

(数2)
NiSO + 2H + 2e → Ni +HSO
(Equation 2)
NiSO 4 + 2H + + 2e → Ni 0 + H 2 SO 4

ここで、ニッケルやコバルトを精錬する一連の方法では、上述したように、ニッケル酸化鉱石やMSからニッケルを浸出する工程で、硫酸が用いられている。数2で生成した硫酸をこの浸出する工程で用いることも考えられる。しかし硫化物に含有された硫黄をすべて酸化して硫酸イオンにしてしまうと、生成した硫酸量は上記の浸出に必要となる量よりも多くなり、一部の硫酸については中和し処分する必要がある。またMSを析出させる際に用いる、硫化水素などの硫化剤は、単体の硫黄から製造するものであり、精製プロセスの下流で、硫酸を中和することで硫黄を処分しながら、プロセスの上流では新たな硫黄を加えるなど、プロセス自体が効率的でないという問題がある。   Here, in a series of methods for refining nickel and cobalt, as described above, sulfuric acid is used in the step of leaching nickel from nickel oxide ore or MS. It is also conceivable to use the sulfuric acid produced in Equation 2 in this leaching step. However, if all the sulfur contained in the sulfide is oxidized to sulfate ions, the amount of sulfuric acid produced will be greater than the amount required for the above leaching, and some sulfuric acid must be neutralized and disposed of. There is. In addition, a sulfurizing agent such as hydrogen sulfide used for precipitating MS is produced from a single sulfur, and at the upstream of the process, the sulfur is disposed of by neutralizing sulfuric acid downstream of the purification process. There is a problem that the process itself is not efficient, such as adding new sulfur.

このため、上記の完全酸化浸出法によるニッケル溶液の製造は、生産量が多いニッケルメタルを得るプロセスに用いられるよりも、例えば2次電池の材料として用いられる硫酸ニッケル溶液や硫酸ニッケル結晶を得る比較的小規模なプロセスで用いられることが多く、ニッケルメタルを得るプロセスでは、利用の拡大に難点、特に費用低減が難しいという問題がある。   For this reason, the production of nickel solution by the above-described complete oxidation leaching method is compared to obtaining nickel sulfate solution or nickel sulfate crystals used as a material for secondary batteries, for example, rather than being used in a process for obtaining nickel metal with a large production amount. In a process for obtaining nickel metal, there is a problem that it is difficult to expand the use, in particular, it is difficult to reduce the cost.

上記のような問題があることから、ニッケル酸化鉱石などから得たMSを原料として、ニッケルやコバルトのメタルを、費用を抑えて効率よく製造できるプロセスが望まれていた。   Because of the above problems, a process that can efficiently produce nickel and cobalt metals at low cost using MS obtained from nickel oxide ore as a raw material has been desired.

特公平7−84623号公報Japanese Examined Patent Publication No. 7-84623

本発明は上記事情に鑑み、ニッケルやコバルトを含有する硫化物を含む硫化物スラリーが供給された反応容器内で、硫黄が完全に酸化されるのを抑制することで、費用を抑えることができる、硫化物の浸出方法を提供することを目的とする。   In view of the above circumstances, the present invention can reduce costs by suppressing sulfur from being completely oxidized in a reaction vessel supplied with a sulfide slurry containing sulfide containing nickel or cobalt. An object is to provide a sulfide leaching method.

第1発明の硫化物の浸出方法は、ニッケルおよびコバルトの少なくとも一方を含有する硫化物と、鉄イオンを含有する硫酸酸性溶液と、を混合した硫化物スラリーが供給された反応容器内で、該硫化物スラリーの温度を80℃以上115℃未満とし、前記反応容器内に酸素含有ガスを供給することで、前記反応容器内の酸素分圧を、0MPaを越え1MPa以下とする条件下で、浸出後液と硫黄とを得ることを特徴とする。
第2発明の硫化物の浸出方法は、第1発明において、前記硫化物が、ニッケル酸化鉱石を、硫酸を用いて浸出して得られた酸性溶液に、硫化剤を添加して得られたことを特徴とする。
第3発明の硫化物の浸出方法は、第2発明において、前記硫黄を、前記硫化剤の原料として繰り返すことを特徴とする。
第4発明の硫化物の浸出方法は、第1発明から第3発明のいずれかにおいて、前記浸出後液から不純物を分離した電解始液から、ニッケルおよびコバルトの少なくとも一方を電析により回収した後の電解終液を、前記硫酸酸性溶液として繰り返すことを特徴とする。
The sulfide leaching method according to the first aspect of the present invention is a reaction vessel supplied with a sulfide slurry prepared by mixing a sulfide containing at least one of nickel and cobalt and an acidic sulfuric acid solution containing iron ions. Leaching under the condition that the temperature of the sulfide slurry is 80 ° C. or higher and lower than 115 ° C. and an oxygen-containing gas is supplied into the reaction vessel so that the oxygen partial pressure in the reaction vessel exceeds 0 MPa and is 1 MPa or less. It is characterized by obtaining a post-solution and sulfur.
The sulfide leaching method according to a second aspect of the present invention is the method according to the first aspect, wherein the sulfide is obtained by adding a sulfiding agent to an acidic solution obtained by leaching nickel oxide ore with sulfuric acid. It is characterized by.
The sulfide leaching method of the third invention is characterized in that, in the second invention, the sulfur is repeated as a raw material of the sulfiding agent.
The sulfide leaching method according to a fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein at least one of nickel and cobalt is recovered by electrodeposition from an electrolytic starting solution obtained by separating impurities from the leached solution. The electrolytic final solution is repeated as the sulfuric acid acidic solution.

第1発明によれば、反応容器内を所定の条件とする、硫化物の浸出方法により、硫化物からニッケル等を浸出する際に、硫黄を完全に酸化するのを抑制できる。これにより、硫酸の発生を抑えることができるので、硫酸の処理量を少なくでき、硫酸の処理にかかる費用を抑えることができる。また、この硫化物の浸出方法を採用することで、ニッケルメタル等の製造費用を抑えることができる。
第2発明によれば、硫化物が、ニッケル酸化鉱石を、硫酸を用いて浸出して得られた酸性溶液に硫化剤を添加して得られたものであることにより、成分の安定した、浸出後液と硫黄とを得ることができる。これにより、本願の硫化物の浸出方法の下流側へ安定した浸出後液を提供できるので、下流側のプロセスが安定する。
第3発明によれば、浸出後液と同時に得られた硫黄を、硫化剤の原料として繰り返すことにより、添加する硫化剤に追加する、新たな硫黄の量を減らすことができ、プロセスにかかる費用を抑制することができる。
第4発明によれば、電解終液を硫酸酸性溶液として繰り返すことにより、新たに追加する硫酸酸性溶液の量を減らすことができ、プロセスにかかる費用を抑制することができる。
According to the first invention, it is possible to suppress the complete oxidation of sulfur when leaching nickel or the like from the sulfide by the sulfide leaching method in which the inside of the reaction vessel is set to a predetermined condition. Thereby, since generation | occurrence | production of a sulfuric acid can be suppressed, the process amount of a sulfuric acid can be decreased and the expense concerning the process of a sulfuric acid can be suppressed. Further, by employing this sulfide leaching method, it is possible to reduce the manufacturing cost of nickel metal or the like.
According to the second invention, the sulfide is obtained by adding a sulfiding agent to an acidic solution obtained by leaching nickel oxide ore with sulfuric acid, so that the stable leaching of components. A post-solution and sulfur can be obtained. Thereby, since the stable leaching solution can be provided to the downstream side of the sulfide leaching method of the present application, the downstream process is stabilized.
According to the third invention, the sulfur obtained at the same time as the leaching solution is repeated as a raw material for the sulfiding agent, whereby the amount of new sulfur added to the sulfiding agent to be added can be reduced, and the cost of the process Can be suppressed.
According to the fourth aspect of the invention, by repeating the electrolytic final solution as a sulfuric acid acidic solution, the amount of newly added sulfuric acid acidic solution can be reduced, and the cost for the process can be suppressed.

本発明の実施態様に係る硫化物の浸出方法の説明図である。It is explanatory drawing of the leaching method of the sulfide which concerns on the embodiment of this invention. 酸素分圧を変化させたときの、Ni浸出率とS酸化率との関係を示すグラフである。It is a graph which shows the relationship between Ni leaching rate and S oxidation rate when changing oxygen partial pressure. 硫酸濃度を変化させたときの、Ni浸出率とS酸化率との関係を示すグラフである。It is a graph which shows the relationship between Ni leaching rate and S oxidation rate when changing sulfuric acid concentration. 硫化物スラリーの温度を変化させたときのNi浸出率と時間との関係を示すグラフである。It is a graph which shows the relationship between Ni leaching rate when changing the temperature of sulfide slurry, and time.

本発明の硫化物の浸出方法について説明する。
本発明の硫化物の浸出方法は、ニッケルおよびコバルトの少なくとも一方を含有する硫化物と、鉄イオンを含有する硫酸酸性溶液と、を混合した硫化物スラリーが供給された反応容器内で、硫化物スラリーの温度を80℃以上115℃未満とし、反応容器内に酸素含有ガスを供給することで、反応容器内の酸素分圧を、0MPaを越え1MPa以下とする条件下で、浸出後液と硫黄とを得るものである。
The sulfide leaching method of the present invention will be described.
The sulfide leaching method of the present invention comprises a sulfide containing a sulfide containing at least one of nickel and cobalt and a sulfuric acid acidic solution containing iron ions in a reaction vessel supplied with the sulfide slurry. The temperature of the slurry is set to 80 ° C. or higher and lower than 115 ° C., and the oxygen-containing gas is supplied into the reaction vessel, so that the oxygen partial pressure in the reaction vessel exceeds 0 MPa and is 1 MPa or less. And get.

ここで、ニッケルおよびコバルトの少なくとも一方を含有する硫化物が、ニッケル酸化鉱石を、硫酸を用いて浸出して得られた酸性溶液に、硫化剤を添加して得られたもの、いわゆるMSであることが望ましい。   Here, the sulfide containing at least one of nickel and cobalt is a so-called MS obtained by adding a sulfiding agent to an acidic solution obtained by leaching nickel oxide ore with sulfuric acid. It is desirable.

また、浸出後液と同時に得られた硫黄を、前記硫化剤の原料として繰り返すことが望ましい。   Moreover, it is desirable to repeat the sulfur obtained simultaneously with the liquid after leaching as a raw material for the sulfiding agent.

加えて、浸出後液から不純物を分離した電解始液から、ニッケルおよびコバルトの少なくとも一方を電析により回収した後の電解終液、すなわち硫酸ニッケルや硫酸コバルトからニッケルやコバルトが分離され遊離硫酸として復生(あるいは副生ともいう)した硫酸を、硫酸酸性溶液として繰り返し、MSの浸出に利用することが好ましい。   In addition, from the electrolytic starting solution from which impurities were separated from the leached solution, the electrolytic final solution after at least one of nickel and cobalt was recovered by electrodeposition, that is, nickel and cobalt were separated from nickel sulfate and cobalt sulfate to form free sulfuric acid. The regenerated (or by-product) sulfuric acid is preferably used as an acidic sulfuric acid solution and used for leaching MS.

本発明の硫化物の浸出方法の実施態様について、図1、および化学反応式を用いて説明する。なお、本発明の硫化物の浸出方法は、この実施の態様に限定されるものではない。   An embodiment of the sulfide leaching method of the present invention will be described with reference to FIG. 1 and a chemical reaction formula. The sulfide leaching method of the present invention is not limited to this embodiment.

図1には、本発明の実施態様に係る硫化物の浸出方法の説明図を示す。図1に示すように、本実施態様では、反応容器として、オートクレーブ(Autoclave)を用いる。ただし、反応容器は特にこれに限定されるものではなく、硫化物スラリーを高温高圧下で処理できるものであれば特に問題ない。   FIG. 1 shows an explanatory view of a sulfide leaching method according to an embodiment of the present invention. As shown in FIG. 1, in this embodiment, an autoclave is used as a reaction vessel. However, the reaction vessel is not particularly limited to this, and there is no particular problem as long as the sulfide slurry can be processed under high temperature and high pressure.

本実施態様では、鉄イオンを含有する硫酸酸性溶液は、硫酸第二鉄であることが好ましい。本実施態様で、MSを硫酸(数3)および硫酸第二鉄溶液(数4)を用いてニッケルを浸出する場合の化学反応式を以下に示す。このとき、数3に示したように、発生した硫化水素は硫酸第二鉄の存在によって数5に示す反応で硫黄分(あるいは、硫化物イオン(S2−))が単体硫黄(S)として固定される。
なお、硫酸第二鉄は酸化剤として作用し、自身は還元されて硫酸第一鉄になるので、再度空気等で酸化することで硫酸第二鉄を再生し酸化剤として繰り返し使用できる。
In this embodiment, the sulfuric acid acidic solution containing iron ions is preferably ferric sulfate. In this embodiment, the chemical reaction formula when MS is leached using sulfuric acid (Equation 3) and ferric sulfate solution (Equation 4) is shown below. At this time, as shown in Equation 3, the generated hydrogen sulfide is converted to sulfur (or sulfide ion (S 2− )) by simple reaction with the reaction shown in Equation 5 due to the presence of ferric sulfate (S 0 ). As fixed.
In addition, since ferric sulfate acts as an oxidizing agent and itself is reduced to ferrous sulfate, ferric sulfate can be regenerated by being oxidized again with air or the like and repeatedly used as an oxidizing agent.

(数3)
NiS + HSO → NiSO + H
(Equation 3)
NiS + H 2 SO 4 → NiSO 4 + H 2 S

(数4)
NiS + Fe(SO → NiSO + 2FeSO + S
(Equation 4)
NiS + Fe 2 (SO 4 ) 3 → NiSO 4 + 2FeSO 4 + S 0

(数5)
S + Fe(SO → 2FeSO + HSO +S
(Equation 5)
H 2 S + Fe 2 (SO 4 ) 3 → 2FeSO 4 + H 2 SO 4 + S 0

なお本明細書では、硫化物に含有されたニッケルがニッケルイオンとして酸性溶液中に溶解する割合を「Ni浸出率」と表現し、硫化物に含有された硫黄が硫酸イオンになる割合を「S酸化率」と表現する。ここで、「S酸化率」は、硫化物が酸化されて溶液中に溶出する割合と原則一致する。当然ながらニッケルの浸出率が高い方が、ニッケルの回収率が高くなるので好ましく、本発明のように硫黄をできるだけ溶出させたくない場合は、硫黄の酸化率が低い方が好ましい。   In the present specification, the rate at which nickel contained in the sulfide dissolves in the acidic solution as nickel ions is expressed as “Ni leaching rate”, and the rate at which the sulfur contained in the sulfide becomes sulfate ions is expressed as “S”. "Oxidation rate". Here, the “S oxidation rate” is in principle coincident with the rate at which sulfides are oxidized and eluted into the solution. Of course, a higher nickel leaching rate is preferable because a higher nickel recovery rate is preferable. When sulfur is not desired to be eluted as in the present invention, a lower sulfur oxidation rate is preferable.

本実施態様では、反応容器内の酸素分圧を制御することで、MSと酸素が数1で示した完全酸化浸出法による直接浸出とならないように反応を抑制しながら、浸出にて消費(還元)された硫酸第一鉄の酸化(数6)を促進し硫酸第二鉄を再生する。このように本実施態様は、MSを単独原料とし、MSに含まれる硫化物イオンが硫酸イオンまで酸化することを抑制する、硫化物の浸出方法であり、この硫化物の浸出方法は、ニッケル等の湿式精錬法の一部を構成する。   In this embodiment, by controlling the partial pressure of oxygen in the reaction vessel, MS and oxygen are consumed by leaching (reduction) while suppressing the reaction so that direct leaching is not caused by the complete oxidation leaching method shown in Equation 1. ) Promotes oxidation of ferrous sulfate (Formula 6) to regenerate ferric sulfate. Thus, this embodiment is a sulfide leaching method that uses MS as a single raw material and suppresses the oxidation of sulfide ions contained in MS to sulfate ions. The sulfide leaching method is nickel or the like. Part of the wet refining process.

(数6)
2FeSO + HSO + 1/2O → Fe(SO + H
(Equation 6)
2FeSO 4 + H 2 SO 4 + 1 / 2O 2 → Fe 2 (SO 4 ) 3 + H 2 O

なお、前述したようにニッケル酸化鉱石の多くはニッケルとともにコバルトを含有することが知られているが、コバルトはニッケルと同様な化学的挙動を取り、精製工程の後段で溶媒抽出等の手段を用いて分離する必要がある。そのため他の実施の態様として、本発明に係る硫化物の浸出方法は、コバルトの精製方法でも用いることができる。その場合、上記の化学反応式で、Niと表示されているものはCoに置き換えて解釈することができる。   As described above, most nickel oxide ores are known to contain cobalt together with nickel. However, cobalt takes the same chemical behavior as nickel and uses means such as solvent extraction in the latter stage of the purification process. Need to be separated. Therefore, as another embodiment, the sulfide leaching method according to the present invention can also be used in a cobalt purification method. In that case, in the above chemical reaction formula, what is displayed as Ni can be interpreted by replacing it with Co.

本発明の実施の態様に係る、硫化物の浸出方法についてさらに詳細に説明する。
先ず、MSを硫酸塩溶液の中に添加してスラリー化し、硫化物スラリーを得る。図1に示すように、この硫酸塩溶液は硫酸第二鉄の単独の溶液か、あるいは硫酸第二鉄を含む電解終液(Electrolytic effluent、以下本明細書において、「電解貧液」と言う場合がある)を用いることができる。
The sulfide leaching method according to the embodiment of the present invention will be described in more detail.
First, MS is added to a sulfate solution to form a slurry, thereby obtaining a sulfide slurry. As shown in FIG. 1, this sulfate solution is either a single solution of ferric sulfate or an electrolytic final solution containing ferric sulfate (hereinafter referred to as “electrolytic poor solution” in this specification). Can be used).

次にこの硫化物スラリーに必要に応じて硫酸を添加し、図1に示すようにこのスラリーをオートクレーブなど高温高圧に耐えられる密閉容器内に移し、所定の温度と酸素分圧に維持して反応させる。   Next, sulfuric acid is added to the sulfide slurry as necessary, and the slurry is transferred into a closed vessel that can withstand high temperature and high pressure, such as an autoclave, as shown in FIG. 1, and maintained at a predetermined temperature and oxygen partial pressure for reaction. Let

上記のスラリーでの硫酸や硫酸第二鉄の濃度は、酸性であればよく、特に限定されるものではないが、MSに含まれるニッケルやコバルトなど浸出対象となる有価金属のmol量に対して硫酸量で1〜2倍当量がよく、硫酸第二鉄量の量は同じく有価金属の0.25〜0.5倍当量とすることが好ましい。なお、本明細書において記号「〜」は、「以上、以下」を意味する。   The concentration of sulfuric acid and ferric sulfate in the slurry is not particularly limited as long as it is acidic, but with respect to the mol amount of valuable metals to be leached such as nickel and cobalt contained in MS. The amount of sulfuric acid is preferably 1 to 2 times equivalent, and the amount of ferric sulfate is preferably 0.25 to 0.5 times equivalent of valuable metals. In the present specification, the symbol “˜” means “above and below”.

硫酸濃度が過剰に高いと廃液処理時の中和剤の費用が増える。同様に硫酸第二鉄濃度が過剰に高いと、電解前に浄液して鉄を分離する費用がそれぞれ増加するので好ましくない。   If the sulfuric acid concentration is excessively high, the cost of the neutralizing agent during waste liquid treatment increases. Similarly, if the concentration of ferric sulfate is excessively high, the cost for separating the iron by washing before electrolysis increases, which is not preferable.

密閉容器内でのMSの浸出は、単体硫黄(S)が融解しない115℃未満の温度で行うことが好ましく、80℃以上105℃以下の範囲とすることがより好ましい。反応温度が80℃未満だと浸出速度が低下してしまい、115℃以上であると完全酸化浸出となってしまうからである。 The leaching of MS in the sealed container is preferably performed at a temperature lower than 115 ° C. at which elemental sulfur (S 0 ) does not melt, and more preferably in the range of 80 ° C. or higher and 105 ° C. or lower. This is because if the reaction temperature is less than 80 ° C., the leaching rate decreases, and if it is 115 ° C. or more, complete oxidation leaching occurs.

一方、浸出時の酸素分圧は0.15〜1.0MPaの範囲とすることが好ましい。酸素分圧が1.0MPaを超えても浸出反応が早く進むような優位性はなく、むしろMSを酸素が直接浸出する上記の数1に示した完全酸化浸出が促進されるので、硫黄の酸化率が上昇するなど好ましくない。   On the other hand, the oxygen partial pressure during leaching is preferably in the range of 0.15 to 1.0 MPa. Even if the oxygen partial pressure exceeds 1.0 MPa, there is no advantage that the leaching reaction proceeds quickly, but rather the complete oxidation leaching shown in the above equation 1 in which oxygen is leached directly from MS is promoted, so that oxidation of sulfur It is not preferable because the rate increases.

一方で酸素分圧が0MPaでは酸素が全く存在せず反応が進まないため酸素分圧は0MPaを超える量が必要であるが、0.15MPa以上では反応が効率よく進むので好ましい。   On the other hand, when the oxygen partial pressure is 0 MPa, oxygen does not exist at all and the reaction does not proceed. Therefore, the oxygen partial pressure needs to exceed 0 MPa. However, the oxygen partial pressure of 0.15 MPa or more is preferable because the reaction proceeds efficiently.

以上に示した浸出条件で得た浸出後液から、ニッケルやコバルトなどの有価成分とともに浸出された鉄等の不純物を、中和や溶媒抽出等の公知の手段によって分離する浄液工程(Impurity removal)に付し、得た浄液後の溶液を電解始液として電解槽に入れ、例えば不溶性アノードとチタン等を用いたカソードとを装入して電解採取(Electrowinning)し、カソード上にニッケルメタルを電析させ、引き揚げて剥ぎ取ることで図1に示すようにニッケルメタル(図1のE−Ni)を回収できる。 Purification process (Impurity removal) for separating impurities such as iron leached together with valuable components such as nickel and cobalt from the leached liquid obtained under the leaching conditions shown above by known means such as neutralization and solvent extraction ), And the obtained solution after purification is placed in an electrolytic cell as an electrolytic starting solution. For example, an insoluble anode and a cathode made of titanium, etc. are charged and electrowinning is performed, and nickel metal is deposited on the cathode. As shown in FIG. 1, nickel metal (E-Ni 0 in FIG. 1) can be recovered.

また、図1に示すように、カソード表面でニッケルが析出することで生成した電解液中の硫酸、すなわち電解終液を電解槽に繰り返し、MSの浸出に用いることが望ましい。この際電解終液中の硫酸濃度を上昇させ、硫酸濃度が電解での許容上限の濃度にまで上昇した時点で電解槽から払い出すことが望ましい。   Further, as shown in FIG. 1, it is desirable to repeatedly use sulfuric acid in the electrolytic solution produced by the deposition of nickel on the cathode surface, that is, the electrolytic final solution, in the electrolytic bath and use it for MS leaching. At this time, it is desirable to raise the concentration of sulfuric acid in the final electrolytic solution, and to discharge from the electrolytic cell when the concentration of sulfuric acid rises to the allowable upper limit for electrolysis.

以下、本発明の具体的な実施例について説明する。なお、本発明の範囲は、下記のいずれかの実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described. The scope of the present invention is not limited to any of the following examples.

<MSの調整>
ニッケル酸化鉱石を公知のHPAL処理に付して硫酸酸性の浸出液を得、この浸出液に炭酸カルシウムを添加して中和し、不純物を中和澱物として沈殿させて中和後液から分離し、次いで中和後液に硫化水素ガスを吹き込んで、ニッケルやコバルトを含むMSとして回収した。
<MS adjustment>
Nickel oxide ore is subjected to a known HPAL treatment to obtain a sulfuric acid leachate, neutralized by adding calcium carbonate to the leachate, and impurities are precipitated as neutralized starch and separated from the neutralized solution, Subsequently, hydrogen sulfide gas was blown into the liquid after neutralization, and recovered as MS containing nickel and cobalt.

次にこのMSを、遊星ボールミルを用いて粉砕し、MS粉砕品を得た。表1には、MS粉砕品の品位と粒度分布を示す。各成分の品位はICP発光分光分析法を用いて分析した。   Next, the MS was pulverized using a planetary ball mill to obtain an MS pulverized product. Table 1 shows the quality and particle size distribution of the MS pulverized product. The quality of each component was analyzed using ICP emission spectroscopy.

<実施例1>
表1に示す組成のMS粉砕品50gを用い、表2に示す硫酸第二鉄濃度と酸素分圧の水準で反応性について密閉容器を用いて反応させた。密閉容器には容量3.4Lのハステロイ製オートクレーブ(日東高圧(株)製)を用い、酸素分圧の制御は、BROOKS社製のマスフローコントローラー(形式名5850i SIRIES)を用いた。なお、上記コントローラーは開度が100%の時に流量が0.5L/minとなるので、開度を1%程度に調整し、酸素分圧を0.15MPaに調整して維持した。
<Example 1>
Using 50 g of the MS pulverized product having the composition shown in Table 1, the reaction was carried out using a sealed container for the reactivity at the ferric sulfate concentration and oxygen partial pressure levels shown in Table 2. A 3.4 L capacity Hastelloy autoclave (manufactured by Nitto Koatsu Co., Ltd.) was used for the sealed container, and a mass flow controller (model name 5850i SERIES) manufactured by BROOKS was used to control the oxygen partial pressure. The controller had a flow rate of 0.5 L / min when the opening was 100%, so the opening was adjusted to about 1% and the oxygen partial pressure was adjusted to 0.15 MPa and maintained.

MSをスラリー化する溶液の成分濃度は、ニッケル電解採取の電解終液(電解貧液)での硫酸ニッケルの濃度と同じ濃度の0.85mol/L(ニッケル濃度換算で50g/L)とした。硫酸添加量は、MS中に含まれるニッケルのモル当量とほぼ同量となる0.49mol/L(硫酸濃度換算で48.4g/L)とした。   The component concentration of the solution for slurrying MS was 0.85 mol / L (50 g / L in terms of nickel concentration), which is the same concentration as the concentration of nickel sulfate in the electrolysis final solution (electrolytic poor solution) of nickel electrowinning. The amount of sulfuric acid added was 0.49 mol / L (48.4 g / L in terms of sulfuric acid concentration), which is almost the same as the molar equivalent of nickel contained in MS.

硫酸第二鉄の添加量は、酸化と還元を繰り返すことを考えて、MS中に含まれるニッケルのモル当量の約半量の0.26mol/L(三価の鉄イオン濃度に換算して30g/L)、および25%となる0.13mol/L(三価の鉄イオン濃度に換算して15g/L)、さらに電解前の浄液工程での負荷低減を考慮した0.04mol/L(三価の鉄イオン濃度に換算して5g/L)の3水準とした。   Considering that oxidation and reduction are repeated, the addition amount of ferric sulfate is 0.26 mol / L (30 g / L in terms of trivalent iron ion concentration), which is about half the molar equivalent of nickel contained in MS. L), and 0.13 mol / L to be 25% (15 g / L in terms of trivalent iron ion concentration), and 0.04 mol / L (three) considering the load reduction in the liquid purification step before electrolysis It was set to 3 levels of 5 g / L) in terms of iron ion concentration.

これらを邪魔板付きのチタン製の上面が開口した容器に入れて硫化物スラリーとし、上述のオートクレーブ内に装入した。次にオートクレーブを密栓し、オートクレーブ内の硫化物スラリーの温度を105℃まで昇温し、次いで、酸素ガスをオートクレーブ外から送り込んでオートクレーブ内の気相部(溶液が入っていない隙間部分)の酸素分圧を制御しながら3時間維持しながら浸出を継続した。内部の圧力を測定しながら反応により酸素分圧が低下すれば所定の分圧になるように酸素含有ガスを供給した。   These were put in a vessel made of titanium with a baffle and opened on the upper surface to form a sulfide slurry, and charged into the autoclave described above. Next, the autoclave is sealed, the temperature of the sulfide slurry in the autoclave is raised to 105 ° C., then oxygen gas is sent from the outside of the autoclave, and oxygen in the gas phase part (gap part where no solution is contained) The leaching was continued for 3 hours while controlling the partial pressure. While measuring the internal pressure, an oxygen-containing gas was supplied so that a predetermined partial pressure would be obtained if the oxygen partial pressure decreased due to the reaction.

反応時間経過後、70℃以下まで冷却してからオートクレーブの蓋を開け、チタン製の容器を取り出した。次いでチタン製容器内のスラリーをヌッチェとNo.5Cの定量ろ紙を用いて固液分離した。得られた浸出残渣は、純水を用いてレパルプ洗浄して付着液を取り除き、その後、真空乾燥して重量を確認した。その後分取して浸出残渣の成分品位を、ICP発光分光分析法を用いて分析した。   After the reaction time, the autoclave lid was opened after cooling to 70 ° C. or less, and the titanium container was taken out. Next, the slurry in the titanium container was mixed with Nutsche and No. 2 in the following manner. Solid-liquid separation was performed using 5C quantitative filter paper. The obtained leaching residue was repulped with pure water to remove the adhering liquid, and then vacuum dried to confirm the weight. Thereafter, the components were separated and the quality of the components of the leaching residue was analyzed using ICP emission spectroscopy.

表2に示した各条件でのNi浸出率とS酸化率を表2ならびに図2に示した。なお、Ni浸出率とS酸化率の具体的な計算方法は、数7、数8に示すとおりである。   The Ni leaching rate and S oxidation rate under each condition shown in Table 2 are shown in Table 2 and FIG. The specific calculation methods for the Ni leaching rate and the S oxidation rate are as shown in Equations 7 and 8.

本実施例の結果を示した表2および図2より、以下のことがわかる。
1)硫化物スラリーの温度を105℃とした場合、酸素分圧を0MPaを越え1MPa以下とすることにより、ニッケルを浸出しながらS酸化率を下げて硫黄を得ることができる。
From Table 2 and FIG. 2 showing the results of this example, the following can be understood.
1) When the temperature of the sulfide slurry is 105 ° C., sulfur can be obtained by lowering the S oxidation rate while leaching nickel, by setting the oxygen partial pressure to more than 0 MPa and not more than 1 MPa.

2)スラリー中の硫酸第二鉄の濃度については、同じ酸素分圧(例えばグラフの三角印である酸素分圧0.5MPaや、グラフの丸印である酸素分圧1.0MPa)で比較すると、0.04mol/Lから0.13mol/Lへ硫酸第二鉄の濃度が高くなるとS酸化率を下げることができる。すなわち、MSに含まれる硫化物イオン(S2−)が硫酸イオン(SO 2−)に酸化するのを抑制できる。 2) The concentration of ferric sulfate in the slurry is compared at the same oxygen partial pressure (for example, oxygen partial pressure 0.5 MPa, which is a triangular mark in the graph, and oxygen partial pressure 1.0 MPa, which is a circular mark in the graph). When the concentration of ferric sulfate is increased from 0.04 mol / L to 0.13 mol / L, the S oxidation rate can be lowered. In other words, sulfide ions (S 2-) contained in the MS can be prevented from being oxidized to sulfate ions (SO 4 2-).

なお、硫酸第二鉄の濃度が0.13mol/Lと0.26mol/Lの場合では、S酸化率の差は大きくなかった。ただし、硫酸第二鉄の添加量が濃度0.04mol/Lまで低下すると、Ni浸出率は同じであるのに対し、S酸化率は増加する。これは、反応容器内でMSが浸出されるのに伴って硫酸第二鉄の硫酸第一鉄への還元反応(数6)よりもMSが直接浸出される(数1)のに酸素が優先的に消費されるためと考えられる。このため、硫酸第二鉄の添加量は、MS中のニッケルのモル当量に対して0.25当量(本実施例であれば、0.13mol/L)以上を確保することが望ましい。   In addition, when the density | concentration of ferric sulfate was 0.13 mol / L and 0.26 mol / L, the difference of S oxidation rate was not large. However, when the addition amount of ferric sulfate is reduced to a concentration of 0.04 mol / L, the Ni leaching rate is the same while the S oxidation rate is increased. This is because, as MS is leached in the reaction vessel, oxygen has priority over the leaching of MS directly (Formula 1) over the reduction reaction of ferric sulfate to ferrous sulfate (Formula 6). It is thought that it is consumed. For this reason, it is desirable to ensure the addition amount of ferric sulfate is 0.25 equivalent (0.13 mol / L in this example) or more with respect to the molar equivalent of nickel in MS.

3)反応容器内の酸素分圧については、同じ硫酸第二鉄濃度とした場合、酸素分圧の増加にしたがって、ニッケル浸出率と硫黄酸化率とが直線的に増加する。すなわち、酸素分圧が増加すると、S酸化率が上がり、MSの硫黄が酸素によって直接浸出される傾向が増す。これより、酸素分圧は低い方が好ましいと考えられるものの、十分なニッケル浸出率を得ることが必要なことから、実用的には0.15MPaを下限に、好ましくは1.0MPaに近い程度の酸素分圧が必要となる。 3) When the oxygen partial pressure in the reaction vessel is the same ferric sulfate concentration, the nickel leaching rate and the sulfur oxidation rate increase linearly as the oxygen partial pressure increases. That is, when the oxygen partial pressure increases, the S oxidation rate increases, and the tendency of MS sulfur to be leached directly by oxygen increases. From this, it is considered that a lower oxygen partial pressure is preferable, but since it is necessary to obtain a sufficient nickel leaching rate, practically 0.15 MPa is set to the lower limit, preferably about 1.0 MPa. An oxygen partial pressure is required.

<実施例2>
実施例1と同様のMS粉砕品50gを用いて、このMS粉砕品を含有する溶液に加える硫酸添加量の影響を確認した。このときの酸素分圧は表3に示すとおりである。硫酸は反応容器の耐久性を考慮して0.92mol/L(硫酸濃度に換算して90g/L)を上限とし、実施例1で加えていた0.49mol/Lの場合と比較した。他の処理条件や処理方法は実施例1で挙げたものと同じである。この時のNi浸出率とS酸化率を表3、および図3に示す。
<Example 2>
Using 50 g of the same MS ground product as in Example 1, the effect of the amount of sulfuric acid added to the solution containing the MS ground product was confirmed. The oxygen partial pressure at this time is as shown in Table 3. In consideration of the durability of the reaction vessel, the upper limit of sulfuric acid was 0.92 mol / L (90 g / L in terms of sulfuric acid concentration), and compared with 0.49 mol / L added in Example 1. Other processing conditions and processing methods are the same as those described in the first embodiment. The Ni leaching rate and S oxidation rate at this time are shown in Table 3 and FIG.

本実施例の結果を示した表3および図3より、以下のことがわかる。
1)実施例1と同様、硫化物スラリーの温度を105℃とし、酸素分圧を0MPaを越え1MPa以下とすることにより、S酸化率を下げて硫黄を得ることができる。
From Table 3 showing the results of this example and FIG.
1) Similar to Example 1, sulfur can be obtained by reducing the S oxidation rate by setting the temperature of the sulfide slurry to 105 ° C. and the oxygen partial pressure to more than 0 MPa and not more than 1 MPa.

2)表3および図3より、硫酸添加量を増加させる、すなわち硫酸濃度を高くすると、Ni浸出率はほぼ同じになるものの、S酸化率を低減できることがわかる。これは、硫化物イオン(S2−)が硫酸イオン(SO 2−)になることを抑制できたことを意味する。 2) It can be seen from Table 3 and FIG. 3 that when the amount of sulfuric acid added is increased, that is, the sulfuric acid concentration is increased, the Ni leaching rate becomes substantially the same, but the S oxidation rate can be reduced. This means that the sulfide ions (S 2− ) could be suppressed from becoming sulfate ions (SO 4 2− ).

この硫酸量の増加による硫黄酸化の抑制は、硫酸量の増加により、数3で示したMSの硫酸による浸出が促進され、硫酸第二鉄による硫黄の固定(数5)によって還元された硫酸第一鉄が多く得られ、この多く得られた硫酸第一鉄が酸化されて硫酸第二鉄を再生する反応(数6)に酸素が多く消費されたためと考えられる。   The suppression of sulfur oxidation due to the increase in the amount of sulfuric acid promotes the leaching of MS shown in Equation 3 with sulfuric acid, and the reduction of sulfuric acid by the fixation of sulfur with ferric sulfate (Equation 5). It is considered that a large amount of ferrous iron was obtained, and a large amount of oxygen was consumed in the reaction (Equation 6) in which this much obtained ferrous sulfate was oxidized to regenerate ferric sulfate.

<実施例3>
実施例3は、MSの硫酸による浸出性が、硫化物スラリーの温度によって受ける影響を調査したものである。
邪魔板付きの耐熱ガラス製セパラブルフラスコ4セットを用意し、それぞれ硫酸濃度が20g/Lの硫酸溶液1リットル(硫酸量は0.204mol)を供給した。それぞれを回転速度800rpmで撹拌しながらオイルバスの中に入れ、オイルバスの温度を50℃、70℃、80℃、90℃とした。
<Example 3>
In Example 3, the influence of the MS leachability by sulfuric acid on the temperature of the sulfide slurry was investigated.
Four sets of heat-resistant glass separable flasks with baffle plates were prepared, and 1 liter of sulfuric acid solution having a sulfuric acid concentration of 20 g / L (the amount of sulfuric acid was 0.204 mol) was supplied. Each was put in an oil bath while stirring at a rotation speed of 800 rpm, and the temperature of the oil bath was set to 50 ° C., 70 ° C., 80 ° C., and 90 ° C.

その後、上記表1に示す組成のMSを、1セットに10g(ニッケル量は0.099mol)ずつ投入して2時間維持し、反応を行わせた。MS投入後、5分、10分、20分、30分、60分、90分、120分経過した時点でそれぞれ浸出後液を30mLずつサンプリングした。   Thereafter, 10 g of MS having the composition shown in Table 1 above was charged in one set (the nickel amount was 0.099 mol) and maintained for 2 hours to carry out the reaction. At the time when 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes, and 120 minutes had elapsed after the introduction of MS, 30 mL of the leached solution was sampled.

サンプリングを行った浸出後液は、No.5Cの定量ろ紙を用いてろ過し、得たろ液のニッケル濃度を、ICP発光分析法を用いで分析し、ニッケル溶出量を確認した。それぞれのNi浸出率を、表4および図4に示す。   The sampled leached solution was No. Filtration was performed using 5C quantitative filter paper, and the nickel concentration of the obtained filtrate was analyzed using ICP emission spectrometry to confirm the amount of nickel elution. The respective Ni leaching rates are shown in Table 4 and FIG.

表4および図4より、浸出温度が50℃と70℃では、時間が経過しても浸出率が大きく変化しないが、80℃以上の温度では浸出率が向上する傾向を示した。これは、MSの硫酸に対する浸出速度は80℃未満では十分に得られないことを意味する。このため80℃を超えた温度で浸出することが好ましい。   From Table 4 and FIG. 4, when the leaching temperatures were 50 ° C. and 70 ° C., the leaching rate did not change greatly over time, but when the temperature was 80 ° C. or higher, the leaching rate tended to improve. This means that the leaching rate of MS to sulfuric acid cannot be sufficiently obtained when the temperature is lower than 80 ° C. For this reason, it is preferable to leach at the temperature exceeding 80 degreeC.

<実施例4>
実施例1と同様のMS粉砕品50gを用いて、表5に示す80℃から150℃の硫化物スラリーの温度で、Ni浸出率とS酸化率を測定した。このときの酸素分圧は0.15MPa、浸出の時間は3時間、硫酸第二鉄の濃度は30g/Lであり、他の処理条件や処理方法は実施例1で挙げたものと同じである。
<Example 4>
Ni leaching rate and S oxidation rate were measured at 50 ° C. to 150 ° C. sulfide slurry temperature shown in Table 5 using 50 g of the same MS ground product as in Example 1. At this time, the oxygen partial pressure was 0.15 MPa, the leaching time was 3 hours, and the ferric sulfate concentration was 30 g / L. Other processing conditions and processing methods were the same as those described in Example 1. .

表5より、80〜105℃の温度範囲では、Ni浸出率とS酸化率はほとんど差が見られない。これに対し、120℃ではNi浸出率が低下したり、150℃ではNi浸出率が増加しないにもかかわらずS酸化率が増加したりする現象が確認された。   From Table 5, in the temperature range of 80 to 105 ° C., there is almost no difference between the Ni leaching rate and the S oxidation rate. In contrast, it was confirmed that the Ni leaching rate decreased at 120 ° C., and the S oxidation rate increased at 150 ° C. even though the Ni leaching rate did not increase.

これは、MSを硫酸および硫酸第二鉄で浸出する過程で生成した単体硫黄が、融点を超える浸出温度では融解し、MS表面が硫黄で覆われコーティングされた状態となり、硫酸や硫酸第二鉄によるMSの浸出が阻害され、ニッケルの浸出が硫黄の酸化を伴う完全酸化浸出(数1)で進むためと考えられる。   This is because the elemental sulfur produced in the process of leaching MS with sulfuric acid and ferric sulfate melts at the leaching temperature exceeding the melting point, and the MS surface is covered with sulfur and coated, so that sulfuric acid and ferric sulfate are used. This is thought to be because the leaching of MS by hinders the inhibition, and the leaching of nickel proceeds by complete oxidation leaching accompanied by oxidation of sulfur (Equation 1).

以上、上述の実施例1から4の結果から、本発明の硫化物の浸出方法の条件範囲でMSを浸出することで硫黄の酸化を抑制しながらニッケルを浸出することができる。これにより、ニッケルを含有する浸出後液を電解採取することでニッケルメタルを得ることができる。また、ニッケルを電析により回収した後の電解終液をMS浸出に繰り返したり、酸化されずに回収した単体硫黄を硫化剤の原料に繰り返して利用したりすることで、本発明の硫化物の浸出方法が、硫化剤等の費用を削減した経済的なものとなり、これを利用して、費用を抑えながらニッケル製錬プロセスを行うことができることを確認することができた。   As described above, from the results of Examples 1 to 4 described above, nickel can be leached while suppressing oxidation of sulfur by leaching MS within the condition range of the sulfide leaching method of the present invention. Thereby, nickel metal can be obtained by electrolytically collecting the leached solution containing nickel. In addition, the electrolytic final solution after recovering nickel by electrodeposition is repeatedly used for MS leaching, or the simple sulfur recovered without being oxidized is repeatedly used as a raw material for the sulfiding agent. It has been confirmed that the leaching method has become economical with reduced costs such as sulfiding agents, and can be used to carry out the nickel smelting process while reducing costs.

Claims (4)

ニッケルおよびコバルトの少なくとも一方を含有する硫化物と、鉄イオンを含有する硫酸酸性溶液と、を混合した硫化物スラリーが供給された反応容器内で、
該硫化物スラリーの温度を80℃以上115℃未満とし、
前記反応容器内に酸素含有ガスを供給することで、前記反応容器内の酸素分圧を、0MPaを越え1MPa以下とする条件下で、
浸出後液と硫黄とを得る、
ことを特徴とする硫化物の浸出方法。
In a reaction vessel supplied with a sulfide slurry containing a sulfide containing at least one of nickel and cobalt and an acidic sulfuric acid solution containing iron ions,
The temperature of the sulfide slurry is 80 ° C. or higher and lower than 115 ° C.,
By supplying an oxygen-containing gas into the reaction vessel, the oxygen partial pressure in the reaction vessel is more than 0 MPa and 1 MPa or less,
To obtain liquid and sulfur after leaching,
A sulfide leaching method characterized by the above.
前記硫化物が、
ニッケル酸化鉱石を、硫酸を用いて浸出して得られた酸性溶液に、
硫化剤を添加して得られた、
ことを特徴とする請求項1記載の硫化物の浸出方法。
The sulfide is
Nickel oxide ore into an acidic solution obtained by leaching with sulfuric acid,
Obtained by adding a sulfurizing agent,
The sulfide leaching method according to claim 1.
前記硫黄を、前記硫化剤の原料として繰り返す、
ことを特徴とする請求項2記載の硫化物の浸出方法。
Repeating the sulfur as a raw material for the sulfurizing agent,
The sulfide leaching method according to claim 2.
前記浸出後液から不純物を分離した電解始液から、ニッケルおよびコバルトの少なくとも一方を電析により回収した後の電解終液を、前記硫酸酸性溶液として繰り返す、
ことを特徴とする請求項1から3のいずれかに記載の硫化物の浸出方法。
The electrolytic end solution after recovering at least one of nickel and cobalt by electrodeposition from the electrolytic start solution from which impurities have been separated from the post-leaching solution is repeated as the sulfuric acid acidic solution.
The sulfide leaching method according to any one of claims 1 to 3, wherein:
JP2017098839A 2017-05-18 2017-05-18 Sulfide leaching method Active JP6898586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098839A JP6898586B2 (en) 2017-05-18 2017-05-18 Sulfide leaching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098839A JP6898586B2 (en) 2017-05-18 2017-05-18 Sulfide leaching method

Publications (2)

Publication Number Publication Date
JP2018193588A true JP2018193588A (en) 2018-12-06
JP6898586B2 JP6898586B2 (en) 2021-07-07

Family

ID=64569910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098839A Active JP6898586B2 (en) 2017-05-18 2017-05-18 Sulfide leaching method

Country Status (1)

Country Link
JP (1) JP6898586B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025060A (en) * 2019-07-31 2021-02-22 住友金属鉱山株式会社 High pressure oxidation leaching method of metal sulfide
CN116254410A (en) * 2022-12-31 2023-06-13 贵州中伟资源循环产业发展有限公司 Leaching method of sulfide minerals
CN116287683A (en) * 2022-12-31 2023-06-23 广西中伟新能源科技有限公司 Leaching method of sulfide minerals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954206A (en) * 1972-05-08 1974-05-27
JPS56134505A (en) * 1980-02-18 1981-10-21 Anglo Amer Corp South Africa Method of treating sulfide mat
JP2000515585A (en) * 1995-03-22 2000-11-21 エム・アイ・エム・ホールディングス・リミテッド Mineral leaching process at atmospheric pressure
JP2013095962A (en) * 2011-10-31 2013-05-20 Sumitomo Metal Mining Co Ltd Method for recovering copper from sulphide mineral containing copper and iron
WO2013077296A1 (en) * 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
JP2016141594A (en) * 2015-02-02 2016-08-08 住友金属鉱山株式会社 Production method of nickel sulfate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954206A (en) * 1972-05-08 1974-05-27
JPS56134505A (en) * 1980-02-18 1981-10-21 Anglo Amer Corp South Africa Method of treating sulfide mat
JP2000515585A (en) * 1995-03-22 2000-11-21 エム・アイ・エム・ホールディングス・リミテッド Mineral leaching process at atmospheric pressure
JP2013095962A (en) * 2011-10-31 2013-05-20 Sumitomo Metal Mining Co Ltd Method for recovering copper from sulphide mineral containing copper and iron
WO2013077296A1 (en) * 2011-11-22 2013-05-30 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
JP2016141594A (en) * 2015-02-02 2016-08-08 住友金属鉱山株式会社 Production method of nickel sulfate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025060A (en) * 2019-07-31 2021-02-22 住友金属鉱山株式会社 High pressure oxidation leaching method of metal sulfide
JP7306142B2 (en) 2019-07-31 2023-07-11 住友金属鉱山株式会社 Pressurized oxidation leaching method for metal sulfides
CN116254410A (en) * 2022-12-31 2023-06-13 贵州中伟资源循环产业发展有限公司 Leaching method of sulfide minerals
CN116287683A (en) * 2022-12-31 2023-06-23 广西中伟新能源科技有限公司 Leaching method of sulfide minerals

Also Published As

Publication number Publication date
JP6898586B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
CA2856341C (en) Method for producing high-purity nickel sulfate
CN103014760B (en) Production method of electrolytic manganese metal
AU2020259139A1 (en) Process for the recovery of metals from a Li-containing starting material
CN106350673B (en) A kind of method for controlling current potential selective precipitation separation cobalt
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP6898586B2 (en) Sulfide leaching method
JP2020158819A (en) Refining method of nickel hydroxide
JP4923584B2 (en) Method for removing copper ions from aqueous nickel chloride solution
JP2016102251A (en) Method for leaching cobalt-nickel
JP2007191782A (en) Method for producing cadmium
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
CN113278795A (en) Wet smelting method for high nickel matte
WO2017110572A1 (en) Method for removing sulfidizing agent
JP4457864B2 (en) Method for recovering nickel and / or cobalt sulfide
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP6610368B2 (en) Method for removing impurities from aqueous nickel chloride solution
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP6634870B2 (en) Deironing method of nickel chloride aqueous solution
JP6957974B2 (en) Chlorine leaching method, electronickel manufacturing method
JP6418140B2 (en) Nickel smelting method, chlorine leaching method
JP2003277067A (en) Method for manufacturing nickel sulfide with excellent oxidation resistance
JP7396194B2 (en) Method for purifying nickel chloride aqueous solution
JP6957984B2 (en) Copper removal method, electronickel manufacturing method
JP2013067841A (en) Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6898586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150