JP4980399B2 - Copper converter dust treatment method - Google Patents

Copper converter dust treatment method Download PDF

Info

Publication number
JP4980399B2
JP4980399B2 JP2009178637A JP2009178637A JP4980399B2 JP 4980399 B2 JP4980399 B2 JP 4980399B2 JP 2009178637 A JP2009178637 A JP 2009178637A JP 2009178637 A JP2009178637 A JP 2009178637A JP 4980399 B2 JP4980399 B2 JP 4980399B2
Authority
JP
Japan
Prior art keywords
treatment
copper
solution
converter dust
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009178637A
Other languages
Japanese (ja)
Other versions
JP2011032516A (en
Inventor
晋哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2009178637A priority Critical patent/JP4980399B2/en
Priority to CL2010000817A priority patent/CL2010000817A1/en
Publication of JP2011032516A publication Critical patent/JP2011032516A/en
Application granted granted Critical
Publication of JP4980399B2 publication Critical patent/JP4980399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は銅製錬で排出される転炉ダストの処理方法に関する。   The present invention relates to a method for treating converter dust discharged in copper smelting.

銅製錬の操業では、熔錬炉において溶解したマットを転炉へ移し、転炉で粗銅を製錬する。この粗銅の製錬処理において転炉ダストが排出される。この転炉ダストには、銅が5〜20mass%程度、砒素が2〜4mass%程度、カドミウムが2〜10mass%程度含まれており、希硫酸で浸出した後、溶け残る鉛などと分離される。この浸出後の液中には、銅、砒素、カドミウム、亜鉛、鉄などが溶解している。この溶液から中和処理と硫化処理とを行い、各金属を分離回収する処理方法が特許文献1に記載されている。   In the operation of copper smelting, the mat melted in the smelting furnace is transferred to the converter, and crude copper is smelted in the converter. Converter dust is discharged in this smelting process of crude copper. This converter dust contains about 5 to 20 mass% of copper, about 2 to 4 mass% of arsenic, and about 2 to 10 mass% of cadmium, and is separated from lead that remains undissolved after leaching with dilute sulfuric acid. . Copper, arsenic, cadmium, zinc, iron, etc. are dissolved in the leached liquid. Patent Document 1 discloses a treatment method in which neutralization treatment and sulfidation treatment are performed from this solution to separate and recover each metal.

特開平6−25763号公報JP-A-6-25763

ところで、上記特許文献1の処理において、銅、砒素、カドミウムなどの酸溶性金属は浸出液中に溶け出すが、溶け残る浸出滓中にも銅が残存してしまう。このような浸出滓中から銅の分離回収を行うにはコストがかかるという問題があった。   By the way, in the process of the above-mentioned Patent Document 1, acid-soluble metals such as copper, arsenic, and cadmium are dissolved in the leachate, but copper remains in the undissolved leach. There has been a problem that it is costly to separate and recover copper from such leachables.

そこで、本発明は、酸不溶解の金属を分離する処理における浸出残渣中の銅の含有量を低減し、銅の回収コストを低下することを目的とする。   Then, this invention aims at reducing the copper content in the leaching residue in the process which isolate | separates an acid insoluble metal, and reducing the collection | recovery cost of copper.

かかる課題を解決する本発明の銅転炉ダストの処理方法は、硫酸を加え、エアーまたは蒸気を吹き込むことにより、銅転炉ダスト中の酸不溶解の金属を除去する酸化、酸浸出処理と、前記浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、前記硫化処理により得られた溶液を中和し、カドミウム、及び亜鉛を分離する中和処理と、前記中和処理で分離されたカドミウムと亜鉛とを有機溶媒で分離する分離処理と、を備えたことを特徴とする。 The processing method of the copper converter dust of the present invention that solves such problems is an oxidation and acid leaching treatment for removing acid-insoluble metal in the copper converter dust by adding sulfuric acid and blowing air or steam, Sulfurizing the leaching solution after the leaching treatment to recover copper and arsenic , neutralizing the solution obtained by the sulfiding treatment, and separating cadmium and zinc, and the neutralizing treatment And a separation process for separating the cadmium and zinc separated in step 1 with an organic solvent .

このような処理を行うことにより、酸化、酸浸出処理時の処理溶液に振動を与え、銅、及び砒素の溶解を促し、浸出後液への銅の含有量を増加することができる。このため、浸出残渣から銅を回収するコストを低減できる。また、その後に行われる硫化処理において銅の回収量を増加することができる。さらに、硫化に用いる薬剤を減らしコストを低減できる。なお、酸不溶解の金属は、例えば、鉛、ビスマス、アンチモン等の銅鉱石中に含まれるものである。 By performing such treatment, the treatment solution at the time of oxidation and acid leaching treatment is vibrated, the dissolution of copper and arsenic is promoted, and the content of copper in the solution after leaching can be increased. For this reason, the cost of recovering copper from the leaching residue can be reduced. Moreover, the amount of copper recovered can be increased in the subsequent sulfidation treatment. Furthermore, it is possible to reduce the cost by reducing the chemicals used for sulfurization. The acid-insoluble metal is contained in copper ores such as lead, bismuth, and antimony.

また、銅転炉ダストの処理方法は、前記酸化、酸浸出処理において、処理溶液にエアーおよび、または蒸気を吹き込み、当該処理溶液の温度を60℃以上とすることができる。さらに、この銅転炉ダストの処理方法は、前記酸化、酸浸出処理において、処理溶液1Lに対し、エアーを0.5L/min以上で10時間以上吹き込むことができる。吹き込むエアーまたは蒸気の温度が60℃以上である場合、またはエアー供給量が0.5L/min以上で10時間以上吹き込む場合、処理溶液における酸不溶解の金属と酸溶解の金属の分離が促進される。   Moreover, the processing method of copper converter dust can blow the air and / or vapor | steam into a process solution in the said oxidation and acid leaching process, and can make the temperature of the said process solution 60 degreeC or more. Further, in this copper converter dust treatment method, air can be blown into the treatment solution 1L at 0.5 L / min or more for 10 hours or more in the oxidation and acid leaching treatment. When the temperature of the blown air or steam is 60 ° C. or higher, or when blown for 10 hours or more at an air supply rate of 0.5 L / min or more, separation of the acid-insoluble metal and the acid-soluble metal in the treatment solution is promoted. The

また、銅転炉ダストの処理方法では、前記硫化処理は下記(1)式を満たすように、硫化水素ナトリウム及び/又は硫酸を添加することができる。
(銅のモル数) + 3/2(砒素のモル数) ≦ (硫黄のモル数)(1)
Moreover, in the processing method of copper converter dust, sodium hydrogen sulfide and / or a sulfuric acid can be added so that the said sulfurization process may satisfy | fill following (1) Formula.
(Number of moles of copper) + 3/2 (number of moles of arsenic) ≤ (number of moles of sulfur) (1)

上記(1)式を満たすことにより、硫化処理において処理溶液中の銅イオン、及び砒素イオンのいずれもが硫化物イオンと結合するため、硫化処理後の溶液中から銅、砒素を漏れなく回収することができる。これにより、銅の回収量を増加できる。また、硫化後液中に銅、砒素が含まれていないため後処理が容易になる。   By satisfying the above formula (1), since both copper ions and arsenic ions in the treatment solution are combined with sulfide ions in the sulfidation treatment, copper and arsenic are recovered from the solution after the sulfidation treatment without leakage. be able to. Thereby, the amount of copper recovered can be increased. In addition, since post-sulfurization liquid does not contain copper or arsenic, post-treatment is facilitated.

また、銅転炉ダストの処理方法では、pHが2.0を超えてしまうと十分に硫化処理が行われず、処理後液に銅、砒素が残存してしまうことがある。このため、前記硫化処理は溶液のpHを2.0以下とすることができる。   In the copper converter dust treatment method, if the pH exceeds 2.0, the sulfidation treatment is not sufficiently performed, and copper and arsenic may remain in the solution after treatment. For this reason, the sulfidation treatment can reduce the pH of the solution to 2.0 or less.

上記、銅転炉ダストの処理方法では、前記硫化処理は溶液のpHを0.2以上とすることができる。このようなpHを選択することにより、硫化処理後に行われる中和工程での中和剤の使用量を抑制することができる。   In the copper converter dust treatment method described above, the sulfidation treatment can set the pH of the solution to 0.2 or more. By selecting such pH, the use amount of the neutralizing agent in the neutralization step performed after the sulfurization treatment can be suppressed.

また、本発明の銅転炉ダストの処理方法は、硫酸を加え、エアーおよび、または蒸気を吹き込むことにより、銅転炉ダスト中の酸不溶解の金属を除去する酸化、酸浸出処理と、前記浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、を備え、前記硫化処理後の溶液のORPは90mV以上150mV以下の範囲であることを特徴とする。硫化工程で銅、砒素、中和工程でカドミウム、亜鉛がうまく分離できるのが好ましい。これらの金属は、銅、砒素、カドミウム、亜鉛の順に硫化しやすいが、150mV以上だと液中に砒素が残り、中和物へ混入してしまい、90mV以下だとカドミウムが硫化物に混入してしまう。このため、ORP電位を90mV以上150mV以下として、分離効率を良好とする。 Further, the copper converter dust treatment method of the present invention includes adding sulfuric acid, blowing air and / or steam, thereby removing the acid-insoluble metal in the copper converter dust, and acid leaching treatment, And sulfiding the leaching solution after the leaching treatment to recover copper and arsenic, and the ORP of the solution after the sulfiding treatment is in the range of 90 mV to 150 mV. It is preferable that copper and arsenic can be separated well in the sulfurization step, and cadmium and zinc can be separated well in the neutralization step. These metals easily sulfidize in the order of copper, arsenic, cadmium, and zinc. However, if it is 150 mV or more, arsenic remains in the liquid and enters the neutralized product, and if it is 90 mV or less, cadmium enters the sulfide. End up. For this reason, ORP electric potential shall be 90 mV or more and 150 mV or less, and separation efficiency will be made favorable.

本発明は、酸化・酸浸出処理を行うことにより、酸不溶性の金属の分離処理における浸出残渣中の銅の含有量を低減し、銅の回収コストを低下することができる。   In the present invention, by performing the oxidation / acid leaching treatment, the copper content in the leaching residue in the separation treatment of the acid-insoluble metal can be reduced, and the copper recovery cost can be reduced.

実施例の転炉ダストの処理フローを示した説明図である。It is explanatory drawing which showed the processing flow of the converter dust of an Example. 比較例の転炉ダストの処理フローを示した説明図である。It is explanatory drawing which showed the processing flow of the converter dust of a comparative example. 実施例の各工程の処理後、分離された残渣と後液とに含まれる各金属の含有量を示した説明図である。It is explanatory drawing which showed content of each metal contained in the isolate | separated residue and back liquid after the process of each process of an Example. 比較例の各工程の処理後、分離された残渣と後液とに含まれる各金属の含有量を示した説明図である。It is explanatory drawing which showed content of each metal contained in the isolate | separated residue and back liquid after the process of each process of a comparative example.

以下、本発明を実施するための形態を図面と共に詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本実施例で処理する銅転炉ダストは、銅、砒素、カドミウム、亜鉛、鉛、ビスマス、アンチモン等の金属を含有している。図1は本実施例における転炉ダストの処理フローを示している。   The copper converter dust treated in this example contains metals such as copper, arsenic, cadmium, zinc, lead, bismuth and antimony. FIG. 1 shows a processing flow of converter dust in this embodiment.

転炉ダストの処理の第1工程では、酸化・酸浸出処理を行う(ステップS11)。この酸化・酸浸出処理は、硫酸濃度10g/L以上の硫酸溶液へ転炉ダストを溶解させた後、溶液中にエアーおよび、または、蒸気を導入して溶液を攪拌しつつ、溶液の温度を60℃以上に保ち、10時間以上25時間以内で維持する。このエアーおよび、または、蒸気は処理溶液1Lに対して0.5L/min以上1.25L/min以下で吹き込んでいる。この処理により、銅、砒素、カドミウム、亜鉛が硫酸中に浸出し、主に、鉛、ビスマス、アンチモンなどが残渣として分離する。   In the first step of converter dust processing, oxidation / acid leaching processing is performed (step S11). In this oxidation / acid leaching treatment, after the converter dust is dissolved in a sulfuric acid solution having a sulfuric acid concentration of 10 g / L or more, air and / or steam are introduced into the solution, and the temperature of the solution is adjusted while stirring the solution. Keep at 60 ° C. or higher and maintain for 10 to 25 hours. The air and / or steam is blown at a rate of 0.5 L / min to 1.25 L / min with respect to 1 L of the processing solution. By this treatment, copper, arsenic, cadmium, and zinc are leached into sulfuric acid, and mainly lead, bismuth, antimony, etc. are separated as residues.

第2工程では、酸化・酸浸出後液のpHが0.2〜2.0となるように調整し、硫化処理を行う(ステップS12)。ここでは、硫化後液の酸化還元電位を約100(90〜150)mVとなるように調整する。この第2工程において、銅と砒素が硫化物として分離される。ここで、分離された硫化物は、銅の製錬工程へ戻されて熔錬炉へ投入される。一方、硫化脱銅後液には、カドミウム、亜鉛が溶解している。なお、この工程では、硫酸に代えて、硫化水素ナトリウムを加えても良いし、硫酸、及び硫化水素ナトリウムを加えてもよい。また、このとき加える溶液は、上記(1)式を満たすものであれば良い。硫化処理時に加える硫化物イオンの量は処理する液中の銅、砒素の量に依存するが、上記(1)式を満たすならば、溶液中の銅、砒素を漏れなく硫化物として分離できるからである。例えば、硫酸濃度5g/L(pH0.99)としても良い。但し、後述する中和処理における中和剤の使用量を抑制するため、pHの上限は2.0とすることが望ましい。   In the second step, the pH of the solution after oxidation / acid leaching is adjusted to be 0.2 to 2.0, and sulfidation is performed (step S12). Here, the oxidation-reduction potential of the post-sulfurization solution is adjusted to about 100 (90 to 150) mV. In this second step, copper and arsenic are separated as sulfides. Here, the separated sulfides are returned to the copper smelting process and charged into the smelting furnace. On the other hand, cadmium and zinc are dissolved in the post-sulfurized copper removal solution. In this step, sodium hydrogen sulfide may be added instead of sulfuric acid, or sulfuric acid and sodium hydrogen sulfide may be added. Moreover, the solution added at this time should just satisfy | fill said (1) Formula. The amount of sulfide ions added during the sulfiding treatment depends on the amounts of copper and arsenic in the solution to be treated. However, if the above equation (1) is satisfied, the copper and arsenic in the solution can be separated as a sulfide without leakage. It is. For example, the sulfuric acid concentration may be 5 g / L (pH 0.99). However, it is desirable that the upper limit of the pH is 2.0 in order to suppress the use amount of the neutralizing agent in the neutralization treatment described later.

第3工程では、硫化脱銅後液の中和処理を行う(ステップ13)。中和処理は、硫化脱銅後液へ炭酸カルシウム、酸化カルシウム、または水酸化ナトリウムの溶液を加え、pHを8.5〜11.0とする。この処理により、カドミウム、亜鉛が水酸化物として沈殿し、溶液から分離する。中和後液は製錬総合排水処理の工程へ送られる。   In the third step, the post-sulfur decopperization solution is neutralized (step 13). In the neutralization treatment, a solution of calcium carbonate, calcium oxide or sodium hydroxide is added to the solution after the copper sulfide desulfurization to adjust the pH to 8.5 to 11.0. By this treatment, cadmium and zinc are precipitated as hydroxides and separated from the solution. The neutralized solution is sent to the smelting comprehensive wastewater treatment process.

一方、中和後のカドミウム、亜鉛の水酸化物は、カドミウム/亜鉛分離処理の工程へ送られる。カドミウム/亜鉛分離処理では、カドミウム、亜鉛の水酸化物へ硫酸等の酸化剤を加え浸出させた後、亜鉛の抽出剤を混合し、亜鉛の溶媒抽出を行う(ステップS14)。亜鉛の抽出剤として有機リン酸エステル、例えば商品名PC−88A(大八化学工業社製)が用いられる。この抽出剤を炭化水素系の希釈剤で希釈して調整して用いる。亜鉛抽出時の溶液のpHは2〜2.5程度が好ましい。これよりpHが高いと亜鉛と同時に溶液中のカドミウムが有機相中へ抽出されてしまうためである。また、これよりpHが低いと亜鉛の抽出量が低下してしまう。亜鉛抽出時は抽出剤からプロトンが放出されるため、溶液のpHを維持するため水酸化ナトリウム溶液等のアルカリ剤を添加しながら行われる。   On the other hand, the neutralized cadmium and zinc hydroxide are sent to the cadmium / zinc separation process. In the cadmium / zinc separation treatment, an oxidant such as sulfuric acid is added and leached into cadmium and zinc hydroxide, and then the zinc extractant is mixed to perform solvent extraction of zinc (step S14). As the zinc extractant, an organic phosphate ester, for example, trade name PC-88A (manufactured by Daihachi Chemical Industry Co., Ltd.) is used. This extractant is diluted with a hydrocarbon diluent and used. The pH of the solution during zinc extraction is preferably about 2 to 2.5. If the pH is higher than this, cadmium in the solution is extracted into the organic phase simultaneously with zinc. Moreover, when pH is lower than this, the amount of zinc extraction will fall. At the time of zinc extraction, protons are released from the extractant, so that an alkali agent such as a sodium hydroxide solution is added to maintain the pH of the solution.

次に、比較例を説明する。図3は比較例の処理フローを示した説明図である。まず、転炉ダストを希硫酸(硫酸濃度20g/L)に溶解した後、室温で3.5時間維持し、希硫酸浸出する(S1)。この希硫酸浸出では、残渣として鉛、ビスマス、アンチモン等が分離される。一方、希硫酸浸出後液には、銅、砒素、カドミウム、鉄、亜鉛が溶解している。次に、この希硫酸浸出後液へ炭酸カルシウム、または酸化カルシウムを添加し、水溶液のpHを5.2程度に調整する1次中和処理を行う(S2)。この1次中和処理では、主に砒素及び銅が中和泥として分離される。次に、一次中和後液へ希硫酸(硫酸濃度10g/L)、硫化水素ナトリウムを加え、硫化処理を行う(S3)。硫化処理により、硫化カドミウムが沈殿する。一方、硫化後液に水酸化ナトリウムを加え、pH9.5程度に調整し2次中和処理を行い、中和泥として亜鉛を分離する(S4)。中和後液は、製錬総合排水処理へ送られる。   Next, a comparative example will be described. FIG. 3 is an explanatory diagram showing a processing flow of the comparative example. First, after the converter dust is dissolved in dilute sulfuric acid (sulfuric acid concentration 20 g / L), it is maintained at room temperature for 3.5 hours, and dilute sulfuric acid is leached (S1). In this dilute sulfuric acid leaching, lead, bismuth, antimony and the like are separated as residues. On the other hand, copper, arsenic, cadmium, iron and zinc are dissolved in the dilute sulfuric acid leaching solution. Next, a primary neutralization treatment is performed to add calcium carbonate or calcium oxide to the solution after leaching with dilute sulfuric acid to adjust the pH of the aqueous solution to about 5.2 (S2). In this primary neutralization treatment, arsenic and copper are mainly separated as neutralized mud. Next, dilute sulfuric acid (sulfuric acid concentration 10 g / L) and sodium hydrogen sulfide are added to the solution after primary neutralization to perform sulfuration treatment (S3). Cadmium sulfide is precipitated by the sulfidation treatment. On the other hand, sodium hydroxide is added to the solution after sulfidation, the pH is adjusted to about 9.5, secondary neutralization treatment is performed, and zinc is separated as neutralized mud (S4). The neutralized solution is sent to the smelting comprehensive wastewater treatment.

次に、実施例の効果を比較例と比べつつ説明する。図3、図4は、各工程の処理後、分離された残渣と後液とに含まれる各金属の含有量を示した説明図である。図3は本実施例の処理について示し、図4は比較例の処理について示した説明図である。   Next, effects of the embodiment will be described in comparison with a comparative example. 3 and 4 are explanatory views showing the contents of the respective metals contained in the separated residue and the post-solution after the treatment in each step. FIG. 3 shows the processing of this embodiment, and FIG. 4 is an explanatory diagram showing the processing of the comparative example.

転炉ダスト処理の最初の工程である酸不溶性の金属である鉛、ビスマス、アンチモンの分離処理について説明する。実施例では、酸化・酸浸出を行う。すなわち、濃度30g/Lの硫酸へ転炉ダストを溶解させた後、溶液中にエアーおよび、または蒸気を導入して溶液を攪拌しつつ、溶液を85℃に保ち、25時間維持する。一方、比較例では、希硫酸浸出を行う。すなわち、転炉ダストを濃度20g/Lの希硫酸に溶解させ、室温で3.5時間維持する。   The separation process of lead, bismuth and antimony, which are acid-insoluble metals, which is the first step of converter dust treatment will be described. In the embodiment, oxidation and acid leaching are performed. That is, after the converter dust is dissolved in sulfuric acid having a concentration of 30 g / L, air and / or steam are introduced into the solution and the solution is stirred, and the solution is maintained at 85 ° C. and maintained for 25 hours. On the other hand, in the comparative example, dilute sulfuric acid leaching is performed. That is, converter dust is dissolved in dilute sulfuric acid having a concentration of 20 g / L and maintained at room temperature for 3.5 hours.

本実施例のように、酸化・酸浸出により、鉛、ビスマス、アンチモン等を残渣として分離する処理を行うことにより、比較例と比べて多くの銅が硫酸中に浸出する。比較例の希硫酸浸出の場合、処理後の残渣の銅品位が6.6%である(図4中A)。一方、転炉ダストを酸化・酸浸出した場合の残渣の銅品位は0.8%である(図3中B)。したがって、本実施例は比較例よりも鉛滓残渣の銅品位を低減することができる。鉛、ビスマス、アンチモンを含むこの工程の浸出後の残渣は残渣処理工程へ送られ、さらに各金属の分離処理が行われる。酸化・酸浸出処理を行った本実施例は、残渣の銅品位を低減できたことにより、鉛滓の処理工程における鉛と銅の分離回収する際の硫酸等の薬剤費を低減でき、コスト低減に寄与する。   As in this example, by performing a process of separating lead, bismuth, antimony and the like as a residue by oxidation / acid leaching, more copper is leached in sulfuric acid than in the comparative example. In the case of the dilute sulfuric acid leaching of the comparative example, the copper quality of the residue after the treatment is 6.6% (A in FIG. 4). On the other hand, the copper quality of the residue when the converter dust is oxidized and leached is 0.8% (B in FIG. 3). Therefore, this example can reduce the copper quality of the lead residue from the comparative example. Residues after leaching in this step containing lead, bismuth, and antimony are sent to a residue treatment step, where each metal is further separated. This example, which has undergone oxidation and acid leaching treatment, can reduce the cost of chemicals such as sulfuric acid when separating and recovering lead and copper in the treatment process of lead by reducing the copper quality of the residue. Contribute to.

また、本実施例は酸化・酸浸出を行うことにより、希硫酸浸出を行う比較例より多くの銅が硫酸中に浸出する。これにより、浸出後液中の銅が増加するため、その後の処理において分離、回収される銅が増加する。さらに、本実施例では、酸化、酸浸出処理後に硫化処理を行うことにより、処理溶液中のほとんどの銅を硫化泥として回収する。比較例の場合、銅の分離を行う一次中和処理後に回収される銅の重量は年間542tである(図4中C)。一方、本実施例の場合、銅の分離を行う硫化処理後に回収される銅の重量は年間634tである(図3中D)。ここでの値は、いずれも化合物の重量ではなく、銅単体での重量を示している。従って、年間92tもの銅の増産を図ることができる。これと同量の銅を購入する場合と比較して、銅価、為替の変動にもよるが、3000万円から4500万円ほどのコスト削減ができる。   Further, in this embodiment, by performing oxidation / acid leaching, more copper is leached into sulfuric acid than the comparative example in which dilute sulfuric acid leaching is performed. Thereby, since the copper in the liquid after leaching increases, the copper separated and recovered in the subsequent processing increases. Furthermore, in this embodiment, most of the copper in the treatment solution is recovered as sulfide mud by performing a sulfidation treatment after the oxidation and acid leaching treatment. In the case of the comparative example, the weight of copper recovered after the primary neutralization treatment for separating copper is 542 t per year (C in FIG. 4). On the other hand, in the case of this example, the weight of copper recovered after the sulfiding treatment for separating copper is 634 t per year (D in FIG. 3). The values here are not the weight of the compound, but the weight of copper alone. Therefore, it is possible to increase the production of copper by 92 tons per year. Compared to purchasing the same amount of copper, the cost can be reduced by 30 to 45 million yen, depending on fluctuations in copper price and exchange rate.

また、本実施例、比較例のいずれの場合においても、この工程で分離した銅成分を含む処理残渣(硫化泥、中和泥)は、残渣中の銅を回収する目的で、銅製錬工程の熔錬炉へ戻される。比較例の場合、中和物として得られる銅は年間4380t(図4中E)と多量であり、その分、熔錬炉へ投入される銅鉱石の投入量を減少させてしまう。本実施例の場合、このような残渣(硫化泥)が年間876t(図4中F)と、比較例の残渣(中和泥)の1/5程度まで減少できるため、銅鉱石の投入量の減少を抑制することができる。   Moreover, in any case of a present Example and a comparative example, the process residue (sulfurization mud, neutralization mud) containing the copper component isolate | separated at this process is a process of a copper smelting process in order to collect | recover the copper in a residue. Returned to the smelting furnace. In the case of the comparative example, the amount of copper obtained as a neutralized product is a large amount of 4380 t per year (E in FIG. 4), and accordingly, the amount of copper ore charged into the smelting furnace is reduced accordingly. In the case of this example, since such a residue (sulfurized mud) can be reduced to 876 t (F in FIG. 4) per year and about 1/5 of the residue of the comparative example (neutralized mud), the amount of input copper ore Reduction can be suppressed.

一方、硫化処理後の後液中に銅、砒素がほとんど含まれないため、後続の処理において銅、砒素を除去する作業が不要となり、作業負担が軽減する。   On the other hand, since the copper and arsenic are scarcely contained in the subsequent solution after the sulfidation treatment, the work for removing copper and arsenic in the subsequent treatment becomes unnecessary, and the work load is reduced.

また、本実施例では、硫化工程の処理において硫化水素ナトリウムを用いる分、薬剤費が比較例よりも増加するが、その分、残渣処理工程における銅の処理コストの削減、及び硫化処理における銅の回収量増加による有利な効果が上回る。   Further, in this example, the chemical cost increases as compared with the comparative example because sodium hydrogen sulfide is used in the treatment of the sulfidation step. The advantageous effect due to the increase in the recovery amount exceeds.

また、転炉ダストの処理方法の他の例として、銅、砒素を分離する1次硫化処理をした後、カドミウムと亜鉛とが溶解する1次硫化後液へ2次硫化を行うことにより、カドミウムを分離する転炉ダスト処理方法が提案されている(特開2007-92124)。本実施例では、硫化後液に溶解するカドミウムと亜鉛とを有機リン酸エステルを用いて分離するため、上記2次硫化を行う処理と比較して、硫化に使用する薬剤費を低減することができる。   As another example of the processing method of converter dust, after performing primary sulfidation treatment for separating copper and arsenic, secondary sulfidation is performed to a post-primary sulfidation solution in which cadmium and zinc dissolve, thereby cadmium. There has been proposed a converter dust treatment method for separating the above (JP 2007-92124 A). In this example, cadmium and zinc dissolved in the solution after sulfidation are separated by using an organic phosphate ester, so that the cost of chemicals used for sulfidation can be reduced as compared with the above-described secondary sulfidation treatment. it can.

以上より、本実施例によると、酸浸出後の残渣中の銅の含有量を低減し、回収コストを下げることができる。   As described above, according to this example, the copper content in the residue after acid leaching can be reduced, and the recovery cost can be reduced.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is obvious that various other embodiments are possible within the scope.

A、B 銅の品位
C、D 銅の重量
E 中和泥の重量
F 硫化泥の重量
A, B Copper grade C, D Copper weight E Neutralized mud weight F Sulfided mud weight

Claims (7)

硫酸を加え、エアーおよび、または蒸気を吹き込むことにより、銅転炉ダスト中の酸不溶解の金属を除去する酸化、酸浸出処理と、
前記浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、
前記硫化処理により得られた溶液を中和し、カドミウム、及び亜鉛を分離する中和処理と、
前記中和処理で分離されたカドミウムと亜鉛とを有機溶媒で分離する分離処理と、
を備えたことを特徴とする銅転炉ダストの処理方法。
Oxidation and acid leaching treatment to remove acid-insoluble metal in copper converter dust by adding sulfuric acid and blowing air and / or steam,
Sulfidizing the leaching solution after the leaching treatment and recovering copper and arsenic; and
Neutralizing the solution obtained by the sulfurization treatment, and separating cadmium and zinc; and
A separation treatment for separating cadmium and zinc separated by the neutralization treatment with an organic solvent;
A method for treating copper converter dust, comprising:
前記酸化、酸浸出処理において、処理溶液にエアーおよび、または蒸気を吹き込み、当該処理溶液の温度を60℃以上としたことを特徴とした請求項1記載の銅転炉ダストの処理方法。   The method for treating copper converter dust according to claim 1, wherein air and / or steam are blown into the treatment solution in the oxidation and acid leaching treatment, and the temperature of the treatment solution is set to 60 ° C or higher. 前記酸化、酸浸出処理において、処理溶液1Lに対し、エアーを0.5L/min以上、10時間以上吹き込むことを特徴とした請求項1または2記載の銅転炉ダストの処理方法。 3. The copper converter dust treatment method according to claim 1, wherein in the oxidation and acid leaching treatment, air is blown into the treatment solution 1 L at a rate of 0.5 L / min or more for 10 hours or more. 前記硫化処理は
(銅のモル数) + 3/2(砒素のモル数) ≦ (硫黄のモル数)
となるように、硫化水素ナトリウム及び/又は硫酸を添加することを特徴とした請求項1乃至3のいずれか一項記載の銅転炉ダストの処理方法。
The sulfurization treatment is (number of moles of copper) + 3/2 (number of moles of arsenic) ≤ (number of moles of sulfur)
The method for treating copper converter dust according to any one of claims 1 to 3, wherein sodium hydrogen sulfide and / or sulfuric acid is added so that
前記硫化処理は溶液のpHを2.0以下としたことを特徴とする請求項1乃至4のいずれか一項記載の銅転炉ダストの処理方法。   The copper sulfide dust treatment method according to any one of claims 1 to 4, wherein the sulfiding treatment has a solution pH of 2.0 or less. 前記硫化処理は溶液のpHを0.2以上としたことを特徴とする請求項4または5記載の銅転炉ダストの処理方法。   6. The copper converter dust treatment method according to claim 4 or 5, wherein the sulfidation treatment has a solution pH of 0.2 or more. 硫酸を加え、エアーおよび、または蒸気を吹き込むことにより、銅転炉ダスト中の酸不溶解の金属を除去する酸化、酸浸出処理と、
前記浸出処理後の浸出液を硫化し、銅、及び砒素を回収する硫化処理と、
を備え、
前記硫化処理後の溶液のORPは90mV以上150mV以下の範囲であることを特徴とする銅転炉ダストの処理方法。
Oxidation and acid leaching treatment to remove acid-insoluble metal in copper converter dust by adding sulfuric acid and blowing air and / or steam,
Sulfidizing the leaching solution after the leaching treatment and recovering copper and arsenic; and
With
The method for treating copper converter dust, wherein the ORP of the solution after the sulfidation treatment is in a range of 90 mV to 150 mV.
JP2009178637A 2009-07-31 2009-07-31 Copper converter dust treatment method Active JP4980399B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009178637A JP4980399B2 (en) 2009-07-31 2009-07-31 Copper converter dust treatment method
CL2010000817A CL2010000817A1 (en) 2009-07-31 2010-07-30 Method for processing copper converter powder comprising carrying out oxidation and leaching process with acid of the converter powder by adding h2so4 and introducing air or steam and performing a sulfidization process to sulfur the leaching solution, and recover the copper and the arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178637A JP4980399B2 (en) 2009-07-31 2009-07-31 Copper converter dust treatment method

Publications (2)

Publication Number Publication Date
JP2011032516A JP2011032516A (en) 2011-02-17
JP4980399B2 true JP4980399B2 (en) 2012-07-18

Family

ID=43761880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178637A Active JP4980399B2 (en) 2009-07-31 2009-07-31 Copper converter dust treatment method

Country Status (2)

Country Link
JP (1) JP4980399B2 (en)
CL (1) CL2010000817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975177A (en) * 2015-08-01 2015-10-14 西安西北有色地质研究院有限公司 Method for extracting copper from bound-type oxidized copper ore by wet process
CN106756056A (en) * 2016-11-22 2017-05-31 昆明理工大学 A kind of method of Copper making white cigarette dirt dearsenification
CN112063850A (en) * 2020-08-31 2020-12-11 中南大学 Method for recovering valuable metals after alkaline leaching and dehalogenation of circuit board smelting smoke dust

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835961B2 (en) * 2011-06-21 2015-12-24 国立大学法人秋田大学 Metal leaching method
JP5647158B2 (en) * 2012-02-23 2014-12-24 Jx日鉱日石金属株式会社 Method for treating copper-containing impurity mass discharged from lead smelting and method for refining lead using the same
JP6015824B2 (en) * 2015-07-30 2016-10-26 住友金属鉱山株式会社 Processing method of copper smelting ash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119438B (en) * 2005-05-03 2008-11-14 Outokumpu Oy Method for recovering precious metals and arsenic from solution
JP4817005B2 (en) * 2005-09-29 2011-11-16 Jx日鉱日石金属株式会社 Copper converter dust treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975177A (en) * 2015-08-01 2015-10-14 西安西北有色地质研究院有限公司 Method for extracting copper from bound-type oxidized copper ore by wet process
CN104975177B (en) * 2015-08-01 2017-04-19 西安西北有色地质研究院有限公司 Method for extracting copper from bound-type oxidized copper ore by wet process
CN106756056A (en) * 2016-11-22 2017-05-31 昆明理工大学 A kind of method of Copper making white cigarette dirt dearsenification
CN112063850A (en) * 2020-08-31 2020-12-11 中南大学 Method for recovering valuable metals after alkaline leaching and dehalogenation of circuit board smelting smoke dust
CN112063850B (en) * 2020-08-31 2021-11-05 中南大学 Method for recovering valuable metals after alkaline leaching and dehalogenation of circuit board smelting smoke dust

Also Published As

Publication number Publication date
CL2010000817A1 (en) 2010-12-31
JP2011032516A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4921529B2 (en) Copper converter dust treatment method
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP4924754B2 (en) Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel
JP4980399B2 (en) Copper converter dust treatment method
EP3279344B1 (en) Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
Antuñano et al. Fluoride removal from Double Leached Waelz Oxide leach solutions as alternative feeds to Zinc Calcine leaching liquors in the electrolytic zinc production process
JP5477009B2 (en) Method for separating and recovering copper from copper-containing iron sulfides
JP7016463B2 (en) How to collect tellurium
JP6953988B2 (en) How to remove sulfide
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP5892301B2 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
WO2017110572A1 (en) Method for removing sulfidizing agent
AU2014380678B2 (en) Facility of manufacturing sulphide and method of manufacturing same
JP6233177B2 (en) Method for producing rhenium sulfide
US10689732B2 (en) Methods for controlling iron via magnetite formation in hydrometallurgical processes
Defreyne et al. The role of iron in the CESL process
JP6724351B2 (en) How to remove sulfiding agent
WO2013187367A1 (en) Neutralization method
Wen et al. Options to recover high-purity MnO2 from leach liquors of manganese dust containing Mn3O4 and iron and zinc oxide as minor impurities
JP6163392B2 (en) Germanium recovery method
JP2020029589A (en) Odor-reducing method in wet refining method of nickel oxide ore
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore
Alguacil et al. Management of a copper smelter dust for copper profitability
JP2019181349A (en) Sulfurizing agent removal method, and wet-type method of refining nickel oxide ore

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250