JP2009215611A - Method for purifying nickel chloride aqueous solution - Google Patents
Method for purifying nickel chloride aqueous solution Download PDFInfo
- Publication number
- JP2009215611A JP2009215611A JP2008060378A JP2008060378A JP2009215611A JP 2009215611 A JP2009215611 A JP 2009215611A JP 2008060378 A JP2008060378 A JP 2008060378A JP 2008060378 A JP2008060378 A JP 2008060378A JP 2009215611 A JP2009215611 A JP 2009215611A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- reaction
- nickel
- slurry
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、塩化ニッケル水溶液の精製方法に関し、さらに詳しくは、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、鉄を水酸化鉄(III)として沈澱除去する精製方法において、形成される反応終液スラリー中の水酸化鉄(III)沈殿のろ過性を向上させるとともに、ニッケルとコバルトの該沈殿へのロスを抑制することができる塩化ニッケル水溶液の精製方法に関する。これにより、精製後の塩化ニッケル水溶液の鉄濃度を、高純度電気ニッケルの製造に求められる、0.1g/L以下に低下させることができる。 The present invention relates to a method for purifying an aqueous nickel chloride solution. More specifically, a nickel chloride aqueous solution containing cobalt and iron as impurity elements is added with a neutralizing agent while blowing chlorine, and subjected to an oxidation neutralization reaction. In the purification method in which iron is precipitated and removed as iron (III) hydroxide, the filterability of the iron (III) hydroxide precipitate in the formed reaction final slurry is improved, and the loss of nickel and cobalt to the precipitate is reduced. The present invention relates to a method for purifying an aqueous nickel chloride solution that can be suppressed. Thereby, the iron concentration of the nickel chloride aqueous solution after refinement | purification can be reduced to 0.1 g / L or less calculated | required for manufacture of high purity electronickel.
塩化ニッケル水溶液の精製方法は、超合金材料やめっき材料として広く用いられている高純度電気ニッケルの製造に際して重要な技術である。高純度電気ニッケルの製造方法としては、一般に、浸出工程、浄液工程及び電解工程からなる方法が用いられる。例えば、まず、浸出工程で、原料である硫化ニッケルや亜硫化ニッケルを塩素ガスで浸出し浸出液を得る。続いて、浄液工程で、該浸出液に含まれる不純物元素を除去し高純度塩化ニッケル水溶液を得る。その後、電解工程で、該高純度塩化ニッケル水溶液を電解液として用いて、電解採取法により陰極にニッケルを電着させ、これを回収し高純度電気ニッケルを得る。 The purification method of nickel chloride aqueous solution is an important technique in the production of high-purity electro-nickel widely used as a superalloy material and a plating material. In general, a method comprising a leaching process, a liquid purification process, and an electrolysis process is used as a method for producing high-purity electronickel. For example, first, in the leaching step, nickel sulfide or nickel sulfide as a raw material is leached with chlorine gas to obtain a leachate. Subsequently, in the liquid purification step, the impurity element contained in the leachate is removed to obtain a high-purity nickel chloride aqueous solution. Thereafter, in the electrolysis step, the high-purity nickel chloride aqueous solution is used as an electrolytic solution, and nickel is electrodeposited on the cathode by an electrowinning method, which is recovered to obtain high-purity electro-nickel.
上記浸出液中には、通常、ニッケルの他に、鉄、コバルトを始めとして原料中に含まれる各種の金属元素が不純物元素として存在するため、浄液工程では、各種の方法を組み合わせて不純物元素を分離除去している。このような浄液工程としては、例えば、酸化反応と中和反応とを同時に行う酸化中和法と称される方法(例えば、特許文献1〜4参照。)を用いた工程が知られている。この酸化中和法を用いた浄液工程では、中和剤の添加によりpHを調整するとともに、酸化剤の添加により酸化還元電位を調整することによって、前記不純物元素を水酸化物として沈澱除去する。なお、ここで、中和剤としては、炭酸ナトリウム、水酸化ナトリウム、炭酸ニッケル、水酸化ニッケル等が使用され、また酸化剤としては、塩素ガス、過酸化水素水等が使用されるのが一般的である。 In the above leachate, in addition to nickel, various metal elements contained in raw materials such as iron and cobalt are usually present as impurity elements. Therefore, in the liquid purification process, the impurity elements are combined by combining various methods. Separated and removed. As such a liquid purification process, for example, a process using a method called an oxidation neutralization method in which an oxidation reaction and a neutralization reaction are simultaneously performed (see, for example, Patent Documents 1 to 4) is known. . In the liquid purification process using this oxidation neutralization method, the impurity element is precipitated and removed as a hydroxide by adjusting the pH by adding a neutralizing agent and adjusting the oxidation-reduction potential by adding an oxidizing agent. . Here, sodium carbonate, sodium hydroxide, nickel carbonate, nickel hydroxide or the like is used as the neutralizing agent, and chlorine gas, hydrogen peroxide water or the like is generally used as the oxidizing agent. Is.
ところが、上記のような酸化中和法を用いた浄液工程においては、硫化ニッケル、亜硫化ニッケル等のニッケル硫化物原料中のコバルト、鉄などの不純物元素の品位が上昇した場合、浸出液中の不純物元素の含有量も上昇するため、生成する沈殿の物量が増加し、ろ過装置への負荷が増大することとなる。この中でも、特に鉄は、微細な水酸化物沈殿となるので、そのろ過性を著しく悪化させる。このため、原料中の鉄品位の上昇は、沈殿の物量の増加に加えて、ろ過装置の処理能力を低下させ、この影響が著しい場合には、清澄な塩化ニッケル水溶液が得られないという事態を起こし、電気ニッケルの生産に支障をきたすことがあった。 However, in the liquid purification process using the oxidation neutralization method as described above, when the quality of impurity elements such as cobalt and iron in nickel sulfide raw materials such as nickel sulfide and nickel subsulfide increases, Since the content of the impurity element also increases, the amount of precipitate produced increases, and the load on the filtration device increases. Among these, especially iron becomes a fine hydroxide precipitate, so that its filterability is remarkably deteriorated. For this reason, an increase in the iron quality in the raw material reduces the processing capacity of the filtration device in addition to an increase in the amount of precipitates.If this effect is significant, a clear nickel chloride aqueous solution cannot be obtained. Occasionally, the production of electro nickel was hindered.
この解決策として、浄液工程を、不純物元素として少なくともコバルトと鉄を含有する塩化ニッケル水溶液のpHを2.0〜2.5、及び酸化還元電位(Ag/AgCl電極基準)を450〜900mVに調整し、鉄を優先的に除去する第1工程と、その後、pHを4.0〜6.0、及び酸化還元電位(Ag/AgCl電極基準)を600〜1100mVに調整し、コバルトを除去する第2工程との二段から構成する方法(例えば、特許文献5参照。)が開示されている。この方法によれば、高純度電気ニッケルの製造に用いる塩化ニッケル水溶液を精製する際、まず塩化ニッケル水溶液から、沈殿のろ過性を著しく悪化させる鉄を優先的に除去し、次いでニッケルとコバルトを効率的に分離することができるので、原料中の鉄品位が高い場合であっても、ろ過装置への負荷の増加を抑制し、大きな設備投資を行うことなく、高純度塩化ニッケル水溶液を得ることができるとしている。しかしながら、この方法は、生成される水酸化鉄を含む沈殿のろ過性自体を良好な状態に改質するものではないため、本質的な解決策になっていない。 As a solution to this, the liquid purification step is performed such that the pH of an aqueous nickel chloride solution containing at least cobalt and iron as impurity elements is 2.0 to 2.5, and the oxidation-reduction potential (Ag / AgCl electrode standard) is 450 to 900 mV. First step of adjusting and preferentially removing iron, and then adjusting pH to 4.0 to 6.0 and redox potential (Ag / AgCl electrode standard) to 600 to 1100 mV to remove cobalt. A method (for example, refer to Patent Document 5) comprising two steps with the second step is disclosed. According to this method, when refining the nickel chloride aqueous solution used for the production of high-purity electronickel, first, iron that significantly deteriorates the filterability of the precipitate is preferentially removed from the nickel chloride aqueous solution, and then nickel and cobalt are efficiently removed. Therefore, even if the iron quality in the raw material is high, it is possible to obtain a high-purity nickel chloride aqueous solution without increasing the load on the filtration device and making a large capital investment. I can do it. However, this method is not an essential solution because it does not improve the filterability itself of the precipitate containing iron hydroxide produced to a good state.
ところで、水酸化鉄を含む沈殿のろ過性を改良する方法として、2価鉄イオン及び3価鉄イオンに加えて複数の金属イオンを含む酸性廃液を、第1の反応槽内に供給し、生物学的酸化手段又は化学的酸化手段により、2価鉄イオンを3価鉄イオンに酸化するとともに、中和剤を添加して該廃液のpHを3〜5に調整し、水酸化鉄(III)主体の粒子を生成させ、次いで該粒子を含む廃液のスラリーの一部を第2の反応槽に供給し、アルカリ剤を添加して第2の反応槽内のスラリーのpHを5〜13に調整し、該粒子同士を凝集させた後、第1の反応槽に戻し、該凝集した粒子を含むスラリーを固液分離して濃縮し、その後、該濃縮したスラリーを脱水してケーキとする方法(例えば、特許文献6参照。)が開示されている。この方法によれば、水酸化鉄(III)を大径化した緻密な粒子にすることにより、それを含むスラリーのろ過性や脱水性を改善することができ、低含水率の脱水ケーキを製鉄業における鉄源として有効利用することができるとしている。
しかしながら、この方法は、鋼板の酸洗廃液やめっき廃液等の複数の金属を含む廃液、また酸性で重金属を含む金属鉱山排水を対象とし、鉄等の金属元素を一括して除去するものであり、鉄、コバルトを含有する塩化ニッケル水溶液の精製方法に適用する場合には、高濃度で含有されるニッケル及びコバルトが水酸化物を形成して、水酸化鉄(III)沈殿中に含有されロスとなり、収率の悪化を招くという問題が起こる。
By the way, as a method for improving the filterability of the precipitate containing iron hydroxide, an acidic waste liquid containing a plurality of metal ions in addition to divalent iron ions and trivalent iron ions is supplied into the first reaction tank, In addition to oxidizing divalent iron ions to trivalent iron ions by means of chemical oxidation means or chemical oxidation means, a neutralizing agent is added to adjust the pH of the waste liquid to 3-5, and iron (III) hydroxide The main particles are generated, and then a part of the waste liquid slurry containing the particles is supplied to the second reaction tank, and the pH of the slurry in the second reaction tank is adjusted to 5 to 13 by adding an alkali agent. Then, after the particles are aggregated, the particles are returned to the first reaction tank, the slurry containing the aggregated particles is solid-liquid separated and concentrated, and then the concentrated slurry is dehydrated to form a cake ( For example, see Patent Document 6.). According to this method, it is possible to improve the filterability and dewaterability of the slurry containing iron hydroxide (III) by increasing the diameter of the iron hydroxide (III), and to produce a dehydrated cake with a low water content. It can be effectively used as an iron source in the industry.
However, this method is intended to remove metal elements such as iron in batches for waste liquids containing multiple metals such as pickling waste liquids and plating waste liquids, and metal mine drainage that is acidic and contains heavy metals. When applied to the purification method of nickel chloride aqueous solution containing iron and cobalt, nickel and cobalt contained in high concentration form hydroxides and are contained in iron (III) hydroxide precipitates and lost. Thus, there arises a problem that the yield is deteriorated.
本発明の目的は、上記の従来技術の問題点に鑑み、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、鉄を水酸化鉄(III)として沈澱除去する精製方法において、形成される反応終液スラリー中の水酸化鉄(III)沈殿のろ過性を向上させるとともに、ニッケルとコバルトの該沈殿へのロスを抑制することができる塩化ニッケル水溶液の精製方法を提供することにある。 In view of the above-mentioned problems of the prior art, the object of the present invention is to add a neutralizing agent while blowing chlorine into an aqueous nickel chloride solution containing cobalt and iron as impurity elements, and subject to an oxidation neutralization reaction. In the purification method in which iron is precipitated and removed as iron (III) hydroxide, the filterability of the iron (III) hydroxide precipitate in the formed reaction final slurry is improved, and the loss of nickel and cobalt to the precipitate is reduced. An object of the present invention is to provide a method for purifying an aqueous nickel chloride solution that can be suppressed.
本発明者らは、上記目的を達成するために、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、水酸化鉄(III)沈殿を含む反応終液スラリーを形成することにより、鉄を水酸化鉄(III)として沈澱除去する塩化ニッケル水溶液の精製方法において、反応終液スラリー中の水酸化鉄(III)沈殿のろ過性と該沈殿へのニッケル及びコバルトのロスについて、鋭意研究を重ねた結果、前記中和剤として、炭酸ニッケルスラリーと反応終液スラリーから特定の割合で分割された繰り返し物とを混合した混合スラリーを用い、かつ酸化中和反応のpHと酸化還元電位を特定の値に調整したところ、形成される反応終液スラリー中の水酸化鉄(III)沈殿のろ過性を向上させるとともに、ニッケルとコバルトの該沈殿へのロスを抑制することができることを見出し、本発明を完成した。 In order to achieve the above object, the present inventors added a neutralizing agent while blowing chlorine into an aqueous solution of nickel chloride containing cobalt and iron as impurity elements, subjected to an oxidation neutralization reaction, and subjected to hydroxylation. In a method for purifying an aqueous nickel chloride solution in which iron is precipitated and removed as iron (III) hydroxide by forming a reaction end slurry containing iron (III) precipitate, the iron (III) hydroxide precipitate in the reaction end slurry As a result of intensive studies on the filterability of nickel and the loss of nickel and cobalt to the precipitate, as the neutralizing agent, a nickel carbonate slurry and a repetitive product divided at a specific ratio from the final reaction slurry were mixed. When the mixed slurry was used and the pH and oxidation-reduction potential of the oxidation neutralization reaction were adjusted to specific values, the precipitate of iron (III) hydroxide in the formed reaction final slurry was filtered. Improves the sex, it found that it is possible to suppress the loss to precipitate the nickel and cobalt, the present invention has been completed.
すなわち、本発明の第1の発明によれば、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、水酸化鉄(III)沈殿を含む反応終液スラリーを形成することにより、鉄を水酸化鉄(III)として沈澱除去する塩化ニッケル水溶液の精製方法において、
前記中和剤は、炭酸ニッケルスラリーと、前記反応終液スラリーから前記反応始液の全量に対し10〜80%に当たる割合で分割された繰り返し物とを混合した混合スラリーであり、かつ、前記酸化中和反応のpHを1.7〜2.5、及び酸化還元電位(Ag/AgCl電極基準)を950〜1100mVに調整することを特徴とする塩化ニッケル水溶液の精製方法が提供される。
That is, according to the first invention of the present invention, a neutralizing agent is added to a nickel chloride aqueous solution containing cobalt and iron as impurity elements while blowing chlorine, and subjected to an oxidation neutralization reaction. (III) In a purification method of an aqueous nickel chloride solution in which iron is precipitated and removed as iron hydroxide (III) by forming a final reaction slurry containing precipitation,
The neutralizing agent is a mixed slurry obtained by mixing nickel carbonate slurry and a repetitive product divided from the reaction final solution slurry at a ratio corresponding to 10 to 80% with respect to the total amount of the reaction start solution, and the oxidation There is provided a method for purifying an aqueous solution of nickel chloride, characterized by adjusting the pH of the neutralization reaction to 1.7 to 2.5 and adjusting the oxidation-reduction potential (Ag / AgCl electrode standard) to 950 to 1100 mV.
また、本発明の第2の発明によれば、第1の発明において、前記塩化ニッケル水溶液の組成は、ニッケル濃度が140〜200g/L、コバルト濃度が1〜5g/L、及び鉄濃度が0.8〜3.5g/Lであることを特徴とする塩化ニッケル水溶液の精製方法が提供される。 According to the second invention of the present invention, in the first invention, the nickel chloride aqueous solution has a nickel concentration of 140 to 200 g / L, a cobalt concentration of 1 to 5 g / L, and an iron concentration of 0. Provided is a method for purifying an aqueous nickel chloride solution, characterized in that it is from 8 to 3.5 g / L.
また、本発明の第3の発明によれば、第1又は2の発明において、精製後の塩化ニッケル水溶液の組成は、鉄濃度が0.1g/L以下であることを特徴とする塩化ニッケル水溶液の精製方法が提供される。 According to the third invention of the present invention, in the first or second invention, the composition of the purified nickel chloride aqueous solution is characterized in that the iron concentration is 0.1 g / L or less, the nickel chloride aqueous solution A purification method is provided.
本発明の塩化ニッケル水溶液の精製方法は、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、鉄を水酸化鉄(III)として沈澱除去する精製方法において、形成される反応終液スラリー中の水酸化鉄(III)沈殿を大径化した粒子とすることができ、それを含むスラリーのろ過性や脱水性を大きく向上させるとともに、ニッケルとコバルトの沈殿へのロスを抑制することができる。したがって、ニッケル原料中の鉄品位が高い場合であっても、ろ過装置への負荷の増加を抑えることができ、大きな設備投資を行うことなく、高純度電気ニッケルの製造に用いる電解液として好適な、鉄濃度が0.1g/L以下の高純度塩化ニッケル水溶液を得ることができるので、その工業的価値は極めて大きい。 In the method for purifying an aqueous nickel chloride solution of the present invention, a nickel chloride aqueous solution containing cobalt and iron as impurity elements is added with a neutralizing agent while blowing chlorine, subjected to an oxidation neutralization reaction, and iron is converted into iron hydroxide. In the purification method in which precipitation is removed as (III), the iron hydroxide (III) precipitate in the formed reaction final slurry can be made into particles having a large diameter, and the filterability and dewaterability of the slurry containing it can be improved. While improving greatly, the loss to the precipitation of nickel and cobalt can be suppressed. Therefore, even when the iron quality in the nickel raw material is high, an increase in the load on the filtration device can be suppressed, and it is suitable as an electrolyte used for the production of high-purity electro-nickel without making a large capital investment. Moreover, since a high-purity nickel chloride aqueous solution having an iron concentration of 0.1 g / L or less can be obtained, its industrial value is extremely high.
以下、本発明の塩化ニッケル水溶液の精製方法を詳細に説明する。
本発明の塩化ニッケル水溶液の精製方法は、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液からなる反応始液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、水酸化鉄(III)沈殿を含む反応終液スラリーを形成することにより、鉄を水酸化鉄(III)として沈澱除去する塩化ニッケル水溶液の精製方法において、
前記中和剤は、炭酸ニッケルスラリーと、前記反応終液スラリーから、前記反応始液の全量に対し10〜80%に当たる割合で分割された繰り返し物とを混合した混合スラリーであり、かつ、前記酸化中和反応のpHを1.7〜2.5、及び酸化還元電位(Ag/AgCl電極基準)を950〜1100mVに調整することを特徴とする。
Hereinafter, the purification method of the nickel chloride aqueous solution of the present invention will be described in detail.
The method for purifying an aqueous nickel chloride solution of the present invention comprises adding a neutralizing agent while blowing chlorine into a reaction starting solution consisting of an aqueous nickel chloride solution containing cobalt and iron as impurity elements, and subjecting to an oxidation neutralization reaction, In a purification method of an aqueous nickel chloride solution in which iron is precipitated and removed as iron (III) hydroxide by forming a reaction end slurry containing iron (III) hydroxide precipitate,
The neutralizing agent is a mixed slurry obtained by mixing a nickel carbonate slurry and a repetitive product divided from the reaction final solution slurry at a ratio of 10 to 80% with respect to the total amount of the reaction start solution, and The pH of the oxidation neutralization reaction is adjusted to 1.7 to 2.5, and the oxidation-reduction potential (Ag / AgCl electrode standard) is adjusted to 950 to 1100 mV.
上記方法は、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液からなる反応始液に、酸化剤として塩素を吹込みながら中和剤を添加して、酸化中和反応に付し、水酸化鉄(III)沈殿を含む反応終液スラリーを形成することにより、これからニッケル及びコバルトを含む精製液を得て、鉄を水酸化鉄(III)として沈澱除去するものである。このとき、酸化中和反応のpH及び酸化還元電位を所定値に制御するとともに、形成された反応終液スラリーの一部を、精製液を得るためのろ過機への送液から分割して、炭酸ニッケルスラリーと混合して、中和剤として繰り返すことが重要である。
これによって、精製後の塩化ニッケル水溶液の組成として、高純度電気ニッケルの製造に求められる、鉄濃度が0.1g/L以下が得られるとともに、形成される反応終液スラリー中の水酸化鉄(III)沈殿のろ過性を向上させ、かつニッケルとコバルトの沈殿へのロスを抑制することができる。
In the above method, a neutralizing agent is added to a reaction starting solution composed of a nickel chloride aqueous solution containing cobalt and iron as impurity elements while blowing chlorine as an oxidizing agent, and subjected to an oxidation neutralization reaction. (III) By forming a reaction final solution slurry containing precipitation, a purified solution containing nickel and cobalt is obtained from this, and iron is precipitated and removed as iron (III) hydroxide. At this time, while controlling the pH and oxidation-reduction potential of the oxidation neutralization reaction to predetermined values, a part of the formed reaction final solution slurry is divided from the liquid feed to the filter for obtaining the purified liquid, It is important to mix with the nickel carbonate slurry and repeat as a neutralizer.
Thereby, as the composition of the nickel chloride aqueous solution after purification, the iron concentration required for the production of high-purity electronickel is 0.1 g / L or less, and iron hydroxide ( III) The filterability of precipitation can be improved and the loss of nickel and cobalt to precipitation can be suppressed.
以下に、本発明の方法に係る酸化中和反応の各要件について、その作用効果とともに説明する。
上記方法に用いる酸化中和反応としては、下記の式(1)で表される。
Below, each requirement of the oxidation neutralization reaction which concerns on the method of this invention is demonstrated with the effect.
The oxidation neutralization reaction used in the above method is represented by the following formula (1).
式(1):FeCl2+3/2H2O+1/2Cl2+3/2NiCO3⇒ Fe(OH)3+3/2NiCl2+3/2CO2 Formula (1): FeCl 2 + 3 / 2H 2 O + 1 / 2Cl 2 + 3 / 2NiCO 3 ⇒ Fe (OH) 3 + 3 / 2NiCl 2 + 3 / 2CO 2
ここで、液中の第1塩化鉄が、中和剤として炭酸ニッケル、及び酸化剤として塩素により、酸化中和され、水酸化鉄(III)が生成される。
上記反応は、pHが所定値より低い場合には、十分に進行しない。一方、pHが3.0以上となると、液中のニッケルやコバルトが中和、加水分解され、水酸化物として沈殿し、水酸化鉄(III)沈殿中に含まれてしまい、ニッケルロスやコバルトロスが大きくなる。
Here, the first iron chloride in the liquid is oxidized and neutralized with nickel carbonate as a neutralizing agent and chlorine as an oxidizing agent to produce iron (III) hydroxide.
The reaction does not proceed sufficiently when the pH is lower than a predetermined value. On the other hand, when the pH is 3.0 or more, nickel and cobalt in the liquid are neutralized and hydrolyzed, precipitate as hydroxide, and are contained in the iron (III) hydroxide precipitate, resulting in nickel loss and cobalt. Loss increases.
上記方法に用いる塩化ニッケル水溶液としては、特に限定されるものではなく、コバルト、鉄、その他の不純物元素を含む塩化ニッケル水溶液が用いられるが、その中で、特に硫化ニッケル、亜硫化ニッケル等のニッケル硫化物原料を、塩素ガスで浸出し、得られた塩化ニッケル水溶液を精製した後、電解採取によって電気ニッケルを得る湿式精製法において産出される、不純物元素としてコバルト及び鉄を含有する浸出液が、好ましく用いられる。このような浸出液の組成としては、特に限定されるものではないが、例えば、ニッケル濃度が140〜200g/L、コバルト濃度が1〜5g/L、及び鉄濃度が0.8〜3.5g/Lである。 The nickel chloride aqueous solution used in the above method is not particularly limited, and nickel chloride aqueous solutions containing cobalt, iron and other impurity elements are used. Among them, nickel such as nickel sulfide and nickel subsulfide is particularly preferable. A leaching solution containing cobalt and iron as impurity elements, which is produced in a wet refining method in which sulfide raw material is leached with chlorine gas and the obtained nickel chloride aqueous solution is purified and then electro nickel is obtained by electrowinning, is preferred. Used. The composition of such a leachate is not particularly limited. For example, the nickel concentration is 140 to 200 g / L, the cobalt concentration is 1 to 5 g / L, and the iron concentration is 0.8 to 3.5 g / L. L.
上記方法に用いる酸化中和反応のpHとしては、1.7〜2.5であり、好ましくは2.0〜2.2である。すなわち、pHが1.7未満では、反応終液中の鉄濃度が十分に低下せず、例えば0.1g/L以下の鉄濃度を有する精製液が得られない。ここで、反応槽内のpHは、中和剤として用いる混合スラリーの供給により制御される。 As pH of the oxidation neutralization reaction used for the said method, it is 1.7-2.5, Preferably it is 2.0-2.2. That is, when the pH is less than 1.7, the iron concentration in the reaction final solution is not sufficiently lowered, and for example, a purified solution having an iron concentration of 0.1 g / L or less cannot be obtained. Here, the pH in the reaction vessel is controlled by supplying a mixed slurry used as a neutralizing agent.
上記方法に用いる酸化中和反応の酸化還元電位(Ag/AgCl電極基準)としては、950〜1100mVである。すなわち、酸化還元電位(Ag/AgCl電極基準)が950mV未満では、上記反応が起きづらく、一方、1100mVを超えると、ニッケルやコバルトも酸化することにより、それらが中和反応により沈殿し、ニッケルロスやコバルトロスを大きくするばかりか、吹き込む塩素ガスの利用率も低下し、コストの悪化に繋がる。ここで、より確実に鉄を除去しつつ、ニッケルロスやコバルトロスを低く維持するには、酸化還元電位(Ag/AgCl電極基準)を1000〜1050mVとすることが好ましい。ここで、反応槽内の酸化還元電位は、塩素ガスの吹込み量により制御される。 The oxidation-reduction potential (Ag / AgCl electrode standard) of the oxidation neutralization reaction used in the above method is 950 to 1100 mV. That is, when the oxidation-reduction potential (Ag / AgCl electrode standard) is less than 950 mV, the above reaction is difficult to occur. On the other hand, when it exceeds 1100 mV, nickel and cobalt are also oxidized, so that they are precipitated by the neutralization reaction and nickel loss occurs. In addition to increasing the cobalt loss, the utilization rate of the chlorine gas to be blown in is reduced, leading to cost deterioration. Here, it is preferable to set the oxidation-reduction potential (Ag / AgCl electrode reference) to 1000 to 1050 mV in order to keep nickel loss and cobalt loss low while more reliably removing iron. Here, the oxidation-reduction potential in the reaction vessel is controlled by the amount of chlorine gas blown.
上記方法で中和剤として用いる混合スラリーは、炭酸ニッケルスラリーと、前記反応終液スラリーから反応始液の全量に対し10〜80%に当たる割合で分割された繰り返し物とを混合したものであるが、上記混合スラリーのpHとしては、特に限定されるものではないが、3.5〜4.5が好ましい。このとき、反応終液スラリー中に含有された水酸化鉄(III)粒子同士の凝集が進む。ここで、pHは、炭酸ニッケルスラリーの供給量によって調整される。なお、混合スラリー中では、鉄、ニッケル、コバルトを始め多くの金属が、水酸化物として沈殿するが、その後比較的早期に、pH1.7〜2.5の反応槽に添加されるため、その際水酸化鉄(III)以外の水酸化物は容易に再溶解する。 The mixed slurry used as a neutralizing agent in the above method is a mixture of a nickel carbonate slurry and a repetitive product divided in a ratio corresponding to 10 to 80% with respect to the total amount of the reaction start solution from the reaction end solution slurry. The pH of the mixed slurry is not particularly limited, but is preferably 3.5 to 4.5. At this time, aggregation of iron hydroxide (III) particles contained in the reaction final solution slurry proceeds. Here, the pH is adjusted by the supply amount of the nickel carbonate slurry. In the mixed slurry, many metals such as iron, nickel, and cobalt are precipitated as hydroxides, but are then added relatively early to the reaction tank having a pH of 1.7 to 2.5. At this time, hydroxides other than iron (III) hydroxide are easily dissolved again.
したがって、上記方法において、中和剤として前記混合スラリーを用いることによって、凝集した水酸化鉄(III)粒子群の表面に、新たに反応槽内で生成する水酸化鉄(III)を凝集させ、一体化させることにより、粒子径の大きな緻密な粒子を得ることができるので、反応終液スラリーのろ過性が向上する。 Therefore, in the above method, by using the mixed slurry as a neutralizing agent, the iron (III) hydroxide newly generated in the reaction vessel is aggregated on the surface of the aggregated iron hydroxide (III) particles, By integrating, dense particles having a large particle diameter can be obtained, so that the filterability of the reaction final slurry is improved.
上記方法において、反応槽に供給される反応始液の全量に対し、反応終液スラリーから分割される繰り返し物の割合(以下、反応終液スラリーの繰り返し率と呼称し、(反応終液スラリーの繰返し流量÷反応始液流量)×100で求められる値をいう。)としては、10〜80%である。
すなわち、前記繰り返し率が10%未満では、反応終液スラリー中の水酸化鉄(III)粒子のろ過性が不十分である。一方、前記繰り返し率が上昇するほど、水酸化鉄(III)粒子の粒子径が大きくなり、ろ過性が向上するが、80%を超えると、それ以上の効果は得られず、逆に最適繰り返し率の場合に比べて低下する。この現象は、反応槽での滞留時間が減少し、粒成長の阻害と、ポンプによる粒の破壊によって粒径が細かくなってしまうことによるものと思われる。また、反応槽での滞留時間を所定値に維持する際には、前記繰り返し率の上昇は、それに比例して反応始液として供給する塩化ニッケル水溶液の処理量の低下をもたらす。したがって、具体的には、前記繰り返し率でのろ過性を確認しながら、最適繰り返し率を選定することが行なわれるが、使用する装置の規模や構造に応じた最適繰り返し率を選定することが好ましい。
In the above method, the ratio of the repetitive product divided from the reaction end solution slurry to the total amount of the reaction start solution supplied to the reaction vessel (hereinafter referred to as the reaction end solution slurry repetition rate, (Repeated flow rate ÷ reaction starting solution flow rate) × 100 means a value obtained by 10) to 80%.
That is, when the repetition rate is less than 10%, the filterability of iron (III) hydroxide particles in the reaction final slurry is insufficient. On the other hand, as the repetition rate increases, the particle size of the iron (III) hydroxide particles increases and the filterability improves. However, if it exceeds 80%, no further effect can be obtained, and conversely the optimal repetition. Decrease compared to rate. This phenomenon is thought to be due to a decrease in the residence time in the reaction vessel, and the grain size becomes fine due to grain growth inhibition and grain breakage by the pump. Further, when the residence time in the reaction vessel is maintained at a predetermined value, the increase in the repetition rate causes a reduction in the processing amount of the nickel chloride aqueous solution supplied as a reaction starting solution in proportion thereto. Therefore, specifically, the optimum repetition rate is selected while confirming the filterability at the repetition rate, but it is preferable to select the optimum repetition rate according to the scale and structure of the apparatus to be used. .
上記方法における反応終液スラリーの繰り返し率と、反応終液スラリーの平均粒径及び平均ろ過速度との関係を図を用いて説明する。
図1は、反応終液スラリーの繰り返し率と反応終液スラリー中の粒子の平均粒径との関係を表す図である。図1より、両者の間には正の相関関係があることが分かる。また、図2は、反応終液スラリーの繰り返し率と平均ろ過速度の関係を表す図である。図2より、両者の間に正の相関関係があることが分かる。これらの関係から、本発明の方法における反応終液スラリーの繰り返しが有効に作用することが分かる。
The relationship between the repetition rate of the reaction end slurry in the above method, the average particle size of the reaction end slurry and the average filtration rate will be described with reference to the drawings.
FIG. 1 is a graph showing the relationship between the repetition rate of the reaction end slurry and the average particle size of the particles in the reaction end slurry. FIG. 1 shows that there is a positive correlation between the two. Moreover, FIG. 2 is a figure showing the relationship between the repetition rate of a reaction final liquid slurry, and an average filtration rate. FIG. 2 shows that there is a positive correlation between the two. From these relationships, it can be seen that the repetition of the reaction final slurry in the method of the present invention works effectively.
上記方法に用いる浄液設備としては、特に限定されるものではないが、例えば、酸化中和反応を行なうための攪拌機と塩素吹き込み管付きの反応槽と、反応槽からの反応終液スラリー用の攪拌機付き受け槽と、炭酸ニッケルスラリーと反応終液スラリーの繰り返し物を混合する攪拌機付き中和剤供給槽と、鉄沈殿を分離する加圧ろ過機とその供給槽とから構成される設備が用いられる。ここで、前記反応槽には反応始液となる塩化ニッケル水溶液を定量供給し、該反応槽のオーバーフローが前記受け槽に送られ、該受け槽に設けた抜き取りポンプの吐出配管を分岐させ、一方を前記加圧ろ過機の供給槽に送液できるようにし、他方を前記中和剤供給槽に送液できるようにした。
また、炭酸ニッケルスラリーは前記中和剤供給槽にポンプで送液した。前記反応槽にはpH計と酸化還元電位(ORP)計を設け、pH計の値が設定値を維持するように、前記中和剤供給槽から炭酸ニッケルスラリーと反応終液スラリーとの混合スラリーが添加されるようにした。そして、ORP計の値が設定値を維持するように、前記塩素吹き込み管から塩素ガスを吹き込んだ。
The liquid purification equipment used in the above method is not particularly limited, but for example, a stirrer for performing an oxidative neutralization reaction, a reaction tank with a chlorine blowing tube, and a reaction final liquid slurry from the reaction tank. The equipment is composed of a receiving tank with a stirrer, a neutralizer supply tank with a stirrer that mixes repetitive nickel carbonate slurry and reaction final slurry, a pressure filter that separates iron precipitates, and its supply tank. It is done. Here, a fixed amount of nickel chloride aqueous solution as a reaction start solution is supplied to the reaction tank, the overflow of the reaction tank is sent to the receiving tank, and the discharge pipe of the extraction pump provided in the receiving tank is branched. Can be sent to the supply tank of the pressure filter, and the other can be sent to the neutralizer supply tank.
The nickel carbonate slurry was pumped to the neutralizer supply tank. The reaction vessel is provided with a pH meter and an oxidation-reduction potential (ORP) meter, and a mixed slurry of nickel carbonate slurry and reaction final slurry from the neutralizer supply tank so that the value of the pH meter maintains a set value. Was added. Then, chlorine gas was blown from the chlorine blowing pipe so that the value of the ORP meter maintained the set value.
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた評価方法、次の通りであった。
(1)金属の分析:ICP発光分析法で行った。
(2)反応終液スラリーの平均ろ過速度の測定:ヌッチェを使用した吸引ろ過で行なった。用いた濾紙は5C番である。
(3)反応終液スラリー中の粒子の平均粒径の測定:マイクロトラック(Honeywell製、型番:9320−X100)で行なった。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The evaluation methods used in Examples and Comparative Examples were as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Measurement of average filtration rate of reaction final solution slurry: It was performed by suction filtration using Nutsche. The filter paper used is No. 5C.
(3) Measurement of average particle diameter of particles in reaction final solution slurry: Measured with Microtrac (manufactured by Honeywell, model number: 9320-X100).
(実施例1)
上記の浄液設備の実規模設備を用いて、塩化ニッケル水溶液の精製を行なった。ここで、反応槽の実効容積は45m3、反応終液スラリー用の受け槽の実効容積25m3、及び中和剤供給槽の実効容積は1m3であった。
反応始液として用いた塩化ニッケル水溶液は、ニッケル硫化物原料を塩素ガスで浸出して得た浸出液であり、その組成としては、ニッケル濃度が170〜190g/L、コバルト濃度が2.5〜4.0g/L、及び鉄濃度が1.64g/Lであった。また、炭酸ニッケルスラリーは、炭酸ニッケル(住友金属鉱山(株)製)を水に添加して調製したものである。
ここで、塩化ニッケル水溶液の反応槽での滞留時間が50分、かつ反応終液スラリーの繰り返し率が60%となるように条件を設定し、さらに反応槽でのpHを2.0、及びORP(Ag/AgCl電極基準)を1050mVに設定して操業を行い、全体が安定した状態に到達した後、反応終液スラリーの平均ろ過速度、反応終液スラリー中の粒子の平均粒径及び加圧ろ過機で得られた精製液の鉄濃度を求めた。なお、操業中のpHは、1.9〜2.0、及びORP(Ag/AgCl電極基準)は、1040〜1050mVであった。
その結果、平均ろ過速度は12.0L/m2/min、及び平均粒径は7.4μmであった。また、精製液の鉄濃度は、0.1g/L以下であり、ニッケルロス率、コバルトロス率は、それぞれ0.08%、0.4%であった。
Example 1
The nickel chloride aqueous solution was purified using the actual scale equipment of the above liquid purification equipment. Here, the effective volume of the reaction tank was 45 m 3 , the effective volume of the receiving tank for the reaction final solution slurry was 25 m 3 , and the effective volume of the neutralizing agent supply tank was 1 m 3 .
The nickel chloride aqueous solution used as the reaction starting solution is a leachate obtained by leaching a nickel sulfide raw material with chlorine gas, and has a composition of nickel concentration of 170 to 190 g / L and cobalt concentration of 2.5 to 4 0.0 g / L and the iron concentration was 1.64 g / L. The nickel carbonate slurry is prepared by adding nickel carbonate (manufactured by Sumitomo Metal Mining Co., Ltd.) to water.
Here, the conditions were set so that the residence time of the nickel chloride aqueous solution in the reaction vessel was 50 minutes and the repetition rate of the reaction final slurry was 60%, and the pH in the reaction vessel was 2.0, and ORP (Ag / AgCl electrode standard) was set to 1050 mV, and after the operation reached a stable state as a whole, the average filtration rate of the reaction end slurry, the average particle size of the particles in the reaction end slurry, and the pressure The iron concentration of the purified solution obtained with a filter was determined. In addition, pH during operation was 1.9 to 2.0, and ORP (Ag / AgCl electrode standard) was 1040 to 1050 mV.
As a result, the average filtration rate was 12.0 L / m 2 / min, and the average particle size was 7.4 μm. Moreover, the iron concentration of the refinement | purification liquid was 0.1 g / L or less, and the nickel loss rate and the cobalt loss rate were 0.08% and 0.4%, respectively.
(実施例2〜4)
反応終液スラリーの繰り返し率を10%(実施例2)、30%(実施例3)、及び80%(実施例4)としたこと以外は、実施例1と同様にして反応終液スラリーの平均ろ過速度と反応終液スラリー中の粒子の平均粒径とを求めた。結果を表1に示す。なお、ニッケルロス率とコバルトロス率は、実施例1と同様の値が得られた。
(Examples 2 to 4)
The reaction final slurry was changed in the same manner as in Example 1 except that the repetition rate of the final reaction slurry was 10% (Example 2), 30% (Example 3), and 80% (Example 4). The average filtration rate and the average particle size of the particles in the final reaction slurry were determined. The results are shown in Table 1. In addition, the value similar to Example 1 was obtained for the nickel loss rate and the cobalt loss rate.
(比較例1)
上記浄液設備を用いて、反応終液スラリーの繰り返しを行なわず、バッチ反応にて操業を行なったこと以外は、実施例1と同様にして反応終液スラリーの平均ろ過速度と反応終液スラリー中の粒子の平均粒径とを求めた。結果を表1に示す。
(Comparative Example 1)
The average filtration rate of the reaction end slurry and the reaction end slurry were the same as in Example 1 except that the reaction end slurry was not repeated using the above-described liquid purification equipment, but was operated in a batch reaction. The average particle size of the particles inside was determined. The results are shown in Table 1.
(比較例2)
反応終液スラリーの繰り返し率を90%としたこと以外は、実施例1と同様にして反応終液スラリーの平均ろ過速度と反応終液スラリー中の粒子の平均粒径とを求めた。結果を表1に示す。
(Comparative Example 2)
The average filtration rate of the reaction end solution slurry and the average particle size of the particles in the reaction end solution slurry were determined in the same manner as in Example 1 except that the repetition rate of the reaction end solution slurry was 90%. The results are shown in Table 1.
表1より、実施例2〜4では、反応終液スラリーの繰り返し率の増加により、反応終液スラリーの繰り返しを行わない比較例1に比べて、粒子の平均粒径が大きく、ろ過速度が高くなることが分かる。しかしながら、比較例2では、実施例4に比べて、逆にろ過速度が低下している。これは、ある一定の繰返し率より増加すると、反応槽内での不均一化、繰返しポンプによる粒の破壊等が発生するためと思われる。しかも、反応始液として供給する塩化ニッケル水溶液の処理量の低下を考慮すると、本条件下での最適繰返し率は、80%以下である。 From Table 1, in Examples 2 to 4, the average particle size of the particles is larger and the filtration rate is higher than in Comparative Example 1 in which the reaction final solution slurry is not repeated due to an increase in the repetition rate of the reaction final solution slurry. I understand that However, in Comparative Example 2, the filtration rate is lower than that in Example 4. This is presumably because when the repetition rate is increased above a certain repetition rate, non-uniformity in the reaction vessel, breakage of grains due to a repeated pump, and the like occur. Moreover, considering the reduction in the amount of nickel chloride aqueous solution supplied as the reaction starting solution, the optimum repetition rate under this condition is 80% or less.
(実施例5)
反応槽でのpH設定値を1.7、及びORP設定値を980mVとしたこと以外は、実施例1と同様にして操業を行い、反応終液スラリーの平均ろ過速度、反応終液スラリー中の粒子の平均粒径及び加圧ろ過機で得られた精製液の鉄濃度を求めた。その結果、平均ろ過速度は8.5L/m2/min、及び平均粒径は5.5μmであった。また、精製液の鉄濃度は、0.1g/L以下であり、ニッケルロス率、コバルトロス率は、それぞれ0.05%、0.3%であり実施例1より若干低めであった。
(Example 5)
Except that the pH set value in the reaction vessel was 1.7 and the ORP set value was 980 mV, the operation was carried out in the same manner as in Example 1, and the average filtration rate of the reaction end solution slurry, The average particle diameter of the particles and the iron concentration of the purified liquid obtained with a pressure filter were determined. As a result, the average filtration rate was 8.5 L / m 2 / min, and the average particle size was 5.5 μm. Moreover, the iron concentration of the purified liquid was 0.1 g / L or less, and the nickel loss rate and the cobalt loss rate were 0.05% and 0.3%, respectively, which were slightly lower than Example 1.
(実施例6)
反応槽でのpH設定値を2.5、及びORP設定値を1100mVとしたこと以外は実施例1と同様にして操業を行い、反応終液スラリーの平均ろ過速度、反応終液スラリー中の粒子の平均粒径及び加圧ろ過機で得られた精製液の鉄濃度を求めた。その結果、平均ろ過速度は18.7L/m2/min、及び平均粒径は7.1μmであった。また、精製液の鉄濃度は、0.1g/L以下であり、ニッケルロス率、コバルトロス率は、それぞれ0.11%、1.1%となり、実施例1より若干高くなった。
(Example 6)
The operation was carried out in the same manner as in Example 1 except that the pH set value in the reaction tank was 2.5 and the ORP set value was 1100 mV, and the average filtration rate of the reaction end slurry and the particles in the reaction end slurry And the iron concentration of the purified solution obtained with a pressure filter were determined. As a result, the average filtration rate was 18.7 L / m 2 / min, and the average particle size was 7.1 μm. Further, the iron concentration of the purified liquid was 0.1 g / L or less, and the nickel loss rate and the cobalt loss rate were 0.11% and 1.1%, respectively, which were slightly higher than Example 1.
(比較例3)
反応槽でのpH設定値を1.5、及びORP設定値を930mVとしたこと以外は実施例1と同様にして操業を行ったところ、水酸化鉄(III)の発生がほとんどなく、鉄の除去ができなかった。
(Comparative Example 3)
When the operation was carried out in the same manner as in Example 1 except that the pH set value in the reaction vessel was 1.5 and the ORP set value was 930 mV, there was almost no generation of iron (III) hydroxide, Could not be removed.
(比較例4)
反応槽でのpH設定値を2.9、及びORP設定値を1120mVとしたこと以外は実施例1と同様にして操業を行い、反応終液スラリーの平均ろ過速度と反応終液スラリー中の粒子の平均粒径とを求めた。その結果、平均ろ過速度は17.7L/m2/min、及び平均粒径は7.7μmであった。なお、平均ろ過速度と平均粒径は良好なものの、ニッケルロス率、コバルトロス率は、それぞれ0.15%、2.0%と高くなり、実操業条件としては不適切であることがわかった。
(Comparative Example 4)
The operation was carried out in the same manner as in Example 1 except that the pH set value in the reaction tank was 2.9 and the ORP set value was 1120 mV, and the average filtration rate of the reaction end slurry and the particles in the reaction end slurry The average particle size was determined. As a result, the average filtration rate was 17.7 L / m 2 / min, and the average particle size was 7.7 μm. Although the average filtration rate and average particle size were good, the nickel loss rate and the cobalt loss rate were as high as 0.15% and 2.0%, respectively. .
以上より、実施例1〜6では、反応終液スラリーの繰り返し率、並びに酸化中和反応のpH及びORPにおいて、本発明の方法に従って行われたので、精製後の塩化ニッケル水溶液の鉄濃度は、0.1g/L以下であり、形成される反応終液スラリー中の水酸化鉄(III)沈殿を大径化した粒子とすることができ、それを含むスラリーのろ過性を大きく向上させ、しかもニッケルとコバルトの沈殿へのロスを抑制することができることが分かる。
これに対して、比較例1〜4では、反応終液スラリーの繰り返し率、酸化中和反応のpH及びORPのいずれかがこれらの条件に合わないので、ろ過性、ニッケルロス率及びコバルトロス率、反応始液として供給する塩化ニッケル水溶液の処理量のいずれかよって満足すべき結果が得られないことが分かる。
As mentioned above, in Examples 1-6, since it was performed according to the method of the present invention in the repetition rate of the reaction final solution slurry, and the pH and ORP of the oxidation neutralization reaction, the iron concentration of the nickel chloride aqueous solution after purification was 0.1 g / L or less, and the iron hydroxide (III) precipitate in the formed slurry at the end of the reaction can be made into particles with a large diameter, greatly improving the filterability of the slurry containing it, It turns out that the loss to the precipitation of nickel and cobalt can be suppressed.
On the other hand, in Comparative Examples 1 to 4, since the repetition rate of the reaction final slurry, the pH of the oxidation neutralization reaction, and the ORP do not meet these conditions, filterability, nickel loss rate, and cobalt loss rate It can be seen that satisfactory results cannot be obtained by any of the treatment amounts of the aqueous nickel chloride solution supplied as the reaction starting solution.
以上より明らかなように、本発明の塩化ニッケル水溶液の精製方法は、不純物元素としてコバルト及び鉄を含有する塩化ニッケル水溶液に、塩素を吹き込みつつ中和剤を添加して、酸化中和反応に付し、鉄を水酸化鉄(III)として沈澱除去する塩化ニッケル水溶液の精製方法において、形成される反応終液スラリー中の水酸化鉄(III)沈殿のろ過性を向上させるとともに、ニッケルとコバルトの沈殿へのロスを抑制する方法として利用され、特に高純度電気ニッケルの製造に用いる高純度塩化ニッケル水溶液を得るため好適に用いられる。 As is clear from the above, the nickel chloride aqueous solution purification method of the present invention is subjected to an oxidation neutralization reaction by adding a neutralizing agent while blowing chlorine into a nickel chloride aqueous solution containing cobalt and iron as impurity elements. In the method for purifying an aqueous nickel chloride solution in which iron is precipitated and removed as iron (III) hydroxide, the filterability of the iron (III) hydroxide precipitate in the formed reaction final slurry is improved, and nickel and cobalt It is used as a method for suppressing loss to precipitation, and is particularly preferably used for obtaining a high-purity nickel chloride aqueous solution used for producing high-purity electronickel.
Claims (3)
前記中和剤は、炭酸ニッケルスラリーと、前記反応終液スラリーから前記反応始液の全量に対し10〜80%に当たる割合で分割された繰り返し物とを混合した混合スラリーであり、かつ、前記酸化中和反応のpHを1.7〜2.5、及び酸化還元電位(Ag/AgCl電極基準)を950〜1100mVに調整することを特徴とする塩化ニッケル水溶液の精製方法。 A neutralizing agent is added to a nickel chloride aqueous solution containing cobalt and iron as impurity elements while blowing chlorine, and subjected to an oxidation neutralization reaction to form a reaction final slurry containing iron (III) hydroxide precipitate. In the method for purifying an aqueous nickel chloride solution in which iron is precipitated and removed as iron (III) hydroxide,
The neutralizing agent is a mixed slurry obtained by mixing nickel carbonate slurry and a repetitive product divided from the reaction final solution slurry at a ratio corresponding to 10 to 80% with respect to the total amount of the reaction start solution, and the oxidation A method for purifying an aqueous nickel chloride solution, comprising adjusting a pH of a neutralization reaction to 1.7 to 2.5 and an oxidation-reduction potential (Ag / AgCl electrode standard) to 950 to 1100 mV.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008060378A JP2009215611A (en) | 2008-03-11 | 2008-03-11 | Method for purifying nickel chloride aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008060378A JP2009215611A (en) | 2008-03-11 | 2008-03-11 | Method for purifying nickel chloride aqueous solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009215611A true JP2009215611A (en) | 2009-09-24 |
Family
ID=41187753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008060378A Pending JP2009215611A (en) | 2008-03-11 | 2008-03-11 | Method for purifying nickel chloride aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009215611A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352122A (en) * | 2013-06-21 | 2013-10-16 | 刘国燕 | Method for efficiently removing iron in solution |
JP2015142516A (en) * | 2014-01-31 | 2015-08-06 | 国立大学法人 岡山大学 | Radiocaesium migration inhibitor for plants and production method thereof, and method for growing plants |
JP2017031477A (en) * | 2015-08-04 | 2017-02-09 | 住友金属鉱山株式会社 | Oxidation neutralization facility and oxidation neutralization method |
JP2017149998A (en) * | 2016-02-22 | 2017-08-31 | 住友金属鉱山株式会社 | Iron removal method of aqueous nickel chloride solution |
CN114405979A (en) * | 2021-12-20 | 2022-04-29 | 荆门市格林美新材料有限公司 | Cobalt-nickel tailing treatment method |
-
2008
- 2008-03-11 JP JP2008060378A patent/JP2009215611A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352122A (en) * | 2013-06-21 | 2013-10-16 | 刘国燕 | Method for efficiently removing iron in solution |
JP2015142516A (en) * | 2014-01-31 | 2015-08-06 | 国立大学法人 岡山大学 | Radiocaesium migration inhibitor for plants and production method thereof, and method for growing plants |
JP2017031477A (en) * | 2015-08-04 | 2017-02-09 | 住友金属鉱山株式会社 | Oxidation neutralization facility and oxidation neutralization method |
JP2017149998A (en) * | 2016-02-22 | 2017-08-31 | 住友金属鉱山株式会社 | Iron removal method of aqueous nickel chloride solution |
CN114405979A (en) * | 2021-12-20 | 2022-04-29 | 荆门市格林美新材料有限公司 | Cobalt-nickel tailing treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2546203B1 (en) | Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese | |
JP4216307B2 (en) | Process for electrolytically precipitated copper | |
JP6299620B2 (en) | Method for producing nickel sulfate | |
JP2009215611A (en) | Method for purifying nickel chloride aqueous solution | |
JP2020033229A (en) | Method for producing aqueous nickel sulfate solution | |
JP4079018B2 (en) | Method for purifying cobalt aqueous solution | |
JP4801372B2 (en) | Method for removing manganese from cobalt sulfate solution | |
JP2018059167A (en) | Wet type smelting method of nickel oxide ore | |
JP2012237030A (en) | Method for separating manganese from nickel chloride solution | |
JP5920584B2 (en) | Method of oxidation neutralization treatment of nickel chloride aqueous solution | |
JP5063013B2 (en) | Recycling method of multi-component plating waste sludge | |
JP2009209421A (en) | Method for producing high purity silver | |
JP4717917B2 (en) | Manufacturing method and cleaning method of scorodite | |
JP2009126759A (en) | Method of preparing high-purity solution containing nickel sulfate and cobalt sulfate, and method of producing high-purity nickel with use of the same solution | |
JP2015137200A (en) | Method for producing low chlorine nickel/cobalt sulphate solution | |
JP6743858B2 (en) | Zinc separation method, zinc material manufacturing method, and iron material manufacturing method | |
JP2008111158A (en) | Method of purifying brine for electrolysis | |
JP2013067841A (en) | Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel | |
JP2008088470A (en) | Method for recovering indium from indium-containing material | |
JP6743859B2 (en) | Zinc separation method, zinc material manufacturing method, and iron material manufacturing method | |
JP4240982B2 (en) | Method for producing cobalt solution with low manganese concentration | |
WO2022118927A1 (en) | Zinc production method | |
RU2444574C1 (en) | Method for obtaining cobalt and its compounds | |
JP7354845B2 (en) | Method for producing nickel sulfate aqueous solution | |
JP2012201540A (en) | Method for producing manganese carbonate |