JP4124071B2 - Purification method of nickel chloride aqueous solution - Google Patents

Purification method of nickel chloride aqueous solution Download PDF

Info

Publication number
JP4124071B2
JP4124071B2 JP2003323947A JP2003323947A JP4124071B2 JP 4124071 B2 JP4124071 B2 JP 4124071B2 JP 2003323947 A JP2003323947 A JP 2003323947A JP 2003323947 A JP2003323947 A JP 2003323947A JP 4124071 B2 JP4124071 B2 JP 4124071B2
Authority
JP
Japan
Prior art keywords
zinc
nickel
nickel chloride
aqueous solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003323947A
Other languages
Japanese (ja)
Other versions
JP2005089808A (en
Inventor
勲 西川
和幸 高石
伸弘 松本
伸正 家守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003323947A priority Critical patent/JP4124071B2/en
Priority to GB0419262A priority patent/GB2406565B/en
Priority to AU2004208659A priority patent/AU2004208659B2/en
Priority to CA2481729A priority patent/CA2481729C/en
Publication of JP2005089808A publication Critical patent/JP2005089808A/en
Application granted granted Critical
Publication of JP4124071B2 publication Critical patent/JP4124071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/08Halides
    • C01G53/09Chlorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、塩化ニッケル水溶液の精製方法に関し、さらに詳しくは、塩化ニッケル水溶液中に含まれる、塩素錯体を形成する不純物元素、特に亜鉛を、簡便な設備でかつ低コストで効率的に除去する方法に関する。   The present invention relates to a method for purifying a nickel chloride aqueous solution. More specifically, the present invention relates to a method for efficiently removing an impurity element forming a chlorine complex, particularly zinc, contained in a nickel chloride aqueous solution with simple equipment and at low cost. About.

従来、一般的にニッケル精錬の原料としては、ニッケル鉱石から乾式熔錬法で得られるニッケル硫化物の濃縮物であるニッケルマットが用いられてきた。近年、各種のスクラップ及び精錬工程内の中間物のリサイクルの活発化、さらには、低ニッケル品位のラテライト鉱を原料鉱石として用いた硫酸浸出法等の湿式精錬法の実用化にともない、新規ニッケル原料として、新たなニッケル含有物がニッケル精錬の対象となってきた。   Conventionally, nickel matte, which is a nickel sulfide concentrate obtained from nickel ore by a dry smelting method, has generally been used as a raw material for nickel refining. In recent years, with the active recycling of various scraps and intermediates in the refining process, and the practical application of wet refining methods such as sulfuric acid leaching using low nickel grade laterite ore as raw material ore, new nickel raw materials As a result, new nickel-containing materials have been the subject of nickel refining.

従来の原料であるニッケルマットの不純物元素としては、乾式熔錬にて除去されやすい亜鉛の含有量は極微量であったが、上記新規ニッケル原料は、中和法又は硫化法等の湿式分離処理により溶液中から沈殿物として製造されるため、銅、コバルト、鉄その他の不純物元素と共に、通常、数百ppmから数重量%程度の濃度で亜鉛を含有する。
前記亜鉛その他の不純物元素を含む新規ニッケル原料を、塩素ガスで浸出し、得られた塩化ニッケル水溶液を精製した後、電気分解によって電気ニッケルを得る湿式精製プロセスで処理する場合には、原料中に含まれる亜鉛は従来のニッケル精錬プロセスでは十分には除去できないので、新たに亜鉛の除去工程が必要になる。
As an impurity element of nickel matte, which is a conventional raw material, the content of zinc that is easily removed by dry smelting was extremely small, but the new nickel raw material is a wet separation treatment such as a neutralization method or a sulfurization method. Therefore, zinc is usually contained together with copper, cobalt, iron and other impurity elements at a concentration of several hundred ppm to several weight percent.
When the new nickel raw material containing zinc and other impurity elements is leached with chlorine gas, and the resulting nickel chloride aqueous solution is purified and then processed by a wet refining process in which electro nickel is obtained by electrolysis, Since the contained zinc cannot be removed sufficiently by the conventional nickel refining process, a new zinc removal step is required.

すなわち、塩化ニッケル水溶液中で、亜鉛はZnCl 2−等の塩素イオン錯体を形成している。そこで、硫化剤として硫化水素ガスを吹き込むことで亜鉛を硫化物として除去する場合においては、硫酸ニッケル水溶液中の亜鉛を硫化物として除去する場合と比べて除去効率が低いので亜鉛を完全に除去するためには多量のニッケルの共沈殿をともなう。さらに、このとき、硫化水素を含んだ母液の曝気処理工程が必要となるので、設備投資コストが上昇する問題がある。 That is, in the nickel chloride aqueous solution, zinc forms a chloride ion complex such as ZnCl 4 2− . Therefore, when removing zinc as a sulfide by blowing hydrogen sulfide gas as a sulfiding agent, the removal efficiency is lower than when removing zinc in an aqueous solution of nickel sulfate as a sulfide, so that zinc is completely removed. This involves a large amount of nickel coprecipitation. Further, at this time, since an aeration treatment process of the mother liquor containing hydrogen sulfide is required, there is a problem that the capital investment cost increases.

また、亜鉛はニッケルよりも低pHで水酸化物を形成するので、中和法により亜鉛をある程度までは選択的に除去することができるが、この場合においても、低濃度にまで除去するためには6を超えるpHにする必要があるので、同様に多量のニッケルの共沈殿が避けられず、望ましい方法ではない。
また、溶媒抽出法を用いて、亜鉛を分離することが行えるが、大規模な溶媒抽出設備を設置することは設備投資コスト上の問題となるので採用できない。
以上のように、亜鉛を除去するためには、大規模な設備投資あるいは大幅なニッケル実収率の低下が避けられない状況であった。
In addition, since zinc forms hydroxide at a lower pH than nickel, zinc can be selectively removed to some extent by the neutralization method, but even in this case, in order to remove it to a low concentration Since it is necessary to make the pH higher than 6, coprecipitation of a large amount of nickel is unavoidable as well, which is not a desirable method.
In addition, although zinc can be separated using a solvent extraction method, it is not possible to employ a large-scale solvent extraction facility because of the problem of capital investment cost.
As described above, in order to remove zinc, a large-scale capital investment or a significant decrease in nickel yield was unavoidable.

この解決策として、イオン交換樹脂を用いる方法が提案されており、例えば、塩化コバルト水溶液中のコバルト、亜鉛、鉄等の塩化物錯体を形成する金属イオンを陰イオン交換樹脂に吸着させて、ニッケル等を流出させる方法(例えば、特許文献1参照)、また、酸化中和法でコバルトを除去した後の塩化ニッケル水溶液を陰イオン交換樹脂に接蝕させて、亜鉛とクロムを吸着させて一括除去する方法がある。この方法によれば、塩化ニッケル水溶液中の亜鉛を低濃度にまで除去することができるが、前記塩化ニッケル水溶液中に塩素錯体を形成する不純物元素が含まれるときには、その種類及び濃度によっては、陰イオン交換樹脂の寿命が短くなり処理コスト上の問題が発生する。   As a solution to this problem, a method using an ion exchange resin has been proposed. For example, nickel ions are adsorbed on an anion exchange resin by adsorbing metal ions forming a chloride complex such as cobalt, zinc, and iron in an aqueous cobalt chloride solution. Etc. (see, for example, Patent Document 1), nickel chloride aqueous solution after removing cobalt by oxidative neutralization method is in contact with anion exchange resin, and zinc and chromium are adsorbed and removed at once There is a way to do it. According to this method, zinc in an aqueous nickel chloride solution can be removed to a low concentration. However, when an impurity element that forms a chlorine complex is contained in the aqueous nickel chloride solution, depending on the type and concentration, it may be negatively affected. The life of the ion exchange resin is shortened, causing a problem in processing cost.

以上の状況から、塩化ニッケル水溶液中に含まれる、塩素錯体を形成する不純物元素、特に亜鉛を、簡便な設備でかつ低コストで効率的に除去する方法が求められている。
特開2001−20021号公報(第1頁、第2頁)
In view of the above situation, there is a demand for a method for efficiently removing impurity elements forming a chlorine complex, particularly zinc, contained in an aqueous nickel chloride solution with simple equipment and at low cost.
JP 2001-20021 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、塩化ニッケル水溶液中に含まれる、塩素錯体を形成する不純物元素、特に亜鉛を、簡便な設備でかつ低コストで効率的に除去する方法を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is a method for efficiently removing an impurity element forming a chlorine complex, particularly zinc, contained in an aqueous nickel chloride solution with simple equipment and at low cost. Is to provide.

本発明者らは、上記目的を達成するために、亜鉛その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液を精製する方法について、鋭意研究を重ねた結果、塩化ニッケル水溶液を特定の条件に調整して酸化中和した後、陰イオン交換樹脂を用いてイオン交換する工程で処理したところ、塩素錯体を形成する不純物元素、特に亜鉛を、効率的に除去することができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted extensive research on a method for purifying a nickel chloride aqueous solution containing an impurity element that forms zinc or other chlorine complexes. After adjusting and oxidative neutralization, when processed in the step of ion exchange using an anion exchange resin, it was found that an impurity element forming a chlorine complex, particularly zinc, can be efficiently removed, and the present invention. Was completed.

すなわち、本発明の第1の発明によれば、亜鉛その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液を精製する方法であって、
前記塩化ニッケル水溶液のNi濃度を90〜130g/L、酸化還元電位を銀/塩化銀電極規準で600〜1200mVおよびpHを4.0〜6.0に調整して酸化中和に付し、前記不純物元素を除去する第一の工程、及び
第一の工程で得られる精製液を、陰イオン交換樹脂を用いてイオン交換に付し、亜鉛を吸着して除去する第二の工程、を含む塩化ニッケル水溶液の精製方法が提供される。
That is, according to the first invention of the present invention, there is provided a method for purifying an aqueous nickel chloride solution containing an impurity element that forms zinc or another chlorine complex,
The nickel concentration of the aqueous nickel chloride solution is adjusted to 90 to 130 g / L , the oxidation-reduction potential is adjusted to 600 to 1200 mV with a silver / silver chloride electrode standard, and the pH is adjusted to 4.0 to 6.0, followed by oxidation neutralization, A first step of removing impurity elements, and a second step of subjecting the purified liquid obtained in the first step to ion exchange using an anion exchange resin and adsorbing and removing zinc. A method for purifying an aqueous nickel solution is provided.

また、本発明の第の発明によれば、第1の発明において、さらに、第二の工程に先立って、第一の工程で得られる精製液を活性炭に接触処理させる工程を含むことを特徴とする塩化ニッケル水溶液の精製方法が提供される。 According to the second invention of the present invention, the first invention further includes a step of contacting the purified liquid obtained in the first step with activated carbon prior to the second step. A method for purifying an aqueous nickel chloride solution is provided.

本発明の塩化ニッケル水溶液の精製方法は、塩化ニッケル水溶液中に含まれる、塩素錯体を形成する不純物元素、特に亜鉛を、簡便な設備でかつ低コストで効率的に除去することができる方法であり、その工業的価値は極めて大きい。   The method for purifying an aqueous solution of nickel chloride according to the present invention is a method capable of efficiently removing impurity elements forming a chlorine complex, particularly zinc, contained in an aqueous solution of nickel chloride, with simple equipment and at low cost. The industrial value is extremely large.

以下、本発明の塩化ニッケル水溶液の精製方法を詳細に説明する。
本発明の塩化ニッケル水溶液の精製方法は、亜鉛その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液を精製する方法であって、前記塩化ニッケル水溶液のNi濃度、酸化還元電位およびpHを調整して酸化中和に付し、前記不純物元素を除去する第一の工程、及び第一の工程で得られる精製液を、陰イオン交換樹脂を用いてイオン交換に付し、亜鉛を除去する第二の工程を含む。
Hereinafter, the purification method of the nickel chloride aqueous solution of the present invention will be described in detail.
The method for purifying an aqueous nickel chloride solution of the present invention is a method for purifying an aqueous nickel chloride solution containing an impurity element forming zinc or other chlorine complex, and adjusting the Ni concentration, redox potential and pH of the aqueous nickel chloride solution. The first step of subjecting to oxidative neutralization to remove the impurity elements, and the purified solution obtained in the first step to ion exchange using an anion exchange resin to remove zinc These steps are included.

本発明において、陰イオン交換樹脂を用いてイオン交換に付し亜鉛を除去する第二の工程工程に先立って、第一の工程において、原料の塩化ニッケル水溶液のNi濃度、酸化還元電位及びpHを調整して酸化中和に付し、亜鉛以外の塩素錯体を形成する不純物元素を事前に除去することが重要な意義を有する。これによって、第二の工程において、陰イオン交換樹脂の寿命を大きく改善することができ、効率的に亜鉛を除去することができる。すなわち、塩素錯体を形成する不純物元素が残存すると、イオン交換する際に、亜鉛とともに陰イオン交換樹脂に吸着されるので樹脂の破過点が早まることになるが、これを防止する。   In the present invention, prior to the second process step of removing zinc by ion exchange using an anion exchange resin, in the first step, the Ni concentration, redox potential and pH of the raw nickel chloride aqueous solution are adjusted. It is important to preliminarily remove impurity elements that form a chlorine complex other than zinc by adjusting and subjecting to oxidative neutralization. Thereby, in the second step, the lifetime of the anion exchange resin can be greatly improved, and zinc can be efficiently removed. That is, if the impurity element forming the chlorine complex remains, it is adsorbed to the anion exchange resin together with zinc during ion exchange, so that the breakthrough point of the resin is accelerated, but this is prevented.

上記樹脂の破過の技術的背景について、具体的に説明する。Ni濃度が120g/L、コバルト、銅、鉄、亜鉛の濃度がいずれも0.001g/L以下の塩化ニッケル水溶液を用いて、亜鉛濃度が0.005g/Lで、コバルト、銅及び鉄の濃度がいずれも0.001g/L以下の試験液と、亜鉛濃度が0.005g/Lで、コバルト及び鉄が0.5g/Lの試験液とを調製し、この両液での陰イオン交換樹脂を用いたイオン交換での亜鉛の除去状況を比較した。なお、亜鉛、コバルト及び鉄の調製には、各々試薬1級の塩化亜鉛、塩化コバルト及び塩化第二鉄を用いた。   The technical background of the breakthrough of the resin will be specifically described. Using nickel chloride aqueous solution with Ni concentration of 120 g / L and cobalt, copper, iron, and zinc concentrations of 0.001 g / L or less, the zinc concentration is 0.005 g / L, and the concentrations of cobalt, copper, and iron Are both 0.001 g / L or less of a test solution and a zinc concentration of 0.005 g / L and a cobalt and iron test solution of 0.5 g / L. Comparison of zinc removal by ion exchange using For preparation of zinc, cobalt and iron, reagent grade zinc chloride, cobalt chloride and ferric chloride were used, respectively.

前記試験液のそれぞれ250mLをガラス製ビーカーに別途採取し、各々に陰イオン交換樹脂(アンバーライトIRA400、オルガノ社製)15mLを添加して、温度50℃に加温して、スターラーにて攪拌を行い、終液の亜鉛濃度を分析した。その結果は、コバルトと鉄を含んでいない試験液では亜鉛濃度0.0001g/L以下まで除去されるが、コバルトと鉄を含有した試験液では亜鉛濃度0.001g/Lまでしか除去されないことを示した。ここで、電気分解により得られる電気ニッケル中の亜鉛品位を10ppm以下の水準に維持するためには、電気分解に供給する塩化ニッケル水溶液中の亜鉛濃度を0.0001g/L以下にまで低下させる必要がある。すなわち、陰イオン交換樹脂を用いるイオン交換に先立って、亜鉛以外の塩素錯体を形成する不純物元素を事前に除去することが重要であることが示された。   250 mL of each test solution is separately collected in a glass beaker, 15 mL of anion exchange resin (Amberlite IRA400, manufactured by Organo) is added to each, and the mixture is heated to 50 ° C. and stirred with a stirrer. The zinc concentration of the final solution was analyzed. As a result, the test solution containing no cobalt and iron was removed to a zinc concentration of 0.0001 g / L or less, but the test solution containing cobalt and iron was removed only to a zinc concentration of 0.001 g / L. Indicated. Here, in order to maintain the zinc quality in electronickel obtained by electrolysis at a level of 10 ppm or less, it is necessary to reduce the zinc concentration in the nickel chloride aqueous solution supplied to electrolysis to 0.0001 g / L or less. There is. That is, prior to ion exchange using an anion exchange resin, it was shown that it is important to remove impurity elements that form a chlorine complex other than zinc in advance.

(1)塩化ニッケル水溶液
本発明で用いる塩化ニッケル水溶液としては、特に限定されるものではなく、亜鉛その他の不純物元素を含む塩化ニッケル水溶液が用いられるが、その中で、特にニッケル原料を、塩素ガスで浸出し、得られた塩化ニッケル水溶液を精製した後、電気分解によって電気ニッケルを得る湿式精製プロセスにおいて得られる亜鉛、コバルト、銅、鉄、貴金属元素その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液が好ましく用いられる。
(1) Nickel chloride aqueous solution The nickel chloride aqueous solution used in the present invention is not particularly limited, and a nickel chloride aqueous solution containing zinc and other impurity elements is used. Chloride containing zinc, cobalt, copper, iron, noble metal elements and other impurity elements that form chlorine complexes obtained in a wet refining process in which electrolytic nickel is obtained by electrolysis after purification of the resulting nickel chloride aqueous solution. A nickel aqueous solution is preferably used.

(2)第一の工程
本発明の第一の工程は、上記塩化ニッケル水溶液のNi濃度、酸化還元電位及びpHを調整して酸化中和に付し、前記不純物元素を水酸化物として除去する工程である。
第一の工程での塩化ニッケル水溶液のNi濃度は、特に限定されるものではないが、90〜130g/Lが好ましく、100〜120g/Lがより好ましい。すなわち、ニッケル原料を塩素ガスで浸出して得られる塩化ニッケル水溶液は、通常、Ni濃度が170g/L程度であるが、コバルト、銅、鉄等の不純物元素の塩素錯体が不安定になる塩素イオン濃度にまで希釈して、酸化中和を行う。
(2) 1st process The 1st process of this invention adjusts Ni density | concentration of the said nickel chloride aqueous solution, oxidation-reduction potential, and pH, attaches to oxidation neutralization, and removes the said impurity element as a hydroxide. It is a process.
The Ni concentration of the nickel chloride aqueous solution in the first step is not particularly limited, but is preferably 90 to 130 g / L, and more preferably 100 to 120 g / L. That is, a nickel chloride aqueous solution obtained by leaching a nickel raw material with chlorine gas usually has a Ni concentration of about 170 g / L, but a chlorine ion in which a chlorine complex of an impurity element such as cobalt, copper, or iron becomes unstable. Dilute to concentration and perform oxidative neutralization.

これは、塩化物水溶液中で塩素錯体を形成する際の各元素の安定性の違いを利用するものである。塩素イオン濃度を低くするほど、コバルト、銅、鉄は塩素錯体が不安定になり、酸化中和により除去しやすくなるが、希釈すると液量が大幅に増加し、設備容量を増加させる必要がある。したがって、Ni濃度は、亜鉛が塩素イオン錯体を形成することができる塩素イオン濃度に対応する、90g/L以上が選ばれる。一方、Ni濃度が130g/を超えると、コバルト、銅、鉄を、第二の工程で亜鉛の吸着を阻害する影響を最低限に抑えることができる濃度にまで、例えば、0.01g/L以下にまで除去することができない。ここで、塩化ニッケル水溶液の希釈には、ニッケル電解の電解廃液を繰り返して用いるのが好ましい。   This utilizes the difference in stability of each element when forming a chlorine complex in an aqueous chloride solution. The lower the chloride ion concentration, the more unstable the cobalt complex, copper, and iron become, and the easier it is to remove by oxidation neutralization. However, when diluted, the liquid volume increases significantly, and the equipment capacity needs to be increased. . Therefore, the Ni concentration is selected to be 90 g / L or more corresponding to the chlorine ion concentration at which zinc can form a chloride ion complex. On the other hand, when the Ni concentration exceeds 130 g /, cobalt, copper, and iron are reduced to a concentration that can minimize the influence of inhibiting the adsorption of zinc in the second step, for example, 0.01 g / L or less. Can not be removed. Here, for diluting the nickel chloride aqueous solution, it is preferable to repeatedly use an electrolytic waste solution of nickel electrolysis.

第一の工程での塩化ニッケル水溶液の酸化還元電位(銀/塩化銀電極規準)は、特に限定されるものではないが、600〜1200mVが好ましく、1000〜1200mVがより好ましい。すなわち、酸化還元電位(銀/塩化銀電極規準)が、600mV未満では、酸化が不十分でコバルト、銅、鉄の除去が十分に行われない。一方、1200mVを超えると、ニッケルの酸化によりNiの共沈殿量が増加する。ここで用いられる酸化剤としては、特に限定されるものではないが、不純物の蓄積が起らない塩素ガスが好ましい。   The oxidation-reduction potential (silver / silver chloride electrode standard) of the aqueous nickel chloride solution in the first step is not particularly limited, but is preferably 600 to 1200 mV, more preferably 1000 to 1200 mV. That is, when the oxidation-reduction potential (silver / silver chloride electrode standard) is less than 600 mV, the oxidation is insufficient and cobalt, copper, and iron are not sufficiently removed. On the other hand, when it exceeds 1200 mV, the amount of Ni coprecipitate increases due to oxidation of nickel. The oxidizing agent used here is not particularly limited, but chlorine gas that does not cause accumulation of impurities is preferable.

第一の工程での塩化ニッケル水溶液のpHは、特に限定されるものではないが、4.0〜6.0が好ましく、4.0〜5.0がより好ましい。すなわち、pHが4.0未満では、中和反応が不十分でコバルト、銅、鉄の除去が十分に行われない。一方、pHが6.0を超えると、ニッケルの中和反応による共沈殿量が増加する。ここで用いられるpH調節剤としては、特に限定されるものではなく、アルカリ塩が用いられるが、この中で、不純物の蓄積が起らない水酸化ニッケル、塩基性炭酸ニッケル、炭酸ニッケルが好ましい。   Although pH of the nickel chloride aqueous solution in a 1st process is not specifically limited, 4.0-6.0 are preferable and 4.0-5.0 are more preferable. That is, if pH is less than 4.0, neutralization reaction is inadequate and cobalt, copper, and iron are not removed sufficiently. On the other hand, when the pH exceeds 6.0, the amount of coprecipitation due to the neutralization reaction of nickel increases. The pH adjuster used here is not particularly limited, and an alkali salt is used. Among them, nickel hydroxide, basic nickel carbonate, and nickel carbonate that do not accumulate impurities are preferable.

(3)第二の工程
本発明の第二の工程は、第一の工程で得られる精製液を、陰イオン交換樹脂を用いてイオン交換に付し、亜鉛を吸着して除去する工程である。第一の工程において得られる精製液は、コバルト、銅、鉄等の不純物元素の含有濃度が0.01g/L以下にまで除去されているので、第二の工程において、亜鉛の吸着を阻害する影響を最低限に抑えることができる。また、亜鉛を吸着した樹脂は、塩酸溶液で洗浄されて、付着された塩化ニッケル水溶液が回収された後、水を用いて溶離操作が行われる。
(3) Second step The second step of the present invention is a step of subjecting the purified liquid obtained in the first step to ion exchange using an anion exchange resin, and adsorbing and removing zinc. . The purified solution obtained in the first step has been removed to a concentration of impurity elements such as cobalt, copper, iron and the like to 0.01 g / L or less, so that the adsorption of zinc is inhibited in the second step. The impact can be minimized. The resin adsorbed with zinc is washed with a hydrochloric acid solution, and after the adhered nickel chloride aqueous solution is recovered, an elution operation is performed using water.

第二の工程の吸着操作のpHは、特に限定されるものではないが、ニッケルの中和反応が起こりにくい、6.0以下が選ばれる。すなわち、第一の工程から得られる精製液が、調整なしで用いられる。
第二の工程の吸着操作の温度は、特に限定されるものではないが、30〜70℃が好ましい。
The pH of the adsorption operation in the second step is not particularly limited, but is selected to be 6.0 or less, at which the neutralization reaction of nickel hardly occurs. That is, the purified liquid obtained from the first step is used without adjustment.
The temperature of the adsorption operation in the second step is not particularly limited, but is preferably 30 to 70 ° C.

第二の工程で用いる操作方法は、特に限定されるものではなく、市販の陰イオン交換樹脂を充填したカラムを用いた方法が好ましい。これによって、所定の通液速度で、樹脂の吸着能が破過するまでの通液量を連続して吸着操作できるので効率的である。   The operation method used in the second step is not particularly limited, and a method using a column packed with a commercially available anion exchange resin is preferable. As a result, the adsorbing operation can be continuously performed at a predetermined liquid passing rate until the resin adsorbing ability breaks through, which is efficient.

(4)活性炭に接触処理させる工程
本発明において、必要に応じて、第二の工程に先立って、第一の工程で得られる精製液を活性炭に接触処理させる工程を含むことができる。これによって、溶存塩素あるいは微量の貴金属元素が存在する場合に、活性炭に吸着されて除去されるので、イオン交換での亜鉛の吸着能力の低下をより一層抑制することができる。すなわち、イオン交換樹脂の亜鉛吸着を阻害する溶存塩素及び貴金属元素が、除去されるからである。
(4) Step of contacting activated carbon In the present invention, if necessary, prior to the second step, a step of contacting the purified liquid obtained in the first step with activated carbon can be included. As a result, when dissolved chlorine or a trace amount of noble metal element is present, it is adsorbed and removed by activated carbon, so that it is possible to further suppress a decrease in zinc adsorption capacity in ion exchange. That is, dissolved chlorine and noble metal elements that inhibit zinc adsorption of the ion exchange resin are removed.

前記接触処理させる工程としては、特に限定されるものではないが、木質系、石炭系、及び椰子がら系活性炭等の市販の活性炭を充填したカラムを用いる方法が好ましい。
以上の工程に基づいて、亜鉛その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液を処理することによって、コバルト、銅、鉄、亜鉛等の不純物元素が除去された、ニッケル電解用に好適な精製液が得られる。
The step of performing the contact treatment is not particularly limited, but a method using a column packed with commercially available activated carbon such as wood-based, coal-based, and coconut-based activated carbon is preferable.
Suitable for nickel electrolysis, in which impurity elements such as cobalt, copper, iron, and zinc are removed by treating an aqueous solution of nickel chloride containing an impurity element that forms zinc or other chlorine complexes based on the above steps. A purified solution is obtained.

以下に、本発明の実施例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例で用いた金属の分析は原子吸光法で行った。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis of the metal used in the Example was performed by the atomic absorption method.

(実施例1)
ニッケル原料を、塩素ガスで浸出し、得られた塩化ニッケル水溶液を酸化中和処理で精製した後、電気分解によって電気ニッケルを得る湿式精製プロセスにおいて、産出された塩化ニッケル水溶液を用いて、第一の工程及び第二の工程を行った。
(1)第一の工程
まず、前記プロセスにおいて酸化中和処理前の塩化ニッケル水溶液を前記プロセスの電解廃液で希釈して、Ni濃度を120g/Lに調整した。次に、所定量の試薬一級の塩化亜鉛を添加して、原料塩化ニッケル水溶液を調整した後、下記の条件で酸化中和処理を行い、生成された沈殿物を濾過分離して、得られた精製液の組成を分析した。結果を表1に示す。なお、表1に原料塩化ニッケル水溶液の組成も同時に示す。
(Example 1)
In a wet refining process in which nickel raw material is leached with chlorine gas and the resulting nickel chloride aqueous solution is purified by oxidation neutralization treatment to obtain electro nickel by electrolysis, the produced nickel chloride aqueous solution is used to The process and the second process were performed.
(1) First Step First, in the process, the nickel chloride aqueous solution before the oxidation neutralization treatment was diluted with the electrolytic waste liquid of the process to adjust the Ni concentration to 120 g / L. Next, a predetermined amount of reagent primary zinc chloride was added to adjust the raw material nickel chloride aqueous solution, and then an oxidation neutralization treatment was performed under the following conditions, and the resulting precipitate was filtered and obtained. The composition of the purified solution was analyzed. The results are shown in Table 1. Table 1 also shows the composition of the raw material nickel chloride aqueous solution.

[酸化中和処理の条件]
(1)酸化条件:酸化剤として塩素ガスを吹き込み、酸化還元電位(銀/塩化銀電極規準)を1000mVに調整した。
(2)中和条件:pH調節剤として炭酸ニッケル(住友金属鉱山(株)製)を添加して、pHを4.5に調整した。
[Conditions for oxidation neutralization]
(1) Oxidation conditions: Chlorine gas was blown as an oxidizing agent, and the oxidation-reduction potential (silver / silver chloride electrode standard) was adjusted to 1000 mV.
(2) Neutralization conditions: Nickel carbonate (manufactured by Sumitomo Metal Mining Co., Ltd.) was added as a pH regulator to adjust the pH to 4.5.

Figure 0004124071
Figure 0004124071

表1より、本発明の第一の工程において、コバルト、銅、鉄が0.001g/L以下にまで除去される一方、亜鉛の除去は進まないことが分る。   From Table 1, it can be seen that in the first step of the present invention, cobalt, copper and iron are removed to 0.001 g / L or less, while the removal of zinc does not proceed.

(2)第二の工程
上記第一の工程を経て得られた精製液として、前記プロセスにおいて酸化中和処理後の塩化ニッケル水溶液に試薬1級の塩化亜鉛を添加して、表2に示す吸着始液を調製した。
(2) Second step As the purified liquid obtained through the first step, reagent grade zinc chloride is added to the nickel chloride aqueous solution after the oxidation neutralization treatment in the above process, and the adsorption shown in Table 2 A starting solution was prepared.

Figure 0004124071
Figure 0004124071

次に、これらの液を200mLの陰イオン交換樹脂(アンバーライトIRA400、オルガノ社製)を充填したカラムに通液した。吸着条件は通液速度SV(使用樹脂体積の倍数/時間で表す。)5、温度50℃とした。カラムを通液した終液の亜鉛濃度を分析した。結果を表3に示す。   Next, these liquids were passed through a column packed with 200 mL of an anion exchange resin (Amberlite IRA400, manufactured by Organo). The adsorption conditions were a flow rate SV (expressed in multiples of resin volume used / hour) 5 and a temperature of 50 ° C. The zinc concentration of the final liquid that passed through the column was analyzed. The results are shown in Table 3.

Figure 0004124071
Figure 0004124071

表3より、陰イオン交換樹脂を通過した終液の亜鉛濃度は、通液量306BV(使用樹脂体積(ベッド・ボリューム)の倍数で表す。)まで、いずれも0.1mg/L以下であり、高純度の塩化ニッケル水溶液が得られることが分る。   From Table 3, the zinc concentration of the final liquid that passed through the anion exchange resin is 0.1 mg / L or less, all up to the liquid flow rate 306 BV (expressed as a multiple of the resin volume used (bed volume)). It can be seen that a highly pure nickel chloride aqueous solution is obtained.

(実施例2)
ニッケル原料を、塩素ガスで浸出し、得られた塩化ニッケル水溶液を精製した後、電気分解によって電気ニッケルを得る湿式精製プロセスにおいて得られた塩化ニッケル水溶液を用いて、第一の工程及び第二の工程を行った。この際、活性炭に接触処理させる工程の効果を検証した。
(Example 2)
The nickel raw material is leached with chlorine gas, and the obtained nickel chloride aqueous solution is purified, and then the nickel chloride aqueous solution obtained in the wet purification process for obtaining electronickel by electrolysis is used to perform the first step and the second step. The process was performed. At this time, the effect of the step of contact treatment with activated carbon was verified.

第一の工程から得られた精製液と、該液を用いて、さらに活性炭搭に通液した後の処理液の2種類の溶液に、各々試薬一級の塩化亜鉛を添加して、亜鉛濃度を0.003g/Lに調整した。
前記溶液を、200mLの陰イオン交換樹脂(アンバーライトIRA400、オルガノ社製)を充填したカラムに通液速度SV2で約300BVの通液量まで通液した。次に、吸着した亜鉛を溶離させるため、水を通液速度SV2で5BVの通液量まで通液した。この一連の吸着/溶離サイクルを50回繰り返して行った。
Reagent grade zinc chloride is added to each of the two types of solutions, the purified solution obtained from the first step and the treatment solution after passing through the activated carbon tower, and the zinc concentration is adjusted. Adjusted to 0.003 g / L.
The solution was passed through a column packed with 200 mL of an anion exchange resin (Amberlite IRA400, manufactured by Organo Corporation) at a flow rate of SV2 to a flow rate of about 300 BV. Next, in order to elute the adsorbed zinc, water was passed at a fluid flow rate SV2 to a fluid flow rate of 5 BV. This series of adsorption / elution cycles was repeated 50 times.

その結果、活性炭に接触処理させる工程を行わない場合には、繰り返し回数の増加にともない、終液の亜鉛濃度が0.0001g/L以上で検出されるまでの通液量(以下、破過BVと呼称する。)が徐々に短くなり、50回の通液サイクル後では、初回の通液での破過BVの約70%の通液量まで低減した。   As a result, in the case where the step of contact treatment with activated carbon is not performed, the flow rate until the zinc concentration of the final solution is detected at 0.0001 g / L or more as the number of repetitions increases (hereinafter referred to as breakthrough BV). And the flow rate was reduced to about 70% of the breakthrough BV after the first flow through.

これに対して、活性炭に接触処理させる工程を用いた場合には、50回繰り返し後も初回通液時と同程度の吸着挙動を示し、破過BVの低下は確認できなかった。すなわち、活性炭に接触処理させる工程を行うことによって、イオン交換工程の吸着/溶離サイクルの繰返し使用において破過BVの低下が抑制されるので、溶離操作の頻度が減少し、溶離時に発生する排液の処理コスト及び排液処理設備コストが減少する。   On the other hand, when the step of contacting with activated carbon was used, the adsorption behavior was similar to that at the time of the first liquid passage after 50 repetitions, and a decrease in breakthrough BV could not be confirmed. That is, by performing the process of contacting the activated carbon, the decrease in breakthrough BV is suppressed in repeated use of the adsorption / elution cycle of the ion exchange process, so that the frequency of the elution operation is reduced and the drainage generated during elution is reduced. Treatment costs and wastewater treatment equipment costs are reduced.

ニッケル精錬分野の塩化ニッケル水溶液の精製方法として利用され、特に塩素錯体を形成する不純物元素を多く含む場合に好適に用いられる。
It is used as a method for refining nickel chloride aqueous solution in the nickel refining field, and is particularly suitably used when it contains a large amount of impurity elements that form chlorine complexes.

Claims (2)

亜鉛その他の塩素錯体を形成する不純物元素を含む塩化ニッケル水溶液を精製する方法であって、
前記塩化ニッケル水溶液のNi濃度を90〜130g/L、酸化還元電位を銀/塩化銀電極規準で600〜1200mVおよびpHを4.0〜6.0に調整して酸化中和に付し、前記不純物元素を除去する第一の工程、及び
第一の工程で得られる精製液を、陰イオン交換樹脂を用いてイオン交換に付し、亜鉛を吸着して除去する第二の工程、を含む塩化ニッケル水溶液の精製方法。
A method of purifying an aqueous nickel chloride solution containing an impurity element that forms zinc or another chlorine complex,
The nickel concentration of the aqueous nickel chloride solution is adjusted to 90 to 130 g / L , the oxidation-reduction potential is adjusted to 600 to 1200 mV with a silver / silver chloride electrode standard, and the pH is adjusted to 4.0 to 6.0, followed by oxidation neutralization, A first step of removing impurity elements, and a second step of subjecting the purified liquid obtained in the first step to ion exchange using an anion exchange resin and adsorbing and removing zinc. Purification method of nickel aqueous solution.
さらに、第二の工程に先立って、第一の工程で得られる精製液を活性炭に接触処理させる工程を含むことを特徴とする請求項1に記載の塩化ニッケル水溶液の精製方法。 Furthermore, prior to the second step, the method for purifying an aqueous nickel chloride solution according to claim 1, further comprising a step of contacting the purified liquid obtained in the first step with activated carbon.
JP2003323947A 2003-09-17 2003-09-17 Purification method of nickel chloride aqueous solution Expired - Lifetime JP4124071B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003323947A JP4124071B2 (en) 2003-09-17 2003-09-17 Purification method of nickel chloride aqueous solution
GB0419262A GB2406565B (en) 2003-09-17 2004-08-31 Method for refining aqueous nickel chloride solution
AU2004208659A AU2004208659B2 (en) 2003-09-17 2004-09-02 Method for refining aqueous nickel chloride solution
CA2481729A CA2481729C (en) 2003-09-17 2004-09-15 Method for refining aqueous nickel chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323947A JP4124071B2 (en) 2003-09-17 2003-09-17 Purification method of nickel chloride aqueous solution

Publications (2)

Publication Number Publication Date
JP2005089808A JP2005089808A (en) 2005-04-07
JP4124071B2 true JP4124071B2 (en) 2008-07-23

Family

ID=33128360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323947A Expired - Lifetime JP4124071B2 (en) 2003-09-17 2003-09-17 Purification method of nickel chloride aqueous solution

Country Status (4)

Country Link
JP (1) JP4124071B2 (en)
AU (1) AU2004208659B2 (en)
CA (1) CA2481729C (en)
GB (1) GB2406565B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565339B2 (en) * 2011-02-17 2014-08-06 住友金属鉱山株式会社 Effective chlorine removal method and cobalt recovery method
JP6137035B2 (en) * 2014-04-24 2017-05-31 住友金属鉱山株式会社 Purification method of nickel chloride solution
JP6939506B2 (en) 2017-12-18 2021-09-22 住友金属鉱山株式会社 How to separate copper from nickel and cobalt
JP7277084B2 (en) * 2018-06-27 2023-05-18 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
CN109929999B (en) * 2019-03-28 2020-09-22 中南大学 Method for selectively recovering copper from chloride mixed liquor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1583920A (en) * 1968-06-21 1969-12-05 Le Nickel S.A PROCESS FOR PURIFYING NICKEL SOLUTIONS
FR2138332B1 (en) * 1971-05-24 1975-07-04 Nickel Le
FR2138330B1 (en) * 1971-05-24 1978-01-27 Nickel Le
FR2206383B2 (en) * 1972-11-13 1979-01-12 Nickel Le
FR2206384B2 (en) * 1972-11-13 1976-04-23 Nickel Le
JP3296170B2 (en) * 1995-11-09 2002-06-24 住友金属鉱山株式会社 How to remove osmium from chloride solutions

Also Published As

Publication number Publication date
GB2406565B (en) 2008-03-26
AU2004208659B2 (en) 2010-05-20
CA2481729A1 (en) 2005-03-17
CA2481729C (en) 2012-03-27
JP2005089808A (en) 2005-04-07
GB0419262D0 (en) 2004-09-29
AU2004208659A1 (en) 2005-04-07
GB2406565A (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP4144311B2 (en) Methods for separating and recovering platinum group elements
EP3249062A1 (en) Method for recovering scandium
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
HUT76516A (en) Hydrometallurgical extraction process
JP5538953B2 (en) Purification method of sodium tungstate solution
JP2012167334A (en) METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
JP2010229017A (en) Method for producing high-purity ammonium paratungstate
JP6098569B2 (en) Purification method of aqueous cobalt chloride solution
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
JP5200588B2 (en) Method for producing high purity silver
CN110983070B (en) Method for preparing refined nickel sulfate from copper electrolyte decoppered liquid
JP5761500B2 (en) Method for purifying tungsten-containing alkaline solution
KR20100090094A (en) Leaching method of impurities contained in molybdenum oxide product
WO2021059940A1 (en) Method for recovering scandium, and ion exchange method
EP3091093B1 (en) Scandium recovery process
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JP6933151B2 (en) How to recover selenium from copper electrolytic slime
JP5624705B2 (en) Method for producing ammonium tungstate solution
JP2005247666A (en) Method of refining nickel chloride aqueous solution
JP5553646B2 (en) Purification method of ammonium tungstate solution
KR20060055454A (en) A resin and process for extracting non-ferrous metals
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP2010248043A (en) Method for refining aqueous nickel chloride solution
JP5440137B2 (en) Method for separating palladium from chloride solutions containing arsenic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4124071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

EXPY Cancellation because of completion of term