JP6365838B2 - Cobalt nickel leaching method - Google Patents

Cobalt nickel leaching method

Info

Publication number
JP6365838B2
JP6365838B2 JP2014241893A JP2014241893A JP6365838B2 JP 6365838 B2 JP6365838 B2 JP 6365838B2 JP 2014241893 A JP2014241893 A JP 2014241893A JP 2014241893 A JP2014241893 A JP 2014241893A JP 6365838 B2 JP6365838 B2 JP 6365838B2
Authority
JP
Japan
Prior art keywords
leaching
cobalt
manganese
nickel
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014241893A
Other languages
Japanese (ja)
Other versions
JP2016102251A (en
Inventor
始 川崎
始 川崎
西村 建二
建二 西村
哉智 田村
哉智 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014241893A priority Critical patent/JP6365838B2/en
Publication of JP2016102251A publication Critical patent/JP2016102251A/en
Application granted granted Critical
Publication of JP6365838B2 publication Critical patent/JP6365838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、コバルトおよび/またはニッケルと共にマンガンを含有する材料から、マンガンの浸出を抑制して、コバルトおよび/またはニッケルを選択的に浸出させる方法に関する。   The present invention relates to a method for selectively leaching cobalt and / or nickel from a material containing manganese together with cobalt and / or nickel while suppressing leaching of manganese.

近年、リチウムイオン二次電池が広く用いられており、リチウムイオン二次電池の正極材活物質はコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等、またはこれらの複合酸化物によって形成されている。このように正極活物質にはリチウムと共にコバルト、ニッケル、マンガン等の有価金属が含まれており、使用済みリチウムイオン二次電池などからこれらの有価金属を回収することが求められている。   In recent years, lithium ion secondary batteries have been widely used, and the positive electrode active material of lithium ion secondary batteries is made of lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, or a composite oxide thereof. Is formed. Thus, the positive electrode active material contains valuable metals such as cobalt, nickel, and manganese together with lithium, and it is required to recover these valuable metals from a used lithium ion secondary battery.

使用済みリチウムイオン二次電池から、リチウム、コバルト、ニッケル等を回収するには、該二次電池から分離した正極材活物質を塩酸、硫酸、硝酸などの鉱酸に溶解して上記有価金属を酸浸出し、この浸出液から化学的にリチウム、コバルト、ニッケル、マンガンを分離して回収する方法が知られている。   To recover lithium, cobalt, nickel, etc. from a used lithium ion secondary battery, the positive electrode active material separated from the secondary battery is dissolved in a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and the above valuable metal is removed. Acid leaching and a method of chemically separating and recovering lithium, cobalt, nickel, and manganese from this leaching solution are known.

鉱酸を用いて正極材活物質に含まれる上記有価金属を浸出させる方法において、リチウムは容易に浸出することができるが、コバルト、ニッケル、およびマンガンは該二次電池が充放電されることによって様々な価数になるため、十分に浸出させることが難しい。特にコバルトやニッケルは3価以上の状態では浸出し難い。このためアスコルビン酸、亜硫酸ナトリウム等の還元剤、過酸化水素水等の酸化剤、または黒鉛、活性炭等の固定炭素等によって価数を調整して溶解させることが知られている(特許文献1等)。   In the method of leaching the valuable metal contained in the positive electrode active material using a mineral acid, lithium can be easily leached, but cobalt, nickel, and manganese are charged and discharged by the secondary battery. Because it has various valences, it is difficult to leached sufficiently. In particular, cobalt and nickel are difficult to leach out in a trivalent or higher state. For this reason, it is known to adjust the valence by using a reducing agent such as ascorbic acid or sodium sulfite, an oxidizing agent such as hydrogen peroxide, or fixed carbon such as graphite or activated carbon (Patent Document 1, etc.). ).

この酸浸出液からリチウム、コバルト、ニッケル等を分離回収する方法としては、溶媒抽出法、沈殿法、または沈殿法と溶媒抽出法の組み合わせた方法などが知られている。
溶媒抽出による抽出分離方法は、先ず上記酸浸出液から、D2EHPAまたはPC-88Aを抽出剤としてマンガンを選択的に抽出する。この抽出残液にはコバルト、ニッケル、リチウムが残るので、再びPC-88Aを抽出剤としてコバルトおよびニッケルを抽出する(特許文献2、非特許文献1等)。最終的な抽出残液にはリチウムが残るので、該抽出残液に炭酸を加え、炭酸リチウムを沈澱させて回収する。
Known methods for separating and recovering lithium, cobalt, nickel, etc. from the acid leaching solution include a solvent extraction method, a precipitation method, or a combination of the precipitation method and the solvent extraction method.
In the extraction separation method by solvent extraction, first, manganese is selectively extracted from the acid leaching solution using D2EHPA or PC-88A as an extractant. Since cobalt, nickel, and lithium remain in this extraction residue, cobalt and nickel are extracted again using PC-88A as an extractant (Patent Document 2, Non-Patent Document 1, etc.). Since lithium remains in the final extraction residual liquid, carbonic acid is added to the extraction residual liquid, and lithium carbonate is precipitated and recovered.

沈殿法による分離は、使用済みリチウムイオン二次電池の電極活物質を硫酸浸出し、該浸出液に硫化物を添加して硫化銅を沈澱させて分離し、その液分にアルカリを添加して水酸化アルミニウムを沈澱させて分離し、その液分に次亜塩素酸ナトリウム等の酸化剤を添加して二酸化マンガンを沈殿させて分離し、コバルトおよびニッケルを回収する方法が提案されている(特願2014−064242号)。   Separation by the precipitation method involves leaching the electrode active material of a used lithium ion secondary battery with sulfuric acid, adding sulfide to the leaching solution to precipitate copper sulfide, separating it, adding alkali to the liquid, and adding water. A method has been proposed in which aluminum oxide is precipitated and separated, and an oxidizing agent such as sodium hypochlorite is added to the liquid to precipitate and separate manganese dioxide, thereby recovering cobalt and nickel (Japanese Patent Application). 2014-064242).

特開2006−24482号公報JP 2006-24482 A 特開2013−76108号公報JP 2013-76108 A 特願2014−064242号Japanese Patent Application No. 2014-064242

Separetion of Co,Ni and Cu by solvent extraction using di-(2-ethylhexyl)phosphonic acid,PC 88A , N.V.Thakur, Hydrometallurgy, 48, 1998, p277-289。Separetion of Co, Ni and Cu by solvent extraction using di- (2-ethylhexyl) phosphonic acid, PC 88A, N.V. Thakur, Hydrometallurgy, 48, 1998, p277-289.

リチウムイオン二次電池の製造コストを低減するため、コバルト/ニッケルの使用量を減らし、その代わりにマンガン使用量を増加させる傾向にある。このため正極材活物質中の有価金属を分離回収するには、効率よくマンガンを分離することが必要である。   In order to reduce the manufacturing cost of the lithium ion secondary battery, the amount of cobalt / nickel used tends to be reduced, and instead the amount of manganese used tends to be increased. For this reason, in order to separate and recover valuable metals in the positive electrode active material, it is necessary to efficiently separate manganese.

特許文献1の酸浸出方法は、還元剤や酸化剤の薬液を多量に消費するので経済的ではない。特に、コバルトやニッケルと比較して金属価値の低いマンガンが多く含まれる場合には、特許文献1の酸浸出方法は還元剤や酸化剤がマンガンの処理に消費されるので処理コストが嵩む問題がある。   The acid leaching method of Patent Document 1 is not economical because it consumes a large amount of a chemical solution of a reducing agent or an oxidizing agent. In particular, when a large amount of manganese having a low metal value compared to cobalt or nickel is contained, the acid leaching method of Patent Document 1 has a problem that the processing cost increases because the reducing agent and the oxidizing agent are consumed for the processing of manganese. is there.

特許文献2および非特許文献1の溶媒抽出法は、最初にマンガンを抽出分離するので、酸浸出液にマンガンが多量に含まれているとマンガン抽出の負担が増加し、しかも抽出したマンガンにコバルトやニッケルが多く含まれるため、コバルトやニッケルの回収率が低下する。また、特許文献3の沈殿法は、溶媒抽出法のような薬液の負担が無く、効率よくコバルト、ニッケルを回収できる利点があるが、二酸化マンガンの沈殿時にコバルトの一部が酸化されて水酸化コバルトが沈殿し、コバルトの回収率が低下する傾向がある。   In the solvent extraction methods of Patent Document 2 and Non-Patent Document 1, since manganese is first extracted and separated, if the acid leaching solution contains a large amount of manganese, the burden of manganese extraction increases, and the extracted manganese has cobalt or Since a large amount of nickel is contained, the recovery rate of cobalt and nickel decreases. In addition, the precipitation method of Patent Document 3 has the advantage of efficiently recovering cobalt and nickel without the burden of the chemical solution as in the solvent extraction method, but a part of cobalt is oxidized during the precipitation of manganese dioxide, so Cobalt precipitates and the cobalt recovery tends to decrease.

本発明は、従来の回収方法における上記問題を解決したものであり、コバルトおよび/またはニッケルと共にマンガンを含有する材料から、マンガンの浸出を抑制して、コバルトおよび/またはニッケルを選択的に浸出させる方法を提供する。
なお、以下の説明において、Co・Niの表記は、材料にコバルトまたはニッケルの何れか一方が含まれている場合にはその材料に含まれているコバルトまたはニッケルの意味であり、材料にコバルトおよびニッケルの両方が含まれている場合にはその材料に含まれているコバルトおよびニッケルの意味である。
This invention solves the said problem in the conventional collection | recovery method, suppresses leaching of manganese from the material containing manganese with cobalt and / or nickel, and selectively leaches cobalt and / or nickel. Provide a method.
In the following description, the notation of Co · Ni means the cobalt or nickel contained in the material when the material contains either cobalt or nickel. When both nickel is contained, it means the cobalt and nickel contained in the material.

本発明は、以下の構成からなるCo・Niの浸出方法に関する。
〔1〕Co・Niと共にMnを含有する材料からCo・Niを浸出させる方法であって、pH2.5以下の液性下で上記材料を鉱酸に溶解して、該鉱酸溶液中のマンガン、コバルトないしニッケルの各濃度を測定し、該鉱酸溶液中のマンガンイオン量(マンガン濃度)と、未溶解固形分に含まれるコバルト量、ニッケル量、あるいはコバルトとニッケルの合計量とのモル比(Mn/Co・Niモル比)が0.5倍〜1.0倍になるように、該モル比が0.5倍未満のときはマンガンイオン源を供給し、該モル比が1.0倍を超えるときは3価コバルト源を供給し、上記モル比の範囲に調整してCo・NiによるMnの酸化を進め、Mnを二酸化マンガンにして液中のマンガン濃度を低減し、Co・Niが二価に還元されることによって、Co・Niの浸出を進めることを特徴とするCo・Niの浸出方法。
〔2〕上記材料の鉱酸溶解液の温度を50℃以上にし、該液のpHを1.0以下に調整して、該鉱酸溶液中のマンガンイオン量と、未溶解固形分に含まれるコバルト量、ニッケル量、あるいはコバルトとニッケルの合計量とのモル比(Mn/Co・Niモル比)を0.6倍〜0.8倍に調整してCo・NiによるMnの酸化を進める上記[1]に記載するCo・Niの浸出方法。
〔3〕Co・Niと共にMnを含有する材料が、使用済みリチウムイオン二次電池の正極材活物質である上記[1]または上記[2]の何れかに記載するCo・Niの浸出方法。
〔4〕Mnの浸出率が5%以下であって、Co・Niの浸出率が40%以上の浸出液にする上記[1]〜上記[3]の何れかに記載するCo・Niの浸出方法。
The present invention relates to a Co · Ni leaching method having the following configuration.
[1] A method for leaching Co · Ni from a material containing Mn together with Co · Ni, wherein the material is dissolved in mineral acid under a liquidity of pH 2.5 or lower, and manganese in the mineral acid solution is obtained. , cobalt or measures each concentration of nickel, the molar ratio of manganese ions of the mineral acid solution and (manganese concentration), the amount of cobalt contained in the undissolved solids, and the total amount of nickel content, or cobalt and nickel When the molar ratio is less than 0.5 times, a manganese ion source is supplied so that the (Mn / Co · Ni molar ratio) is 0.5 times to 1.0 times , and the molar ratio is 1.0. If it exceeds twice, a trivalent cobalt source is supplied and adjusted to the above molar ratio range to promote Mn oxidation by Co.Ni. Mn is changed to manganese dioxide to reduce the manganese concentration in the liquid. Is reduced to bivalent, so that Co.Ni Leaching method of Co · Ni, characterized in that advancing the leaching.
[2] The temperature of the mineral acid solution of the above material is set to 50 ° C. or more, and the pH of the solution is adjusted to 1.0 or less, so that it is contained in the amount of manganese ions in the mineral acid solution and the undissolved solid content. Cobalt amount, nickel amount, or molar ratio of cobalt and nickel (Mn / Co · Ni molar ratio) is adjusted to 0.6 to 0.8 times to promote oxidation of Mn by Co · Ni The Co · Ni leaching method according to [1].
[3] The Co · Ni leaching method according to either [1] or [2] above, wherein the material containing Mn together with Co · Ni is a positive electrode active material of a used lithium ion secondary battery.
[4] The Co / Ni leaching method according to any one of the above [1] to [3], wherein the leaching solution has a leaching rate of Mn of 5% or less and a Co / Ni leaching rate of 40% or more. .

〔具体的な説明〕
本発明は、Co・Niと共にMnを含有する材料からCo・Niを浸出させる方法であって、pH2.5以下の液性下で上記材料を鉱酸に溶解して、該鉱酸溶液中のマンガン、コバルトないしニッケルの各濃度を測定し、該鉱酸溶液中のマンガンイオン量(マンガン濃度)と、未溶解固形分に含まれるコバルト量、ニッケル量、あるいはコバルトとニッケルの合計量とのモル比(Mn/Co・Niモル比)が0.5倍〜1.0倍になるように、該モル比が0.5倍未満のときはマンガンイオン源を供給し、該モル比が1.0倍を超えるときは3価コバルト源を供給し、上記モル比の範囲に調整してCo・NiによるMnの酸化を進め、Mnを二酸化マンガンにして液中のマンガン濃度を低減し、Co・Niが二価に還元されることによって、Co・Niの浸出を進めることを特徴とするCo・Niの浸出方法である。
[Specific description]
The present invention is a method of leaching Co.Ni from a material containing Mn together with Co.Ni, wherein the material is dissolved in a mineral acid under a liquidity of pH 2.5 or less , moles of manganese, each concentration of the cobalt or nickel were measured, manganese ion amount of the mineral acid solution and (manganese concentration), the amount of cobalt contained in the undissolved solids, and the total amount of nickel content, or cobalt and nickel When the molar ratio is less than 0.5 times, a manganese ion source is supplied so that the molar ratio (Mn / Co / Ni molar ratio) is 0.5 to 1.0 . When it exceeds 0 times, a trivalent cobalt source is supplied and adjusted to the above molar ratio range to promote oxidation of Mn by Co.Ni. Mn is changed to manganese dioxide to reduce the manganese concentration in the liquid. By reducing Ni to bivalent, Co. A leaching method Co · Ni, characterized in that advancing the leaching of i.

Co・Niと共にMnを含有する材料とは、コバルトとマンガンを含有する材料、ニッケルとマンガンを含有する材料、またはコバルトおよびニッケルとマンガンを含有する材料であり、例えば、リチウムイオン二次電池の使用済み正極材などである。該正極材に含まれている活物質は、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、これらの複合酸化物(LiCo1/3Ni1/3Mn1/3)などによって形成されている。 The material containing Mn together with Co / Ni is a material containing cobalt and manganese, a material containing nickel and manganese, or a material containing cobalt, nickel and manganese. For example, use of a lithium ion secondary battery Used positive electrode material. The active material contained in the positive electrode material is lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), or a composite oxide thereof (LiCo 1/3 Ni 1). / 3 Mn 1/3 O 2 ).

本発明の浸出方法は、Co・Niと共にMnを含有する材料として、リチウムイオン二次電池の使用済み正極材であって、(イ)コバルト酸リチウムを含む正極材とマンガン酸リチウムを含む正極材の混合物、(ロ)ニッケル酸リチウムを含む正極材とマンガン酸リチウムを含む正極材の混合物、(ハ)コバルト、ニッケル、およびマンガンを含む三元系のリチウム複合酸化物などを用いることができる。   The leaching method of the present invention is a used positive electrode material of a lithium ion secondary battery as a material containing Mn together with Co / Ni, and (a) a positive electrode material containing lithium cobaltate and a positive electrode material containing lithium manganate (B) a mixture of a positive electrode material containing lithium nickelate and a positive electrode material containing lithium manganate, (c) a ternary lithium composite oxide containing cobalt, nickel, and manganese.

本発明の浸出方法は、Co・Niと共にMnを含有する材料、例えば、使用済み上記正極材を塩酸、硫酸、硝酸などの鉱酸に溶解し、正極材活物質に含まれているリチウム、コバルト、ニッケル、マンガンを溶出させる。例えば、上記正極材を硫酸で溶解すると正極材活物質を形成しているコバルト酸リチウムは次式[1]のように硫酸リチウムと硫酸コバルトに分解して1価の硫酸リチウム(I)と2価の硫酸コバルト(II)が溶出する。   In the leaching method of the present invention, a material containing Mn together with Co / Ni, for example, the above-described positive electrode material is dissolved in a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and lithium, cobalt contained in the positive electrode active material. Elutes nickel and manganese. For example, when the positive electrode material is dissolved in sulfuric acid, the lithium cobalt oxide forming the positive electrode active material is decomposed into lithium sulfate and cobalt sulfate as shown in the following formula [1], and monovalent lithium sulfate (I) and 2 Valent cobalt (II) sulfate is eluted.

LiCoO2 + 3/2H2SO4 + e → 1/2Li2SO4 + CoSO4 + H2O + OH ・・・[1] LiCoO 2 + 3 / 2H 2 SO 4 + e - → 1 / 2Li 2 SO 4 + CoSO 4 + H 2 O + OH - ··· [1]

また正極材活物質であるコバルト酸リチウム中のコバルトは充放電の繰り返しによって3価または4価になっている。この3価または4価のコバルトは鉱酸に溶解し難いので固形分のまま残るが、2価に還元されると次式[2]、次式[3]に示すように溶解する。   Further, cobalt in the lithium cobaltate, which is the positive electrode active material, is trivalent or tetravalent by repeated charge and discharge. The trivalent or tetravalent cobalt is hardly dissolved in the mineral acid and remains as a solid content. However, when the trivalent or tetravalent cobalt is reduced to divalent, it is dissolved as shown in the following formulas [2] and [3].

CoO+4H+2e → Co2++2HO ・・・[2]
CoO+6H+2e→ 2Co2++3HO ・・・[3]
CoO 2 + 4H + + 2e - → Co 2+ + 2H 2 O ··· [2]
Co 2 O 3 + 6H + + 2e → 2Co 2+ + 3H 2 O... [3]

一方、正極材活物質のマンガン酸リチウム(LiMn)は次式[4]に示すように、硫酸に溶解して硫酸リチウム(II)と硫酸マンガン(II)が溶出する。この溶出したマンガンは液中に酸化物質が存在すると酸化されて二酸化マンガン(IV)を生じる(式[5])。 On the other hand, lithium manganate (LiMn 2 O 4 ) as the positive electrode active material dissolves in sulfuric acid and elutes lithium (II) sulfate and manganese (II) sulfate as shown in the following formula [4]. The eluted manganese is oxidized when an oxidizing substance is present in the liquid to produce manganese (IV) dioxide (formula [5]).

LiMnO+8H+3e→ Li+2Mn2++4HO ・・・[4]
Mn2++2HO → MnO↓+4H +2e ・・・[5]
LiMn 2 O 3 + 8H + + 3e → Li + + 2Mn 2+ + 4H 2 O ・ ・ ・ [4]
Mn 2+ + 2H 2 O → MnO 2 ↓ + 4H + + 2e - ··· [5]

コバルトとマンガンが共存する系では、図1に示すように、マンガンの酸化還元電位はコバルトの酸化還元電位より低いので、次式[6][7]のように、2価のマンガンは3価または4価のコバルトによって酸化されて二酸化マンガン(IV)を生じ、3価または4価のコバルトは2価に還元されて液中に溶出する。   In a system in which cobalt and manganese coexist, as shown in FIG. 1, since the oxidation-reduction potential of manganese is lower than the oxidation-reduction potential of cobalt, bivalent manganese is trivalent as shown in the following formulas [6] [7]. Or it is oxidized by tetravalent cobalt to produce manganese dioxide (IV), and trivalent or tetravalent cobalt is reduced to divalent and eluted into the liquid.

CoO+ Mn2+ → Co2+ + MnO ・・・[6]
CoO+ 2H + Mn2+ → 2Co2+ + MnO↓ + HO ・・・[7]
CoO 2 + Mn 2+ → Co 2+ + MnO 2 ··· [6]
Co 2 O 3 + 2H + + Mn 2+ → 2Co 2+ + MnO 2 ↓ + H 2 O ・ ・ ・ [7]

正極材活物質のニッケル酸リチウムもコバルト酸リチウムと同様であり、次式[8]に示すように鉱酸に溶解してニッケルを溶出する。また、充放電によって生じた3価または4価のニッケルは、ニッケルとマンガンが共存する系では、次式[9][10]のように、マンガンの酸化によって3価、4価のニッケルが2価に還元されて液中に溶出する。   The positive electrode active material lithium nickelate is the same as the lithium cobaltate and dissolves in mineral acid to elute nickel as shown in the following formula [8]. In addition, trivalent or tetravalent nickel generated by charging / discharging, in a system in which nickel and manganese coexist, trivalent and tetravalent nickel is 2 by oxidation of manganese as shown in the following formulas [9] and [10]. It is reduced to a valence and eluted in the liquid.

LiNiO+ 3H+e → Li+Ni2++ HO + OH ・・・[8]
NiO+ Mn2+ → Ni2+ + MnO ・・・[9]
NiO+ 2H + Mn2+ → 2Ni2+ + MnO↓ + HO ・・[10]
LiNiO 2 + 3H + + e → Li + + Ni 2 + + H 2 O + OH [8]
NiO 2 + Mn 2+ → Ni 2+ + MnO 2 ··· [9]
Ni 2 O 3 + 2H + + Mn 2+ → 2Ni 2+ + MnO 2 ↓ + H 2 O ・ ・ [10]

本発明の浸出方法は、Co・Niと共にMnを含有する材料、例えば、正極材活物質のコバルト酸リチウムとマンガン酸リチウムの混合物、あるいはリチウム、コバルト、およびマンガンの複合酸化物を鉱酸に溶解し、pH2.5以下の液性下で浸出を行う。   The leaching method of the present invention dissolves a material containing Mn together with Co / Ni, for example, a mixture of lithium cobaltate and lithium manganate as a positive electrode active material, or a composite oxide of lithium, cobalt, and manganese in mineral acid. And leaching is performed under liquidity at pH 2.5 or lower.

正極材活物質のコバルト酸リチウムは鉱酸に溶解して2価コバルトが浸出する。浸出初期は、3価または4価のコバルトの大部分は未溶解の状態であるが、この3価または4価の未溶解なコバルトが液中のマンガン(II)イオンと反応して2価に還元されると、コバルトの浸出が進み、一方、マンガンは2価から4価へ酸化されることによって二酸化マンガンの沈澱が生成し、液中のマンガン濃度は次第に低下する。従って、コバルトの浸出率が高く、マンガンの浸出率が低い浸出液を得ることができる。   The positive active material lithium cobaltate dissolves in the mineral acid, and divalent cobalt is leached. At the beginning of leaching, most of the trivalent or tetravalent cobalt is in an undissolved state, but this trivalent or tetravalent undissolved cobalt reacts with manganese (II) ions in the liquid to become divalent. When reduced, cobalt leaches out, while manganese is oxidized from divalent to tetravalent to produce manganese dioxide precipitates, and the manganese concentration in the liquid gradually decreases. Accordingly, a leaching solution having a high cobalt leaching rate and a low manganese leaching rate can be obtained.

コバルト酸リチウムとマンガン酸リチウムの混合物を鉱酸に溶解した場合、あるいはリチウム、ニッケル、およびマンガンの複合酸化物を鉱酸に溶解した場合にも、コバルトの場合と同様であり、浸出初期には未溶解の3価または4価のニッケル)が、液中のマンガン(II)イオンと反応して2価に還元されると、ニッケルの浸出が進み、マンガンは2価から4価へ酸化されることによって二酸化マンガン(IV)の沈澱が生成し、液中のマンガン濃度は次第に低下する。   When a mixture of lithium cobaltate and lithium manganate is dissolved in mineral acid, or when a composite oxide of lithium, nickel, and manganese is dissolved in mineral acid, it is the same as in the case of cobalt. When undissolved trivalent or tetravalent nickel) reacts with manganese (II) ions in the liquid and is reduced to divalent, nickel leaching proceeds and manganese is oxidized from divalent to tetravalent. As a result, precipitation of manganese dioxide (IV) is generated, and the manganese concentration in the liquid gradually decreases.

図2に示すように、コバルト、ニッケル、およびマンガンの三元共存系においても同様であり、浸出時間の経過によってマンガンによるコバルトおよびニッケルの還元によって次第にコバルトとニッケルの浸出が進み、コバルト濃度およびニッケル濃度は高くなり、一方、二酸化マンガン(IV)の生成によって液中のマンガン濃度は低下する。   As shown in FIG. 2, the same applies to the ternary coexistence system of cobalt, nickel, and manganese, and the leaching of cobalt and nickel gradually progresses due to the reduction of cobalt and nickel by manganese as the leaching time elapses. On the other hand, the concentration of manganese in the liquid decreases due to the production of manganese (IV) dioxide.

本発明の浸出方法では、Co・Niと共にMnを含有する材料を鉱酸に溶解し、pH2.5以下の液性下で浸出を行う。図1に示すように、pHが2.5よりも高くなると、水酸化コバルト(III)が生じるので液中のコバルト濃度が低下する。ニッケルも同様の傾向を示すので好ましくない。   In the leaching method of the present invention, a material containing Mn together with Co.Ni is dissolved in mineral acid, and leaching is performed under a liquid property of pH 2.5 or lower. As shown in FIG. 1, when the pH is higher than 2.5, cobalt hydroxide (III) is generated, so that the cobalt concentration in the liquid is lowered. Nickel is not preferable because it shows the same tendency.

本発明の浸出方法において液温は50℃以上が良く、60℃以上が好ましい。例えば、コバルト浸出率が液温50℃において浸出5時間で約26%、浸出10時間で約40%であるとき、液温60℃では浸出5時間で約60%、浸出10時間で約90%に向上し、液温75℃では浸出5時間で約90%に向上する。   In the leaching method of the present invention, the liquid temperature is preferably 50 ° C. or higher, and preferably 60 ° C. or higher. For example, when the cobalt leaching rate is about 26% at 5 hours of leaching at a liquid temperature of 50 ° C. and about 40% at 10 hours of leaching, about 60% at 5 hours of leaching at a liquid temperature of 60 ° C. and about 90% at 10 hours of leaching. When the liquid temperature is 75 ° C., the leaching rate is improved to about 90% in 5 hours.

本発明の浸出方法において、浸出開始時の鉱酸溶液中のマンガン(II)イオン量と、上記出発材料の未溶解固形分に含まれるコバルト量またはニッケル量とのモル比、あるいは上記出発材料にコバルトおよびニッケルが含まれる場合には、上記マンガン(II)イオン量と、コバルトとニッケルの合計量とのモル比(これらのモル比をMn/Co・Niモル比と云う)は0.5倍〜1.0倍が良く、0.6倍〜0.8倍が好ましい。未溶解固形分に含まれるCo・Ni量は、出発材料に含まれるCo・Ni量から浸出開始時の液中のCo・Ni量を差し引いて求めることができる。

In leaching method of the present invention, and manganese (II) ion amount of mineral acid solution at the start of leaching, the molar ratio of the cobalt content and nickel content contained in the undissolved solids of the starting material, or the starting material When cobalt and nickel are included , the molar ratio of the above manganese (II) ion amount to the total amount of cobalt and nickel (these molar ratios are referred to as Mn / Co · Ni molar ratio) is 0.5 times. ˜1.0 times is good, and 0.6 times to 0.8 times is preferable. The amount of Co · Ni contained in the undissolved solid content can be obtained by subtracting the amount of Co · Ni in the liquid at the start of leaching from the amount of Co · Ni contained in the starting material.

上記正極材を鉱酸に溶解すると、溶解開始から5分〜10分程度で該正極材のほぼ半分量が溶解するので、該鉱酸溶液中のマンガン濃度、コバルト濃度ないしニッケル濃度を測定し、Mn/Co・Niモル比が0.5倍〜1.0倍になるように、好ましくは0.6倍〜0.8倍になるように調整すると良い。Mn/Co・Niモル比を0.5倍〜1.0倍、好ましくは0.6倍〜0.8倍に調整することによって、未溶解固形分に含まれるコバルト・ニッケルの浸出が進む。未溶解固形分に含まれるコバルト・ニッケルは主に3価、4価であり、これらがマンガン(II)イオンと反応して2価に還元されると液中に浸出する。   When the positive electrode material is dissolved in mineral acid, about half the amount of the positive electrode material is dissolved in about 5 to 10 minutes from the start of dissolution, so the manganese concentration, cobalt concentration or nickel concentration in the mineral acid solution is measured, The Mn / Co / Ni molar ratio may be adjusted so as to be 0.5 to 1.0 times, preferably 0.6 to 0.8 times. By adjusting the Mn / Co · Ni molar ratio to 0.5 to 1.0 times, preferably 0.6 to 0.8 times, leaching of cobalt and nickel contained in the undissolved solid content proceeds. Cobalt / nickel contained in the undissolved solid is mainly trivalent and tetravalent, and leaches into the liquid when it reacts with manganese (II) ions and is reduced to divalent.

Mn/Co・Niモル比が0.5倍未満の場合は、未溶解固形分に含まれる3価、4価のコバルト・ニッケル含有量に対して液中のマンガン(II)イオン量が不足しているので、マンガン(II)イオンを供給して、Mn/Co・Niモル比を0.5倍〜1.0倍、好ましくは0.6倍〜0.8倍に調整すると良い。マンガン(II)イオンの供給源として硫酸マンガン(II)などを用いることができる。   If the Mn / Co / Ni molar ratio is less than 0.5 times, the amount of manganese (II) ions in the liquid is insufficient with respect to the trivalent and tetravalent cobalt / nickel content contained in the undissolved solid content. Therefore, manganese (II) ions are supplied to adjust the Mn / Co · Ni molar ratio to 0.5 to 1.0 times, preferably 0.6 to 0.8 times. Manganese (II) sulfate or the like can be used as a source of manganese (II) ions.

一方、Mn/Co・Niモル比が1.0倍を超えると、液中のマンガン(II)イオン量が残留してマンガン濃度が高くなるので好ましくない。Mn/Co・Niモル比が1.0倍を超える場合には、水酸化コバルト(III)などの3価のコバルト源を添加してマンガン(II)イオンを二酸化マンガンに酸化させ、Mn/Co・Niモル比を0.5倍〜1.0倍、好ましくは0.6倍〜0.8倍に調整すると良い。
水酸化コバルト(III)は、例えば、硫酸コバルト(II)等の溶液をpH4前後に保ちながら、過酸化水素水あるいは次亜塩素酸ナトリウム等の酸化剤を加え、酸化還元電位を銀―塩化銀電極基準で1050mV程度に調整して生じる沈殿を用いると良い。
On the other hand, if the Mn / Co · Ni molar ratio exceeds 1.0, the amount of manganese (II) ions in the liquid remains and the manganese concentration becomes high, which is not preferable. When the molar ratio of Mn / Co · Ni exceeds 1.0, a trivalent cobalt source such as cobalt hydroxide (III) is added to oxidize manganese (II) ions to manganese dioxide, and Mn / Co -The Ni molar ratio should be adjusted to 0.5 to 1.0 times, preferably 0.6 to 0.8 times.
For example, cobalt hydroxide (III) is prepared by adding an oxidizing agent such as aqueous hydrogen peroxide or sodium hypochlorite while maintaining a solution of cobalt (II) sulfate at a pH of around 4 to change the oxidation-reduction potential to silver-silver chloride. It is preferable to use a precipitate that is generated by adjusting to about 1050 mV on an electrode basis.

本発明の浸出方法は、リチウムイオン二次電池の使用済み正極材活物質に含まれる有価金属を鉱酸で浸出する際、正極材活物質に含まれるマンガンを利用して、コバルト・ニッケルを2価に還元して選択的に浸出させるので、コバルト・ニッケルの浸出率が高い浸出液を得ることができ、この浸出液から溶媒抽出法などによって高い収率でコバルト・ニッケルを回収することができる。具体的には、本発明の浸出方法によれば、Mnの浸出率が5%以下であって、Co・Niの浸出率が40%以上の浸出液を得ることができる。   In the leaching method of the present invention, when leaching a valuable metal contained in a used positive electrode material active material of a lithium ion secondary battery with mineral acid, cobalt / nickel is obtained by utilizing manganese contained in the positive electrode material active material. Since it is reduced to the valence and selectively leached, a leaching solution having a high leaching rate of cobalt / nickel can be obtained, and cobalt / nickel can be recovered from the leaching solution by a solvent extraction method or the like in a high yield. Specifically, according to the leaching method of the present invention, a leaching solution having a Mn leaching rate of 5% or less and a Co / Ni leaching rate of 40% or more can be obtained.

また、本発明の浸出方法によって得られる浸出液はマンガン濃度が低いので、この浸出液から溶媒抽出法などによってコバルト・ニッケルを回収する際に、マンガンを分離する負担が少なく、効率よくコバルト・ニッケルを回収することができる。   In addition, since the leachate obtained by the leaching method of the present invention has a low manganese concentration, when recovering cobalt nickel from this leachate by a solvent extraction method, etc., the burden of separating manganese is low, and cobalt nickel is efficiently recovered. can do.

さらに、本発明の浸出方法は、正極材活物質に含まれるマンガンを利用して、コバルト・ニッケルを還元するので、還元剤の使用量を低減することができる。   Furthermore, since the leaching method of the present invention reduces cobalt and nickel using manganese contained in the positive electrode material active material, the amount of reducing agent used can be reduced.

コバルト−マンガン共存系の酸化還元電位とpHの相関グラフ。The correlation graph of the oxidation-reduction potential and pH of a cobalt-manganese coexistence system. 実施例1の浸出時間とLi、Mn、Co、Niの各濃度の相関グラフ。The correlation graph of the leaching time of Example 1 and each density | concentration of Li, Mn, Co, and Ni.

以下に本発明の実施例を示す。各実施例において液中の元素濃度はICPで測定した。Li、Ni、Co、Mnの浸出率は、出発材料の正極材活物質に含まれる各元素の含有量に対する浸出液中のLi、Ni、Co、Mnの各濃度の重量比(濃度/含有量比)である。   Examples of the present invention are shown below. In each Example, the element concentration in the liquid was measured by ICP. The leaching rate of Li, Ni, Co, and Mn is the weight ratio of each concentration of Li, Ni, Co, and Mn in the leachate to the content of each element contained in the positive electrode active material of the starting material (concentration / content ratio). ).

〔実施例1〕
リチウムイオン二次電池に用いられている三元系の正極材活物質(Li:7.5wt%、Mn:18.7wt%、Co:19.9wt%、Ni:19.8wt%)14.5gを60℃に加熱した硫酸(濃度245g/L)100mlに添加して溶解させた。該正極材活物質に含まれるLi、Mn、Co、Niの含有量、浸出開始時のLi、Mn、Co、Niの各濃度、およびMn/Co・Niモル比を表1に示す。なお、Mn/Co・Niモル比において、Mnは液中のマンガン濃度、Co・Niは未溶解固形分に残留するCo量とNi量の合計量、Mn/Co・Niモル比はこれらの量に基づくモル比である。
Mn/Co・Niモル比は次の計算式に示すように、Mn/Coモル比とMn/Niモル比に基づいて求めた。
Mn/Co・Niモル比=[Mn濃度(g/L)×硫酸量(L)/Mn原子量]/ [(活物質量(g)×Co含有率(%)/100−Co濃度(g/L)×硫酸量(L))/Co原子量+(活物質量(g)×Ni含有率(%)/100−Ni濃度(g/L)×硫酸量(L))/Ni原子量]
上記硫酸溶解液を2時間撹拌し、Li、Mn、Co、Niを浸出させた。浸出後のpHは0.16であった。浸出後、固液分離して浸出液のLi、Ni、Co、Mnの各濃度を定量した。2時間浸出後の浸出液の各元素の濃度と浸出率を表1に示す。また、固液分離前の上記硫酸溶解液を60℃で、16時間攪拌して浸出を行った。浸出後のpHは0.40であった。浸出後、固液分離して浸出液のLi、Ni、Co、Mnの各濃度を定量した。16時間後の浸出液の各元素の濃度と浸出率を表1示す。また、浸出時間と元素濃度の相関を図2に示す。
表1に示すように、2時間浸出でリチウムは90%以上浸出するが、マンガン、コバルト、ニッケルは約40%程度の浸出率である。16時間浸出になると、マンガンとコバルトおよびニッケルの置換反応が進み、マンガン濃度が低下してコバルト濃度およびニッケル濃度が上昇する。ただし、Mn/Co・Niモル比が0.31と小さいため、これらの反応によってマンガン(II)イオンが消費されて次第に不足し、コバルトおよびニッケルが十分に浸出せず、これらの浸出率は約55%〜約58%であった。
[Example 1]
14.5 g of ternary positive electrode active material (Li: 7.5 wt%, Mn: 18.7 wt%, Co: 19.9 wt%, Ni: 19.8 wt%) used in lithium ion secondary batteries at 60 ° C It was added to 100 ml of heated sulfuric acid (concentration 245 g / L) and dissolved. Table 1 shows the contents of Li, Mn, Co, Ni contained in the positive electrode active material, the concentrations of Li, Mn, Co, Ni at the start of leaching, and the Mn / Co · Ni molar ratio. In the Mn / Co / Ni molar ratio, Mn is the manganese concentration in the liquid, Co / Ni is the total amount of Co and Ni remaining in the undissolved solid content, and the Mn / Co / Ni molar ratio is the amount of these. Is a molar ratio based on
The Mn / Co · Ni molar ratio was determined based on the Mn / Co molar ratio and the Mn / Ni molar ratio as shown in the following calculation formula.
Mn / Co · Ni molar ratio = [Mn concentration (g / L) × sulfuric acid amount (L) / Mn atomic weight] / [(active material amount (g) × Co content (%) / 100-Co concentration (g / L) × sulfuric acid amount (L)) / Co atomic weight + (active material amount (g) × Ni content (%) / 100−Ni concentration (g / L) × sulfuric acid amount (L)) / Ni atomic weight]
The sulfuric acid solution was stirred for 2 hours to leach out Li, Mn, Co, and Ni. The pH after leaching was 0.16. After leaching, solid-liquid separation was performed, and each concentration of Li, Ni, Co, and Mn in the leachate was quantified. Table 1 shows the concentration and leaching rate of each element in the leaching solution after leaching for 2 hours. The sulfuric acid solution before solid-liquid separation was leached by stirring at 60 ° C. for 16 hours. The pH after leaching was 0.40. After leaching, solid-liquid separation was performed, and each concentration of Li, Ni, Co, and Mn in the leachate was quantified. Table 1 shows the concentration and leaching rate of each element in the leaching solution after 16 hours. Moreover, the correlation between the leaching time and the element concentration is shown in FIG.
As shown in Table 1, lithium is leached by 90% or more after leaching for 2 hours, but manganese, cobalt, and nickel have a leaching rate of about 40%. When leaching occurs for 16 hours, the substitution reaction of manganese, cobalt, and nickel proceeds, the manganese concentration decreases, and the cobalt concentration and nickel concentration increase. However, since the Mn / Co · Ni molar ratio is as small as 0.31, manganese (II) ions are consumed due to these reactions and gradually become insufficient. Cobalt and nickel are not sufficiently leached, and the leaching rate is about 55% to about 58%.

Figure 0006365838
Figure 0006365838

〔実施例2〕
実施例1と同様の正極材活物質14.5gを60℃に加熱した硫酸(濃度245g/L)100mlに添加し、さらに浸出開始時のMn/Co・Niモル比が0.97倍になるように、硫酸マンガン溶液(Mn濃度50g/L)を添加した。この硫酸溶解液を60℃で8時間撹拌し、Li、Ni、Co、Mnを浸出した。浸出後のpHは0.39であった。浸出後、固液分離して浸出液のLi、Ni、Co、Mnの各濃度を定量した。これらの濃度および浸出率を表2に示す。
表2に示すように、硫酸マンガンを添加してMn/Co・Niモル比を約1.0倍に調整することによってコバルトおよびニッケルを約90%以上浸出することができる。
添加したマンガンイオンは二酸化マンガン沈殿になるので、液中のマンガン濃度を0.5g/Lに低下することができた。このように、高価な還元剤を使用せずに、コバルトおよびニッケルを高い浸出率で浸出することができ、またマンガンの大部分は沈殿物になって浸出液から除かれるので、後段のマンガン分離の負荷を大幅に低減できることが確認された。
[Example 2]
The same positive electrode active material 14.5 g as in Example 1 was added to 100 ml of sulfuric acid (concentration 245 g / L) heated to 60 ° C., and the Mn / Co · Ni molar ratio at the start of leaching was 0.97 times. Thus, a manganese sulfate solution (Mn concentration 50 g / L) was added. This sulfuric acid solution was stirred at 60 ° C. for 8 hours to leach out Li, Ni, Co, and Mn. The pH after leaching was 0.39. After leaching, solid-liquid separation was performed, and each concentration of Li, Ni, Co, and Mn in the leachate was quantified. These concentrations and leaching rates are shown in Table 2.
As shown in Table 2, about 90% or more of cobalt and nickel can be leached by adding manganese sulfate to adjust the Mn / Co · Ni molar ratio to about 1.0 times.
Since the added manganese ion became manganese dioxide precipitation, the manganese concentration in the liquid could be reduced to 0.5 g / L. In this way, cobalt and nickel can be leached at a high leaching rate without using an expensive reducing agent, and most of the manganese is precipitated and removed from the leachate. It was confirmed that the load can be greatly reduced.

Figure 0006365838
Figure 0006365838

〔実施例3〕
使用済みリチウムイオン二次電池から回収した正極材活物質15.0gを60℃に加熱した硫酸(濃度245g/L)100mlに添加して溶解し、該硫酸溶解液を8時間撹拌してLi、Mn、Co、Niを浸出させて各濃度を定量した。浸出後のpHは0.38であった(試料A)。
一方、上記正極材活物質15.0gに、水酸化コバルトCo(OH)7.0gを加え、60℃に加熱した硫酸(濃度245g/L)100mlに添加して溶解し、該硫酸溶解液を8時間撹拌してLi、Mn、Co、Niを浸出させて各濃度を定量した。浸出後のpHは0.38であった(試料B)。
上記正極材活物質に含まれるLi、Mn、Co、Niの含有量、浸出開始時のLi、Mn、Co、Niの各濃度、およびMn/Co・Niモル比を表3に示す。また試料A、Bについて、浸出後のLi、Ni、Co、Mnの各濃度および浸出率を表3に示す。
表3に示すように、リチウムは浸出しやすいが、試料Aのコバルト、ニッケルの浸出率は約57%、約37%である。一方、水酸化コバルトを添加した試料Bはマンガンの浸出率は約0.8%に低下し、コバルトの浸出率は約65%、ニッケルの浸出率は約40%に上昇しており、上記Mn/Co・Niモル比を調整することによってマンガンの浸出を抑え、コバルトとニッケルの浸出率を高めることが確認された。
Example 3
15.0 g of the positive electrode active material recovered from the used lithium ion secondary battery was dissolved by adding to 100 ml of sulfuric acid (concentration 245 g / L) heated to 60 ° C., and the sulfuric acid solution was stirred for 8 hours to obtain Li, Each concentration was quantified by leaching Mn, Co, and Ni. The pH after leaching was 0.38 (Sample A).
On the other hand, 7.0 g of cobalt hydroxide Co (OH) 3 was added to 15.0 g of the positive electrode active material, and dissolved by adding to 100 ml of sulfuric acid (concentration 245 g / L) heated to 60 ° C. Was stirred for 8 hours, and Li, Mn, Co, and Ni were leached to quantitate each concentration. The pH after leaching was 0.38 (Sample B).
Table 3 shows the contents of Li, Mn, Co and Ni contained in the positive electrode active material, the concentrations of Li, Mn, Co and Ni at the start of leaching, and the Mn / Co · Ni molar ratio. Table 3 shows the concentrations and leaching rates of Li, Ni, Co, and Mn after leaching for Samples A and B.
As shown in Table 3, lithium is easily leached, but the leaching rates of cobalt and nickel of sample A are about 57% and about 37%. On the other hand, in Sample B to which cobalt hydroxide was added, the leaching rate of manganese decreased to about 0.8%, the leaching rate of cobalt increased to about 65%, and the leaching rate of nickel increased to about 40%. It was confirmed that the leaching of manganese and the leaching rate of cobalt and nickel were increased by adjusting the molar ratio of Co / Ni.

Figure 0006365838
Figure 0006365838

〔比較例1〕
実施例1と同一の正極材活物質14.5gを60℃に加熱した硫酸(濃度245g/L)100mlに添加した後に、水酸化ナトリウム溶液を用いてpHを3.0に調整した。さらに浸出開始時のMn/Co・Niモル比が0.97倍になるように、硫酸マンガン溶液(Mn濃度50g/L)を添加し、該硫酸溶解液を8時間撹拌してLi、Mn、Co、Niを浸出させて各濃度を定量した。浸出後のpHは2.8であった(試料C)。この結果を表4に示す。
表4に示すように、本比較例はpH2.8〜3.0であるので、Mn、Co、Niが十分に浸出せず、マンガン(II)イオンによるコバルト、ニッケルの還元も進まない。
[Comparative Example 1]
After adding 14.5 g of the same positive electrode material active material as in Example 1 to 100 ml of sulfuric acid (concentration 245 g / L) heated to 60 ° C., the pH was adjusted to 3.0 using a sodium hydroxide solution. Further, a manganese sulfate solution (Mn concentration 50 g / L) was added so that the molar ratio of Mn / Co · Ni at the start of leaching was 0.97 times, and the sulfuric acid solution was stirred for 8 hours to obtain Li, Mn, Co and Ni were leached to quantify each concentration. The pH after leaching was 2.8 (Sample C). The results are shown in Table 4.
As shown in Table 4, since this comparative example has a pH of 2.8 to 3.0, Mn, Co and Ni cannot be sufficiently leached, and reduction of cobalt and nickel by manganese (II) ions does not proceed.

Figure 0006365838
Figure 0006365838

Claims (4)

Co・Niと共にMnを含有する材料からCo・Niを浸出させる方法であって、pH2.5以下の液性下で上記材料を鉱酸に溶解して、該鉱酸溶液中のマンガン、コバルトないしニッケルの各濃度を測定し、該鉱酸溶液中のマンガンイオン量(マンガン濃度)と、未溶解固形分に含まれるコバルト量、ニッケル量、あるいはコバルトとニッケルの合計量とのモル比(Mn/Co・Niモル比)が0.5倍〜1.0倍になるように、該モル比が0.5倍未満のときはマンガンイオン源を供給し、該モル比が1.0倍を超えるときは3価コバルト源を供給し、上記モル比の範囲に調整してCo・NiによるMnの酸化を進め、Mnを二酸化マンガンにして液中のマンガン濃度を低減し、Co・Niが二価に還元されることによって、Co・Niの浸出を進めることを特徴とするCo・Niの浸出方法。 A method of leaching Co · Ni from a material containing Mn together with Co · Ni, wherein the material is dissolved in a mineral acid under a liquidity of pH 2.5 or less, and manganese, cobalt or measuring the respective concentrations of nickel, manganese ion content of the mineral acid solution and (manganese concentration), the amount of cobalt contained in the undissolved solids, the molar ratio of the total amount of nickel content, or cobalt and nickel (Mn / When the molar ratio is less than 0.5 times, a manganese ion source is supplied so that the ( Co / Ni molar ratio) is 0.5 times to 1.0 times , and the molar ratio exceeds 1.0 times. In some cases, a trivalent cobalt source is supplied and adjusted to the above molar ratio range to promote oxidation of Mn by Co · Ni. Mn is changed to manganese dioxide to reduce the manganese concentration in the liquid. Co · Ni is divalent. Co / Ni leaching by being reduced to Leaching method of Co · Ni, characterized in that to proceed. 上記材料の鉱酸溶解液の温度を50℃以上にし、該液のpHを1.0以下に調整して、該鉱酸溶液中のマンガンイオン量と、未溶解固形分に含まれるコバルト量、ニッケル量、あるいはコバルトとニッケルの合計量とのモル比(Mn/Co・Niモル比)を0.6倍〜0.8倍に調整してCo・NiによるMnの酸化を進める請求項1に記載するCo・Niの浸出方法。 The temperature of the mineral acid solution of the above material is set to 50 ° C. or higher, the pH of the solution is adjusted to 1.0 or lower, the amount of manganese ions in the mineral acid solution, and the amount of cobalt contained in the undissolved solids, 2. The oxidation of Mn by Co / Ni is advanced by adjusting the molar amount of nickel or the total amount of cobalt and nickel (Mn / Co / Ni molar ratio) to 0.6 to 0.8 times. Co / Ni leaching method to be described. Co・Niと共にMnを含有する材料が、使用済みリチウムイオン二次電池の正極材活物質である請求項1または請求項2の何れかに記載するCo・Niの浸出方法。 3. The Co / Ni leaching method according to claim 1, wherein the material containing Mn together with Co.Ni is a positive electrode active material of a used lithium ion secondary battery. Mnの浸出率が5%以下であって、Co・Niの浸出率が40%以上の浸出液にする請求項1〜請求項3の何れかに記載するCo・Niの浸出方法。
The Co · Ni leaching method according to any one of claims 1 to 3, wherein the leaching solution has a leaching rate of Mn of 5% or less and a Co · Ni leaching rate of 40% or more.
JP2014241893A 2014-11-28 2014-11-28 Cobalt nickel leaching method Active JP6365838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241893A JP6365838B2 (en) 2014-11-28 2014-11-28 Cobalt nickel leaching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241893A JP6365838B2 (en) 2014-11-28 2014-11-28 Cobalt nickel leaching method

Publications (2)

Publication Number Publication Date
JP2016102251A JP2016102251A (en) 2016-06-02
JP6365838B2 true JP6365838B2 (en) 2018-08-01

Family

ID=56089047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241893A Active JP6365838B2 (en) 2014-11-28 2014-11-28 Cobalt nickel leaching method

Country Status (1)

Country Link
JP (1) JP6365838B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352846B2 (en) * 2015-03-27 2018-07-04 Jx金属株式会社 Method for recovering metals from recycled lithium-ion battery materials
JP6897466B2 (en) 2017-09-29 2021-06-30 住友金属鉱山株式会社 How to separate copper from nickel and cobalt
JP6915497B2 (en) 2017-10-23 2021-08-04 住友金属鉱山株式会社 How to separate copper from nickel and cobalt
JP6519628B2 (en) * 2017-10-23 2019-05-29 住友金属鉱山株式会社 Separation method of copper and nickel and cobalt
JP6939506B2 (en) 2017-12-18 2021-09-22 住友金属鉱山株式会社 How to separate copper from nickel and cobalt
KR102228192B1 (en) * 2019-07-23 2021-03-17 타운마이닝리소스주식회사 Preparing method of nickel-cobalt-manganese complex sulphate solution by recycling wasted electrode material
CN115353160B (en) * 2022-09-22 2024-06-14 福建常青新能源科技有限公司 Preparation method of battery-grade nickel-cobalt-manganese ternary sulfate solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194315A (en) * 2012-03-22 2013-09-30 Dowa Eco-System Co Ltd Method for recovering valuable material from lithium ion secondary battery
JP6121359B2 (en) * 2014-03-31 2017-04-26 Jx金属株式会社 Metal oxide leaching method

Also Published As

Publication number Publication date
JP2016102251A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6365838B2 (en) Cobalt nickel leaching method
Zhang et al. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide
CN109868373A (en) A method of substep leaching nickel, cobalt from nickel, cobalt, manganese mixture
CN109072335A (en) The processing method of lithium ion battery waste material
EP2832700B1 (en) Method for producing high-purity nickel sulfate
US20200109462A1 (en) Method for the production of cobalt and associated oxides from various feed materials
WO2020212587A1 (en) Process for the preparation of battery precursors
EP3279344B1 (en) Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
CN105648214B (en) It is a kind of to control the method that current potential vulcanization separates valuable metal in solution
CA2396839C (en) Lead, zinc and manganese recovery from aqueous solutions
CN112159897B (en) Method for purifying nickel-cobalt-manganese leaching solution
KR20230061356A (en) Separation of cobalt and nickel
JP5477009B2 (en) Method for separating and recovering copper from copper-containing iron sulfides
JP4962078B2 (en) Nickel sulfide chlorine leaching method
EP3305923B1 (en) Aqueous cobalt chloride solution purification method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6960070B1 (en) How to recover valuable metals
JP6898586B2 (en) Sulfide leaching method
CN108199106B (en) Recovery process of waste materials in production process of nickel-cobalt-manganese ternary precursor
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP6683910B2 (en) Purification method of nickel chloride aqueous solution
US10662503B2 (en) Method of ore processing using mixture including acidic leach solution and oxidizing agent
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2024508529A (en) metal precipitation
JP2021161448A (en) Manganese ion removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170831

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6365838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250