JP6137035B2 - Purification method of nickel chloride solution - Google Patents

Purification method of nickel chloride solution Download PDF

Info

Publication number
JP6137035B2
JP6137035B2 JP2014089729A JP2014089729A JP6137035B2 JP 6137035 B2 JP6137035 B2 JP 6137035B2 JP 2014089729 A JP2014089729 A JP 2014089729A JP 2014089729 A JP2014089729 A JP 2014089729A JP 6137035 B2 JP6137035 B2 JP 6137035B2
Authority
JP
Japan
Prior art keywords
chloride solution
nickel
nickel chloride
oxidation
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014089729A
Other languages
Japanese (ja)
Other versions
JP2015209551A (en
Inventor
亨紀 鈴木
亨紀 鈴木
友彦 横川
友彦 横川
服部 靖匡
靖匡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014089729A priority Critical patent/JP6137035B2/en
Publication of JP2015209551A publication Critical patent/JP2015209551A/en
Application granted granted Critical
Publication of JP6137035B2 publication Critical patent/JP6137035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、塩化ニッケル溶液の浄液方法に関する。さらに詳しくは、不純物として少なくともコバルトを含む塩化ニッケル溶液から不純物を除去するための塩化ニッケル溶液の浄液方法に関する。   The present invention relates to a method for purifying a nickel chloride solution. More specifically, the present invention relates to a nickel chloride solution cleaning method for removing impurities from a nickel chloride solution containing at least cobalt as an impurity.

ニッケルの湿式製錬プロセスでは、原料であるニッケル硫化物を塩素浸出し、得られた浸出液から不純物を除去して、電解採取により電気ニッケルを回収することが行われる。   In the nickel hydrometallurgy process, nickel sulfide as a raw material is leached with chlorine, impurities are removed from the obtained leachate, and electric nickel is recovered by electrowinning.

原料のニッケル硫化物は、従来はニッケルマットが主流であったが、近年では原料の多様化により、低品位ラテライト鉱を硫酸浸出し、浸出液中のニッケルとコバルトを硫化物として回収して得たニッケル・コバルト混合硫化物が用いられるようになってきた。また、同一の湿式製錬プロセスの原料としてニッケルマットとニッケル・コバルト混合硫化物の両方を用いることが行われるが、原料に占めるニッケル・コバルト混合硫化物の割合は年々高くなってきている。   Previously, nickel matte was the mainstream of nickel sulfide as a raw material, but recently, due to diversification of raw materials, low-grade laterite ore was leached with sulfuric acid, and nickel and cobalt in the leachate were recovered as sulfides. Nickel-cobalt mixed sulfides have been used. Further, both nickel matte and nickel-cobalt mixed sulfide are used as raw materials for the same hydrometallurgical process, but the proportion of nickel-cobalt mixed sulfide in the raw materials is increasing year by year.

特許文献1には、ニッケル・コバルト混合硫化物を塩素浸出して得られるニッケル浸出液を酸化中和法により浄液する方法が開示されている。特許文献1の浄液方法は、(1)ニッケル浸出液とニッケル電解廃液との混合割合を調整することにより、ニッケル濃度が90〜130g/L、コバルト濃度が1.0〜3.0g/Lである塩化ニッケル溶液を調整し、(2)塩化ニッケル溶液に酸化剤を用いて酸化還元電位を600〜1,200mV(銀/塩化銀電極基準)とし、かつ中和剤を用いてpHを4.0〜6.0とすることで、(3)Ni/Co比が3以下のコバルト澱物を除去する。そのため、コバルト澱物への過剰なニッケルの共沈を防止でき、その分の酸化剤および中和剤の使用量を低減できる。   Patent Document 1 discloses a method of purifying a nickel leaching solution obtained by chlorine leaching of a nickel / cobalt mixed sulfide by an oxidation neutralization method. The liquid purification method of Patent Document 1 is: (1) Nickel chloride having a nickel concentration of 90 to 130 g / L and a cobalt concentration of 1.0 to 3.0 g / L by adjusting the mixing ratio of the nickel leachate and the nickel electrolytic waste liquid. Prepare the solution, and (2) use an oxidizing agent in the nickel chloride solution to make the redox potential 600 to 1,200 mV (silver / silver chloride electrode standard), and use a neutralizing agent to make the pH 4.0 to 6.0. (3) Cobalt starch having a Ni / Co ratio of 3 or less is removed. Therefore, excessive nickel coprecipitation on the cobalt starch can be prevented, and the amount of oxidizing agent and neutralizing agent used can be reduced accordingly.

特許文献1における酸化中和工程では、塩化ニッケル溶液中のコバルトを析出させるとともに、その他の不純物を共沈させることで、塩化ニッケル溶液から不純物を除去している。その反応を下記化1に示す。ここで、酸化剤として塩素ガス(Cl2)、中和剤として塩基性炭酸ニッケル(Ni3(CO3)(OH)4・4H2O)を用いている。
(化1)
CoCl2 + 1/2Cl2 + 1/2Ni3(CO3)(OH)4・4H2O → Co(OH)3 + 3/2NiCl2 + 1/2CO2↑ + 3/2H2O
In the oxidation neutralization process in Patent Document 1, cobalt in the nickel chloride solution is precipitated and other impurities are coprecipitated to remove impurities from the nickel chloride solution. The reaction is shown in the following chemical formula 1. Here, chlorine gas (Cl 2 ) is used as an oxidizing agent, and basic nickel carbonate (Ni 3 (CO 3 ) (OH) 4 · 4H 2 O) is used as a neutralizing agent.
(Chemical formula 1)
CoCl 2 + 1 / 2Cl 2 + 1 / 2Ni 3 (CO 3 ) (OH) 4・ 4H 2 O → Co (OH) 3 + 3/2 NiCl 2 + 1 / 2CO 2 ↑ + 3 / 2H 2 O

ところで、ニッケル・コバルト混合硫化物はニッケルマットに比べてコバルト品位が高いため、原料に占めるニッケル・コバルト混合硫化物の割合が高くなると、その原料を塩素浸出して得られたニッケル浸出液はコバルト濃度が高くなる。コバルト濃度が高いニッケル浸出液を酸化中和法により浄液すると、酸化剤および中和剤の使用量が増加するという問題が生じる。   By the way, since nickel / cobalt mixed sulfide has higher cobalt quality than nickel matte, when the proportion of nickel / cobalt mixed sulfide in the raw material increases, the nickel leachate obtained by chlorine leaching of the raw material has a cobalt concentration. Becomes higher. When the nickel leaching solution having a high cobalt concentration is purified by the oxidation neutralization method, there arises a problem that the amount of the oxidizing agent and the neutralizing agent used increases.

この問題を解決するため、溶媒抽出により、塩化ニッケル溶液に含まれるコバルトを塩化コバルト溶液として分離する方法が知られている(例えば、特許文献2)。溶媒抽出により塩化ニッケル溶液に含まれるコバルトの大部分が除去される。溶媒抽出後の塩化ニッケル溶液には微量のコバルト、鉛、マンガン等の不純物が含まれるため、これらの不純物は酸化中和法により除去される。   In order to solve this problem, a method of separating cobalt contained in a nickel chloride solution as a cobalt chloride solution by solvent extraction is known (for example, Patent Document 2). Solvent extraction removes most of the cobalt contained in the nickel chloride solution. Since the nickel chloride solution after the solvent extraction contains a trace amount of impurities such as cobalt, lead, and manganese, these impurities are removed by an oxidation neutralization method.

ここで、溶媒抽出後の塩化ニッケル溶液にニッケル電解廃液を混合して希釈するとコバルト濃度が10mg/L以下となり、特許文献1の場合(コバルト濃度1.0〜3.0g/L)に比べて非常に低い値となる。そのため、酸化中和法により塩化ニッケル溶液中のコバルトを析出させることで、その他の不純物を共沈させることが困難となる。その結果、酸化中和工程における塩素効率が60%以下となり、不純物の除去効率が悪くなる。不純物を目標値まで除去するためには、多量の酸化剤および中和剤が必要となるという問題がある。   Here, when nickel electrolytic waste liquid is mixed with the nickel chloride solution after solvent extraction and diluted, the cobalt concentration becomes 10 mg / L or less, which is very low compared to the case of Patent Document 1 (cobalt concentration 1.0 to 3.0 g / L). Value. Therefore, it becomes difficult to coprecipitate other impurities by precipitating cobalt in the nickel chloride solution by the oxidation neutralization method. As a result, the chlorine efficiency in the oxidation neutralization step is 60% or less, and the impurity removal efficiency is deteriorated. In order to remove impurities to the target value, there is a problem that a large amount of oxidizing agent and neutralizing agent are required.

特開2011−157604号公報JP 2011-157604 A 特開2011−6759号公報JP 2011-6759 A

本発明は上記事情に鑑み、効率よく不純物を除去できる塩化ニッケル溶液の浄液方法を提供することを目的とする。   An object of this invention is to provide the liquid purification method of the nickel chloride solution which can remove an impurity efficiently in view of the said situation.

第1発明の塩化ニッケル溶液の浄液方法は、不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、塩化ニッケル溶液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程と、前記溶媒抽出工程後の塩化ニッケル溶液に含まれる不純物を酸化中和法により除去する酸化中和工程と、を備え、前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整することを特徴とする。
第2発明の塩化ニッケル溶液の浄液方法は、不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、コバルト濃度が10mg/L以下の塩化ニッケル溶液に含まれる不純物を酸化中和法により除去する酸化中和工程を備え、前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整することを特徴とする。
第3発明の塩化ニッケル溶液の浄液方法は、不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、酸化中和法により塩化ニッケル溶液中のニッケルを析出させるとともに不純物を共沈させる酸化中和工程を備え、前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整することを特徴とする。
第4発明の塩化ニッケル溶液の浄液方法は、第1、第2または第3発明において、前記酸化中和工程において、塩化ニッケル溶液のpHを5.0以上5.2以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整することを特徴とする。
The nickel chloride solution purification method of the first invention is a nickel chloride solution purification method containing at least cobalt as an impurity, the solvent extraction step of separating cobalt contained in the nickel chloride solution by solvent extraction, and the solvent An oxidation neutralization step of removing impurities contained in the nickel chloride solution after the extraction step by an oxidation neutralization method, wherein in the oxidation neutralization step, the pH of the nickel chloride solution is 4.9 or more and 5.5 or less, and silver / The oxidation-reduction potential based on silver chloride is in the range of 900 mV to 1,100 mV , and the pH and oxidation-reduction potential are adjusted to a stable region of nickel ions .
The nickel chloride solution purification method of the second invention is a nickel chloride solution purification method containing at least cobalt as an impurity, wherein the impurities contained in the nickel chloride solution having a cobalt concentration of 10 mg / L or less are oxidized and neutralized. In the oxidation neutralization step, the pH of the nickel chloride solution is in the range of 4.9 to 5.5, and the oxidation / reduction potential based on silver / silver chloride is in the range of 900 mV to 1,100 mV. PH and oxidation-reduction potential are adjusted to a stable region of nickel ions .
The nickel chloride solution purification method of the third invention is a nickel chloride solution purification method containing at least cobalt as an impurity, and deposits nickel in the nickel chloride solution and co-precipitates the impurity by oxidation neutralization. An oxidation neutralization step, wherein in the oxidation neutralization step, the pH of the nickel chloride solution is in the range of 4.9 to 5.5, and the oxidation / reduction potential based on silver / silver chloride is in the range of 900 mV to 1,100 mV , the pH and The oxidation-reduction potential is adjusted to a stable region of nickel ions .
The nickel chloride solution purification method of the fourth invention is the first, second or third invention, wherein, in the oxidation neutralization step, the pH of the nickel chloride solution is 5.0 or more and 5.2 or less, and the silver / silver chloride standard. The oxidation-reduction potential is in the range of 900 mV to 1,100 mV , and the pH and oxidation-reduction potential are adjusted to a stable region of nickel ions .

第1発明によれば、溶媒抽出工程後のコバルト濃度が低い塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。そのため、酸化剤および中和剤の使用量を低減できる。
第2発明によれば、コバルト濃度が10mg/L以下の塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。そのため、酸化剤および中和剤の使用量を低減できる。
第3発明によれば、塩化ニッケル溶液中のニッケルを析出させるとともに不純物を共沈させるので、コバルト濃度が低い塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。そのため、酸化剤および中和剤の使用量を低減できる。
第4発明によれば、コバルト濃度が低い塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。そのため、酸化剤および中和剤の使用量を低減できる。
According to 1st invention, even if it is a nickel chloride solution with low cobalt concentration after a solvent extraction process, the chlorine efficiency in an oxidation neutralization process can be improved and an impurity can be removed efficiently. Therefore, the usage-amount of an oxidizing agent and a neutralizing agent can be reduced.
According to the second invention, even if the nickel chloride solution has a cobalt concentration of 10 mg / L or less, the chlorine efficiency in the oxidation neutralization step can be improved, and impurities can be efficiently removed. Therefore, the usage-amount of an oxidizing agent and a neutralizing agent can be reduced.
According to the third invention, since the nickel in the nickel chloride solution is precipitated and the impurities are coprecipitated, even in the nickel chloride solution having a low cobalt concentration, the chlorine efficiency in the oxidation neutralization step can be improved. Impurities can be removed efficiently. Therefore, the usage-amount of an oxidizing agent and a neutralizing agent can be reduced.
According to the 4th invention, even if it is a nickel chloride solution with low cobalt concentration, the chlorine efficiency in an oxidation neutralization process can be improved, and an impurity can be removed efficiently. Therefore, the usage-amount of an oxidizing agent and a neutralizing agent can be reduced.

ニッケルの湿式製錬プロセスの全体工程図である。It is the whole process figure of the hydrometallurgical process of nickel. 実施例における操業監視項目の値を示す表である。It is a table | surface which shows the value of the operation monitoring item in an Example. ニッケル濃度100g/L、反応温度50℃におけるニッケル水酸化物の電位−pH図と、実施例の操業条件を示すグラフである。FIG. 2 is a potential-pH diagram of nickel hydroxide at a nickel concentration of 100 g / L and a reaction temperature of 50 ° C., and a graph showing operating conditions of examples.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る塩化ニッケル溶液の浄液方法は、以下に説明するニッケルの湿式製錬プロセスに適用される。なお、本発明に係る塩化ニッケル溶液の浄液方法は、塩化ニッケル溶液の由来を問わず、不純物として少なくともコバルトを含む塩化ニッケル溶液を浄液するプロセスであれば、いかなるプロセスにも適用される。
Next, an embodiment of the present invention will be described with reference to the drawings.
The nickel chloride solution purification method according to an embodiment of the present invention is applied to a nickel hydrometallurgical process described below. The method for purifying a nickel chloride solution according to the present invention is applicable to any process as long as it is a process for purifying a nickel chloride solution containing at least cobalt as an impurity, regardless of the origin of the nickel chloride solution.

図1に示すように、ニッケルの湿式製錬プロセスでは、まず、原料であるニッケル・コバルト混合硫化物(MS:ミックスサルファイド)およびニッケルマットを塩素浸出してニッケル浸出液を得る。ニッケル浸出液は、主成分が塩化ニッケル溶液であり、コバルトのほか、鉛やマンガン等の不純物が含まれる。   As shown in FIG. 1, in the nickel hydrometallurgical process, first, nickel-cobalt mixed sulfide (MS: mixed sulfide) and nickel mat as raw materials are leached with chlorine to obtain a nickel leaching solution. The nickel leaching solution is mainly composed of a nickel chloride solution and contains impurities such as lead and manganese in addition to cobalt.

塩素浸出工程から得られたニッケル浸出液は溶媒抽出工程に送られる。溶媒抽出工程では、ニッケル浸出液(塩化ニッケル溶液)に含まれるコバルトを溶媒抽出により分離し、塩化ニッケル溶液と塩化コバルト溶液とを得る。なお、説明の便宜のため、溶媒抽出工程から得られた塩化ニッケル溶液および塩化コバルト溶液を、それぞれ粗塩化ニッケル溶液および粗塩化コバルト溶液と称する。粗塩化ニッケル溶液には、不純物として微量のコバルトのほか、鉛やマンガン等が含まれる。また、ニッケル濃度は160〜200g/Lである。   The nickel leaching solution obtained from the chlorine leaching process is sent to the solvent extraction process. In the solvent extraction step, cobalt contained in the nickel leaching solution (nickel chloride solution) is separated by solvent extraction to obtain a nickel chloride solution and a cobalt chloride solution. For convenience of explanation, the nickel chloride solution and the cobalt chloride solution obtained from the solvent extraction step are referred to as a crude nickel chloride solution and a crude cobalt chloride solution, respectively. The crude nickel chloride solution contains traces of cobalt, lead, manganese, and the like as impurities. The nickel concentration is 160 to 200 g / L.

溶媒抽出工程に用いられる有機溶媒は特に限定されないが、ニッケルとコバルトを分離する溶媒抽出法では、有機抽出剤として、Cyanex272に代表される燐酸エステル系酸性抽出剤や、TNOA(Tri-n-octylamine)、TIOA(Tri-i-octylamine)等に代表されるアミン系抽出剤が用いられる。一般的には、液中の金属イオンおよび塩化物イオン濃度が高い塩化物水溶液の場合には、アミン系抽出剤が好ましく用いられる。また、アミン系抽出剤として、ニッケルとコバルトとの選択性に優れる3級アミンを用いる場合には、必要により芳香族炭化水素または脂肪族炭化水素からなる希釈剤が混合される。   The organic solvent used in the solvent extraction step is not particularly limited. However, in the solvent extraction method for separating nickel and cobalt, as an organic extractant, a phosphate ester-based acid extractant represented by Cyanex272 or TNOA (Tri-n-octylamine) is used. ), Amine-based extractants represented by TIOA (Tri-i-octylamine) and the like are used. In general, in the case of a chloride aqueous solution having a high concentration of metal ions and chloride ions in the liquid, an amine-based extractant is preferably used. Further, when a tertiary amine having excellent selectivity between nickel and cobalt is used as the amine-based extractant, a diluent composed of an aromatic hydrocarbon or an aliphatic hydrocarbon is mixed as necessary.

溶媒抽出工程後の粗塩化ニッケル溶液に希釈剤を添加して希釈することにより塩化物イオン濃度を低下させる(希釈工程)。ここで、希釈の指標としては粗塩化ニッケル溶液のニッケル濃度が用いられる。粗塩化ニッケル溶液のニッケル濃度と塩化物イオン濃度との間には相関関係があるからである。具体的には、溶媒抽出工程後の粗塩化ニッケル溶液(ニッケル濃度160〜200g/L)を、ニッケル濃度が90〜130g/Lとなるように希釈する。なお、希釈後の粗塩化ニッケル溶液のコバルト濃度は10mg/L以下となる。   The chloride ion concentration is lowered by diluting the crude nickel chloride solution after the solvent extraction step by adding a diluent (dilution step). Here, the nickel concentration of the crude nickel chloride solution is used as an index for dilution. This is because there is a correlation between the nickel concentration of the crude nickel chloride solution and the chloride ion concentration. Specifically, the crude nickel chloride solution (nickel concentration 160 to 200 g / L) after the solvent extraction step is diluted so that the nickel concentration is 90 to 130 g / L. The cobalt concentration of the diluted crude nickel chloride solution is 10 mg / L or less.

粗塩化ニッケル溶液のニッケル濃度を130g/L以下に調整することにより、コバルトのクロロ錯体を不安定化してコバルトを3価とし、酸化中和工程においてコバルト澱物として十分沈殿させることが可能となる。また、粗塩化ニッケル溶液のニッケル濃度を90g/L以上に調整することにより、希釈剤の添加量を抑えて、粗塩化ニッケル溶液の液量の大幅な増加を抑制できるので、設備容量を増加させる必要がない。   By adjusting the nickel concentration of the crude nickel chloride solution to 130 g / L or less, it becomes possible to destabilize the cobalt chloro complex to make cobalt trivalent and to sufficiently precipitate as cobalt starch in the oxidation neutralization step. . In addition, by adjusting the nickel concentration of the crude nickel chloride solution to 90 g / L or more, the amount of diluent added can be suppressed and a large increase in the amount of crude nickel chloride solution can be suppressed, increasing the equipment capacity. There is no need.

希釈剤としてはニッケル電解廃液を用いることが好ましい。ニッケル電解廃液は、後述の電解工程において清澄塩化ニッケル溶液を電解液として用いた後の廃液として得られる。ニッケル電解廃液を希釈剤として用いることで、湿式製錬プロセスの系内全体の液量を増加させないようにすることができる。希釈剤としてニッケル電解廃液に代えて工業用水を用いてもよい。工業用水を用いれば、ニッケル電解廃液を用いるよりも、少量の液量で粗塩化ニッケル溶液を目的とする塩化物濃度にまで希釈することが可能となる。   It is preferable to use nickel electrolytic waste liquid as the diluent. The nickel electrolytic waste liquid is obtained as a waste liquid after using a clarified nickel chloride solution as an electrolytic solution in an electrolysis process described later. By using nickel electrolytic waste liquid as a diluent, it is possible to prevent the amount of liquid in the entire system of the hydrometallurgical process from increasing. Industrial water may be used as a diluent instead of nickel electrolytic waste liquid. If industrial water is used, it is possible to dilute the crude nickel chloride solution to the target chloride concentration with a small amount of liquid rather than using nickel electrolytic waste liquid.

希釈後の粗塩化ニッケル溶液は酸化中和工程に送られる。酸化中和工程では、粗塩化ニッケル溶液に酸化剤と中和剤を添加して、粗塩化ニッケル溶液に含まれる不純物を酸化中和法により除去する。   The diluted crude nickel chloride solution is sent to the oxidation neutralization step. In the oxidation neutralization step, an oxidizing agent and a neutralizing agent are added to the crude nickel chloride solution, and impurities contained in the crude nickel chloride solution are removed by an oxidation neutralization method.

ここで、酸化剤としては、酸化還元電位を上昇させることができるものであれば特に限定されないが、不純物の蓄積が生じない塩素ガスが好ましい。また、中和剤としては、特に限定されないが、不純物の蓄積が生じない塩基性炭酸ニッケル、炭酸ニッケルまたは水酸化ニッケルが好ましい。   Here, the oxidizing agent is not particularly limited as long as it can raise the oxidation-reduction potential, but chlorine gas that does not cause accumulation of impurities is preferable. Further, the neutralizing agent is not particularly limited, but basic nickel carbonate, nickel carbonate or nickel hydroxide which does not cause accumulation of impurities is preferable.

酸化中和工程では、粗塩化ニッケル溶液中のニッケルを析出させるとともに、コバルト、鉛、マンガン等の不純物を共沈させることで、粗塩化ニッケル溶液から不純物を除去する。その反応を下記化2に示す。ここで、酸化剤として塩素ガス(Cl2)、中和剤として塩基性炭酸ニッケル(Ni3(CO3)(OH)4・4H2O)を用いている。また、澱物の詳細な化学式は明らかでないが、便宜上Ni(OH)3であると仮定している。
(化2)
NiCl2 + 1/2Cl2 + 1/2Ni3(CO3)(OH)4・4H2O → Ni(OH)3 + 3/2NiCl2 + 1/2CO2↑ + 3/2H2O
In the oxidation neutralization step, nickel in the crude nickel chloride solution is precipitated, and impurities such as cobalt, lead, and manganese are coprecipitated to remove impurities from the crude nickel chloride solution. The reaction is shown in Chemical Formula 2 below. Here, chlorine gas (Cl 2 ) is used as an oxidizing agent, and basic nickel carbonate (Ni 3 (CO 3 ) (OH) 4 · 4H 2 O) is used as a neutralizing agent. The detailed chemical formula of the starch is not clear, but Ni (OH) 3 is assumed for convenience.
(Chemical formula 2)
NiCl 2 + 1 / 2Cl 2 + 1 / 2Ni 3 (CO 3 ) (OH) 4・ 4H 2 O → Ni (OH) 3 + 3/2 NiCl 2 + 1 / 2CO 2 ↑ + 3 / 2H 2 O

以上の操作により不純物が除去された塩化ニッケル溶液が得られる。なお、説明の便宜のため、酸化中和工程から得られた塩化ニッケル溶液を清澄塩化ニッケル溶液と称する。   By the above operation, a nickel chloride solution from which impurities are removed is obtained. For convenience of explanation, the nickel chloride solution obtained from the oxidation neutralization step is referred to as a clear nickel chloride solution.

澱物と清澄塩化ニッケル溶液とが混合されたスラリーは、フィルターで固液分離され、清澄塩化ニッケル溶液と澱物とに分けられる。清澄塩化ニッケル溶液は電解工程に送られる。電解工程では、清澄塩化ニッケル溶液を電解液として用い、不溶性アノードを陽極として用いて、電解採取により電気ニッケルが製造される。   The slurry in which the starch and the clear nickel chloride solution are mixed is separated into solid and liquid by a filter, and is divided into the clear nickel chloride solution and the starch. The clarified nickel chloride solution is sent to the electrolysis process. In the electrolysis step, electrolytic nickel is produced by electrowinning using a clarified nickel chloride solution as an electrolyte and an insoluble anode as an anode.

一方、澱物にはニッケル、コバルト、鉛、マンガン、塩素等が含まれており、その主成分はニッケルの水酸化物である。そのため、硫酸ニッケルの原料の一つとして、硫酸ニッケル製造工程に送られる。   On the other hand, the starch contains nickel, cobalt, lead, manganese, chlorine and the like, and the main component is a hydroxide of nickel. Therefore, it is sent to the nickel sulfate production process as one of the raw materials for nickel sulfate.

本実施形態は、以上の湿式製錬プロセスの酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、好ましくは5.0以上5.2以下、かつ、酸化還元電位(銀/塩化銀基準)を900mV以上1,100mV以下に調整するところに特徴を有する。ここで、pHの調整は中和剤の添加量を調整することにより行うことができ、酸化還元電位の調整は酸化剤の添加量を調整することにより行うことができる。   In this embodiment, in the oxidation neutralization step of the above hydrometallurgical process, the pH of the nickel chloride solution is 4.9 to 5.5, preferably 5.0 to 5.2, and the oxidation-reduction potential (silver / silver chloride standard) is 900 mV. It is characterized in that it is adjusted to 1,100 mV or less. Here, the pH can be adjusted by adjusting the addition amount of the neutralizing agent, and the redox potential can be adjusted by adjusting the addition amount of the oxidizing agent.

酸化中和工程における塩化ニッケル溶液のpHおよび酸化還元電位を上記の範囲に調整することで、溶媒抽出工程後のコバルト濃度が低い(10mg/L以下)塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。具体的には、塩素効率を90%以上に向上させることができる。そのため、酸化剤および中和剤の使用量を低減できる。   By adjusting the pH and oxidation-reduction potential of the nickel chloride solution in the oxidation neutralization step to the above ranges, even if the nickel chloride solution has a low cobalt concentration (less than 10 mg / L) after the solvent extraction step, oxidation neutralization Chlorine efficiency in the process can be improved and impurities can be efficiently removed. Specifically, the chlorine efficiency can be improved to 90% or more. Therefore, the usage-amount of an oxidizing agent and a neutralizing agent can be reduced.

ここで、塩素効率は、以下に示すように、酸化中和工程に実際に供給した塩素の量(実績値)と、化1または化2から求められる澱物(Co(OH)3またはNi(OH)3)の製造に必要な塩素の量(理論値)との比として定義される。
塩素効率[%] = 澱物製造に必要な塩素量(理論値)/塩素使用量(実績値)×100
Here, as shown below, the chlorine efficiency is the amount of chlorine actually supplied to the oxidation neutralization step (actual value) and the starch (Co (OH) 3 or Ni ( It is defined as the ratio to the amount of chlorine (theoretical value) required for the production of OH) 3 ).
Chlorine efficiency [%] = amount of chlorine required for starch production (theoretical value) / chlorine consumption (actual value) x 100

また、本実施形態の酸化中和工程では、塩化ニッケル溶液中のニッケルを析出させるとともに不純物を共沈させるので、これによっても、コバルト濃度が低い塩化ニッケル溶液であっても、酸化中和工程における塩素効率を向上させることができ、効率よく不純物を除去できる。   Further, in the oxidation neutralization step of the present embodiment, nickel in the nickel chloride solution is precipitated and impurities are coprecipitated. Therefore, even in the nickel chloride solution having a low cobalt concentration, the oxidation neutralization step Chlorine efficiency can be improved and impurities can be efficiently removed.

本願発明者は、上記のように塩素効率が向上する理由を、酸化中和工程の操業条件をニッケル水酸化物の安定領域に近づけたためであると考える。すなわち、図3に示すような電位−pH図において、酸化中和工程における酸化還元電位およびpHを、Ni2+の安定領域としつつも、Ni(OH)3の安定領域との境界に近づけることで、塩素効率が向上するのである。 The inventor of the present application considers that the reason why the chlorine efficiency is improved as described above is that the operating conditions of the oxidation neutralization step are brought close to the stable region of nickel hydroxide. That is, in the potential-pH diagram as shown in FIG. 3, the redox potential and pH in the oxidation neutralization step are brought close to the boundary with the Ni (OH) 3 stable region while being in the Ni 2+ stable region. This improves the chlorine efficiency.

つぎに、実施例を説明する。
上記湿式製錬プロセスに基づき、2011年10月から2012年5月までの8ヶ月間操業を行った。希釈工程では粗塩化ニッケル溶液にニッケル電解廃液を添加して希釈し、酸化中和工程では酸化剤として塩素ガス、中和剤として炭酸ニッケルを用いた。
Next, examples will be described.
Based on the above hydrometallurgical process, operation was carried out for 8 months from October 2011 to May 2012. In the dilution step, nickel electrolytic waste solution was added to the crude nickel chloride solution for dilution, and in the oxidation neutralization step, chlorine gas was used as the oxidizing agent and nickel carbonate was used as the neutralizing agent.

溶媒抽出工程後の粗塩化ニッケル溶液(希釈前)の組成は表1に示す通りである。ここで、各組成は化学分析により求めた。
The composition of the crude nickel chloride solution (before dilution) after the solvent extraction step is as shown in Table 1. Here, each composition was obtained by chemical analysis.

酸化中和工程後の清澄塩化ニッケル溶液は、8ヶ月間の操業の間、ニッケル、コバルト、鉛、銅、亜鉛の組成に変化がみられなかった。その組成を表2に示す。ここで、各組成は化学分析により求めた。
The clarified nickel chloride solution after the oxidative neutralization step showed no change in the composition of nickel, cobalt, lead, copper and zinc during the operation for 8 months. The composition is shown in Table 2. Here, each composition was obtained by chemical analysis.

図2に、各月(2011年10月から2012年5月)の操業監視項目の値を示す。操業監視項目は、酸化中和工程における塩化ニッケル溶液のpH、酸化還元電位(ORP)(銀/塩化銀基準)、酸化中和工程後の澱物中のニッケル量、酸化中和工程に投入した塩素の量、酸化中和工程の塩素効率、酸化中和工程後の清澄塩化ニッケル溶液のマンガン濃度(終液中Mn濃度)である。ここで、マンガン濃度は原子吸光分析により求めた。また、塩素効率および終液中Mn濃度を基に、各月の操業効率の合否を判定した。ここで、終液中Mn濃度を基準としたのは、除去が困難なマンガンの除去能力を考慮に入れるためである。なお、表中の×は不合格、○は合格、◎は最適を意味する。   FIG. 2 shows values of operation monitoring items for each month (October 2011 to May 2012). Operation monitoring items were the pH of the nickel chloride solution in the oxidation neutralization step, the oxidation-reduction potential (ORP) (silver / silver chloride standard), the amount of nickel in the starch after the oxidation neutralization step, and the oxidation neutralization step. The amount of chlorine, the chlorine efficiency in the oxidation neutralization step, and the manganese concentration (Mn concentration in the final solution) of the clarified nickel chloride solution after the oxidation neutralization step. Here, the manganese concentration was determined by atomic absorption analysis. Moreover, the pass / fail of the operation efficiency of each month was determined based on the chlorine efficiency and the Mn concentration in the final liquid. Here, the Mn concentration in the final solution was used as a reference in order to take into consideration the removal ability of manganese that is difficult to remove. In the table, “x” indicates failure, “◯” indicates pass, and “◎” indicates optimum.

また、各月の操業条件をニッケル水酸化物(ニッケル濃度100g/L、反応温度50℃)の電位−pH図上にプロットしたものを図3に示す。   Moreover, what plotted the operating conditions of each month on the electric potential-pH figure of nickel hydroxide (nickel concentration 100g / L, reaction temperature 50 degreeC) is shown in FIG.

(実施例1:2012年4月)
酸化中和工程において、塩化ニッケル溶液のpHを4.98、酸化還元電位(銀/塩化銀基準)を1031mVとして1ヶ月間操業した。
その結果、塩素効率は99%、終液中Mn濃度は0.005mg/Lであり、操業効率が良いことが確認された。
(Example 1: April 2012)
In the oxidation neutralization step, the nickel chloride solution was operated for one month at a pH of 4.98 and an oxidation-reduction potential (silver / silver chloride standard) of 1031 mV.
As a result, the chlorine efficiency was 99%, the Mn concentration in the final solution was 0.005 mg / L, and it was confirmed that the operation efficiency was good.

(実施例2:2012年5月)
酸化中和工程において、塩化ニッケル溶液のpHを5.02、酸化還元電位(銀/塩化銀基準)を1018mVとして1ヶ月間操業した。
その結果、塩素効率は125%、終液中Mn濃度は0.005mg/Lであり、操業効率がさらに良いことが確認された。
(Example 2: May 2012)
In the oxidation neutralization step, the nickel chloride solution was operated at a pH of 5.02 and an oxidation-reduction potential (silver / silver chloride standard) of 1018 mV for one month.
As a result, the chlorine efficiency was 125%, the Mn concentration in the final solution was 0.005 mg / L, and it was confirmed that the operation efficiency was even better.

(比較例1:2011年10月)
酸化中和工程において、塩化ニッケル溶液のpHを4.81、酸化還元電位(銀/塩化銀基準)を1051mVとして1ヶ月間操業した。
その結果、塩素効率は55%、終液中Mn濃度は0.010mg/Lであった。
(Comparative Example 1: October 2011)
In the oxidation neutralization step, the nickel chloride solution was operated for 1 month with a pH of 4.81 and an oxidation-reduction potential (silver / silver chloride standard) of 1051 mV.
As a result, the chlorine efficiency was 55%, and the Mn concentration in the final solution was 0.010 mg / L.

(比較例2:2011年11月)
酸化中和工程において、塩化ニッケル溶液のpHを4.71、酸化還元電位(銀/塩化銀基準)を1015mVとして1ヶ月間操業した。
その結果、塩素効率は37%、終液中Mn濃度は0.010mg/Lであった。
(Comparative Example 2: November 2011)
In the oxidation neutralization step, the nickel chloride solution was operated for 1 month at a pH of 4.71 and an oxidation-reduction potential (silver / silver chloride standard) of 1015 mV.
As a result, the chlorine efficiency was 37% and the Mn concentration in the final solution was 0.010 mg / L.

(比較例3:2011年12月)
酸化中和工程において、塩化ニッケル溶液のpHを4.78、酸化還元電位(銀/塩化銀基準)を1055mVとして1ヶ月間操業した。
その結果、塩素効率は40%、終液中Mn濃度は0.009mg/Lであった。
(Comparative Example 3: December 2011)
In the oxidation neutralization step, the nickel chloride solution was operated for one month at a pH of 4.78 and an oxidation-reduction potential (silver / silver chloride standard) of 1055 mV.
As a result, the chlorine efficiency was 40% and the Mn concentration in the final solution was 0.009 mg / L.

(比較例4:2012年1月)
酸化中和工程において、塩化ニッケル溶液のpHを4.81、酸化還元電位(銀/塩化銀基準)を1055mVとして1ヶ月間操業した。
その結果、塩素効率は48%、終液中Mn濃度は0.009mg/Lであった。
(Comparative Example 4: January 2012)
In the oxidation neutralization step, the nickel chloride solution was operated at a pH of 4.81 and an oxidation-reduction potential (silver / silver chloride standard) of 1055 mV for one month.
As a result, the chlorine efficiency was 48%, and the Mn concentration in the final solution was 0.009 mg / L.

(比較例5:2012年2月)
酸化中和工程において、塩化ニッケル溶液のpHを4.86、酸化還元電位(銀/塩化銀基準)を1053mVとして1ヶ月間操業した。
その結果、塩素効率は43%、終液中Mn濃度は0.014mg/Lであった。
(Comparative Example 5: February 2012)
In the oxidation neutralization step, the nickel chloride solution was operated for 1 month with a pH of 4.86 and an oxidation-reduction potential (silver / silver chloride standard) of 1053 mV.
As a result, the chlorine efficiency was 43%, and the Mn concentration in the final solution was 0.014 mg / L.

以上のように、塩化ニッケル溶液のpHを4.9以上とした実施例1、2では塩素効率がそれぞれ99%、125%であり、90%を超えている。特に、pHを5.0以上とした実施例2では塩素効率が125%であり、効果が高いことが分かる。また、終液中Mn濃度に関しても実施例1、2では0.007mg/L未満となり、高純度な電気ニッケルを得るために十分な値となっている。   As described above, in Examples 1 and 2 in which the pH of the nickel chloride solution was 4.9 or more, the chlorine efficiency was 99% and 125%, respectively, exceeding 90%. In particular, in Example 2 in which the pH is 5.0 or more, the chlorine efficiency is 125%, which shows that the effect is high. Further, the Mn concentration in the final solution is also less than 0.007 mg / L in Examples 1 and 2, which is a sufficient value for obtaining high-purity electro nickel.

一方、塩化ニッケル溶液のpHを4.9未満とした比較例1〜5では、塩素効率が37〜55%と低くなっていることが分かる。また、終液中Mn濃度に関しても0.007mg/L以上であり、高純度が電気ニッケルを得るために十分な値ではない。   On the other hand, in Comparative Examples 1 to 5 in which the pH of the nickel chloride solution is less than 4.9, it can be seen that the chlorine efficiency is as low as 37 to 55%. Further, the Mn concentration in the final solution is 0.007 mg / L or more, and the high purity is not a sufficient value for obtaining electronickel.

Claims (4)

不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、
塩化ニッケル溶液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程と、
前記溶媒抽出工程後の塩化ニッケル溶液に含まれる不純物を酸化中和法により除去する酸化中和工程と、を備え、
前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整する
ことを特徴とする塩化ニッケル溶液の浄液方法。
A method for cleaning a nickel chloride solution containing at least cobalt as an impurity,
A solvent extraction step of separating cobalt contained in the nickel chloride solution by solvent extraction;
An oxidation neutralization step of removing impurities contained in the nickel chloride solution after the solvent extraction step by an oxidation neutralization method,
In the oxidation neutralization step, the pH of the nickel chloride solution is 4.9 to 5.5 and the oxidation / reduction potential based on silver / silver chloride is in the range of 900 mV to 1,100 mV . A method for purifying a nickel chloride solution, characterized by adjusting to a stable region .
不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、
コバルト濃度が10mg/L以下の塩化ニッケル溶液に含まれる不純物を酸化中和法により除去する酸化中和工程を備え、
前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整する
ことを特徴とする塩化ニッケル溶液の浄液方法。
A method for cleaning a nickel chloride solution containing at least cobalt as an impurity,
Equipped with an oxidation neutralization step for removing impurities contained in nickel chloride solution having a cobalt concentration of 10 mg / L or less by an oxidation neutralization method,
In the oxidation neutralization step, the pH of the nickel chloride solution is 4.9 to 5.5 and the oxidation / reduction potential based on silver / silver chloride is in the range of 900 mV to 1,100 mV . A method for purifying a nickel chloride solution, characterized by adjusting to a stable region .
不純物として少なくともコバルトを含む塩化ニッケル溶液の浄液方法であって、
酸化中和法により塩化ニッケル溶液中のニッケルを析出させるとともに不純物を共沈させる酸化中和工程を備え、
前記酸化中和工程において、塩化ニッケル溶液のpHを4.9以上5.5以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整する
ことを特徴とする塩化ニッケル溶液の浄液方法。
A method for cleaning a nickel chloride solution containing at least cobalt as an impurity,
It has an oxidation neutralization step of precipitating nickel in nickel chloride solution and coprecipitating impurities by oxidation neutralization method,
In the oxidation neutralization step, the pH of the nickel chloride solution is 4.9 to 5.5 and the oxidation / reduction potential based on silver / silver chloride is in the range of 900 mV to 1,100 mV . A method for purifying a nickel chloride solution, characterized by adjusting to a stable region .
前記酸化中和工程において、塩化ニッケル溶液のpHを5.0以上5.2以下、かつ、銀/塩化銀基準の酸化還元電位を900mV以上1,100mV以下の範囲であって、pHおよび酸化還元電位をニッケルイオンの安定領域に調整する
ことを特徴とする請求項1、2または3記載の塩化ニッケル溶液の浄液方法。
In the oxidation neutralization step, the pH of the nickel chloride solution is 5.0 or more and 5.2 or less, and the oxidation / reduction potential on the basis of silver / silver chloride is in the range of 900 mV or more and 1,100 mV or less , and the pH and oxidation / reduction potential are adjusted to the nickel ion 4. The method for purifying a nickel chloride solution according to claim 1, wherein the solution is adjusted to a stable region .
JP2014089729A 2014-04-24 2014-04-24 Purification method of nickel chloride solution Active JP6137035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089729A JP6137035B2 (en) 2014-04-24 2014-04-24 Purification method of nickel chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014089729A JP6137035B2 (en) 2014-04-24 2014-04-24 Purification method of nickel chloride solution

Publications (2)

Publication Number Publication Date
JP2015209551A JP2015209551A (en) 2015-11-24
JP6137035B2 true JP6137035B2 (en) 2017-05-31

Family

ID=54612003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089729A Active JP6137035B2 (en) 2014-04-24 2014-04-24 Purification method of nickel chloride solution

Country Status (1)

Country Link
JP (1) JP6137035B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115948A1 (en) * 2018-12-07 2020-06-11 住友金属鉱山株式会社 Method for producing lithium-containing solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383234A (en) * 1986-09-26 1988-04-13 Toagosei Chem Ind Co Ltd Recovering method for nickel from nickel-containing iron material
JP4124071B2 (en) * 2003-09-17 2008-07-23 住友金属鉱山株式会社 Purification method of nickel chloride aqueous solution
JP5920584B2 (en) * 2012-09-21 2016-05-18 住友金属鉱山株式会社 Method of oxidation neutralization treatment of nickel chloride aqueous solution

Also Published As

Publication number Publication date
JP2015209551A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5796716B2 (en) Method for removing impurities from cobalt-containing liquid
JP6004023B2 (en) Scandium recovery method
JP5495418B2 (en) Method for recovering manganese
JP5800254B2 (en) Method for producing cobalt sulfate
JP6365838B2 (en) Cobalt nickel leaching method
JP2011026687A (en) Method for treating copper converter dust
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP6900677B2 (en) How to make scandium oxide
JP4980399B2 (en) Copper converter dust treatment method
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP6137035B2 (en) Purification method of nickel chloride solution
JP6187278B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2010264331A (en) Separation method of arsenic
JP3823307B2 (en) Method for producing high purity cobalt solution
JP6683910B2 (en) Purification method of nickel chloride aqueous solution
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP2011157604A (en) Method for cleaning nickel chloride solution
JP2005104809A (en) Method for purifying nickel chloride aqueous solution
JP6137054B2 (en) Purification method of cobalt chloride solution
JP6060877B2 (en) Method for producing rhenium-containing solution
JP2008196039A (en) Method of removing fluorine from processing liquid used in wet zinc smelting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6137035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150