JP5920584B2 - Method of oxidation neutralization treatment of nickel chloride aqueous solution - Google Patents

Method of oxidation neutralization treatment of nickel chloride aqueous solution Download PDF

Info

Publication number
JP5920584B2
JP5920584B2 JP2012208737A JP2012208737A JP5920584B2 JP 5920584 B2 JP5920584 B2 JP 5920584B2 JP 2012208737 A JP2012208737 A JP 2012208737A JP 2012208737 A JP2012208737 A JP 2012208737A JP 5920584 B2 JP5920584 B2 JP 5920584B2
Authority
JP
Japan
Prior art keywords
nickel
orp
aqueous solution
neutralization treatment
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012208737A
Other languages
Japanese (ja)
Other versions
JP2014062303A (en
Inventor
友彦 横川
友彦 横川
服部 靖匡
靖匡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012208737A priority Critical patent/JP5920584B2/en
Publication of JP2014062303A publication Critical patent/JP2014062303A/en
Application granted granted Critical
Publication of JP5920584B2 publication Critical patent/JP5920584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、湿式製錬によりニッケルやコバルトを得る際の中間物である塩化ニッケル水溶液からコバルト及びその他の不純物を分離、除去する際の酸化中和処理の方法に関するものである。   The present invention relates to an oxidation neutralization treatment method for separating and removing cobalt and other impurities from an aqueous solution of nickel chloride, which is an intermediate for obtaining nickel and cobalt by hydrometallurgy.

ニッケル及びコバルトの製錬では、先ず、原料となるニッケルやコバルトを含有する鉱石を乾式製錬により、ニッケルやコバルトを含むニッケルマットを得ることが行われる。
この原料に用いられるニッケルやコバルトを含有する鉱石は、ニッケルやコバルト以外に、銅、鉄、鉛、マンガン、砒素等の不純物元素を含むことが多く、それらの不純物元素のほとんどは、ニッケルマットに分配されている。
In the smelting of nickel and cobalt, first, a nickel matte containing nickel or cobalt is obtained by dry smelting ore containing nickel or cobalt as a raw material.
The ores containing nickel and cobalt used in this raw material often contain impurity elements such as copper, iron, lead, manganese, and arsenic in addition to nickel and cobalt, and most of these impurity elements are contained in the nickel matte. Distributed.

次に、このニッケルマットを粉砕して、塩酸酸性溶液と混合し、スラリーを形成する。
このスラリーに、例えば塩素ガスなどの酸化剤を添加して、ニッケルやコバルトを含有する浸出液を得て、得られた浸出液から溶媒抽出等の手段を用いて、ニッケルを含む溶液とコバルトを含む溶液に分離し、そのニッケルを含む溶液やコバルトを含む溶液から電解採取によりニッケルやコバルトを得ている。
The nickel mat is then crushed and mixed with a hydrochloric acid acidic solution to form a slurry.
A leaching solution containing nickel or cobalt is obtained by adding an oxidizing agent such as chlorine gas to the slurry, and a solution containing nickel and a solution containing cobalt are obtained from the obtained leaching solution using a means such as solvent extraction. Then, nickel or cobalt is obtained by electrowinning from a solution containing nickel or a solution containing cobalt.

さらに、近年、低品位ニッケル酸化鉱を高温高圧下で硫酸浸出し、次いで得られた浸出液を硫化して、ニッケルやコバルトが濃縮したニッケル・コバルト混合硫化物を形成した後、先のニッケルマットと同じように塩素ガスで浸出し、電解採取を行うことにより、ニッケルやコバルトを得る方法も用いられる。   Furthermore, in recent years, sulfuric acid leaching of low-grade nickel oxide ore under high temperature and high pressure, and then sulfiding the obtained leachate to form a nickel-cobalt mixed sulfide enriched with nickel and cobalt, Similarly, a method of obtaining nickel or cobalt by leaching with chlorine gas and performing electrowinning is also used.

この電解採取を用いてニッケルやコバルトを得る具体的な手法を図1の電気ニッケルの製造フロー図により説明する。
先ず図1に示すフローに従って、ニッケルマットやニッケル・コバルト混合硫化物(以下、原料と呼ぶ)を浸出して浸出液を構成する。
これらの原料中に含有される不純物は、ほぼ全量がその溶液(浸出液)中に浸出され、この溶液から電解採取を行うと、製品のニッケルやコバルトに、溶液中の不純物が混入してしまうため、電解採取の前に、浸出液から不純物及びコバルトを分離することが必要である。
A specific method for obtaining nickel or cobalt by using this electrowinning will be described with reference to a flow chart of electrical nickel production in FIG.
First, in accordance with the flow shown in FIG. 1, nickel matte or nickel / cobalt mixed sulfide (hereinafter referred to as raw material) is leached to form a leachate.
Almost all of the impurities contained in these raw materials are leached into the solution (leachate), and when electrolytic extraction is performed from this solution, impurities in the solution will be mixed into the nickel and cobalt of the product. Prior to electrowinning, it is necessary to separate impurities and cobalt from the leachate.

その浸出液からの不純物の分離は、先ず、置換反応(セメンテーション反応)を用いて銅を分離する。次に、図1に示す前段酸化中和処理(酸化中和1)の工程における酸化中和処理により、鉄や砒素を分離する。鉄や砒素の分離の後、溶媒抽出処理により、コバルトを分離した水溶液(塩化ニッケル溶液:図1参照)が得られる。
この不純物の分離過程における溶媒抽出処理後の水溶液には、微量のコバルトや鉛を含むものの、純度の高い塩化ニッケル水溶液が得られている。
In order to separate impurities from the leachate, first, copper is separated using a substitution reaction (cementation reaction). Next, iron and arsenic are separated by the oxidation neutralization treatment in the step of the previous oxidation neutralization treatment (oxidation neutralization 1) shown in FIG. After separation of iron and arsenic, an aqueous solution (nickel chloride solution: see FIG. 1) from which cobalt has been separated is obtained by solvent extraction.
The aqueous solution after the solvent extraction process in the separation process of impurities contains a trace amount of cobalt and lead, but a highly pure nickel chloride aqueous solution is obtained.

さらに、その得られた純度の高い塩化ニッケル水溶液から微量のコバルトや鉛を、さらに分離する方法としては、図1に示す後段酸化中和処理(酸化中和2)の工程における酸化剤と中和剤を添加して、コバルトや鉛を3価のイオンに酸化し、水酸化物として沈殿分離する酸化中和処理を用いる。
この酸化中和2により、微量なコバルトや鉛が分離され、ニッケルを電解採取することが可能な塩化ニッケル水溶液を得ることが可能となる。
Furthermore, as a method for further separating a small amount of cobalt and lead from the obtained high-purity nickel chloride aqueous solution, the oxidizing agent and neutralization in the step of the subsequent oxidation neutralization treatment (oxidation neutralization 2) shown in FIG. An oxidative neutralization treatment is used in which an agent is added to oxidize cobalt or lead to trivalent ions and precipitate as hydroxides.
By this oxidative neutralization 2, a trace amount of cobalt and lead are separated, and an aqueous nickel chloride solution capable of electrolytically collecting nickel can be obtained.

ここで、塩化ニッケル水溶液中の不純物が微量であるため、生成する水酸化物の澱物は、水酸化コバルトを微量含む水酸化ニッケルを主成分とする澱物である。この澱物の主成分が水酸化ニッケルであるため、澱物は硫酸ニッケル製造プロセスに払い出すことができる。
この硫酸ニッケル製造プロセスにおいて、この澱物を硫酸で溶解し、硫酸ニッケル水溶液を形成する。さらに、得られた硫酸ニッケル水溶液から不純物を分離し、製品となる硫酸ニッケルが作製できる。
Here, since the impurities in the nickel chloride aqueous solution are very small, the generated starch of hydroxide is a starch mainly composed of nickel hydroxide containing a small amount of cobalt hydroxide. Since the main component of this starch is nickel hydroxide, the starch can be dispensed into the nickel sulfate production process.
In the nickel sulfate production process, the starch is dissolved with sulfuric acid to form an aqueous nickel sulfate solution. Furthermore, impurities can be separated from the obtained nickel sulfate aqueous solution to produce nickel sulfate as a product.

このように、この澱物は硫酸ニッケルの原料でもあるため、澱物発生量は変動が少ないことが求められる。従って、後段酸化中和処理(酸化中和2)の工程では不純物を沈殿・分離すると共に、澱物発生量の変動が少なくなるように酸化中和処理の反応系を制御することが必要である。
そこで、塩化ニッケル水溶液から不純物を沈殿分離すると共に、澱物の発生量の変動が少なくなるように反応系を制御する方法として、例えば、処理液量に対する塩素ガスの吹き込み比率を固定し、塩素ガス流量を自動制御し、一方で、中和剤である炭酸ニッケルは、塩化ニッケル水溶液のpHを設定値に合わせるように自動制御で添加する方法(図2参照)により、不純物を分離すると共に澱物発生量の変動が少なくなるようにコントロールしている。
なお、図2は従来のpHを制御の指標として用いた酸化中和処理における酸化剤と中和剤の添加方法を説明する模式図で、2は反応槽、3はORP計、4はpH計、5は攪拌装置、10は炭酸ニッケル添加弁、11は塩素ガス添加弁、12は塩素ガスメーターである。
Thus, since this starch is also a raw material of nickel sulfate, it is required that the amount of generated starch is small. Therefore, it is necessary to control the reaction system of the oxidative neutralization treatment so that impurities are precipitated and separated in the subsequent oxidative neutralization treatment (oxidation neutralization 2) step, and fluctuations in the amount of starch generated are reduced. .
Therefore, as a method for precipitating and separating impurities from an aqueous nickel chloride solution and controlling the reaction system so that fluctuations in the amount of starch generated are reduced, for example, the ratio of chlorine gas blowing to the amount of processing liquid is fixed, The flow rate is automatically controlled. On the other hand, the neutralizing agent, nickel carbonate, separates impurities and removes starch by a method of automatically adding nickel chloride aqueous solution so that the pH of the aqueous solution of nickel chloride matches the set value (see FIG. 2). Control is made so that fluctuations in the amount generated are reduced.
FIG. 2 is a schematic diagram for explaining a method for adding an oxidizing agent and a neutralizing agent in an oxidative neutralization process using conventional pH as an index for control. 2 is a reaction tank, 3 is an ORP meter, and 4 is a pH meter. 5 is a stirring device, 10 is a nickel carbonate addition valve, 11 is a chlorine gas addition valve, and 12 is a chlorine gas meter.

特許文献1では、高コバルト濃度のニッケル浸出液とニッケル電解廃液とを混合して塩化ニッケル溶液を得、その塩化ニッケル溶液を浄液するに際して、ニッケル濃度は90〜130g/L、コバルト濃度は1.0〜3.0g/Lの塩化ニッケル溶液とし、その塩化ニッケル溶液に酸化剤を加え、酸化還元電位を600〜1200mV(銀/塩化銀電極規準)とし、中和剤を用いてpHを4.0〜6.0とする方法が開示されている。
このような特許文献1の方法は、コバルトや鉛を分離すると共に、澱物発生量をコントロールすることが出来る。
In Patent Document 1, a nickel chloride solution is obtained by mixing a nickel leaching solution having a high cobalt concentration and a nickel electrolytic waste solution, and when the nickel chloride solution is purified, the nickel concentration is 90 to 130 g / L and the cobalt concentration is 1. A 0 to 3.0 g / L nickel chloride solution was added, an oxidizing agent was added to the nickel chloride solution, the oxidation-reduction potential was 600 to 1200 mV (silver / silver chloride electrode standard), and the pH was adjusted to 4. using a neutralizing agent. A method of 0 to 6.0 is disclosed.
Such a method of Patent Document 1 can separate the cobalt and lead and control the amount of starch generated.

しかしながら、中和剤を用いてpHを調整する場合、pH計を反応槽中で保持するとガラス電極部に、上記水酸化ニッケルを主とする澱物が付着するため、pH計の感度が20分程度で低下してしまい、pHが正確に計測できなくなる問題が起こってしまう。
即ち、pH計は、ガラス電極と比較電極から成るが、この比較電極に液絡部とよばれる小孔を有しており、その溶絡部の小孔は澱物の付着が少量であっても、孔が部分的に塞がれることになりpHの測定に誤差が生じやすい。従って、澱物が発生する反応槽中で用いる場合、直ぐに感度が低下してしまう。
However, when adjusting the pH using a neutralizing agent, if the pH meter is held in the reaction vessel, the starch mainly composed of nickel hydroxide adheres to the glass electrode part, so the sensitivity of the pH meter is 20 minutes. It will fall by the extent, and the problem which pH cannot measure correctly will arise.
That is, the pH meter is composed of a glass electrode and a reference electrode, and the reference electrode has a small hole called a liquid junction, and the small hole in the weld has a small amount of adhesion of starch. However, the hole is partially blocked, and an error is likely to occur in pH measurement. Therefore, when used in a reaction vessel in which starch is generated, the sensitivity is immediately reduced.

よって、pHが正確に把握出来なくなるため、このpHにより制御している中和剤の添加量に過不足が生じるという問題が出てきてしまう。
具体的に、例えば、中和剤が不足すると、pHが低下しすぎ、塩素ガスが気中にロスし、排ガス中の塩素ガス濃度は最大で800〜1000ppmとなる。この場合、排ガス除害系の負荷が増加するため、塩素漏洩の環境リスクが高まることが懸念されるとともに、除害用のガス中和剤の使用量が増加してしまう。
一方、中和剤が過剰となると、pHが上昇しすぎ、水酸化ニッケルが多量に沈殿してしまう。この場合、水酸化ニッケルは微粒であるため、澱物の濾過性が著しく悪化し、固液分離が困難になる。
Therefore, since the pH cannot be accurately grasped, there arises a problem that the amount of the neutralizing agent controlled by the pH is excessive or insufficient.
Specifically, for example, when the neutralizing agent is insufficient, the pH is too low, chlorine gas is lost in the air, and the chlorine gas concentration in the exhaust gas is 800 to 1000 ppm at the maximum. In this case, since the load of the exhaust gas abatement system increases, there is a concern that the environmental risk of chlorine leakage increases, and the amount of gas neutralizing agent used for the abatement increases.
On the other hand, if the neutralizing agent is excessive, the pH will rise too much and a large amount of nickel hydroxide will precipitate. In this case, since nickel hydroxide is a fine particle, the filterability of starch is significantly deteriorated, and solid-liquid separation becomes difficult.

このpH計への水酸化ニッケルを主とする澱物の付着のために、溶液のpHが正確に把握できなくなり、このpHにより制御している中和剤の添加量に過不足が生じるという問題に対して、例えば20分ごとにpH計の酸洗浄を実施すればpHを正確に把握することが出来るが、手動洗浄では作業負荷の増加による作業効率の低下を招き、一方自動酸洗浄装置を開発・設置して、対応も可能であるが、この場合、設備の開発、設置のための設備投資が必要とされる。   Due to the adhesion of starch, mainly nickel hydroxide, to this pH meter, the pH of the solution cannot be accurately grasped, and the amount of neutralizing agent added controlled by this pH becomes excessive or insufficient. On the other hand, for example, if acid cleaning of a pH meter is performed every 20 minutes, the pH can be accurately grasped, but manual cleaning causes a decrease in work efficiency due to an increase in work load, while an automatic acid cleaning device is installed. It can be developed and installed, but in this case, capital investment for development and installation of equipment is required.

従って、酸化中和処理工程において、pH計を例えば20分毎に手動で洗浄することによる作業負荷の増加を避け、或いはpH計の自動酸洗浄装置を設置するための設備投資を行うことなく、pHに代わる中和剤の添加量を制御できる指標を用いて中和剤の添加量を安定化させることが出来る、従来の技術よりも更に良い酸化中和処理の方法が求められていた。   Therefore, in the oxidation neutralization treatment step, avoiding an increase in workload due to manual cleaning of the pH meter, for example, every 20 minutes, or without investing in equipment to install an automatic acid cleaning device for the pH meter, There has been a demand for an oxidation neutralization treatment method better than the prior art, which can stabilize the addition amount of the neutralizing agent using an index that can control the addition amount of the neutralizing agent instead of pH.

特開2011−157604号公報JP 2011-157604 A

本発明は、このような問題点を解決しようとするもので、pH計を例えば20分毎に手動で洗浄することによる作業負荷の増加を避け、或いはpH計の酸自動洗浄装置の投資を行わずに、pHに代わる中和剤の添加量を制御できる指標を用いて中和剤の添加量を安定させることができる塩化ニッケル水溶液の酸化中和の方法を提供することを目的とするものである。   The present invention is intended to solve such problems, and avoids an increase in the work load due to manual cleaning of the pH meter, for example, every 20 minutes, or invests in an automatic pH meter acid cleaning device. In addition, an object of the present invention is to provide a method for oxidative neutralization of an aqueous nickel chloride solution that can stabilize the addition amount of a neutralizing agent using an index that can control the addition amount of a neutralizing agent instead of pH. is there.

本発明の第1の発明は、少なくともコバルトを含む塩化ニッケル水溶液から、酸化剤及び中和剤の添加量を制御しながら添加して処理する、前段酸化中和処理及び後段酸化中和処理の2段階の酸化中和処理を経て、コバルトを含む水酸化澱物とコバルトを除去した水溶液を生成する酸化中和処理方法において、その後段酸化中和処理における中和剤の添加量を、酸化中和処理中の塩化ニッケル水溶液の酸化還元電位(Oxidation−reduction Potential、以下ORPと称す)値を指標に用いて制御することを特徴とする塩化ニッケル水溶液の酸化中和処理方法である。   The first invention of the present invention is a pre-stage oxidative neutralization treatment and a post-stage oxidative neutralization treatment in which nickel chlorinated aqueous solution containing at least cobalt is added and treated while controlling the addition amounts of the oxidizing agent and the neutralizing agent. In the oxidation neutralization treatment method that produces an aqueous solution from which cobalt-containing hydroxide starch and cobalt have been removed through a staged oxidation neutralization treatment, the amount of neutralizing agent added in the subsequent oxidation neutralization treatment is determined by oxidation neutralization. An oxidation neutralization treatment method for an aqueous nickel chloride solution, characterized by controlling the oxidation-reduction potential (hereinafter referred to as ORP) value of the aqueous nickel chloride solution during the treatment as an index.

本発明の第2の発明は、第1の発明における後段酸化中和処理の酸化剤が塩素ガスで、中和剤が炭酸ニッケルまたは塩基性炭酸ニッケルの少なくとも一つ以上で、酸化還元電位(銀/塩化銀電極基準)を、900〜1100mVの範囲に調整することを特徴とする塩化ニッケル水溶液の酸化中和処理方法である。 According to a second aspect of the present invention, the oxidizing agent for the subsequent oxidation neutralization treatment in the first aspect is chlorine gas, the neutralizing agent is at least one of nickel carbonate and basic nickel carbonate, and a redox potential (silver / Silver chloride electrode standard) is adjusted to a range of 900 to 1100 mV, and is an oxidation neutralization treatment method for an aqueous nickel chloride solution.

本発明の第3の発明は、第1及び第2の発明における塩化ニッケル水溶液が、90〜130g/Lのニッケル濃度を有し、0.001〜3.0g/Lのコバルト濃度を有する水溶液であることを特徴とする塩化ニッケル水溶液の酸化中和処理の方法である。   A third invention of the present invention is an aqueous solution in which the nickel chloride aqueous solution in the first and second inventions has a nickel concentration of 90 to 130 g / L and a cobalt concentration of 0.001 to 3.0 g / L. This is a method for the oxidation neutralization treatment of a nickel chloride aqueous solution.

本発明によれば、pH計を例えば「20分毎に手動で洗浄する」というような煩雑な手間による作業負荷の増加を避けることによる作業効率の向上、或いはpH計の酸自動洗浄装置の設備投資を行わずに、pHに代わる中和剤の添加量を制御できる指標を用いて、中和剤の添加量を安定して制御することができ、作業効率や対費用効果の向上を図ることが可能となり、工業上顕著な効果を奏するものである。   According to the present invention, the pH meter is improved in work efficiency by avoiding an increase in work load due to troublesome work such as “manual cleaning every 20 minutes”, or the equipment of the pH meter automatic acid cleaning device By using an index that can control the amount of neutralizing agent in place of pH without investing, the amount of neutralizing agent can be stably controlled, improving work efficiency and cost-effectiveness. It is possible to achieve an industrially significant effect.

電気ニッケルの製造プロセスを示す製造フロー図である。It is a manufacturing flowchart which shows the manufacturing process of electrical nickel. 従来のpHを制御の指標として用いた酸化中和処理における酸化剤と中和剤の添加方法を説明する模式図である。It is a schematic diagram explaining the addition method of the oxidizing agent and neutralizing agent in the oxidation neutralization process using the conventional pH as a control parameter | index. 本発明のORPを制御の指標として用いた酸化中和処理における酸化剤と中和剤の添加方法を説明する模式図である。It is a schematic diagram explaining the addition method of the oxidizing agent and neutralizing agent in the oxidation neutralization process which used ORP of this invention as a parameter | index of control. 実施例1における8日間操業したときの反応槽ORP(銀/塩化銀電極基準)と排ガス中の塩素濃度(Cl)のトレンドを示す図である。Is a diagram showing the trend of the reaction vessel ORP (silver / silver electrode reference chloride) and chlorine concentration in the exhaust gas (Cl 2) when the operation for 8 days in the first embodiment. 比較例1における8日間操業したときの反応槽ORP(銀/塩化銀電極基準)と排ガス中の塩素濃度(Cl)のトレンドを示す図である。Chlorine concentration in the reaction vessel with the exhaust gas ORP (silver / silver chloride electrode standard) when operating for 8 days in Comparative Example 1 is a diagram showing the trend of the (Cl 2).

本発明では、少なくともコバルトを含有する塩化ニッケル水溶液に、酸化剤と中和剤を添加して行う酸化中和処理を、前段酸化中和処理と後段酸化中和処理の2段階のプロセスで行い、且つ後段酸化中和処理(図1の酸化中和2)におけるコバルトを含む水酸化物澱物を生成してコバルトを除去した水溶液の形成において、使用する中和剤の添加量を、酸化中和反応槽でのORPの変動に応じて、調整することを特徴とするものである。   In the present invention, an oxidation neutralization treatment performed by adding an oxidizing agent and a neutralizing agent to a nickel chloride aqueous solution containing at least cobalt is performed in a two-stage process of a pre-stage oxidation neutralization treatment and a post-stage oxidation neutralization treatment. In addition, in the formation of an aqueous solution in which a cobalt-containing hydroxide starch is produced in the subsequent oxidation neutralization treatment (oxidation neutralization 2 in FIG. 1) and the cobalt is removed, the amount of neutralizing agent used is determined by oxidation neutralization. It adjusts according to the fluctuation | variation of ORP in a reaction tank, It is characterized by the above-mentioned.

酸化中和処理に供する処理前の塩化ニッケル水溶液は、少なくともコバルトを含み、その他、鉄、銅、鉛などの微量不純物を含み、そのニッケル濃度が低すぎると、酸化中和処理工程での液量増加を招くため好ましくない。また、ニッケル濃度が高すぎると、塩化物の濃度が上がるためコバルトが塩化物錯体を形成しやすくなり沈殿しにくくなる。
従って、ニッケル濃度は90〜130g/L、コバルト濃度は0.001〜3.0g/Lであることが好ましい。
The nickel chloride aqueous solution before treatment to be subjected to oxidation neutralization treatment contains at least cobalt, and also contains trace impurities such as iron, copper, lead, etc. If the nickel concentration is too low, the amount of liquid in the oxidation neutralization treatment step This is not preferable because it causes an increase. On the other hand, if the nickel concentration is too high, the chloride concentration increases, so cobalt tends to form a chloride complex and is difficult to precipitate.
Therefore, the nickel concentration is preferably 90 to 130 g / L, and the cobalt concentration is preferably 0.001 to 3.0 g / L.

本発明における酸化中和処理に使用される酸化剤には、塩素ガスや次亜塩素酸ソーダを用いることができるが、ナトリウムなどの不純物の影響がない塩素ガスが望ましい。
一方、中和剤には、炭酸ニッケル、塩基性炭酸ニッケル、水酸化ナトリウムや消石灰を用いることができるが、ナトリウムイオンやカルシウムイオンがプロセス内に持ち込まれると、後工程で除去を考慮する必要があるので、塩化ニッケル水溶液の組成に影響を及ぼさない炭酸ニッケルまたは塩基性炭酸ニッケルが適している。
As the oxidizing agent used in the oxidation neutralization treatment in the present invention, chlorine gas or sodium hypochlorite can be used, but chlorine gas which is not affected by impurities such as sodium is desirable.
On the other hand, nickel carbonate, basic nickel carbonate, sodium hydroxide or slaked lime can be used as the neutralizing agent, but when sodium ions or calcium ions are brought into the process, it is necessary to consider removal in a later step. Therefore, nickel carbonate or basic nickel carbonate that does not affect the composition of the aqueous nickel chloride solution is suitable.

次に、酸化剤と中和剤の添加方法について述べる。図3にその添加方法を示す。図3は、本発明の酸化中和処理における酸化剤と中和剤の添加方法を説明する模式図で、2は反応槽、3はORP計、4はpH計、5は攪拌装置、10は炭酸ニッケル添加弁、11は塩素ガス添加弁、12は塩素ガスメーターである。
この図3に示す添加方法において、発明者らは、ORP値と気中への塩素ガス(酸化剤)ロス量に相関があることを見出し、塩素ガス吹き込み量一定の下で、ORPが一定となるように制御すれば、反応が安定し、塩素ガスロス量が低下することが分かった。
Next, a method for adding an oxidizing agent and a neutralizing agent will be described. FIG. 3 shows the addition method. FIG. 3 is a schematic diagram for explaining a method of adding an oxidizing agent and a neutralizing agent in the oxidative neutralization treatment of the present invention, wherein 2 is a reaction tank, 3 is an ORP meter, 4 is a pH meter, 5 is a stirrer, A nickel carbonate addition valve, 11 is a chlorine gas addition valve, and 12 is a chlorine gas meter.
In the addition method shown in FIG. 3, the inventors have found that there is a correlation between the ORP value and the amount of chlorine gas (oxidant) loss into the air. It was found that the reaction was stabilized and the chlorine gas loss amount was reduced by controlling so as to be.

次に、反応系の制御における指標に関して、本発明で処理する塩化ニッケル水溶液は、酸化中和処理において澱物を生成するため、pHを指標として測定する場合、特に比較電極液絡部への澱物の付着を生じることから、正確な値を20分間以上にわたり測定することが難しいが、ORP(酸化還元電位)を指標として測定する場合、ORP計の検出部には金属電極が用いられ、液絡部等の小孔も無いため、塩化ニッケル水溶液では、およそ2時間にわたり正確な測定が可能であることを知見した。   Next, regarding the index in the control of the reaction system, the aqueous nickel chloride solution to be treated in the present invention produces a starch in the oxidative neutralization treatment. It is difficult to measure an accurate value over 20 minutes because of the adhesion of objects, but when measuring using ORP (oxidation-reduction potential) as an index, a metal electrode is used for the detection part of the ORP meter. Since there are no small holes such as entanglements, it has been found that a nickel chloride aqueous solution can be measured accurately for about 2 hours.

一方ORP計は、定期的な洗浄が必要であるが、この洗浄のために引き上げ、再度浸漬した際、ORP計を浸漬してから正確な値が得られるまで長時間を要する場合があり、このため、ORPを指標に用いて工程を制御する場合、この間の制御が正確に行えないことが問題となり、この制御が正確に実行できない期間が長時間にわたるために、ORPを工程の制御指標に用いる方法を採用することは、難しい場合もあるが、本発明においては、処理する水溶液が、純度の高い塩化ニッケル水溶液であるため、このような問題の発生は見られず、ORP計の浸漬から再び正確な値を得るまでの時間は短くて済む。   On the other hand, the ORP meter needs to be periodically cleaned. When the ORP meter is lifted for this cleaning and immersed again, it may take a long time to obtain an accurate value after the ORP meter is immersed. Therefore, when the process is controlled using the ORP as an index, there is a problem that the control during this time cannot be performed accurately. Since the period during which this control cannot be performed accurately is long, the ORP is used as a process control index. Although it may be difficult to adopt the method, in the present invention, since the aqueous solution to be treated is a high-purity nickel chloride aqueous solution, such a problem does not occur, and the ORP meter is immersed again. The time required to obtain an accurate value is short.

即ち、具体的にはORP計を洗浄するために引き上げた場合、ORP計の引き上げから、洗浄、水溶液への再度の浸漬、再び正確な値を得るまで、およそ3分間で完了することから、このORPを用いた酸化中和処理工程の制御は可能である。
従って、本発明により処理する水溶液のORPは、ORP計を用いて測定し、このORPが一定となるように、中和剤である炭酸ニッケルを添加するものである。
Specifically, when the ORP meter is pulled up for cleaning, it takes about 3 minutes from the raising of the ORP meter to cleaning, re-immersion in an aqueous solution, and again obtaining an accurate value. Control of the oxidation neutralization process using ORP is possible.
Therefore, the ORP of the aqueous solution to be treated according to the present invention is measured using an ORP meter, and nickel carbonate as a neutralizing agent is added so that the ORP becomes constant.

図3に示す本発明による酸化中和処理の方法を用いて、この酸化中和処理を行う。
具体的には、酸化剤である塩素ガスは、処理液量に対する塩素ガスの吹き込み比率を固定し、塩素ガス流量を自動制御する。この自動制御により、不純物を除去して、澱物発生量が調整される。
また、中和剤である炭酸ニッケルの添加量は、反応槽ORP値に応じて自動添加される。
This oxidation neutralization treatment is performed using the method of oxidation neutralization treatment according to the present invention shown in FIG.
Specifically, chlorine gas, which is an oxidizer, automatically controls the flow rate of chlorine gas by fixing the blowing ratio of chlorine gas to the amount of processing liquid. By this automatic control, impurities are removed and the amount of starch generated is adjusted.
Moreover, the addition amount of nickel carbonate which is a neutralizing agent is automatically added according to the reaction vessel ORP value.

この炭酸ニッケルの添加量において、ORP測定値がORP設定値よりも高ければ、炭酸ニッケルの添加量を増加し、ORPを低下させる。逆に、ORP測定値がORP設定値よりも低ければ炭酸ニッケルの添加量を減少させて、ORPを増加させる。   If the ORP measurement value is higher than the ORP set value in the addition amount of nickel carbonate, the addition amount of nickel carbonate is increased and the ORP is lowered. Conversely, if the ORP measurement value is lower than the ORP set value, the amount of nickel carbonate added is decreased to increase the ORP.

銀/塩化銀電極基準によるORPが、900mV以下では炭酸ニッケルが過剰添加となり、濾過性の悪い水酸化ニッケルが大量に発生するため好ましくない。また、ORP(銀/塩化銀電極基準)が1100mV以上では炭酸ニッケルが不足となり、塩素ロスが増加するため好ましくない。
従ってORP設定値は、銀/塩化銀電極基準で900〜1100mVとすることが好ましい。
When the ORP based on the silver / silver chloride electrode standard is 900 mV or less, nickel carbonate is excessively added, and a large amount of nickel hydroxide with poor filterability is generated. Further, when ORP (silver / silver chloride electrode standard) is 1100 mV or more, nickel carbonate is insufficient and chlorine loss increases, which is not preferable.
Therefore, the ORP set value is preferably 900 to 1100 mV based on the silver / silver chloride electrode.

また補助的な指標として、pHを定期的に測定しても良い。
本発明による酸化中和処理において、pHは成り行きとなるが、pHが5.0以上になると、濾過性の悪い水酸化ニッケルが大量に発生するため好ましくない。また、pHが4.0以下になると、不純物が沈殿しにくくなるため好ましくない。従って、pHが4.0〜5.0になるようにORP設定値を調整することが好ましい。
Moreover, you may measure pH regularly as an auxiliary | assistant parameter | index.
In the oxidative neutralization treatment according to the present invention, the pH becomes a matter of course, but if the pH is 5.0 or more, a large amount of nickel hydroxide with poor filterability is generated, which is not preferable. Moreover, since it becomes difficult to precipitate an impurity when pH becomes 4.0 or less, it is unpreferable. Therefore, it is preferable to adjust the ORP set value so that the pH is 4.0 to 5.0.

具体的には、pHが5.0を超えた場合には、ORP測定値が増加するように調整すれば良い。また、pHが4.0未満となった場合には、ORP測定値が減少するように調整すれば良い。   Specifically, when the pH exceeds 5.0, the ORP measurement value may be adjusted to increase. Moreover, what is necessary is just to adjust so that an ORP measured value may decrease, when pH will be less than 4.0.

以下、実施例を用いて、本発明をさらに説明する。   The present invention will be further described below using examples.

操業は、ニッケル濃度90〜130g/L、コバルト濃度0.001〜0.006g/Lの塩化ニッケル水溶液を用い、8日間行った。
この塩化ニッケル水溶液は、流量550L/minで容量50mの反応槽に給液し、塩素濃度90wt%の塩素ガスを99kg/hの定量吹き込みにより液中に吹き込んだ。
なお、給液量は、反応槽入口の電磁流量計(図3に図示せず)により測定、制御した。
The operation was performed for 8 days using a nickel chloride aqueous solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 0.001 to 0.006 g / L.
This nickel chloride aqueous solution was supplied to a reaction vessel having a capacity of 50 m 3 at a flow rate of 550 L / min, and chlorine gas having a chlorine concentration of 90 wt% was blown into the liquid by a constant blow of 99 kg / h.
The liquid supply amount was measured and controlled by an electromagnetic flow meter (not shown in FIG. 3) at the reaction tank inlet.

また炭酸ニッケルの添加は、150g/Lのスラリーを用い、反応槽ORP設定値を1065mVとして、ORP計を用いた本発明による制御方法により、炭酸ニッケルの添加量を制御した。使用したORP計は東亜ディーケーケー株式会社製のものを用いた。   In addition, nickel carbonate was added by using a slurry of 150 g / L, setting the reaction vessel ORP set value to 1065 mV, and controlling the amount of nickel carbonate added by the control method according to the present invention using an ORP meter. The ORP meter used was manufactured by Toa DKK Corporation.

具体的な制御法について図3を用いて説明する。
プロセス制御コンピューター(図示せず)が、ORP計3を用いて反応槽ORP測定値を取り込み、PID制御により、反応層ORP測定値と、予め設定した反応槽ORP設定値の差を縮小するように、炭酸ニッケル添加弁10に信号を送った。炭酸ニッケル添加量は、その信号に基づく炭酸ニッケル添加弁10の開度により調整する。
A specific control method will be described with reference to FIG.
A process control computer (not shown) takes the reaction vessel ORP measurement value using the ORP meter 3, and reduces the difference between the reaction layer ORP measurement value and the preset reaction vessel ORP setting value by PID control. A signal was sent to the nickel carbonate addition valve 10. The amount of nickel carbonate added is adjusted by the opening degree of the nickel carbonate addition valve 10 based on the signal.

図4に、実施例1における8日間操業したときの反応槽ORP(銀/塩化銀電極基準)と排ガス中の塩素濃度(Cl)のトレンドを、表1に、その時のデータ並びに反応槽pHのデータを示す。
反応槽ORPは反応槽2にORP計3を浸漬させて連続して測定した。また、塩素ガスは、反応槽2上に設けられた排ガス回収装置のダクト途中にある塩素ガスメーター12により、連続的に測定した。
FIG. 4 shows the trend of the reaction vessel ORP (silver / silver chloride electrode standard) and the chlorine concentration (Cl 2 ) in the exhaust gas when operated for 8 days in Example 1, and Table 1 shows the data at that time and the reaction vessel pH. The data is shown.
The reaction vessel ORP was continuously measured with the ORP meter 3 immersed in the reaction vessel 2. Moreover, chlorine gas was continuously measured with the chlorine gas meter 12 in the middle of the duct of the exhaust gas recovery apparatus provided on the reaction tank 2.

Figure 0005920584
Figure 0005920584

図4及び表1から、反応槽ORPの変動は、1056〜1074mV、反応槽pHは、4.56〜4.96となり、反応槽ORPの変動は、従来法と比較して小さくなった。
また、ORPの値に連動する排ガス中塩素濃度についても、その最大値は495ppmとなり、排ガス中塩素濃度の最大値も、従来法と比較して低減させることができた。
したがって、本発明による炭酸ニッケル添加の方法によれば、ORPを正確に把握出来ることで、中和剤の炭酸ニッケルの添加量の変動を押さえ、安定した酸化中和を行うことができるものである。
4 and Table 1, the variation of the reaction vessel ORP was 1056 to 1074 mV, the reaction vessel pH was 4.56 to 4.96, and the variation of the reaction vessel ORP was smaller than that of the conventional method.
Moreover, the maximum value of the chlorine concentration in the exhaust gas linked to the ORP value was 495 ppm, and the maximum value of the chlorine concentration in the exhaust gas could be reduced as compared with the conventional method.
Therefore, according to the method of adding nickel carbonate according to the present invention, the ORP can be accurately grasped, so that fluctuations in the amount of nickel carbonate added as a neutralizing agent can be suppressed and stable oxidation neutralization can be performed. .

操業はニッケル濃度90〜130g/L、コバルト濃度0.001〜0.006g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は1094mVとしたことを除き、実施例1と同じ方法で行った。   The operation was performed in the same manner as in Example 1, except that an aqueous nickel chloride solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 0.001 to 0.006 g / L was used, and the reaction vessel ORP set value was 1094 mV. .

この結果、反応槽ORPは、1088〜1100mV、反応槽pHは、4.60〜5.00となり、反応槽ORP並びに反応槽pHの変動は、従来法と比較して小さくなった。
また、ORPの値に連動する排ガス中塩素濃度についても、その最大値は495ppmとなり、排ガス中塩素濃度の最大値も、従来法と比較して低減させることができた。
従って、ORPを正確に把握できることで、炭酸ニッケルの添加量の変動を押さえ、安定した酸化中和を行うことができた。
As a result, the reaction vessel ORP was 1088 to 1100 mV, the reaction vessel pH was 4.60 to 5.00, and fluctuations in the reaction vessel ORP and the reaction vessel pH were smaller than in the conventional method.
Moreover, the maximum value of the chlorine concentration in the exhaust gas linked to the ORP value was 495 ppm, and the maximum value of the chlorine concentration in the exhaust gas could be reduced as compared with the conventional method.
Therefore, since the ORP can be accurately grasped, fluctuations in the amount of nickel carbonate added can be suppressed and stable oxidation neutralization can be performed.

操業はニッケル濃度90〜130g/L、コバルト濃度0.001〜0.006g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は、906mVとしたことを除き、実施例1と同じ方法で行った。   The operation was performed in the same manner as in Example 1 except that a nickel chloride aqueous solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 0.001 to 0.006 g / L was used, and the reactor ORP set value was 906 mV. It was.

この結果、反応槽ORPは、900〜912mV、反応槽pHは、4.06〜4.46となり、反応槽ORP並びに反応槽pHの変動は、従来法と比較して小さくなった。
また、ORPの値に連動する排ガス中塩素濃度についても、その最大値は498ppmとなり、排ガス中塩素濃度の最大値も、従来法と比較して低減させることができた。
従って、ORPを正確に把握できることで、炭酸ニッケルの添加量の変動を押さえ、安定した酸化中和を行うことができた。
As a result, the reaction vessel ORP was 900 to 912 mV, the reaction vessel pH was 4.06 to 4.46, and fluctuations in the reaction vessel ORP and the reaction vessel pH were smaller than those of the conventional method.
Moreover, the maximum value of the chlorine concentration in the exhaust gas linked to the ORP value was 498 ppm, and the maximum value of the chlorine concentration in the exhaust gas could be reduced as compared with the conventional method.
Therefore, since the ORP can be accurately grasped, fluctuations in the amount of nickel carbonate added can be suppressed and stable oxidation neutralization can be performed.

操業はニッケル濃度90〜130g/L、コバルト濃度2.2〜3.0g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は、1094mVとしたことを除き、実施例1と同じ方法で行った。   The operation was performed in the same manner as in Example 1 except that a nickel chloride aqueous solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 2.2 to 3.0 g / L was used, and the reaction vessel ORP set value was set to 1094 mV. It was.

この結果、反応槽ORPは、1088〜1100mV、反応槽pHは、4.60〜5.00となり、反応槽ORP並びに反応槽pHの変動は、従来法と比較して小さくなった。
また、ORPの値に連動する排ガス中塩素濃度についても、その最大値は495ppmとなり、排ガス中塩素濃度の最大値も、従来法と比較して低減させることができた。
従って、ORPを正確に把握できることで、炭酸ニッケルの添加量の変動を押さえ、安定した酸化中和を行うことができた。
As a result, the reaction vessel ORP was 1088 to 1100 mV, the reaction vessel pH was 4.60 to 5.00, and fluctuations in the reaction vessel ORP and the reaction vessel pH were smaller than in the conventional method.
Moreover, the maximum value of the chlorine concentration in the exhaust gas linked to the ORP value was 495 ppm, and the maximum value of the chlorine concentration in the exhaust gas could be reduced as compared with the conventional method.
Therefore, since the ORP can be accurately grasped, fluctuations in the amount of nickel carbonate added can be suppressed and stable oxidation neutralization can be performed.

操業は、ニッケル濃度90〜130g/L、コバルト濃度2.2〜3.0g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は、906mVとしたことを除き、実施例1と同じ方法で行った。   The operation was performed in the same manner as in Example 1, except that an aqueous nickel chloride solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 2.2 to 3.0 g / L was used, and the reaction vessel ORP set value was 906 mV. went.

この結果、反応槽ORPは、900〜912mV、反応槽pHは、4.06〜4.46となり、反応槽ORP並びに反応槽pHの変動は、従来法と比較して小さくなった。
また、ORPの値に連動する排ガス中塩素濃度についても、その最大値は498ppmとなり、排ガス中塩素濃度の最大値も、従来法と比較して低減させることができた。
従って、ORPを正確に把握できることで、炭酸ニッケルの添加量の変動を押さえ、安定した酸化中和を行うことができた。
As a result, the reaction vessel ORP was 900 to 912 mV, the reaction vessel pH was 4.06 to 4.46, and fluctuations in the reaction vessel ORP and the reaction vessel pH were smaller than those of the conventional method.
Moreover, the maximum value of the chlorine concentration in the exhaust gas linked to the ORP value was 498 ppm, and the maximum value of the chlorine concentration in the exhaust gas could be reduced as compared with the conventional method.
Therefore, since the ORP can be accurately grasped, fluctuations in the amount of nickel carbonate added can be suppressed and stable oxidation neutralization can be performed.

(比較例1)
操業は、ニッケル濃度97〜130g/L、コバルト濃度0.005〜0.007g/Lの塩化ニッケル水溶液を用い、8日間行った。
塩素ガスは97kg/Hで液中に吹き込んだ。また、炭酸ニッケルは150g/Lのスラリーを用い、目標反応槽pHは4.7として、pH計を用いた従来の制御方法により炭酸ニッケル添加量を制御した。
(Comparative Example 1)
The operation was performed for 8 days using a nickel chloride aqueous solution having a nickel concentration of 97 to 130 g / L and a cobalt concentration of 0.005 to 0.007 g / L.
Chlorine gas was blown into the liquid at 97 kg / H. Further, the nickel carbonate was used in a slurry of 150 g / L, the target reaction tank pH was 4.7, and the amount of nickel carbonate added was controlled by a conventional control method using a pH meter.

具体的な制御法について図2を用いて説明する。
プロセス制御コンピューター(図示せず)が、反応槽pH測定値を取り込み、PID制御により、その反応槽pH測定値と、反応槽pH設定値の差を縮小するように、炭酸ニッケル添加弁10に信号を送った。炭酸ニッケル添加量は、送られた信号に基づく炭酸ニッケル添加弁10の開度により調整した。
A specific control method will be described with reference to FIG.
A process control computer (not shown) captures the reaction tank pH measurement value and signals to the nickel carbonate addition valve 10 to reduce the difference between the reaction tank pH measurement value and the reaction tank pH setting value by PID control. It was sent. The amount of nickel carbonate added was adjusted by the opening degree of the nickel carbonate addition valve 10 based on the transmitted signal.

操業は、上述の塩素ガス吹き込み、並びに炭酸ニッケル添加の方法を除き、実施例1と同じ方法で行った。
図5に、8日間運転したときの反応槽ORP(銀/塩化銀電極基準)と排ガス中の塩素濃度のトレンドを、表2に、その時のデータ並びに反応槽pHのデータを示す。
The operation was performed in the same manner as in Example 1 except for the above-described method of blowing chlorine gas and adding nickel carbonate.
FIG. 5 shows the trend of the reaction vessel ORP (silver / silver chloride electrode standard) and the chlorine concentration in the exhaust gas when operated for 8 days, and Table 2 shows the data at that time and the reaction vessel pH.

Figure 0005920584
Figure 0005920584

従来の方法による炭酸ニッケルの添加方法によれば、pHが正確に把握できないために、炭酸ニッケルの添加量が不安定となった。
図5及び表2から、反応槽ORPの変動は、1034〜1085mV、反応槽ORPの標準偏差は、7.9mV、反応槽pHは、4.36〜4.96となり、反応槽ORP並びに反応槽pHの変動は、実施例1より大きくなった。
また、排ガス中塩素濃度の標準偏差は、113ppmで、実施例1より大きくなり、排ガス中塩素濃度の最大値も、870ppmと実施例1よりも大きくなった。
According to the conventional method of adding nickel carbonate, since the pH cannot be accurately grasped, the amount of nickel carbonate added becomes unstable.
From FIG. 5 and Table 2, the variation of the reaction vessel ORP is 1034 to 1085 mV, the standard deviation of the reaction vessel ORP is 7.9 mV, the reaction vessel pH is 4.36 to 4.96, and the reaction vessel ORP and the reaction vessel The variation in pH was greater than in Example 1.
Further, the standard deviation of the chlorine concentration in the exhaust gas was 113 ppm, which was larger than that in Example 1. The maximum value of the chlorine concentration in the exhaust gas was also 870 ppm, which was larger than that in Example 1.

(比較例2)
操業は、ニッケル濃度60〜85g/L、コバルト濃度0.0005〜0.0008g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は850mVとしたことを除き、実施例1と同じ方法で行った。
(Comparative Example 2)
The operation was performed in the same manner as in Example 1 except that a nickel chloride aqueous solution having a nickel concentration of 60 to 85 g / L and a cobalt concentration of 0.0005 to 0.0008 g / L was used and the reaction vessel ORP set value was 850 mV. It was.

この比較例2では、ニッケル濃度が本発明の請求項の範囲よりも低いため、液量の増加を招き、生産性が低下した。
また、反応槽ORPは、844〜856mV、反応槽pHは、5.06〜5.46となったため、中和剤である炭酸ニッケルの添加量が過剰となり、濾過性の悪い水酸化ニッケル澱物が大量に発生し、本工程で発生する前記澱物を処理する固液分離工程で問題を生じさせた。
In Comparative Example 2, since the nickel concentration was lower than the scope of the claims of the present invention, the liquid volume was increased and the productivity was lowered.
Moreover, since the reaction vessel ORP was 844 to 856 mV and the reaction vessel pH was 5.06 to 5.46, the addition amount of nickel carbonate as a neutralizing agent was excessive, and nickel hydroxide starch having poor filterability. Was generated in large quantities, causing problems in the solid-liquid separation process for treating the starch generated in this process.

(比較例3)
操業は、ニッケル濃度135〜160g/L、コバルト濃度3.2〜3.7g/Lの塩化ニッケル水溶液を用い、反応槽ORP設定値は1150mVとしたことを除き、実施例1と同じ方法で行った。
(Comparative Example 3)
The operation was carried out in the same manner as in Example 1 except that an aqueous nickel chloride solution having a nickel concentration of 135 to 160 g / L and a cobalt concentration of 3.2 to 3.7 g / L was used, and the reaction vessel ORP set value was 1150 mV. It was.

この比較例3では、ニッケル濃度が本発明の請求項の範囲よりも高いため、塩化物濃度が上昇し、コバルトが塩化物錯体を形成、コバルトを水酸化物として分離・除去することが出来なかった。
また、反応槽ORPは、1144〜1156mV、反応槽pHは3.56〜3.96となったため、中和剤である炭酸ニッケルの添加量が不足し、塩素ロスが増加した。
In Comparative Example 3, since the nickel concentration is higher than the scope of the claims of the present invention, the chloride concentration increases, cobalt forms a chloride complex, and cobalt cannot be separated and removed as a hydroxide. It was.
Moreover, since reaction tank ORP became 1144-1156mV and reaction tank pH became 3.56-3.96, the addition amount of the nickel carbonate which is a neutralizing agent was insufficient, and chlorine loss increased.

2 反応槽
3 ORP計
4 pH計
5 攪拌装置
10 炭酸ニッケル添加弁
11 塩素ガス添加弁
12 塩素ガスメーター
2 Reaction tank 3 ORP meter 4 pH meter 5 Stirrer 10 Nickel carbonate addition valve 11 Chlorine gas addition valve 12 Chlorine gas meter

Claims (3)

少なくともコバルトを含む塩化ニッケル水溶液から、酸化剤及び中和剤の添加量を制御しながら添加して処理する、前段酸化中和処理及び後段酸化中和処理の2段階の酸化中和処理を経て、コバルトを含む水酸化澱物とコバルトを除去した水溶液を生成する酸化中和処理方法において、
前記後段酸化中和処理における中和剤の添加量を、酸化中和処理中の塩化ニッケル水溶液の酸化還元電位を指標に用いて制御することを特徴とする塩化ニッケル水溶液の酸化中和処理方法。
From the nickel chloride aqueous solution containing at least cobalt, adding and processing while controlling the addition amount of the oxidizing agent and the neutralizing agent, through the two-stage oxidation neutralization treatment of the pre-stage oxidation neutralization treatment and the post-stage oxidation neutralization treatment, In the oxidation neutralization treatment method for producing an aqueous solution from which cobalt-containing hydroxide starch and cobalt have been removed,
An oxidation neutralization treatment method for a nickel chloride aqueous solution, wherein the addition amount of a neutralizing agent in the latter-stage oxidation neutralization treatment is controlled using an oxidation-reduction potential of the nickel chloride aqueous solution during the oxidation neutralization treatment as an index.
前記後段酸化中和処理における前記酸化剤が塩素ガスで、前記中和剤が炭酸ニッケルまたは塩基性炭酸ニッケルの少なくとも一つ以上であり、
前記酸化還元電位(銀/塩化銀電極基準)を、900〜1100mVの範囲に調整することを特徴とする請求項1記載の塩化ニッケル水溶液の酸化中和処理方法。
The oxidizing agent in the post-stage oxidation neutralization treatment is chlorine gas, and the neutralizing agent is at least one of nickel carbonate and basic nickel carbonate,
The method for oxidizing and neutralizing an aqueous nickel chloride solution according to claim 1, wherein the oxidation-reduction potential (silver / silver chloride electrode reference) is adjusted to a range of 900 to 1100 mV.
前記塩化ニッケル水溶液が、90〜130g/Lのニッケル濃度、0.001〜3.0g/Lのコバルト濃度の水溶液であることを特徴とする請求項1又は2記載の塩化ニッケル水溶液の酸化中和処理の方法。   The nickel chloride aqueous solution is an aqueous solution of nickel chloride aqueous solution according to claim 1 or 2, wherein the nickel chloride aqueous solution is an aqueous solution having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 0.001 to 3.0 g / L. Processing method.
JP2012208737A 2012-09-21 2012-09-21 Method of oxidation neutralization treatment of nickel chloride aqueous solution Active JP5920584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012208737A JP5920584B2 (en) 2012-09-21 2012-09-21 Method of oxidation neutralization treatment of nickel chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012208737A JP5920584B2 (en) 2012-09-21 2012-09-21 Method of oxidation neutralization treatment of nickel chloride aqueous solution

Publications (2)

Publication Number Publication Date
JP2014062303A JP2014062303A (en) 2014-04-10
JP5920584B2 true JP5920584B2 (en) 2016-05-18

Family

ID=50617791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208737A Active JP5920584B2 (en) 2012-09-21 2012-09-21 Method of oxidation neutralization treatment of nickel chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP5920584B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137035B2 (en) * 2014-04-24 2017-05-31 住友金属鉱山株式会社 Purification method of nickel chloride solution
JP6375937B2 (en) * 2014-12-24 2018-08-22 住友金属鉱山株式会社 Leaching control system and leaching control method
JP6428525B2 (en) * 2015-08-04 2018-11-28 住友金属鉱山株式会社 Oxidation neutralization equipment and oxidation neutralization method
CN109797406B (en) * 2019-03-20 2023-06-27 金川集团股份有限公司 Device and method for reducing nickel content in cobalt removal slag of chlorine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104809A (en) * 2003-10-02 2005-04-21 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride aqueous solution
JP2005298309A (en) * 2004-04-16 2005-10-27 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride solution

Also Published As

Publication number Publication date
JP2014062303A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP4268196B2 (en) Method for producing scorodite
JP2015113267A (en) Separation/recovery method of tellurium
JP6299620B2 (en) Method for producing nickel sulfate
JP5920584B2 (en) Method of oxidation neutralization treatment of nickel chloride aqueous solution
JP2020033229A (en) Method for producing aqueous nickel sulfate solution
CN109988921B (en) Method for separating antimony from hydrochloric acid-chlorine salt solution
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP4962078B2 (en) Nickel sulfide chlorine leaching method
CN105753038B (en) A kind of production technology of feed grade monohydrate zinc sulphate
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP5200588B2 (en) Method for producing high purity silver
JP6489378B2 (en) Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate
JP2007297240A (en) Arsenic-containing material treatment method
JP6540548B2 (en) Method for removing copper ions from aqueous solution of nickel chloride, copper ion removal treatment apparatus
JP2009215611A (en) Method for purifying nickel chloride aqueous solution
JP4717917B2 (en) Manufacturing method and cleaning method of scorodite
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP6953765B2 (en) Iron removal method for crude nickel sulfate solution
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP6683910B2 (en) Purification method of nickel chloride aqueous solution
JP6375937B2 (en) Leaching control system and leaching control method
JP6743858B2 (en) Zinc separation method, zinc material manufacturing method, and iron material manufacturing method
JP2013067841A (en) Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel
JP4961600B2 (en) Processing method of zinc concentrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160329

R150 Certificate of patent or registration of utility model

Ref document number: 5920584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150