JP6610368B2 - Method for removing impurities from aqueous nickel chloride solution - Google Patents

Method for removing impurities from aqueous nickel chloride solution Download PDF

Info

Publication number
JP6610368B2
JP6610368B2 JP2016057777A JP2016057777A JP6610368B2 JP 6610368 B2 JP6610368 B2 JP 6610368B2 JP 2016057777 A JP2016057777 A JP 2016057777A JP 2016057777 A JP2016057777 A JP 2016057777A JP 6610368 B2 JP6610368 B2 JP 6610368B2
Authority
JP
Japan
Prior art keywords
starch
nickel chloride
nickel
aqueous solution
deleaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016057777A
Other languages
Japanese (ja)
Other versions
JP2017171972A (en
Inventor
正寛 新宮
二郎 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016057777A priority Critical patent/JP6610368B2/en
Publication of JP2017171972A publication Critical patent/JP2017171972A/en
Application granted granted Critical
Publication of JP6610368B2 publication Critical patent/JP6610368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、塩化ニッケル水溶液の不純物除去方法に関する。さらに詳しくは、塩化ニッケル水溶液に含まれる鉛などの不純物を酸化中和法により除去する方法に関する。   The present invention relates to a method for removing impurities from an aqueous nickel chloride solution. More specifically, the present invention relates to a method for removing impurities such as lead contained in an aqueous nickel chloride solution by an oxidation neutralization method.

ニッケルは、合金材料、めっき材料、二次電池材料など、日常生活や産業を支える重要な素材として広く用いられている。   Nickel is widely used as an important material that supports everyday life and industry, such as alloy materials, plating materials, and secondary battery materials.

鉱物資源や二次資源からニッケルを分離、濃縮するニッケル製錬法として、乾式製錬法と湿式製錬法とが知られている。乾式製錬法はニッケル鉱石やニッケル精鉱を溶鉱炉や電気炉などの乾式炉で溶解処理する方法である。湿式製錬法はニッケル鉱石やニッケル精鉱に含まれるニッケルを水溶液中に浸出し、不純物を除去してニッケルを回収する方法である。   A dry smelting method and a wet smelting method are known as nickel smelting methods for separating and concentrating nickel from mineral resources and secondary resources. The dry smelting method is a method in which nickel ore and nickel concentrate are melted in a dry furnace such as a blast furnace or an electric furnace. The hydrometallurgical method is a method in which nickel contained in nickel ore or nickel concentrate is leached into an aqueous solution, impurities are removed, and nickel is recovered.

ニッケルの湿式製錬法として、酸浸出法、アルカリ浸出法、塩素浸出法など、種々の方法が知られている。これらのうち塩素浸出法のプロセスとして、ニッケルマットおよびニッケル・コバルト混合硫化物を塩素ガスの酸化作用を利用して浸出し、得られた塩化ニッケル水溶液を用いて電解採取することにより電気ニッケルを得るプロセスが実用化されている(例えば、特許文献1)。   Various methods such as an acid leaching method, an alkali leaching method, and a chlorine leaching method are known as wet smelting methods for nickel. Among these, as a process of chlorine leaching method, nickel matte and nickel-cobalt mixed sulfide are leached using the oxidizing action of chlorine gas, and electro nickel is obtained by electrowinning using the obtained nickel chloride aqueous solution. The process has been put into practical use (for example, Patent Document 1).

上記の湿式製錬プロセスには、塩化ニッケル水溶液から不純物である鉛を除去する脱鉛工程が含まれる(例えば、特許文献2)。脱鉛工程では酸化中和法により不純物を含む水酸化ニッケル沈殿物(脱鉛澱物)を生成する。そして、固液分離装置を用いて脱鉛澱物を含むスラリーの水分率を低減する。   The above hydrometallurgical process includes a deleading step of removing lead as an impurity from an aqueous nickel chloride solution (for example, Patent Document 2). In the lead removal step, a nickel hydroxide precipitate (deleaded starch) containing impurities is generated by an oxidation neutralization method. And the moisture content of the slurry containing a delead starch is reduced using a solid-liquid separator.

ここで、固液分離装置における脱鉛澱物の濾過性が悪化することがある。脱鉛澱物の濾過性が悪化すると、固液分離装置の通液圧力が上昇し、通液流量が減少する。そうすると、脱鉛工程の処理効率が低下する。   Here, the filterability of the deleaded starch in the solid-liquid separator may be deteriorated. When the filterability of the deleaded starch deteriorates, the liquid passing pressure of the solid-liquid separator increases and the liquid passing flow rate decreases. If it does so, the processing efficiency of a deleading process will fall.

特許文献3には、中和工程において、浸出液中に浸出残渣を添加し、かつ中和終液のpHが3.0〜3.5になるように調整するとともに、脱亜鉛工程に際して、中和終液中に、その濁度が100〜400NTUになるように、中和澱物および浸出残渣からなる懸濁物を残留させることが開示されている。亜鉛硫化物の濾過性を改善することにより、濾布の目詰まりを抑制し、濾布の洗浄作業および交換作業の頻度を低減するとともに、ニッケル回収率の低下を抑制することができる。しかし、この技術は硫酸酸性水溶液スラリーに含まれる亜鉛硫化物の濾過性を改善する技術であり、塩酸酸性水溶液スラリーに含まれる脱鉛澱物の濾過性を改善するのに適用できない。   In Patent Document 3, in the neutralization step, a leaching residue is added to the leachate, and the pH of the neutralization final solution is adjusted to be 3.0 to 3.5. It is disclosed that a suspension of neutralized starch and leaching residue remains in the final solution so that its turbidity is 100 to 400 NTU. By improving the filterability of zinc sulfide, it is possible to suppress clogging of the filter cloth, reduce the frequency of cleaning and replacement work of the filter cloth, and suppress a decrease in nickel recovery rate. However, this technique is a technique for improving the filterability of zinc sulfide contained in the sulfuric acid aqueous solution slurry, and cannot be applied to improve the filterability of the deleaded starch contained in the hydrochloric acid aqueous solution slurry.

特開2012−026027号公報JP 2012-026027 A 特開2015−209551号公報Japanese Patent Laying-Open No. 2015-209551 特開2010−037626号公報JP 2010-037626 A

本発明は上記事情に鑑み、澱物の濾過性を向上できる塩化ニッケル水溶液の不純物除去方法を提供することを目的とする。   An object of this invention is to provide the impurity removal method of the nickel chloride aqueous solution which can improve the filterability of starch in view of the said situation.

第1発明の塩化ニッケル水溶液の不純物除去方法は、不純物として鉛、コバルト、鉄および銅のうち一または複数を含む塩化ニッケル水溶液に酸化剤および中和剤を添加して、酸化中和反応により前記不純物を含む澱物を生成するにあたり、直列に接続された複数の反応槽に塩化ニッケル水溶液を流して、段階的に酸化中和反応を行い、最終段の前記反応槽において、塩化ニッケル水溶液に前記酸化剤として塩素ガスを添加し、前記中和剤を添加せず、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000mV以上、1,100mV以下に調整し、pHを4.3以上、4.7以下に調整することを特徴とする。
第2発明の塩化ニッケル水溶液の不純物除去方法は、第1発明において、最終段の前記反応槽から排出された前記澱物を含むスラリーを固液分離して得られた前記澱物の一部を第一段の前記反応槽に供給することを特徴とする。
第3発明の塩化ニッケル水溶液の不純物除去方法は、第2発明において、前記澱物を含むスラリーを固液分離して得られた前記澱物の水分率は70重量%以上、80重量%以下であることを特徴とする。
第4発明の塩化ニッケル水溶液の不純物除去方法は、第2または第3発明において、第一段の前記反応槽に供給する前記澱物の量を、第一段の前記反応槽に供給される塩化ニッケル水溶液から得られる澱物の量に対して、重量比で50%以上、100%以下とすることを特徴とする。
The method for removing impurities from an aqueous nickel chloride solution according to the first aspect of the present invention comprises adding an oxidizing agent and a neutralizing agent to an aqueous nickel chloride solution containing one or more of lead, cobalt, iron and copper as impurities , In producing the starch containing impurities, an aqueous nickel chloride solution is flowed through a plurality of reaction vessels connected in series to perform an oxidation neutralization reaction in stages, and in the final reaction vessel, the aqueous nickel chloride solution is added to the aqueous solution of nickel chloride. Chlorine gas is added as an oxidizing agent, the neutralizing agent is not added , the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 1,000 mV or more and 1,100 mV or less, and the pH is set to 4. It is characterized by adjusting to 3 or more and 4.7 or less.
A method for removing impurities from a nickel chloride aqueous solution according to a second aspect of the present invention is the method according to the first aspect , wherein a part of the starch obtained by solid-liquid separation of the slurry containing the starch discharged from the final reaction vessel is used. It supplies to the said reaction tank of a 1st stage, It is characterized by the above-mentioned.
The impurity removal method for the nickel chloride aqueous solution according to the third invention is the method according to the second invention, wherein the water content of the starch obtained by solid-liquid separation of the slurry containing the starch is 70 wt% or more and 80 wt% or less. It is characterized by being.
According to a fourth aspect of the present invention, there is provided the method for removing impurities from a nickel chloride aqueous solution according to the second or third aspect , wherein the amount of the starch supplied to the first-stage reaction tank is the same as that of the first-stage reaction tank. The weight ratio is 50% or more and 100% or less with respect to the amount of starch obtained from the nickel aqueous solution.

本発明によれば、最終段の反応槽において、塩化ニッケル水溶液に塩素ガスを添加し、中和剤を添加しないことで、粒径の小さい澱物が溶解するので、澱物の濾過性を向上できる。   According to the present invention, in a final reaction vessel, by adding chlorine gas to a nickel chloride aqueous solution and not adding a neutralizing agent, starch having a small particle size is dissolved, so that the filterability of the starch is improved. it can.

脱鉛工程の詳細工程図である。It is a detailed process drawing of a deleading process. 脱鉛澱物の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of a delead starch. 湿式製錬プロセスの全体工程図である。It is a whole process figure of a hydrometallurgical process.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る塩化ニッケル水溶液の不純物除去方法は、ニッケルの湿式製錬プロセスの脱鉛工程に好適に適用される。なお、本実施形態の不純物除去方法は、不純物を含む塩化ニッケル水溶液に酸化剤および中和剤を添加して、酸化中和反応により不純物を含む澱物を生成する工程であれば、いかなるプロセスの工程にも適用し得る。以下、ニッケルの湿式製錬プロセスの脱鉛工程を例に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
The impurity removal method of the nickel chloride aqueous solution which concerns on one Embodiment of this invention is applied suitably for the deleading process of the wet smelting process of nickel. Note that the impurity removal method of the present embodiment is not limited to any process as long as an oxidizing agent and a neutralizing agent are added to a nickel chloride aqueous solution containing impurities, and a starch containing impurities is generated by an oxidation neutralization reaction. It can also be applied to processes. Hereinafter, the deleading step of the nickel smelting process will be described as an example.

(湿式製錬プロセス)
まず、図3に基づき、ニッケルの湿式製錬プロセスを説明する。
湿式製錬プロセスでは、原料であるニッケル硫化物として、ニッケルマットとニッケル・コバルト混合硫化物(MS:ミックスドサルファイド)との2種類が用いられる。
(Wet smelting process)
First, the nickel hydrometallurgical process will be described with reference to FIG.
In the hydrometallurgical process, two kinds of nickel sulfide and nickel-cobalt mixed sulfide (MS: mixed sulfide) are used as the raw material nickel sulfide.

ニッケルマットは乾式製錬により得られる。具体的には、ニッケルマットは硫鉄ニッケル鉱を熔錬することで得られる。   Nickel matte is obtained by dry smelting. Specifically, the nickel matte is obtained by smelting iron sulfate nickel ore.

ニッケル・コバルト混合硫化物は湿式製錬により得られる。具体的には、低品位ラテライト鉱などのニッケル酸化鉱石を加圧酸浸出(HPAL:High Pressure Acid Leaching)し、浸出液から鉄などの不純物を除去した後、硫化水素ガスを浸出液に吹き込んで硫化反応を生じさせニッケル・コバルト混合硫化物を得る。   Nickel-cobalt mixed sulfide can be obtained by hydrometallurgy. Specifically, high pressure acid leaching (HPAL) of nickel oxide ore such as low-grade laterite ore is performed, impurities such as iron are removed from the leachate, and hydrogen sulfide gas is blown into the leachate to sulfidize the reaction. To obtain nickel-cobalt mixed sulfide.

まず、ニッケル・コバルト混合硫化物と後述のセメンテーション残渣とからなるスラリーを塩素浸出工程に供給する。塩素浸出工程では、浸出槽に吹き込まれる塩素ガスの酸化力によって、スラリー中の固形物に含まれる金属が実質的に全て液中に浸出される。塩素浸出工程から排出されたスラリーは浸出液と浸出残渣とに固液分離される。   First, a slurry composed of nickel / cobalt mixed sulfide and a cementation residue described later is supplied to the chlorine leaching process. In the chlorine leaching step, substantially all of the metal contained in the solid matter in the slurry is leached into the liquid by the oxidizing power of the chlorine gas blown into the leaching tank. The slurry discharged from the chlorine leaching process is solid-liquid separated into a leaching solution and a leaching residue.

ニッケルマットは、粉砕工程において粉砕した後、レパルプしてマットスラリーとし、セメンテーション工程に供給する。セメンテーション工程には塩素浸出工程で得られた浸出液も供給されている。浸出液には目的金属であるニッケルやコバルトのほか、不純物として銅、鉄、鉛などが含まれている。   The nickel mat is pulverized in the pulverization step, then repulped into a mat slurry and supplied to the cementation step. In the cementation process, the leachate obtained in the chlorine leaching process is also supplied. The leachate contains copper, iron, lead, etc. as impurities in addition to the target metals nickel and cobalt.

浸出液には2価の銅クロロ錯イオンが含まれている。ニッケルマットの主成分は二硫化三ニッケル(Ni32)と金属ニッケル(Ni0)である。セメンテーション工程では、浸出液とニッケルマットとを接触させて、銅とニッケルとの置換反応を行う。これにより、ニッケルマット中のニッケルが液に置換浸出され、浸出液中の銅イオンが硫化銅(Cu2S)または金属銅(Cu0)の形態で析出する。固液分離により得られたセメンテーション残渣は塩素浸出工程に供給される。 The leachate contains divalent copper chloro complex ions. The main components of the nickel mat are trinickel disulfide (Ni 3 S 2 ) and metallic nickel (Ni 0 ). In the cementation step, the leaching solution and the nickel mat are brought into contact with each other to perform a substitution reaction between copper and nickel. As a result, nickel in the nickel mat is replaced and leached into the liquid, and copper ions in the leached liquid are precipitated in the form of copper sulfide (Cu 2 S) or metallic copper (Cu 0 ). The cementation residue obtained by solid-liquid separation is supplied to the chlorine leaching process.

セメンテーション工程から得られたセメンテーション終液を脱鉄工程に供給し、不純物である鉄を除去する。脱鉄工程では、セメンテーション終液(塩化ニッケル水溶液)に酸化剤を作用させて酸化還元電位(Ag/AgCl電極基準)を950〜1,100mVに調整しつつ、中和剤を添加してpHを1.5〜3に調整する。酸化中和反応により塩化ニッケル水溶液に含まれる鉄を水酸化鉄(III)の沈殿物とする。固液分離により沈殿物を除去することで、鉄を除去する。ここで、酸化剤として、例えば塩素ガスが用いられる。また、中和剤として、例えば炭酸ニッケルスラリーが用いられる。   The final cementation liquid obtained from the cementation process is supplied to the deironing process to remove iron as an impurity. In the iron removal step, an oxidizing agent is allowed to act on the final cementation solution (nickel chloride aqueous solution) to adjust the oxidation-reduction potential (Ag / AgCl electrode standard) to 950 to 1,100 mV, while adding a neutralizing agent to adjust the pH. Is adjusted to 1.5-3. The iron contained in the nickel chloride aqueous solution is converted into iron (III) hydroxide precipitate by the oxidation neutralization reaction. The iron is removed by removing the precipitate by solid-liquid separation. Here, for example, chlorine gas is used as the oxidizing agent. Further, as the neutralizing agent, for example, nickel carbonate slurry is used.

脱鉄工程から得られた液を抽出始液として溶媒抽出工程に供給する。溶媒抽出工程では、抽出始液に含まれるコバルトを溶媒抽出により分離し、塩化ニッケル水溶液と塩化コバルト水溶液とを得る。   The liquid obtained from the iron removal process is supplied to the solvent extraction process as an extraction start liquid. In the solvent extraction step, cobalt contained in the extraction starting solution is separated by solvent extraction to obtain an aqueous nickel chloride solution and an aqueous cobalt chloride solution.

塩化コバルト水溶液は浄液工程を経てさらに不純物が除去されて高純度塩化コバルト水溶液となる。高純度塩化コバルト水溶液は電解給液としてコバルト電解工程に供給される。コバルト電解工程では電解採取により電気コバルトが製造される。   Impurities are further removed from the cobalt chloride aqueous solution through a liquid purification process to form a high purity cobalt chloride aqueous solution. The high purity cobalt chloride aqueous solution is supplied to the cobalt electrolysis process as an electrolytic feed solution. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.

塩化ニッケル水溶液は脱鉛工程に供給され、不純物である鉛が除去される。脱鉛工程の詳細は後に説明する。   The nickel chloride aqueous solution is supplied to the deleading process, and lead as an impurity is removed. Details of the lead removal process will be described later.

脱鉛工程から得られた脱鉛終液を脱亜鉛工程に供給する。脱亜鉛工程では、脱鉛終液に残留した微量の亜鉛を陰イオン交換樹脂に吸着させることで除去する。   The deleaded final solution obtained from the deleading process is supplied to the dezincing process. In the dezincing step, a small amount of zinc remaining in the deleaded final solution is removed by adsorbing the anion exchange resin.

脱亜鉛工程から得られた高純度塩化ニッケル水溶液は電解給液としてニッケル電解工程に供給される。ニッケル電解工程では電解採取により電気ニッケルが製造される。   The high purity nickel chloride aqueous solution obtained from the dezincing process is supplied to the nickel electrolysis process as an electrolytic feed solution. In the nickel electrolysis process, electric nickel is produced by electrowinning.

(脱鉛工程)
つぎに、図1に基づき、脱鉛工程を説明する。
脱鉛工程は酸化中和工程と、固液分離工程とからなる。
(Delead process)
Next, the lead removal process will be described with reference to FIG.
The lead removal process includes an oxidation neutralization process and a solid-liquid separation process.

酸化中和工程に供給される塩化ニッケル水溶液は溶媒抽出工程から得られる。溶媒抽出工程ではコバルトのほか、鉄、銅、亜鉛などの不純物が分離される。しかし、塩化ニッケル水溶液には、鉛、コバルト、鉄、銅、亜鉛などの不純物が微量に含まれている。   The nickel chloride aqueous solution supplied to the oxidation neutralization step is obtained from the solvent extraction step. In the solvent extraction step, impurities such as iron, copper and zinc are separated in addition to cobalt. However, the nickel chloride aqueous solution contains trace amounts of impurities such as lead, cobalt, iron, copper, and zinc.

酸化中和工程では、塩化ニッケル水溶液に酸化剤を添加して酸化還元電位を所定の管理範囲に調整しつつ、中和剤を添加してpHを所定の管理範囲に調整して、酸化中和反応を生じさせる。ここで、酸化還元電位の管理範囲は900〜1,100mV(Ag/AgCl電極基準)であり、pHの管理範囲は4.3〜5.5である。酸化中和反応により塩化ニッケル水溶液に含まれる不純物を水酸化ニッケル(III)沈殿物と共沈させる。不純物を含む水酸化ニッケル(III)沈殿物を脱鉛澱物と称する。また、脱鉛澱物を含むスラリーを澱物スラリーと称する。   In the oxidative neutralization step, an oxidizing agent is added to the nickel chloride aqueous solution to adjust the oxidation-reduction potential to a predetermined control range, and a neutralizing agent is added to adjust the pH to the predetermined control range. Cause a reaction. Here, the control range of the oxidation-reduction potential is 900 to 1,100 mV (Ag / AgCl electrode standard), and the control range of pH is 4.3 to 5.5. Impurities contained in the aqueous nickel chloride solution are coprecipitated with nickel hydroxide (III) precipitates by an oxidative neutralization reaction. Nickel (III) hydroxide precipitate containing impurities is called deleaded starch. A slurry containing deleaded starch is referred to as a starch slurry.

なお、水酸化ニッケル(III)沈殿物と共沈する不純物は鉛、コバルト、鉄、銅などであり、亜鉛は共沈しない。塩化ニッケル水溶液に残存する亜鉛は脱亜鉛工程で除去される。   The impurities co-precipitated with the nickel (III) hydroxide precipitate are lead, cobalt, iron, copper, etc., and zinc is not co-precipitated. Zinc remaining in the nickel chloride aqueous solution is removed in the dezincing step.

酸化中和工程で用いられる酸化剤としては、塩化ニッケル水溶液の酸化還元電位を上昇させることができるものであれば特に限定されないが、不純物を増加させることがない塩素ガスが好ましい。また、中和剤としては、特に限定されないが、不純物を増加させることがない炭酸ニッケルまたは水酸化ニッケルが好ましい。   The oxidizing agent used in the oxidation neutralization step is not particularly limited as long as it can raise the oxidation-reduction potential of the nickel chloride aqueous solution, but chlorine gas that does not increase impurities is preferable. Further, the neutralizing agent is not particularly limited, but nickel carbonate or nickel hydroxide that does not increase impurities is preferable.

酸化中和工程から得られた澱物スラリーには約99重量%の液相分が含まれている。澱物スラリーは固液分離工程で脱鉛澱物と脱鉛終液とに固液分離される。固液分離により脱鉛澱物の水分率は70〜80重量%まで低減される。   The starch slurry obtained from the oxidation neutralization step contains about 99% by weight of liquid phase. The starch slurry is solid-liquid separated into a deleaded starch and a deleaded final solution in a solid-liquid separation process. By solid-liquid separation, the moisture content of the deleaded starch is reduced to 70 to 80% by weight.

固液分離工程で用いられる固液分離装置は、澱物スラリーの水分率を約99重量%から70〜80重量%まで低減できるものであれば特に限定されない。例えば、固液分離装置としてチューブフィルターを採用できる。   The solid-liquid separation device used in the solid-liquid separation step is not particularly limited as long as the moisture content of the starch slurry can be reduced from about 99 wt% to 70 to 80 wt%. For example, a tube filter can be employed as the solid-liquid separator.

脱鉛澱物は硫酸ニッケル製造用の原料として利用される。脱鉛終液は脱亜鉛工程に供給される(図3参照)。   Deleaded starch is used as a raw material for nickel sulfate production. The deleaded final solution is supplied to the dezincing process (see FIG. 3).

固液分離装置における脱鉛澱物の濾過性が悪化すると、固液分離装置の通液圧力が上昇し、通液流量が減少する。そうすると、脱鉛工程の処理効率が低下する。そこで、脱鉛工程を以下のように操業することで脱鉛澱物の濾過性を向上させる。   When the filterability of the deleaded starch in the solid-liquid separator deteriorates, the liquid passing pressure of the solid-liquid separator rises and the liquid passing flow rate decreases. If it does so, the processing efficiency of a deleading process will fall. Therefore, the filterability of the deleaded starch is improved by operating the deleading process as follows.

酸化中和工程において複数の反応槽を直列に接続した設備を用いる。各反応槽には塩化ニッケル水溶液と酸化剤および中和剤とを撹拌するための撹拌機が備えられている。直列に接続された複数の反応槽に塩化ニッケル水溶液を流して、段階的に酸化中和反応を行う。すなわち、直列に接続された複数の反応槽のうち第一段の反応槽に新規の塩化ニッケル水溶液を供給し、最終段の反応槽から酸化中和反応後の澱物スラリーを排出する。反応槽の数は特に限定されないが、例えば4槽である。   In the oxidation neutralization step, equipment in which a plurality of reaction vessels are connected in series is used. Each reaction vessel is equipped with a stirrer for stirring the nickel chloride aqueous solution, the oxidizing agent, and the neutralizing agent. An aqueous nickel chloride solution is passed through a plurality of reaction tanks connected in series to perform an oxidation neutralization reaction step by step. That is, a new nickel chloride aqueous solution is supplied to the first-stage reaction tank among the plurality of reaction tanks connected in series, and the starch slurry after the oxidation neutralization reaction is discharged from the final-stage reaction tank. Although the number of reaction tanks is not specifically limited, For example, it is four tanks.

大容量の反応槽1槽で酸化中和反応を行うと、塩化ニッケル水溶液と酸化剤および中和剤との混合が不均一となりやすい。これに対して、複数の反応槽を用いて段階的に酸化中和反応を行えば、塩化ニッケル水溶液と酸化剤および中和剤との混合が均一となり、接触効率を向上させることができる。   When the oxidation neutralization reaction is performed in one large-capacity reaction tank, the mixing of the nickel chloride aqueous solution with the oxidizing agent and the neutralizing agent tends to be uneven. On the other hand, if the oxidation neutralization reaction is performed step by step using a plurality of reaction vessels, the mixing of the nickel chloride aqueous solution with the oxidizing agent and the neutralizing agent becomes uniform, and the contact efficiency can be improved.

最終段の反応槽を除くその他の反応槽では、塩化ニッケル水溶液に酸化剤および中和剤を添加する。ここで、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)は900mV以上、1,100mV以下に調整し、pHは4.3以上、5.5以下に調整する。   In other reaction tanks except the final reaction tank, an oxidizing agent and a neutralizing agent are added to the nickel chloride aqueous solution. Here, the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 900 mV or more and 1,100 mV or less, and the pH is adjusted to 4.3 or more and 5.5 or less.

最終段の反応槽では、塩化ニッケル水溶液に酸化剤を添加し、中和剤を添加しない。ここで、酸化剤として塩素ガスを用いる。このようにすることで、脱鉛澱物の濾過性を向上できる。その結果、脱鉛工程の処理効率を維持できる。   In the final reaction tank, an oxidizing agent is added to the nickel chloride aqueous solution, and no neutralizing agent is added. Here, chlorine gas is used as the oxidizing agent. By doing in this way, the filterability of a deleaded starch can be improved. As a result, the processing efficiency of the lead removal process can be maintained.

脱鉛澱物の濾過性を向上できる理由は以下のとおりと考えられる。塩化ニッケル水溶液に塩素ガスを吹き込むと、塩素ガスと水との反応により塩酸および次亜塩素酸が生成される。最終段の反応槽内では塩酸および次亜塩素酸により脱鉛澱物が溶解する。個々の粒子でみると、溶解量が同じでも、粒径の大きい脱鉛澱物に比べて、粒径の小さい脱鉛澱物の方が、さらに粒径が小さくなる効果が大きい。そのため、粒径の小さい脱鉛澱物が消失し、粒径の大きい澱物が溶け残る。すなわち、粒径の小さい脱鉛澱物が優先的に溶解する。その結果、脱鉛澱物の粒度分布は粒径が大きい方にシフトする。粒径の小さい脱鉛澱物は濾布を目詰りさせやすく、濾過性を悪化させる原因となる。粒径の小さい脱鉛澱物が溶解するので、脱鉛澱物の濾過性を向上できる。   The reason why the filterability of deleaded starch can be improved is as follows. When chlorine gas is blown into the nickel chloride aqueous solution, hydrochloric acid and hypochlorous acid are generated by the reaction between the chlorine gas and water. In the final reaction vessel, the deleaded starch is dissolved by hydrochloric acid and hypochlorous acid. In terms of individual particles, even if the amount of dissolution is the same, a deleaded starch with a smaller particle size has a greater effect of reducing the particle size than a deleaded starch with a larger particle size. Therefore, the deleaded starch having a small particle size disappears and the starch having a large particle size remains undissolved. That is, deleaded starch having a small particle size is preferentially dissolved. As a result, the particle size distribution of the deleaded starch shifts to the larger particle size. A deleaded starch having a small particle size easily clogs the filter cloth, and causes the filterability to deteriorate. Since the lead-free starch having a small particle size is dissolved, the filterability of the lead-free starch can be improved.

最終段の反応槽において、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000mV以上、1,100mV以下に調整し、pHを4.3以上、4.7以下に調整する。すなわち、酸化還元電位を管理範囲の中で高く維持しつつ、pHを管理範囲の下限付近に設定する。酸化剤の添加量を調整することで、酸化還元電位およびpHの調整が可能である。   In the final reaction vessel, the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 1,000 mV or more and 1,100 mV or less, and the pH is adjusted to 4.3 or more and 4.7 or less. That is, the pH is set near the lower limit of the management range while maintaining the oxidation-reduction potential high in the management range. The oxidation-reduction potential and pH can be adjusted by adjusting the addition amount of the oxidizing agent.

塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000mV未満にすると不純物が共沈せず、不純物の除去が不十分となる。塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000mV以上とすることで、酸化中和反応により脱鉛澱物を生成することができる。塩化ニッケル水溶液のpHを4.3未満にすると不純物が共沈せず、不純物の除去が不十分となる。塩化ニッケル水溶液のpHが4.7を超えると脱鉛澱物が溶解しない。塩化ニッケル水溶液のpHを4.3〜4.7とすることで、酸化中和反応により脱鉛澱物を生成しつつ、粒径の小さい脱鉛澱物を溶解することができる。すなわち、塩化ニッケル水溶液の酸化還元電位およびpHを上記の範囲に調整することで、不純物を含む脱鉛澱物を生成しつつ、粒径の小さい脱鉛澱物を溶解することができる。   When the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is less than 1,000 mV, impurities are not co-precipitated and the removal of impurities becomes insufficient. By setting the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution to 1,000 mV or more, deleaded starch can be generated by an oxidation neutralization reaction. When the pH of the nickel chloride aqueous solution is less than 4.3, impurities are not co-precipitated and the removal of impurities becomes insufficient. When the pH of the nickel chloride aqueous solution exceeds 4.7, the deleaded starch does not dissolve. By setting the pH of the nickel chloride aqueous solution to 4.3 to 4.7, it is possible to dissolve the deleaded starch having a small particle size while generating the deleaded starch by the oxidation neutralization reaction. That is, by adjusting the oxidation-reduction potential and pH of the nickel chloride aqueous solution to the above ranges, it is possible to dissolve the deleaded starch having a small particle size while generating the deleaded starch containing impurities.

また、澱物スラリーを固液分離して得られた脱鉛澱物の一部を第一段の反応槽に供給する。脱鉛澱物を第一段の反応槽に戻し入れることで、その脱鉛澱物が沈殿物を生成する際の核として働き、沈殿物の粒径を大きくすることができる。そのため、脱鉛澱物の濾過性を向上できる。   In addition, a part of the deleaded starch obtained by solid-liquid separation of the starch slurry is supplied to the first stage reaction vessel. By returning the deleaded starch to the first-stage reaction vessel, the deleaded starch serves as a nucleus when the precipitate is generated, and the particle size of the precipitate can be increased. Therefore, the filterability of the deleaded starch can be improved.

ここで、第一段の反応槽に供給する脱鉛澱物の量を、第一段の反応槽に供給される新規の塩化ニッケル水溶液から得られる脱鉛澱物の量に対して、重量比で50%以上100%以下とすることが好ましい。第一段の反応槽に供給する脱鉛澱物の量が少ないと沈殿物の粒径を大きくする効果が十分に得られず、逆に多いと脱鉛工程の操業コストが高くなる。第一段の反応槽に供給する脱鉛澱物の量を上記の範囲とすることで、十分な量の脱鉛澱物を反応槽に供給でき沈殿物の粒径を大きくする効果を得ることができるとともに、操業コストの上昇を抑えることができる。   Here, the amount of deleaded starch supplied to the first-stage reaction tank is based on the weight ratio of the deleaded starch obtained from the new nickel chloride aqueous solution supplied to the first-stage reaction tank. It is preferable to be 50% or more and 100% or less. If the amount of deleaded starch supplied to the first-stage reaction tank is small, the effect of increasing the particle size of the precipitate cannot be obtained sufficiently, and conversely if it is large, the operation cost of the deleading process becomes high. By setting the amount of deleaded starch to be supplied to the first stage reaction tank within the above range, a sufficient amount of deleaded starch can be supplied to the reaction tank to obtain the effect of increasing the particle size of the precipitate. As well as an increase in operating costs.

澱物スラリーを固液分離して得られた脱鉛澱物の水分率は70重量%以上、80重量%以下である。脱鉛澱物はスラリー状であるため、通常のポンプおよび配管を用いて脱鉛澱物を移送することが可能である。脱鉛澱物の水分率が70重量%以上であるので、脱鉛澱物を反応槽に戻し入れた際に、固相分が多すぎて混合不良を起こすことがない。すなわち、脱鉛澱物が反応槽の液相中に均一に分散される。脱鉛澱物の一部が反応槽の側壁に付着したり、底に滞留したりすることがない。また、脱鉛澱物の水分率が80重量%以下であるので、固相分が少なすぎて反応槽への供給量が多くなり、反応槽の容量が不足することがない。   The moisture content of the deleaded starch obtained by solid-liquid separation of the starch slurry is 70% by weight or more and 80% by weight or less. Since the deleaded starch is in a slurry state, it is possible to transfer the deleaded starch using a normal pump and piping. Since the moisture content of the deleaded starch is 70% by weight or more, when the deleaded starch is put back into the reaction vessel, the solid content is too much to cause mixing failure. That is, the deleaded starch is uniformly dispersed in the liquid phase of the reaction vessel. Part of the deleaded starch does not adhere to the side wall of the reaction vessel or stay at the bottom. In addition, since the moisture content of the deleaded starch is 80% by weight or less, the amount of solid phase is too small and the amount supplied to the reaction vessel increases, and the capacity of the reaction vessel does not become insufficient.

さらに、脱鉛澱物の水分率が70〜80重量%であれば、反応槽に備えられている撹拌機で脱鉛澱物を十分に分散できる。そのため、脱鉛澱物を分散させるために新たな装置を設ける必要がない。固液分離装置から得られた脱鉛澱物をそのまま反応槽に供給すればよいので、濃度調整や供給量調整のための特別な設備は不要である。   Furthermore, when the moisture content of the deleaded starch is 70 to 80% by weight, the deleaded starch can be sufficiently dispersed by the stirrer provided in the reaction vessel. Therefore, it is not necessary to provide a new device for dispersing the deleaded starch. Since the deleaded starch obtained from the solid-liquid separation device may be supplied to the reaction vessel as it is, special equipment for adjusting the concentration and adjusting the supply amount is not necessary.

つぎに、実施例を説明する。
実施例1および比較例1、2の共通の条件は以下の通りである。
ニッケルの湿式製錬プロセスの脱鉛工程を以下の条件で操業した。
塩化ニッケル水溶液の組成:ニッケルが165〜175g/L、鉛が1〜3mg/L、コバルトが5〜10mg/L、亜鉛が0.05〜0.1mg/Lである。
塩化ニッケル水溶液の供給量:2,000〜3,000L/分
酸化剤:純度100体積%の塩素ガス
中和剤:固形分濃度が約200g/Lの炭酸ニッケルスラリー
固液分離装置:チューブフィルター28基
酸化中和工程から得られる澱物スラリーの水分率:99重量%
固液分離工程から得られる脱鉛澱物の水分率:70〜80重量%
固液分離工程から得られた脱鉛澱物の粒度分布をレーザー回折・散乱方式の粒度分布測定装置(日機装株式会社製 型番:HRA9320−X100)で測定した。
Next, examples will be described.
The common conditions of Example 1 and Comparative Examples 1 and 2 are as follows.
The deleading process of the nickel hydrometallurgical process was operated under the following conditions.
Composition of nickel chloride aqueous solution: 165 to 175 g / L of nickel, 1 to 3 mg / L of lead, 5 to 10 mg / L of cobalt, and 0.05 to 0.1 mg / L of zinc.
Supply amount of nickel chloride aqueous solution: 2,000 to 3,000 L / min Oxidizing agent: Chlorine gas neutralizing agent having a purity of 100% by volume: Nickel carbonate slurry solid-liquid separator having a solid concentration of about 200 g / L: Tube filter 28 Moisture content of starch slurry obtained from the base oxidation neutralization step: 99% by weight
Moisture content of deleaded starch obtained from the solid-liquid separation process: 70 to 80% by weight
The particle size distribution of the deleaded starch obtained from the solid-liquid separation step was measured with a laser diffraction / scattering particle size distribution measuring device (model number: HRA9320-X100 manufactured by Nikkiso Co., Ltd.).

(実施例1)
酸化中和工程において4槽の反応槽を直列に接続した設備を用いた。第一段から第三段の反応槽には酸化剤および中和剤を添加し、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を980〜1,050mVに調整し、pHを4.3〜5.1に調整した。最終段の反応槽には酸化剤のみを添加し、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000〜1,050mVに調整し、pHを4.3〜4.7に調整した。また、固液分離工程から得られた脱鉛澱物を流量50L/分で第一段の反応槽に供給した。
Example 1
In the oxidation neutralization step, equipment in which four reaction vessels were connected in series was used. An oxidizing agent and a neutralizing agent are added to the first to third reaction vessels, the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 980 to 1,050 mV, and the pH is set to 4. Adjusted to 3 to 5.1. Only the oxidizing agent is added to the final reaction tank, and the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 1,000 to 1,050 mV, and the pH is adjusted to 4.3 to 4.7. It was adjusted. Moreover, the deleaded starch obtained from the solid-liquid separation process was supplied to the first stage reaction vessel at a flow rate of 50 L / min.

脱鉛澱物の粒度分布を図2に示す。脱鉛澱物の粒径(d10%)は6.70μmであった。なお、d10%とは個数基準の下側10%の粒径を意味する。濾過性を評価するための指標として、粒径の小さい脱鉛澱物の粒径(d10%)を採用した。また、脱鉛澱物の最小粒径は2.8μmであった。チューブフィルターの濾過能力は130L/分/基であった。   The particle size distribution of the deleaded starch is shown in FIG. The particle size (d10%) of the deleaded starch was 6.70 μm. In addition, d10% means the particle size of the lower 10% based on the number. As an index for evaluating filterability, the particle size (d10%) of a deleaded starch having a small particle size was employed. The minimum particle size of the deleaded starch was 2.8 μm. The filtration capacity of the tube filter was 130 L / min / group.

(比較例1)
酸化中和工程において3槽の反応槽を直列に接続した設備を用いた。第一段から第三段の反応槽には酸化剤および中和剤を添加し、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を980〜1,050mVに調整し、pHを4.3〜5.1に調整した。また、固液分離工程から得られた脱鉛澱物を流量50L/分で第一段の反応槽に供給した。
(Comparative Example 1)
In the oxidation neutralization step, equipment in which three reaction vessels were connected in series was used. An oxidizing agent and a neutralizing agent are added to the first to third reaction vessels, the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 980 to 1,050 mV, and the pH is set to 4. Adjusted to 3 to 5.1. Moreover, the deleaded starch obtained from the solid-liquid separation process was supplied to the first stage reaction vessel at a flow rate of 50 L / min.

脱鉛澱物の粒度分布を図2に示す。脱鉛澱物の粒径(d10%)は6.50μmであった。脱鉛澱物の最小粒径は1.5μmであった。チューブフィルターの濾過能力は110L/分/基であった。   The particle size distribution of the deleaded starch is shown in FIG. The particle size (d10%) of the deleaded starch was 6.50 μm. The minimum particle size of the deleaded starch was 1.5 μm. The filtration capacity of the tube filter was 110 L / min / group.

(比較例2)
酸化中和工程において3槽の反応槽を直列に接続した設備を用いた。第一段から第三段の反応槽には酸化剤および中和剤を添加し、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を980〜1,050mVに調整し、pHを4.3〜5.1に調整した。脱鉛澱物の第一段の反応槽への供給を行わなかった。
(Comparative Example 2)
In the oxidation neutralization step, equipment in which three reaction vessels were connected in series was used. An oxidizing agent and a neutralizing agent are added to the first to third reaction vessels, the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is adjusted to 980 to 1,050 mV, and the pH is set to 4. Adjusted to 3 to 5.1. The lead-free starch was not fed to the first stage reactor.

脱鉛澱物の粒度分布を図2に示す。脱鉛澱物の粒径(d10%)は3.71μmであった。また、チューブフィルターの濾過能力は100L/分/基であった。   The particle size distribution of the deleaded starch is shown in FIG. The particle size (d10%) of the deleaded starch was 3.71 μm. Moreover, the filtration capacity of the tube filter was 100 L / min / group.

以上より、実施例1は比較例1、2に比べてチューブフィルターの濾過能力が向上していることが分かる。具体的には、実施例1におけるチューブフィルターの濾過能力は比較例2における濾過能力の1.3倍となっている。これは、図2から分かるように、小さい粒径の脱鉛澱物が減少しているためと考えられる。   From the above, it can be seen that the filtration capacity of the tube filter in Example 1 is improved as compared with Comparative Examples 1 and 2. Specifically, the filtration capacity of the tube filter in Example 1 is 1.3 times that in Comparative Example 2. As can be seen from FIG. 2, this is thought to be due to a decrease in deleaded starch having a small particle size.

また、比較例1は比較例2に比べてチューブフィルターの濾過能力が向上している。具体的には、比較例1におけるチューブフィルターの濾過能力は比較例2における濾過能力の1.1倍となっている。脱鉛澱物を第一段の反応槽に供給することによっても、脱鉛澱物の濾過性を向上できることが確認できた。   Moreover, the filtering ability of the tube filter is improved in Comparative Example 1 compared to Comparative Example 2. Specifically, the filtration capacity of the tube filter in Comparative Example 1 is 1.1 times the filtration capacity in Comparative Example 2. It was confirmed that the deleadable starch filterability could be improved also by supplying the deleaded starch to the first stage reaction vessel.

Claims (4)

不純物として鉛、コバルト、鉄および銅のうち一または複数を含む塩化ニッケル水溶液に酸化剤および中和剤を添加して、酸化中和反応により前記不純物を含む澱物を生成するにあたり、
直列に接続された複数の反応槽に塩化ニッケル水溶液を流して、段階的に酸化中和反応を行い、
最終段の前記反応槽において、塩化ニッケル水溶液に前記酸化剤として塩素ガスを添加し、前記中和剤を添加せず、塩化ニッケル水溶液の酸化還元電位(Ag/AgCl電極基準)を1,000mV以上、1,100mV以下に調整し、pHを4.3以上、4.7以下に調整する
ことを特徴とする塩化ニッケル水溶液の不純物除去方法。
In producing a starch containing the impurities by an oxidation neutralization reaction by adding an oxidizing agent and a neutralizing agent to a nickel chloride aqueous solution containing one or more of lead, cobalt, iron and copper as impurities.
Flowing nickel chloride aqueous solution to a plurality of reaction tanks connected in series to carry out oxidation neutralization reaction step by step.
In the final reaction vessel, chlorine gas is added as an oxidizing agent to the nickel chloride aqueous solution, the neutralizing agent is not added, and the oxidation-reduction potential (Ag / AgCl electrode standard) of the nickel chloride aqueous solution is 1,000 mV or more. A method for removing impurities from an aqueous nickel chloride solution, characterized in that the pH is adjusted to 1,100 mV or less and the pH is adjusted to 4.3 or more and 4.7 or less .
最終段の前記反応槽から排出された前記澱物を含むスラリーを固液分離して得られた前記澱物の一部を第一段の前記反応槽に供給する
ことを特徴とする請求項記載の塩化ニッケル水溶液の不純物除去方法。
Claim and supplying a part of the sediment obtained on solid-liquid separation of the slurry containing the sediment which have been discharged from the reactor in the final stage to the reactor of the first stage 1 The impurity removal method of nickel chloride aqueous solution as described.
前記澱物を含むスラリーを固液分離して得られた前記澱物の水分率は70重量%以上、80重量%以下である
ことを特徴とする請求項記載の塩化ニッケル水溶液の不純物除去方法。
The method for removing impurities from an aqueous nickel chloride solution according to claim 2 , wherein the starch obtained by solid-liquid separation of the slurry containing the starch has a water content of 70 wt% or more and 80 wt% or less. .
第一段の前記反応槽に供給する前記澱物の量を、第一段の前記反応槽に供給される塩化ニッケル水溶液から得られる澱物の量に対して、重量比で50%以上、100%以下とする
ことを特徴とする請求項または記載の塩化ニッケル水溶液の不純物除去方法。
The amount of the starch supplied to the first-stage reaction vessel is 50% or more by weight with respect to the amount of starch obtained from the aqueous nickel chloride solution supplied to the first-stage reaction vessel. The impurity removal method for an aqueous nickel chloride solution according to claim 2 or 3 , wherein the content is not more than%.
JP2016057777A 2016-03-23 2016-03-23 Method for removing impurities from aqueous nickel chloride solution Expired - Fee Related JP6610368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057777A JP6610368B2 (en) 2016-03-23 2016-03-23 Method for removing impurities from aqueous nickel chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057777A JP6610368B2 (en) 2016-03-23 2016-03-23 Method for removing impurities from aqueous nickel chloride solution

Publications (2)

Publication Number Publication Date
JP2017171972A JP2017171972A (en) 2017-09-28
JP6610368B2 true JP6610368B2 (en) 2019-11-27

Family

ID=59973047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057777A Expired - Fee Related JP6610368B2 (en) 2016-03-23 2016-03-23 Method for removing impurities from aqueous nickel chloride solution

Country Status (1)

Country Link
JP (1) JP6610368B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683910B2 (en) * 2016-07-04 2020-04-22 住友金属鉱山株式会社 Purification method of nickel chloride aqueous solution
CN109763001A (en) * 2019-03-20 2019-05-17 金川集团股份有限公司 A kind of eccentric stirring exchanger cell removing zinc for nickel hydroxide cobalt salt acid leaching liquor ion
JP7396194B2 (en) * 2020-05-18 2023-12-12 住友金属鉱山株式会社 Method for purifying nickel chloride aqueous solution

Also Published As

Publication number Publication date
JP2017171972A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
CN101705371B (en) Method for extracting cobalt from copper-cobalt sulfide ore
CN106119560B (en) Zinc-cobalt separation method
JP5439997B2 (en) Method for recovering copper from copper-containing iron
CN102994747A (en) Technology for recovering metallic copper from high-lead copper matte
CN107630146A (en) nickel recovery method
US10662502B2 (en) Systems and methods for improved metal recovery using ammonia leaching
CN102859012A (en) Method of processing nickel bearing raw material
JP6610368B2 (en) Method for removing impurities from aqueous nickel chloride solution
JP6168000B2 (en) Method for producing nickel sulfate solution
JP6898586B2 (en) Sulfide leaching method
JP5405768B2 (en) Valuables recovery from precious metal-containing metal sulfides
JP4962078B2 (en) Nickel sulfide chlorine leaching method
WO2019172392A1 (en) METHOD FOR PRODUCING Ni/Co SULFIDE AND SYSTEM FOR STABILIZING IRON GRADE
JP2018059167A (en) Wet type smelting method of nickel oxide ore
CN104947145B (en) A kind of method of high lead copper matte oxygen leaching electrodeposition process balance acid
JP6172526B2 (en) Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
CN109913647A (en) A kind of wet treatment method recycling copper, zinc in bismuth chats
JP6683910B2 (en) Purification method of nickel chloride aqueous solution
JP6362029B2 (en) Nickel sulfide raw material processing method
JP5803492B2 (en) Chlorine leaching method for metal sulfides
CN104711431B (en) A kind of method that copper dross slag produces copper sulphate
JP6127902B2 (en) Method for leaching nickel and cobalt from mixed sulfides
JP6634870B2 (en) Deironing method of nickel chloride aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees