JP6489378B2 - Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate - Google Patents

Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate Download PDF

Info

Publication number
JP6489378B2
JP6489378B2 JP2016122147A JP2016122147A JP6489378B2 JP 6489378 B2 JP6489378 B2 JP 6489378B2 JP 2016122147 A JP2016122147 A JP 2016122147A JP 2016122147 A JP2016122147 A JP 2016122147A JP 6489378 B2 JP6489378 B2 JP 6489378B2
Authority
JP
Japan
Prior art keywords
nickel
slurry
concentration
cobalt
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016122147A
Other languages
Japanese (ja)
Other versions
JP2017226559A (en
Inventor
道 天野
道 天野
啓明 永井
啓明 永井
二郎 早田
二郎 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016122147A priority Critical patent/JP6489378B2/en
Publication of JP2017226559A publication Critical patent/JP2017226559A/en
Application granted granted Critical
Publication of JP6489378B2 publication Critical patent/JP6489378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物を溶解して塩素濃度の低い硫酸ニッケルと硫酸コバルトの混合水溶液を製造する方法に関するものであり、本発明で得られた硫酸ニッケルと硫酸コバルトの混合水溶液から、さらに不純物を公知の方法で除去し、高純度の硫酸ニッケルを得ることを可能とするものである。   The present invention relates to a method for producing a mixed aqueous solution of nickel sulfate and cobalt sulfate having a low chlorine concentration by dissolving a mixture containing at least chlorine, nickel hydroxide, and cobalt dioxide. Impurities are further removed from the mixed aqueous solution of nickel sulfate and cobalt sulfate obtained in (1) by a known method to obtain high-purity nickel sulfate.

不純物濃度が低く、ニッケルの純度の高い「高純度硫酸ニッケル」は、一般的なめっき材料、ハードディスク用の無電解めっき材料、触媒材料、コンデンサーやインダクター等の電子部品用材料、電池用材料等として使用されている。   "High-purity nickel sulfate" with low impurity concentration and high nickel purity is used as a general plating material, electroless plating material for hard disks, catalyst materials, materials for electronic parts such as capacitors and inductors, materials for batteries, etc. It is used.

最近では、ハイブリッド自動車や電気自動車、モバイル通信機器やパソコン等の電子機器、電力貯蔵設備等に用いられるニッケル水素電池やリチウムイオン電池、即ち二次電池の需要が加速的に増加しているが、それら二次電池の正極材料の原料として、高純度硫酸ニッケルが使用されている。   Recently, the demand for hybrid batteries, electric vehicles, electronic devices such as mobile communication devices and personal computers, nickel metal hydride batteries and lithium ion batteries used in power storage facilities, that is, secondary batteries, has been accelerating. High purity nickel sulfate is used as a raw material for the positive electrode material of these secondary batteries.

この高純度硫酸ニッケルの製品としての形態には、水溶液の状態で出荷されるものと、水溶液を濃縮、結晶、脱水、乾燥させた結晶の状態で出荷されるものがある。
主に、電子部品用材料や電池用材料としては、より不純物の含有率が低い高純度硫酸ニッケル水溶液が必要とされてきており、鉄、銅、亜鉛等の陽イオン構成元素および塩素などの陰イオン構成元素が含まれていない高純度なものが望まれ、そのための製造プロセスが開発されている。
There are two types of high purity nickel sulfate products that are shipped in the form of an aqueous solution and those that are shipped in the form of crystals obtained by concentrating, crystallizing, dehydrating and drying the aqueous solution.
Mainly, as materials for electronic parts and batteries, high-purity nickel sulfate aqueous solution with a lower impurity content has been required. Cation constituent elements such as iron, copper and zinc and negative ions such as chlorine A high-purity material that does not contain an ion constituent element is desired, and a manufacturing process therefor has been developed.

この高純度硫酸ニッケル水溶液を得る方法には、例えば電解採取等のプロセスを経て生産された高純度ニッケルを硫酸に溶解する方法もある。
しかし、製造する過程で、大規模な装置を用いて、既に大量のエネルギーや手間を掛けて得られた高純度ニッケルを原料とする方法は、エネルギーやコストを考えると、有利な方法では無い。
As a method for obtaining this high-purity nickel sulfate aqueous solution, for example, there is a method in which high-purity nickel produced through a process such as electrowinning is dissolved in sulfuric acid.
However, a method using high-purity nickel, which has already been obtained with a large amount of energy and labor, using a large-scale apparatus in the manufacturing process is not an advantageous method in view of energy and cost.

そこで、鉱物資源もしくは二次資源からニッケルを分離、濃縮する過程で、高純度硫酸ニッケル水溶液を得る方法が得策となる。
一般的には、ニッケルを含む原料を硫酸に溶解し、得られた粗硫酸ニッケル水溶液中の鉄、銅、コバルトなどの不純物を除去する。
そして、結晶の場合、不純物を除去した後にこの水溶液を加熱蒸発させることにより濃縮し、続いて冷却して硫酸ニッケルの結晶を析出させる。
Therefore, a method of obtaining a high-purity nickel sulfate aqueous solution in the process of separating and concentrating nickel from mineral resources or secondary resources is advantageous.
In general, a raw material containing nickel is dissolved in sulfuric acid, and impurities such as iron, copper, and cobalt in the obtained crude nickel sulfate aqueous solution are removed.
In the case of crystals, after removing impurities, the aqueous solution is concentrated by heating to evaporate, followed by cooling to precipitate nickel sulfate crystals.

高純度な硫酸ニッケルを製造するためには、原料の溶解方法や結晶を析出させる晶析工程の条件設定も当然重要であるが、晶析前の硫酸ニッケル水溶液中の不純物を低下させることがより重要である。
通常、硫酸ニッケル製造の原料には、ニッケルの他に鉄、銅、亜鉛などの不純物が含まれており、これら不純物は原料を溶解するときにニッケルとともに溶解液に浸出される。
In order to produce high-purity nickel sulfate, it is of course important to dissolve the raw materials and to set the conditions of the crystallization process for precipitating the crystals, but it is better to reduce the impurities in the nickel sulfate aqueous solution before crystallization. is important.
Usually, the raw material for producing nickel sulfate contains impurities such as iron, copper, and zinc in addition to nickel, and these impurities are leached into the solution together with nickel when the raw material is dissolved.

高純度な硫酸ニッケルを製造するためには、これら陽イオン構成元素を溶解液から何らかの方法で除去する必要があるが、塩素などの陰イオン構成元素も完全に除去しなければ高純度の硫酸ニッケル水溶液は製造することができない。
そこで、陽イオン構成元素を除去する方法としては、沈澱法、溶媒抽出法、イオン交換法など種々の方法が提案されており、粗硫酸ニッケル水溶液から比較的容易に除去することができる。
一方陰イオン構成元素は、一般に除去され難く、特に塩素イオンは一旦溶解液に混入してしまうとその除去は事実上極めて困難である。
In order to produce high-purity nickel sulfate, it is necessary to remove these cationic constituent elements from the solution by some method. However, if the anionic constituent elements such as chlorine are not completely removed, high-purity nickel sulfate is required. An aqueous solution cannot be produced.
Accordingly, various methods such as precipitation, solvent extraction, and ion exchange have been proposed as methods for removing cation constituent elements, and they can be removed from a crude nickel sulfate aqueous solution relatively easily.
On the other hand, anion constituent elements are generally difficult to remove. In particular, once chlorine ions are mixed into the solution, it is practically very difficult to remove them.

ところで、ニッケル製錬においては、乾式製錬法で得られたNi等のニッケル硫化物を主成分とするニッケルマットが生産されている。
さらに、近年では、埋蔵量が豊富でかつ地表近くに存在するため、比較的容易に採掘することができる低ニッケル品位のニッケル酸化鉱石を原料とし、湿式製錬法によりニッケルとコバルトの混合硫化物(以降、混合硫化物と称する場合がある)を生産することが行なわれている。
By the way, in nickel smelting, nickel mats mainly composed of nickel sulfide such as Ni 3 S 2 obtained by a dry smelting method are produced.
Furthermore, in recent years, the reserves are abundant and close to the surface of the earth. Therefore, nickel oxide ore of low nickel grade that can be mined relatively easily is used as a raw material, and mixed sulfides of nickel and cobalt by a hydrometallurgical process. (Hereinafter, sometimes referred to as mixed sulfide) has been produced.

上記ニッケルマットや混合硫化物を原料として、ニッケルおよびコバルトを精製する方法、すなわちニッケルの湿式製錬プロセスとしては、ニッケルマットや混合硫化物を塩素ガスの酸化力を利用して浸出し、浸出液から不純物を除去し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する方法が実用化されている。
ここで、浸出液から不純物を除去する過程で、微量の酸化鉛を含んだ水酸化第二ニッケルと、水酸化第二コバルトを含む混合物が発生する。
この混合物が、硫酸に溶解され、高純度硫酸ニッケルの原料として用いられる。
A method for refining nickel and cobalt using the above nickel mat or mixed sulfide as a raw material, that is, as a nickel hydrometallurgical process, leaching nickel mat or mixed sulfide using the oxidizing power of chlorine gas, A method for removing impurities and commercializing the leached nickel ions and cobalt ions as electrolytic nickel and electrolytic cobalt by electrolytic extraction has been put into practical use.
Here, in the process of removing impurities from the leaching solution, a mixture containing nickel hydroxide containing a trace amount of lead oxide and cobalt hydroxide is generated.
This mixture is dissolved in sulfuric acid and used as a raw material for high-purity nickel sulfate.

この混合物は、原料を塩素ガスで浸出した塩化ニッケル水溶液に塩素ガスを吹込んで酸化して得られたものであるため、一部の金属は塩素を含有する化合物として沈殿し、さらには、塩素イオンを含有する母液が付着することもあり、得られる混合物は高濃度で塩素を含有してしまう。
したがって、高純度硫酸ニッケル製造工程において、このような混合物が溶解される際に、ニッケルと共に塩素も混入するため、塩素イオンを効率良く除去することが低塩素硫酸ニッケル製造において重要となる。
This mixture was obtained by injecting chlorine gas into a nickel chloride aqueous solution in which the raw material was leached with chlorine gas and oxidizing it, so that some metals were precipitated as chlorine-containing compounds, and further, chlorine ions In some cases, a mother liquor containing sucrose adheres, and the resulting mixture contains chlorine at a high concentration.
Accordingly, when such a mixture is dissolved in the high-purity nickel sulfate production process, chlorine is also mixed together with nickel. Therefore, efficient removal of chlorine ions is important in low-chlorine nickel sulfate production.

特許文献1には、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトとを含む混合物のスラリーを作製し、そのスラリーに硫酸を添加した溶液の液温を60℃以上、pHを2.0以下となるように制御しながらスラリーの固体成分を溶解して、塩素分を除去する低塩素ニッケルコバルト硫酸溶液の製造方法が開示されている。   In Patent Document 1, a slurry of a mixture containing at least chlorine, nickel hydroxide, and cobalt hydroxide is prepared, and the temperature of a solution obtained by adding sulfuric acid to the slurry is set to 60 ° C. or higher, and the pH is set. A method for producing a low chlorine nickel cobalt sulfate solution is disclosed in which the solid components of a slurry are dissolved while being controlled to be 2.0 or less to remove chlorine.

特許文献2には、澱物をスラリー化した後、作製したスラリーに、濃度50重量%以上の硫酸を添加し、そのpHを0〜2の範囲に調整し、且つガスを吹込む低塩素濃度のニッケルとコバルトの混合硫酸水溶液の製造方法が開示されている。
しかし、ガスを吹込むためには、溶解装置にガス吹込み装置を備える必要があり、設備コスト、ガス吹込みのための運転コストが増加し、ガス吹込み時間を要することから溶解時間も増えるために、その運転効率が低下する問題を抱えている。
Patent Document 2 discloses a low chlorine concentration in which starch is slurried, sulfuric acid having a concentration of 50% by weight or more is added to the prepared slurry, the pH is adjusted to a range of 0 to 2, and gas is blown into the slurry. A method for producing a mixed sulfuric acid aqueous solution of nickel and cobalt is disclosed.
However, in order to blow in gas, it is necessary to provide a gas blowing device in the melting device, and the equipment cost and the operating cost for gas blowing increase, and the gas blowing time is required, so the melting time also increases. , Has a problem that its operating efficiency is reduced.

また特許文献3には、コバルトが除去されてなる溶液から得られた、ニッケル水酸化物を含有するスラリーに、コバルトイオンを含有する水溶液を添加し、その後、そのスラリーに硫酸を添加して溶解させることにより塩素分を除去する低塩素硫酸ニッケル/コバルト溶液の製造方法が開示されている。
しかし、コバルトを添加することは、その後の工程においてコバルトを除去するためのコスト増加につながる。また、コバルトの繰返しが必要になるため、コバルトの製品化に要する時間が長くなるという欠点を有している。
In Patent Document 3, an aqueous solution containing cobalt ions is added to a slurry containing nickel hydroxide obtained from a solution obtained by removing cobalt, and then sulfuric acid is added to the slurry to dissolve. A method for producing a low-chlorine nickel sulfate / cobalt solution in which chlorine content is removed by heating is disclosed.
However, adding cobalt leads to an increase in cost for removing cobalt in the subsequent process. Further, since it is necessary to repeat cobalt, there is a disadvantage that the time required for commercialization of cobalt becomes long.

これらの特許文献に開示された技術は、特許文献1に記載の方法を基礎として、特許文献2または特許文献3に記載の方法に改良されてきたものであるが、近年、硫酸ニッケル水溶液に対する高純度化、即ちより不純物濃度の低い硫酸ニッケル水溶液への要求が高まってきており、さらなる改善が求められていた。   The techniques disclosed in these patent documents have been improved to the method described in Patent Document 2 or Patent Document 3 on the basis of the method described in Patent Document 1, but in recent years, the technology for the aqueous solution of nickel sulfate has been improved. The demand for purification, that is, a nickel sulfate aqueous solution having a lower impurity concentration has been increasing, and further improvement has been demanded.

特開2000−203848号公報JP 2000-203848 A 特開2006−045019号公報JP 2006-045019 A 特開2012−001414号公報JP 2012-001414 A

そこで、本発明は、上記従来技術の問題点に鑑みて考案されたものであり、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物をスラリー化し、作製したスラリーに硫酸を添加してスラリー中の固体成分を溶解し、含まれている塩素分を除去した硫酸ニッケルと硫酸コバルトの混合水溶液を製造する方法であって、特段のコスト増加、効率低下を伴わずに、塩素濃度の低い硫酸ニッケルと硫酸コバルトの混合水溶液を製造する方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-mentioned problems of the prior art, and a slurry containing at least chlorine, nickel hydroxide, and cobalt hydroxide is slurried, and sulfuric acid is added to the prepared slurry. Is added to dissolve the solid components in the slurry, and a mixed aqueous solution of nickel sulfate and cobalt sulfate from which the contained chlorine content has been removed is produced without any particular increase in cost and reduction in efficiency. An object is to provide a method for producing a mixed aqueous solution of nickel sulfate and cobalt sulfate having a low chlorine concentration.

本発明者らは、上記目的を達成すべく、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物をスラリー化し、作製したスラリーに硫酸を添加してスラリー中の固体成分を溶解し、含まれている塩素分を除去した硫酸ニッケルと硫酸コバルトの混合水溶液を製造する条件について、特に、スラリー濃度に着目して鋭意検討を重ねた結果、スラリー濃度を360g/L以下とすることによって、効率良く低塩素硫酸ニッケルと硫酸コバルトの混合水溶液を製造することができることを見出し、本発明を完成させるに至った。   In order to achieve the above-mentioned object, the present inventors slurried a mixture containing at least chlorine, nickel hydroxide, and cobalt hydroxide, and added sulfuric acid to the prepared slurry to add a solid component in the slurry. As a result of earnestly examining the conditions for producing a mixed aqueous solution of nickel sulfate and cobalt sulfate from which the contained chlorine content has been removed and focusing on the slurry concentration, the slurry concentration is 360 g / L or less. As a result, it was found that a mixed aqueous solution of low-chlorine nickel sulfate and cobalt sulfate can be produced efficiently, and the present invention has been completed.

即ち、本発明の第1の発明は、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物であって、前記混合物が、5〜10重量%の塩素と、35〜60重量%のニッケルと、1〜10重量%のコバルトを含み、前記混合物にスラリー化水溶液を添加してスラリー濃度が360g/L以下の濃度調整スラリーを形成した後、その濃度調整スラリーに硫酸を添加して作製したスラリーの固体成分を溶解する溶解液を、溶解液の温度を60℃以上に保持し、且つ溶解液のpHを2.0以下に制御して濃度調整スラリーの固体成分を溶解してスラリーに含まれる塩素を除去することで、塩素濃度の低い硫酸ニッケルと硫酸コバルトの混合水溶液を得ることを特徴とする硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法である。 That is, the first invention of the present invention is a mixture containing at least chlorine, nickel hydroxide and cobalt dioxide , wherein the mixture contains 5 to 10% by weight of chlorine and 35 to 60. Containing 1% by weight of nickel and 1-10% by weight of cobalt , adding a slurry aqueous solution to the mixture to form a concentration-adjusted slurry having a slurry concentration of 360 g / L or less, and then adding sulfuric acid to the concentration-adjusted slurry The dissolved solution for dissolving the solid component of the slurry prepared in this manner is maintained at a temperature of 60 ° C. or higher and the pH of the dissolved solution is controlled to 2.0 or lower to dissolve the solid component of the concentration adjusting slurry. To obtain a mixed aqueous solution of nickel sulfate and cobalt sulfate with a low chlorine concentration by removing chlorine contained in the slurry. Is the method.

また、本発明の第2の発明は、第1の発明における濃度調整スラリーのスラリー濃度が、300〜360g/Lであることを特徴とする硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法である。   The second invention of the present invention is a method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate, characterized in that the slurry concentration of the concentration adjusting slurry in the first invention is 300 to 360 g / L. It is.

また、本発明の第3の発明は、第1及び第2の発明における溶解液のpHを1.5以下に維持するように制御して前記濃度調整スラリーの固体成分を溶解することを特徴とする硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法である。   The third invention of the present invention is characterized in that the solid component of the concentration-adjusted slurry is dissolved by controlling the pH of the solution in the first and second inventions to be maintained at 1.5 or lower. This is a method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate.

本発明の硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法によれば、特段のコスト増加、効率低下を伴わずに、塩素濃度が200mg/L未満と低い硫酸ニッケルと硫酸コバルトの混合水溶液を製造することができ、工業上顕著な効果を奏するものである。   According to the method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate of the present invention, a mixed aqueous solution of nickel sulfate and cobalt sulfate having a low chlorine concentration of less than 200 mg / L without any particular increase in cost and efficiency. Can be produced, and has an industrially significant effect.

スラリー濃度と溶解液塩素濃度の関係を示した図である。It is the figure which showed the relationship between slurry concentration and solution chlorine concentration. 実施例と比較例におけるスラリー濃度と溶解液塩素濃度の関係を示した図である。It is the figure which showed the relationship between the slurry density | concentration and solution chlorine concentration in an Example and a comparative example.

本発明は、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物をスラリー化し、作製したスラリーに硫酸を添加した溶液の液温を60℃以上とし、溶液のpHが2.0以下となるように制御しながら、スラリーの固体成分を溶解し、含まれる塩素分を除去した硫酸ニッケルと硫酸コバルトの混合水溶液を製造する方法であって、硫酸が添加されるスラリーのスラリー濃度を360g/L以下と、従来よりも低目に規定するものである。   In the present invention, a mixture containing at least chlorine, nickel hydroxide, and cobalt hydroxide is slurried, and the temperature of a solution obtained by adding sulfuric acid to the prepared slurry is set to 60 ° C. or higher, and the pH of the solution is 2 A method for producing a mixed aqueous solution of nickel sulfate and cobalt sulfate in which the solid component of the slurry is dissolved and the chlorine content is removed while controlling the slurry to be 0.0 or less, and the slurry of the slurry to which sulfuric acid is added The concentration is set to 360 g / L or lower, which is lower than the conventional one.

先ず、本発明の一実施形態として、ニッケルの湿式製錬プロセスで得られる、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物を硫酸に溶解して、高純度硫酸ニッケルの製造に供する場合を例に挙げて、本発明を説明する。   First, as one embodiment of the present invention, a high-purity nickel sulfate obtained by dissolving a mixture containing at least chlorine, second nickel hydroxide, and second cobalt hydroxide obtained in a hydrometallurgical process of nickel in sulfuric acid. The present invention will be described by taking as an example the case where it is used for the production of.

[ニッケルの湿式製錬プロセス]
ニッケル製錬においては、例えば、ニッケル硫化鉱石を溶鉱炉で溶解して得られるニッケル硫化物や、ニッケル酸化鉱石に硫黄を添加して電気炉で溶解して得られるニッケル硫化物等、いわゆる乾式製錬法で得られたNi等のニッケル硫化物を主成分とするニッケルマットが生産されている。
[Nickel hydrometallurgical process]
In nickel smelting, for example, nickel sulfide obtained by melting nickel sulfide ore in a smelting furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, so-called dry smelting Nickel mats based on nickel sulfide such as Ni 3 S 2 obtained by the above method are produced.

一方で、低ニッケル品位のニッケル酸化鉱石を加圧酸浸出し、その加圧酸浸出液から鉄をはじめとする不純物を除去した後、湿式硫化反応によって、例えば硫化水素ガスをニッケルイオンおよびコバルトイオンを含んだ浸出液中に吹込むことによって、得られた、NiS等の硫化物を主成分とする混合硫化物も生産されている。   On the other hand, nickel oxide ore of low nickel grade is subjected to pressure acid leaching, and impurities such as iron are removed from the pressure acid leaching solution, and then, for example, hydrogen sulfide gas is converted into nickel ions and cobalt ions by wet sulfidation reaction. The mixed sulfide which has obtained sulfides, such as NiS, as a main component by blowing in in the containing leachate is also produced.

上記ニッケルマットや混合硫化物を原料として、ニッケルおよびコバルトを精製する方法、すなわちニッケルの湿式製錬プロセスとしては、ニッケルマットや混合硫化物を塩素ガスの酸化力を利用して浸出し、浸出液から不純物を除去し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する方法が実用化されている。
この方法は、混合硫化物を、塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケル及びコバルトを塩化物水溶液中に塩素浸出して塩素浸出液を形成するもので、その得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したニッケルマットを接触させて、銅とニッケルの置換反応を行うことによりニッケルマット中のニッケルを、塩素浸出液に置換浸出して置換浸出終液を形成するものである。
A method for refining nickel and cobalt using the above nickel mat or mixed sulfide as a raw material, that is, as a nickel hydrometallurgical process, leaching nickel mat or mixed sulfide using the oxidizing power of chlorine gas, A method for removing impurities and commercializing the leached nickel ions and cobalt ions as electrolytic nickel and electrolytic cobalt by electrolytic extraction has been put into practical use.
In this method, mixed sulfide is repulped into an aqueous chloride solution and then chlorine gas is blown into the slurry to leach nickel and cobalt into the aqueous chloride solution to form a chlorine leachate. The leaching solution containing divalent copper chloro complex ions as an oxidizing agent is brought into contact with the crushed nickel mat, and the substitution reaction between copper and nickel is performed to replace nickel in the nickel mat with the chlorine leaching solution. It leaches to form a replacement leaching final solution.

この置換浸出によって得られた置換浸出終液は、脱鉄工程、溶媒抽出工程、脱鉛工程、脱亜鉛工程で構成される浄液工程に送られる。
先ず、脱鉄工程では置換浸出終液に、酸化剤として塩素ガスを、中和剤として炭酸ニッケルスラリーを添加して、水酸化第二鉄を主成分とする沈殿物を生成させることにより、置換浸出終液中の鉄を除去する処理が行われた脱鉄終液を得る。
この脱鉄工程の反応中の溶液のpHは、2.0〜2.5程度であるので、この工程では鉄のみが選択的に溶液から除去される。
The substitution leaching final solution obtained by this substitution leaching is sent to a liquid purification step comprising a deironing step, a solvent extraction step, a deleading step, and a dezincing step.
First, in the deironation process, chlorine gas as an oxidant and nickel carbonate slurry as a neutralizing agent are added to the substitution leaching final solution to generate a precipitate mainly composed of ferric hydroxide, thereby replacing A deiron-free final solution that has been subjected to the treatment for removing iron in the final leach solution is obtained.
Since the pH of the solution during the reaction of this iron removal step is about 2.0 to 2.5, only iron is selectively removed from the solution in this step.

次の溶媒抽出工程では、得られた脱鉄終液に、アミン系抽出剤であるトリ−ノルマル−オクチルアミン(TNOA)を混合、接触させることによって、コバルト、銅、亜鉛、鉄を水相から有機相に移行させ、コバルト、銅、亜鉛、鉄が除去されたニッケルを含む抽出残液(水相)が得られる。   In the next solvent extraction step, tri-normal-octylamine (TNOA), which is an amine-based extractant, is mixed and brought into contact with the obtained deironated final solution, whereby cobalt, copper, zinc, and iron are extracted from the aqueous phase. An extraction residual liquid (aqueous phase) containing nickel from which cobalt, copper, zinc and iron have been removed is obtained by shifting to the organic phase.

脱鉛工程では、脱鉄工程と同様に、酸化剤として塩素ガスを、中和剤として炭酸ニッケルスラリーを添加して、溶媒抽出後の抽出残液中の鉛を酸化鉛として除去したニッケルを含む脱鉛終液を生成するもので、脱鉛工程でのpHは4〜5に制御されるため、ニッケルの一部も3価の水酸化物として沈殿物を形成し、溶媒抽出後の抽出残液中に微量に残留したコバルトも3価の水酸化物として沈澱物を形成する。   In the deleading process, similarly to the deironing process, chlorine gas is added as an oxidizing agent, nickel carbonate slurry is added as a neutralizing agent, and the lead in the extraction residual liquid after solvent extraction is removed as lead oxide. Since it produces a deleaded final solution and the pH in the deleading process is controlled to 4-5, a part of nickel also forms a precipitate as a trivalent hydroxide, and the extraction residue after solvent extraction Cobalt remaining in a minute amount in the liquid also forms a precipitate as a trivalent hydroxide.

この脱鉛工程で得られた沈澱物(以降、脱鉛澱物と称する場合がある)は、少なくとも塩素と、3価のニッケルの水酸化物である水酸化第二ニッケル[Ni(OH)]と、3価のコバルトの水酸化物である水酸化第二コバルト[Co(OH)]を含む混合物であり、高純度硫酸ニッケル製造プロセスに送られ、高純度硫酸ニッケルの原料として、硫酸に溶解される。 The precipitate obtained in this deleading step (hereinafter sometimes referred to as deleaded starch) is at least chlorine and trihydric nickel hydroxide, nickel hydroxide [Ni (OH) 3 And cobaltous hydroxide [Co (OH) 3 ], which is a hydroxide of trivalent cobalt, is sent to a high-purity nickel sulfate manufacturing process, and sulfuric acid is used as a raw material for the high-purity nickel sulfate. It is dissolved in.

一方脱鉛後の脱鉛終液は脱亜鉛工程に送られ、その脱亜鉛工程で、脱鉛終液中に残存した0.1mg/L程度の微量な亜鉛のクロロ錯イオンを、弱塩基性陰イオン交換樹脂に吸着させて除去して不純物を除去した塩化ニッケル水溶液を得る。   On the other hand, the deleaded final solution after deleading is sent to the dezincing step, and in the dezincing step, a small amount of zinc chloro complex ion of about 0.1 mg / L remaining in the deleading final solution is weakly basic. A nickel chloride aqueous solution from which impurities are removed by adsorption to an anion exchange resin is obtained.

上記に示すような浄液工程を経て、不純物が除去された塩化ニッケル水溶液は、pH調整の後、電解工程に送られ、電解採取法によって電気ニッケルが製造される。   The nickel chloride aqueous solution from which impurities have been removed through the liquid purification step as described above is sent to the electrolysis step after pH adjustment, and electronickel is produced by electrowinning.

この方法はシンプルで、電解採取で発生した塩素ガスを浸出に再利用する等、効率的かつ経済的な生産を実現している。
また、溶媒抽出工程で分離されたコバルトについては、ニッケルとは別の処理ルートにより、さらなる不純物の除去が行われ、電解採取により電気コバルトとして製品化される。
This method is simple and realizes efficient and economical production such as reusing chlorine gas generated by electrowinning for leaching.
Moreover, about the cobalt isolate | separated by the solvent extraction process, the further impurity removal is performed by the process route different from nickel, and it is commercialized as an electric cobalt by electrowinning.

[本発明の硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法]
本発明は、上記「ニッケルの湿式製錬プロセス」において、脱鉛澱物の硫酸溶解工程に適用することができる。
本発明の基礎となる、少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物、即ち脱鉛澱物を、水(純水を含む)や各工程で排出される洗浄液に代表される低濃度硫酸ニッケル水溶液などの塩素濃度の低い水溶液をスラリー化溶液に用いてスラリー化し、作製したスラリーに硫酸を添加した溶解液の温度を60℃以上、そのpHを2.0以下となるように制御しながら混合物(スラリー中では、固体成分として存在する)を溶解させて塩素成分を除去した硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液を製造する方法は、特許文献1で公知のように、酸溶解時の水酸化第二ニッケル、水酸化第二コバルトの酸化作用を利用するものである。
[Production Method of Low Chlorine Concentration Mixed Aqueous Solution of Nickel Sulfate and Cobalt Sulfate of the Present Invention]
The present invention can be applied to the sulfuric acid dissolution step of the deleaded starch in the “nickel hydrometallurgical process”.
A mixture containing at least chlorine, nickel hydroxide and cobalt dioxide, that is, deleaded starch, which is the basis of the present invention, is converted into water (including pure water) and cleaning liquid discharged in each step. Slurry using an aqueous solution having a low chlorine concentration such as a low-concentration nickel sulfate aqueous solution as a slurry solution, and adding the sulfuric acid to the prepared slurry, the temperature of the solution is 60 ° C. or higher, and the pH is 2.0 or less. A method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate in which a mixture (existing as a solid component in a slurry) is dissolved while removing the chlorine component while controlling so as to be known is known from Patent Document 1 As described above, the oxidation action of nickel hydroxide and cobalt hydroxide during acid dissolution is utilized.

即ち、塩素を含む水酸化第二ニッケルを硫酸で溶解すると、下記式(1)に従って、ニッケルが溶液に溶解するとともに、塩化物イオンが酸化されて塩素ガスが発生する。
そのことで、脱鉛澱物に含まれていた塩素が液中に溶け出したことで液中に含まれていた塩化物イオンを、塩素ガスとして除去するものである。
That is, when nickel hydroxide containing chlorine is dissolved in sulfuric acid, nickel is dissolved in the solution according to the following formula (1), and chloride ions are oxidized to generate chlorine gas.
As a result, the chlorine ions contained in the liquid are removed as chlorine gas because the chlorine contained in the deleaded starch has dissolved in the liquid.

水酸化第二コバルトと塩化物イオンとの反応も、上記式(1)と同様に進行する(下記式(2)参照)。   The reaction of cobaltous hydroxide and chloride ions proceeds in the same manner as the above formula (1) (see the following formula (2)).

式(1)、(2)から分かるように、溶解時のpHは低いほど反応が右に進み塩素除去が効率的に行われるので好都合である。
具体的には、pHを2.0以下とすることにより、溶解液中の塩素濃度を0.5g/L以下にすることができる。
さらに好ましくは、pHを1.5以下とすることである。
As can be seen from the formulas (1) and (2), the lower the pH at the time of dissolution, the more convenient the reaction proceeds to the right and the chlorine removal is performed efficiently.
Specifically, the chlorine concentration in the solution can be reduced to 0.5 g / L or lower by adjusting the pH to 2.0 or lower.
More preferably, the pH is 1.5 or less.

ところで、溶解液のpHの下限については特に限定されるものでは無いが、0.5以上が望ましい。
その理由は、後工程で溶解液中の不純物を除去する必要があり、その不純物除去時には中和沈澱法、溶媒抽出法、硫化法等、いずれの方法においても中和処理が必要となることから、pHを低下させ過ぎると、中和剤の消費量が増加するからである。
中和剤の使用量が増加すると、薬剤コストの増加だけでは無く、例えばニッケルロスの増加等も引き起こす。
By the way, the lower limit of the pH of the solution is not particularly limited, but is preferably 0.5 or more.
The reason is that it is necessary to remove impurities in the solution in a later step, and neutralization treatment is required in any method such as neutralization precipitation method, solvent extraction method, sulfurization method, etc. This is because if the pH is lowered too much, the consumption of the neutralizing agent increases.
Increasing the amount of neutralizing agent used causes not only an increase in drug cost but also an increase in nickel loss, for example.

また、水溶液への塩素ガスの溶解度は温度の上昇に伴って減少する。
そこで、高温度での脱鉛澱物の溶解は、ニッケルやコバルトの溶解速度を速め、回収率を増加させるだけで無く、生成した塩素を効率的に気中に排出するために有利である。
したがって、溶解液の温度は、60℃以上が好ましい。なお、塩素の除去には、溶液の温度が高温ほど望ましいため、特に溶液の温度に上限は無いが、エネルギーコストや設備管理の面から100℃程度が実用的である。
In addition, the solubility of chlorine gas in the aqueous solution decreases with increasing temperature.
Therefore, dissolution of deleaded starch at a high temperature is advantageous not only for increasing the dissolution rate of nickel and cobalt and increasing the recovery rate, but also for efficiently discharging generated chlorine into the air.
Therefore, the temperature of the solution is preferably 60 ° C. or higher. In addition, since the temperature of a solution is so high that it is desirable for the removal of chlorine, there is no upper limit in particular in the temperature of a solution, but about 100 degreeC is practical from the surface of energy cost or equipment management.

従来、この脱鉛澱物の硫酸溶解に当たって、スラリー濃度は高いほど良いとされ、具体的には300〜800g/L、さらには400g/L以上がより好ましいとされてきた。
一方、本発明では、このスラリー濃度を360g/L以下、より好ましくは300〜360g/Lと、従来よりも低目に制御するものである。
Conventionally, in dissolving sulfuric acid in this deleaded starch, the higher the slurry concentration, the better. Specifically, 300 to 800 g / L, more preferably 400 g / L or more is more preferable.
On the other hand, in this invention, this slurry density | concentration is 360 g / L or less, More preferably, it is 300-360 g / L, and is controlled to a lower level than before.

本発明では、この脱鉛澱物を用いる硫酸溶解工程はバッチ処理工程であり、溶解槽に、予め定められた量の脱鉛澱物スラリーを受入れ、その脱鉛澱物中のニッケルおよびコバルト量に見合った、予め定められた量の硫酸を添加し、溶解反応終了時のpHを規定された管理値に維持する操作を行っている。   In the present invention, the sulfuric acid dissolution step using the deleaded starch is a batch processing step, and a predetermined amount of the deleaded starch slurry is received in the dissolution tank, and the amount of nickel and cobalt in the deleaded starch is received. A predetermined amount of sulfuric acid corresponding to the above is added to maintain the pH at the end of the dissolution reaction at a prescribed control value.

図1は、スラリー濃度と溶解液塩素濃度の関係を示す図である。
図1からは、硫酸添加量は脱鉛澱物中のニッケルおよびコバルト量に見合った量であっても、即ち溶解反応終了時のpHを規定された管理値に維持する操作を行っても、溶解液塩素濃度はスラリー濃度に依存し、スラリー濃度が高くなると塩素濃度も高くなることが分かる。
これは、スラリー濃度が高い場合、スラリーの粘性が高くなり、反応不良が生じ易くなるためであると推定される。或いは、スラリーの粘性が高くなり、塩素ガスの排出が不十分となるためであると推定できる。
そこで、スラリー濃度は360g/L以下が好ましい。さらに、300〜360g/Lであることが、より好ましい。
FIG. 1 is a graph showing the relationship between slurry concentration and dissolved solution chlorine concentration.
From FIG. 1, even if the amount of sulfuric acid added is an amount commensurate with the amount of nickel and cobalt in the deleaded starch, that is, even when an operation for maintaining the pH at the end of the dissolution reaction at a prescribed control value is performed, It can be seen that the dissolved solution chlorine concentration depends on the slurry concentration, and the chlorine concentration increases as the slurry concentration increases.
It is estimated that this is because when the slurry concentration is high, the viscosity of the slurry becomes high and reaction failure is likely to occur. Alternatively, it can be estimated that this is because the viscosity of the slurry increases and the chlorine gas is not sufficiently discharged.
Therefore, the slurry concentration is preferably 360 g / L or less. Furthermore, it is more preferable that it is 300-360 g / L.

スラリー濃度が300g/L未満の場合、溶解液のニッケル濃度が低下するため、溶解液中の不純物を除去する後工程において効率が低下し、処理コストが増加する問題、さらに高純度硫酸ニッケル水溶液の濃縮、結晶工程においては、濃縮のためのエネルギー消費量が増加し、処理コストが増加する問題が生じ、且つスラリー濃度が300g/L未満では、それ以上の塩素除去効果が得られないことから、300g/L未満のスラリー濃度を使用する際は、上記問題への対応を考慮して鉛澱物を溶解する。   When the slurry concentration is less than 300 g / L, the nickel concentration of the solution is lowered, so that the efficiency is lowered in the post-process for removing impurities in the solution and the processing cost is increased. In the concentration and crystallization process, there is a problem that the energy consumption for concentration increases and the processing cost increases, and if the slurry concentration is less than 300 g / L, no further chlorine removal effect can be obtained. When using a slurry concentration of less than 300 g / L, lead starch is dissolved in consideration of the above problem.

[高純度硫酸ニッケル製造プロセス]
本発明の脱鉛澱物を硫酸により溶解することによって得られた溶解液には、未溶解の脱鉛澱物が残存しているため、その解消のために、還元剤である亜硫酸ガスを吹込むことによって完全溶解に処される。
この完全溶解、即ち還元溶解の結果、得られた硫酸ニッケルと硫酸コバルトの混合水溶液は、次の脱鉄工程に送られる。
[High-purity nickel sulfate production process]
In the solution obtained by dissolving the deleaded starch of the present invention with sulfuric acid, undissolved deleaded starch remains, and in order to eliminate it, sulfite gas as a reducing agent is blown. To complete dissolution.
As a result of this complete dissolution, that is, reduction dissolution, the resulting mixed aqueous solution of nickel sulfate and cobalt sulfate is sent to the next deironing step.

次の脱鉄工程では、空気を吹込むことにより酸化を行いつつ、中和剤の消石灰スラリーを添加することにより中和を行い、硫酸ニッケルと硫酸コバルトの混合水溶液中の鉄を水酸化第二鉄として沈澱除去する。
脱鉄工程で得られた脱鉄終液は、次の溶媒抽出工程に送られる。
In the next iron removal step, oxidation is performed by blowing air, neutralization is performed by adding a slaked lime slurry of a neutralizing agent, and iron in the mixed aqueous solution of nickel sulfate and cobalt sulfate is secondly oxidized. Precipitate as iron.
The iron removal final solution obtained in the iron removal step is sent to the next solvent extraction step.

この溶媒抽出工程では、あらかじめニッケルを抽出した2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル等の酸性抽出剤を有機相とし、一方不純物を含む脱鉄終液を水相として接触させることにより、ニッケルより優先的に酸性抽出剤に抽出されるコバルトをはじめとした不純物元素と酸性抽出剤中のニッケルを置換させて、脱鉄終液から高純度硫酸ニッケル水溶液を生成するものである。   In this solvent extraction step, an acidic extractant such as 2-ethylhexylphosphonic acid mono-2-ethylhexyl phosphonate extracted beforehand is used as an organic phase, while a deiron-containing final solution containing impurities is brought into contact as an aqueous phase so that nickel can be removed. Impurity elements such as cobalt extracted preferentially in the acidic extractant and nickel in the acidic extractant are replaced preferentially to produce a high-purity nickel sulfate aqueous solution from the deironated final solution.

この溶媒抽出工程で得られた高純度硫酸ニッケル水溶液が、低塩素濃度の硫酸ニッケル水溶液であり、電子部品用材料や電池用材料の原料として、水溶液の状態で出荷されるか、または結晶の状態で製品化される。
また、高純度硫酸ニッケルの結晶を製造する場合には、溶媒抽出工程で得られた高純度硫酸ニッケル水溶液は、次の晶析工程に送られる。
晶析工程では、高純度硫酸ニッケル水溶液を、晶析装置にて濃縮、結晶、さらには脱水乾燥装置にて脱水、乾燥することによって、高純度硫酸ニッケル結晶が製造される。
The high-purity nickel sulfate aqueous solution obtained in this solvent extraction step is a low chlorine concentration nickel sulfate aqueous solution, which is shipped as an aqueous solution as a raw material for electronic component materials and battery materials, or in a crystalline state Will be commercialized.
Moreover, when manufacturing the crystal | crystallization of high purity nickel sulfate, the high purity nickel sulfate aqueous solution obtained at the solvent extraction process is sent to the following crystallization process.
In the crystallization step, a high-purity nickel sulfate crystal is produced by concentrating and crystallizing a high-purity nickel sulfate aqueous solution with a crystallizer, and further dehydrating and drying with a dehydrator-dryer.

ニッケルの湿式製錬プロセスの脱鉛工程から得られた脱鉛澱物に低濃度硫酸ニッケル水溶液を加えてスラリー化して供給スラリーを作製した。次に、その供給スラリーのスラリー濃度を、250〜400g/Lに調整して実施例及び比較例に係る供試材(濃度調整スラリー)を作製し、硫酸溶解操業を行った。
なお、供給スラリーにおける固体成分の化学組成は、Niが45〜55重量%、Coが1〜5重量%、Feが0.01〜0.05重量%、Cuが0.1〜0.5重量%、Clが5〜7重量%であった。この化学成分の分析は、蛍光X線分析装置にて行った。
A feed slurry was prepared by adding a low-concentration nickel sulfate aqueous solution to the deleaded starch obtained from the deleading step of the nickel hydrometallurgical process to form a slurry. Next, the slurry concentration of the supply slurry was adjusted to 250 to 400 g / L to prepare test materials (concentration adjustment slurry) according to Examples and Comparative Examples, and a sulfuric acid dissolution operation was performed.
The chemical composition of the solid component in the supply slurry is 45 to 55% by weight of Ni, 1 to 5% by weight of Co, 0.01 to 0.05% by weight of Fe, and 0.1 to 0.5% by weight of Cu. % And Cl was 5 to 7% by weight. This chemical component analysis was performed with a fluorescent X-ray analyzer.

硫酸溶解操業は、バッチ処理工程で行い、詳細には溶解槽にスラリー濃度を250〜400g/Lの間に調整した表1に示す供給スラリー(濃度調整スラリー)を受入れ、スラリー温度を95℃に保持後、そのスラリーに、液温を95℃に維持、且つpHが1.4〜1.6の範囲に維持されるように、70重量%の硫酸水溶液を添加して作製した実施例1、2及び比較例1に係る溶解液を得た。
その作製した溶解液塩素濃度を測定して図2に表示した。
その結果、実施例1(請求項1の発明に相当)及び実施例2(請求項2の発明に相当)共に、その溶解液の塩素濃度は140〜160mg/Lの範囲であった。
The sulfuric acid dissolution operation is performed in a batch processing step. Specifically, the supply slurry (concentration adjustment slurry) shown in Table 1 adjusted to a slurry concentration of 250 to 400 g / L is received in the dissolution tank, and the slurry temperature is set to 95 ° C. Example 1 prepared by adding a 70% by weight sulfuric acid aqueous solution to the slurry so that the liquid temperature was maintained at 95 ° C. and the pH was maintained in the range of 1.4 to 1.6. 2 and Comparative Example 1 were obtained.
The produced dissolved solution chlorine concentration was measured and displayed in FIG.
As a result, in both Example 1 (corresponding to the invention of claim 1) and Example 2 (corresponding to the invention of claim 2), the chlorine concentration of the solution was in the range of 140 to 160 mg / L.

図2より、溶解液塩素濃度は、供給スラリーのスラリー濃度が360g/L近傍までは、急激な低下を示すが、スラリー濃度を350〜360g/L程度にした場合に、溶解液塩素濃度が最低値を示し、さらに360g/Lよりスラリー濃度を低くした場合には、溶解液塩素濃度の値の低下は見られず、わずかに上昇する傾向も見られた。
また300g/L未満では、溶解液塩素濃度は最低値とほぼ同じ塩素濃度の値を得られるが、溶解液のニッケル濃度が低下するため、溶解液中の不純物を除去する後工程において効率が低下し、処理コストが増加してしまうと共に、高純度硫酸ニッケル水溶液の濃縮、結晶工程においては、濃縮のためのエネルギー消費量が増加し、処理コストが増加する問題が生じてしまう可能性があるために、その範囲での使用には、上記問題の発生を考慮した利用が望ましい。
従って、硫酸溶解操業に供給するスラリーの好ましいスラリー濃度は360g/L以下(実施例1)で、より好ましくは300g/L以上、360g/L以下(実施例2)である。
From FIG. 2, the solution chlorine concentration shows a sharp decrease until the slurry concentration of the feed slurry reaches around 360 g / L, but when the slurry concentration is about 350 to 360 g / L, the solution chlorine concentration is the lowest. When the slurry concentration was lower than 360 g / L, no decrease in the solution chlorine concentration value was observed, and a tendency to increase slightly was also observed.
If the concentration is less than 300 g / L, the chlorine concentration of the solution can be almost the same as the minimum value, but the nickel concentration of the solution is lowered, so the efficiency is lowered in the subsequent step of removing impurities in the solution. However, the processing cost increases, and in the concentration and crystallization process of the high-purity nickel sulfate aqueous solution, there is a possibility that the energy consumption for the concentration increases and the processing cost increases. In addition, for use within that range, it is desirable to consider the occurrence of the above problems.
Therefore, the preferable slurry concentration of the slurry supplied to the sulfuric acid dissolution operation is 360 g / L or less (Example 1), more preferably 300 g / L or more and 360 g / L or less (Example 2).

Claims (3)

少なくとも塩素と、水酸化第二ニッケルと、水酸化第二コバルトを含む混合物であって、
前記混合物が、5〜10重量%の塩素と、35〜60重量%のニッケルと、1〜10重量%のコバルトを含み、
前記混合物にスラリー化水溶液を添加してスラリー濃度が360g/L以下の濃度調整スラリーを形成した後、前記濃度調整スラリーに硫酸を添加して作製した前記スラリーの固体成分を溶解する溶解液を、前記溶解液の温度を60℃以上に保持し、且つ前記溶解液のpHを2.0以下に制御して前記濃度調整スラリーの固体成分を溶解して前記スラリーに含まれる塩素を除去することで、塩素濃度の低い硫酸ニッケルと硫酸コバルトの混合水溶液を得ることを特徴とする硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法。
A mixture comprising at least chlorine, nickel hydroxide, and cobalt hydroxide,
The mixture comprises 5-10 wt% chlorine, 35-60 wt% nickel, and 1-10 wt% cobalt ;
After adding a slurry aqueous solution to the mixture to form a concentration adjustment slurry having a slurry concentration of 360 g / L or less, a solution for dissolving the solid component of the slurry prepared by adding sulfuric acid to the concentration adjustment slurry, By maintaining the temperature of the solution at 60 ° C. or higher and controlling the pH of the solution to 2.0 or less to dissolve the solid component of the concentration-adjusted slurry and remove chlorine contained in the slurry. A method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate, characterized in that a mixed aqueous solution of nickel sulfate and cobalt sulfate having a low chlorine concentration is obtained.
前記濃度調整スラリーのスラリー濃度が、300〜360g/Lであることを特徴とする請求項1記載の硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法。   The method for producing a low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate according to claim 1, wherein the concentration adjusting slurry has a slurry concentration of 300 to 360 g / L. 前記溶解液のpHを1.5以下に維持するように制御して前記濃度調整スラリーの固体成分を溶解することを特徴とする請求項1又は2に記載の硫酸ニッケルと硫酸コバルトの低塩素濃度混合水溶液の製造方法。   The low chlorine concentration of nickel sulfate and cobalt sulfate according to claim 1 or 2, wherein the solid component of the concentration adjusting slurry is dissolved by controlling the pH of the solution to be maintained at 1.5 or less. A method for producing a mixed aqueous solution.
JP2016122147A 2016-06-20 2016-06-20 Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate Active JP6489378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122147A JP6489378B2 (en) 2016-06-20 2016-06-20 Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122147A JP6489378B2 (en) 2016-06-20 2016-06-20 Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate

Publications (2)

Publication Number Publication Date
JP2017226559A JP2017226559A (en) 2017-12-28
JP6489378B2 true JP6489378B2 (en) 2019-03-27

Family

ID=60890901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122147A Active JP6489378B2 (en) 2016-06-20 2016-06-20 Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate

Country Status (1)

Country Link
JP (1) JP6489378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3856941A4 (en) * 2018-09-27 2022-06-15 IGO Limited Method for preparing a high-purity hydrated nickel sulphate
JP7300115B2 (en) * 2019-03-26 2023-06-29 住友金属鉱山株式会社 Method for producing nickel- and cobalt-containing solutions from nickel- and cobalt-containing hydroxides
CN111826523B (en) * 2020-06-28 2022-07-15 广东邦普循环科技有限公司 Method for refining nickel hydroxide cobalt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069398B2 (en) * 1999-01-08 2008-04-02 住友金属鉱山株式会社 Method for producing low chlorine nickel cobalt sulfate solution
JP2005112697A (en) * 2003-10-10 2005-04-28 Sumitomo Metal Mining Co Ltd Dissolving method of precipitate containing nickel and cobalt
JP2006045019A (en) * 2004-08-06 2006-02-16 Sumitomo Metal Mining Co Ltd Method for producing mixed nickel/cobalt sulfate aqueous solution in low chlorine concentration
JP5423592B2 (en) * 2010-06-21 2014-02-19 住友金属鉱山株式会社 Method for producing low chlorine nickel sulfate / cobalt solution
JP6187278B2 (en) * 2014-01-22 2017-08-30 住友金属鉱山株式会社 Method for producing low chlorine nickel sulfate / cobalt solution

Also Published As

Publication number Publication date
JP2017226559A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP4924754B2 (en) Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
WO2020212587A1 (en) Process for the preparation of battery precursors
EP2832700B1 (en) Method for producing high-purity nickel sulfate
CN111278997A (en) Method for producing cobalt and related oxides from various feed materials
JP2013095951A (en) Method for recovering lithium
JP6489378B2 (en) Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate
JP6613954B2 (en) Method for producing nickel aqueous solution
JP7016463B2 (en) How to collect tellurium
JP6090394B2 (en) Method for producing scandium oxide
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP6218121B2 (en) Purification method of aqueous cobalt chloride solution
JP7251405B2 (en) Method for producing nickel aqueous solution
JP6550582B1 (en) Lead manufacturing method and manufacturing equipment
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP6929240B2 (en) Manufacturing method of cobalt sulfate for batteries
JP2013209267A (en) Method of manufacturing manganese sulfate
JP2017155280A (en) Method for removing copper ions from copper-containing aqueous nickel chloride solution and method for producing electrolytic nickel
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP6201154B2 (en) Purification method of cobalt chloride aqueous solution
JP6127902B2 (en) Method for leaching nickel and cobalt from mixed sulfides
JP2013067841A (en) Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel
JP7389338B2 (en) Method for producing nickel aqueous solution
AU2020259139B2 (en) Process for the recovery of metals from a Li-containing starting material
JP6662260B2 (en) Chlorine leaching method of nickel from mixed sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6489378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150