JP5454461B2 - Method for recovering selenium from copper electrolytic slime - Google Patents

Method for recovering selenium from copper electrolytic slime Download PDF

Info

Publication number
JP5454461B2
JP5454461B2 JP2010280238A JP2010280238A JP5454461B2 JP 5454461 B2 JP5454461 B2 JP 5454461B2 JP 2010280238 A JP2010280238 A JP 2010280238A JP 2010280238 A JP2010280238 A JP 2010280238A JP 5454461 B2 JP5454461 B2 JP 5454461B2
Authority
JP
Japan
Prior art keywords
adsorption
selenium
residual liquid
palladium
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010280238A
Other languages
Japanese (ja)
Other versions
JP2012126611A (en
Inventor
義昭 真鍋
靖志 一色
英明 佐藤
秀昌 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010280238A priority Critical patent/JP5454461B2/en
Publication of JP2012126611A publication Critical patent/JP2012126611A/en
Application granted granted Critical
Publication of JP5454461B2 publication Critical patent/JP5454461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅電解スライムからの白金族元素の回収、特にパラジウム品位の低い高純度なセレンを回収する方法に関する。   The present invention relates to the recovery of platinum group elements from copper electrolytic slime, and more particularly to a method for recovering high-purity selenium with low palladium quality.

銅電解スライムから有価金族を回収する処理については、乾式法及び湿式法のいずれも実用化されている。特に湿式法については様々な方法があるが、そのひとつの例として特開2001−207223号公報(特許文献1)に記載された方法がある。   As for the process of recovering valuable metal from copper electrolytic slime, both the dry method and the wet method have been put into practical use. There are various wet methods in particular, and one example is the method described in Japanese Patent Application Laid-Open No. 2001-207223 (Patent Document 1).

この方法では、銅電解スライムに水を加えてスラリー状とし、塩素ガスを吹き込むことにより、金、白金族元素、セレン、テルル等の有価金属を浸出する。得られた浸出液をビス(2−ブトキシエチル)エーテルと接触させて金を有機相に抽出分離した後、抽出残液を塩化トリオクチルメチルアンモニウム及びリン酸トリブチルと接触させて白金族元素を抽出する。この抽出残液に二硫化硫黄を吹き込み、酸化還元電位(参照電極:Ag/AgCl)を400〜500mVに維持してセレンを選択的に還元し、次いで酸化還元電位を290〜380mVに維持することによりテルルを還元して回収する。   In this method, water is added to copper electrolytic slime to form a slurry, and chlorine gas is blown to leach valuable metals such as gold, platinum group elements, selenium and tellurium. The obtained leachate is brought into contact with bis (2-butoxyethyl) ether to extract and separate gold into an organic phase, and then the extraction residue is brought into contact with trioctylmethylammonium chloride and tributyl phosphate to extract platinum group elements. . Sulfur disulfide is blown into this extraction residual liquid, the redox potential (reference electrode: Ag / AgCl) is maintained at 400 to 500 mV to selectively reduce selenium, and then the redox potential is maintained at 290 to 380 mV. To reduce and recover tellurium.

また、上記のごとく金を分離した抽出残液から白金族元素を回収する別の方法として、特開2004−131745号公報(特許文献2)には、金を分離した抽出残液をポリアミン型アニオン交換樹脂と接触することにより、白金族元素を吸着して分離する方法が提案されている。尚、このポリアミン型アニオン交換樹脂のような陰イオン交換樹脂により白金族元素を吸着した後の残液中に残るセレンやテルルは、上記特許文献1記載の方法と同様に二硫化硫黄の吹き込みにより還元して回収すればよい。   As another method for recovering a platinum group element from an extraction residual liquid from which gold has been separated as described above, JP 2004-131745 A (Patent Document 2) discloses an extraction residual liquid from which gold has been separated as a polyamine type anion. A method of adsorbing and separating platinum group elements by contacting with an exchange resin has been proposed. Selenium and tellurium remaining in the residual liquid after the platinum group element is adsorbed by an anion exchange resin such as this polyamine type anion exchange resin can be obtained by blowing sulfur disulfide in the same manner as in the method described in Patent Document 1. What is necessary is just to reduce | restore and collect | recover.

しかしながら、銅電解スライムには、例えば、Ba、Pb、Bi、Fe、Cu、As、Se、Sn、Sb、Te、Au、Ag、白金族元素など、種々の元素が含まれている。これらの元素を含む銅電解スライムを塩素ガスで浸出した場合、回収目的である金や白金族元素などの有価元素のほかにも、Cu、Se、As、Te、Sb、Biなどの様々な元素も同時に浸出されるので、それらの元素を不純物として処理しなければならない。   However, the copper electrolytic slime contains various elements such as Ba, Pb, Bi, Fe, Cu, As, Se, Sn, Sb, Te, Au, Ag, and platinum group elements. When copper electrolytic slime containing these elements is leached with chlorine gas, various elements such as Cu, Se, As, Te, Sb, Bi, in addition to valuable elements such as gold and platinum group elements, which are the purpose of recovery Are leached at the same time, so these elements must be treated as impurities.

一方、銅製錬における不純物は、原料となる鉱石の品位により変化する。近年では、とりわけヒ素(As)品位の上昇が著しくなり、それに伴って銅電解スライム中に含まれるAs量も増加傾向となっている。しかし、原料鉱石中に含まれるヒ素を単独で分離することは容易ではないため、銅電解スライムを塩素ガスで浸出した浸出液中のAs濃度も高くなる傾向にある。   On the other hand, impurities in copper smelting vary depending on the quality of the ore used as a raw material. In recent years, arsenic (As) quality has risen remarkably, and the amount of As contained in the copper electrolytic slime is also increasing. However, since it is not easy to separate arsenic contained in the raw material ore, the As concentration in the leachate obtained by leaching copper electrolytic slime with chlorine gas tends to increase.

このようなAs濃度の高い浸出液については、上述のごとく金を抽出分離した後、その抽出残液からポリアミン型アニオン交換樹脂のような陰イオン交換樹脂で白金族元素を吸着分離する場合、樹脂に吸着されて除去されるパラジウム(Pd)が減少してしまうという問題が生じている。即ち、浸出液中のAs濃度がほぼ5.5g/lを超えると、Asに妨害されてPdの吸着率が低下することが分かった。その結果、吸着後残液から回収されるSe中のPd品位が上昇してしまい、セレンの品質が低下することが避けられなかった。   For such a leachate with a high As concentration, after extracting and separating gold as described above, the platinum group element is adsorbed and separated from the extraction residual liquid with an anion exchange resin such as a polyamine type anion exchange resin. There is a problem that palladium (Pd) that is adsorbed and removed is reduced. That is, it was found that when the As concentration in the leachate exceeds approximately 5.5 g / l, the adsorption rate of Pd is reduced due to As being disturbed. As a result, it was inevitable that the quality of Pd in Se recovered from the residual liquid after adsorption increased and the quality of selenium deteriorated.

特開2001−207223号公報JP 2001-207223 A 特開2004−131745号公報JP 2004-131745 A

本発明は、上記した従来の事情に鑑み、ヒ素濃度の高い銅電解スライムを塩素浸出した浸出液から有価金属を回収する場合に、金を抽出分離した後の抽出残液を陰イオン交換樹脂で処理した後、その吸着後残液から高純度のセレンを回収する方法を提供することを目的とする。   In the present invention, in view of the above-described conventional circumstances, when recovering a valuable metal from a leachate obtained by leaching a copper electrolytic slime having a high arsenic concentration, the extraction residual solution after extracting and separating gold is treated with an anion exchange resin. Then, it aims at providing the method of collect | recovering highly purified selenium from the residual liquid after the adsorption | suction.

上記目的を達成するため、本発明者らは、銅電解スライムを塩素浸出した浸出液中のセレンと白金族元素、特にセレンとパラジウムの還元挙動について鋭意研究を重ねた結果、陰イオン交換樹脂で白金族元素を吸着分離した後、その吸着後残液に還元剤として亜硫酸水素ナトリウムを添加することによって、パラジウムをセレンよりも優先的に還元して沈殿分離できることを見出し、この知見に基づいて本発明を完成するに至ったものである。   In order to achieve the above object, the present inventors have conducted intensive research on the reduction behavior of selenium and platinum group elements, particularly selenium and palladium, in the leaching solution obtained by leaching copper electrolysis slime. After adsorbing and separating group elements, it was found that by adding sodium hydrogen sulfite as a reducing agent to the residual liquid after the adsorption, it was possible to reduce and preferentially precipitate palladium over selenium. Has been completed.

即ち、本発明が提供する銅電解スライムからのセレンの回収方法は、銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、その抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法において、吸着後残液に二酸化硫黄を吹き込む前に亜硫酸水素ナトリウムを添加し、生成した主にパラジウムを含む沈殿物を濾過して分離した後、得られた濾液に二酸化硫黄を吹き込むことを特徴とするものである。   That is, the method for recovering selenium from copper electrolytic slime provided by the present invention is a method in which a slurry of copper electrolytic slime is leached with chlorine, an organic solvent is brought into contact with the leached liquid to extract gold, and the extraction residual liquid is subjected to anion exchange. After adsorption of platinum group element by contacting with resin, in the method to recover selenium by blowing sulfur dioxide into the residual liquid after adsorption, sodium hydrogen sulfite is added before sulfur dioxide is blown into the residual liquid after adsorption Then, after the precipitate mainly containing palladium is filtered and separated, sulfur dioxide is blown into the obtained filtrate.

上記本発明による銅電解スライムからのセレンの回収方法においては、亜硫酸水素ナトリウムを添加する前に、吸着後残液中の塩化物濃度を2.0〜2.5モル/lの範囲に調整することが好ましい。また、亜硫酸水素ナトリウムを添加する際に、吸着後残液の温度を30〜50℃の範囲に調整することが好ましい。   In the method for recovering selenium from the copper electrolytic slime according to the present invention, the chloride concentration in the residual liquid after adsorption is adjusted to the range of 2.0 to 2.5 mol / l before adding sodium hydrogen sulfite. It is preferable. Moreover, when adding sodium hydrogen sulfite, it is preferable to adjust the temperature of the residual liquid after adsorption to the range of 30-50 degreeC.

更に、上記本発明による銅電解スライムからのセレンの回収方法において、亜硫酸水素ナトリウムの添加量は、NaHSO換算で濃度35〜36重量%の溶液として、吸着後残液の液量に対し1〜3体積%であることが好ましい。また、亜硫酸水素ナトリウムの添加量については酸化還元電位で管理することもでき、その場合は前記吸着後残液の酸化還元電位が1050〜800mVの範囲となるように亜硫酸水素ナトリウムを添加することが好ましい。 Furthermore, in the method for recovering selenium from the copper electrolytic slime according to the present invention, the amount of sodium hydrogen sulfite added is 1 to 1 with respect to the amount of residual liquid after adsorption as a solution having a concentration of 35 to 36% by weight in terms of NaHSO 3 . It is preferably 3% by volume. Further, the amount of sodium bisulfite added can be controlled by the oxidation-reduction potential. In this case, sodium bisulfite may be added so that the oxidation-reduction potential of the residual liquid after adsorption is in the range of 1050 to 800 mV. preferable.

本発明によれば、近年のヒ素品位の高い銅電解スライムを塩素浸出した浸出液であっても、金の抽出分離と白金族元素の吸着分離に続いて、パラジウムを還元して回収すると共に、パラジウム品位が低く高純度のセレンを回収することができる。その結果、白金族元素、特にパラジウムについても、回収ロスを減少させることができる。   According to the present invention, even in the leachate obtained by leaching chlorine electrolytic copper slime with high arsenic quality in recent years, palladium is reduced and recovered following the extraction separation of gold and the adsorption separation of the platinum group element, and the palladium Low quality and high purity selenium can be recovered. As a result, recovery loss can also be reduced for platinum group elements, particularly palladium.

実施例1において亜硫酸水素ナトリウムを添加した際の吸着後残液の酸化還元電位とセレン濃度及びパラジウムの濃度との関係を示すグラフである。It is a graph which shows the relationship between the oxidation-reduction potential of the residual liquid after adsorption | suction at the time of adding sodium hydrogensulfite in Example 1, and the density | concentration of selenium, and palladium. 実施例3において亜硫酸水素ナトリウムを添加した際の吸着後残液中の塩化物濃度とパラジウム濃度との関係を示すグラフである。It is a graph which shows the relationship between the chloride density | concentration in the residual liquid after adsorption | suction at the time of adding sodium hydrogen sulfite in Example 3, and palladium concentration.

本発明においては、銅電解スライムのスラリーを塩素浸出した浸出液から有価金属、特にセレンを回収する場合に、有機溶媒で金を抽出した抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に残っているパラジウムを亜硫酸水素ナトリウムで還元し、主にパラジウムを含む殿物を濾過して分離する。次に、得られた濾液に二酸化硫黄を吹き込んでセレンを還元することにより、パラジウム品位の低い高純度なセレンを沈殿させて回収する。   In the present invention, when recovering valuable metals, particularly selenium, from a leachate obtained by leaching a copper electrolysis slime slurry with chlorine, an extraction residual solution obtained by extracting gold with an organic solvent is brought into contact with an anion exchange resin to remove a platinum group element. After the adsorption, palladium remaining in the residual liquid after adsorption is reduced with sodium bisulfite, and the precipitate mainly containing palladium is separated by filtration. Next, sulfur dioxide is blown into the obtained filtrate to reduce selenium, thereby precipitating and collecting high-purity selenium having a low palladium quality.

尚、上記金の抽出に用いる有機溶媒や白金族元素の吸着に用いる陰イオン交換樹脂は従来から使用されているものでよい。例えば、金の抽出に用いる有機溶媒としてはビス(2−ブトキシエチル)エーテルが好ましく、また白金族元素の吸着に用いる陰イオン交換樹脂としてはポリアミン型の陰イオン交換樹脂の使用が好ましい。   In addition, the organic solvent used for the said gold extraction, and the anion exchange resin used for adsorption | suction of a platinum group element may be used conventionally. For example, bis (2-butoxyethyl) ether is preferred as the organic solvent used for gold extraction, and polyamine type anion exchange resin is preferably used as the anion exchange resin used for the adsorption of platinum group elements.

上記したパラジウムの還元分離工程では、還元剤として亜硫酸水素ナトリウム(NaHSO;重亜硫酸ソーダとも称する)を使用する。陰イオン交換樹脂での吸着後残液に含まれるパラジウムなどの白金族元素は微量であるため、液の酸化還元電位だけを監視しながら二酸化硫黄ガスなどの還元剤の添加量を精度よくコントロールすることは容易でない。これに対して亜硫酸水素ナトリウムは溶液で用いると、例えば定量ポンプを使うなどの方法によって添加時間、即ち添加量を管理することができ、また酸化還元電位の管理も容易であるから、微量含有されるパラジウムなどの白金族元素の還元を容易に且つ精度よくコントロールすることができる利点がある。 In the above reduction and separation step of palladium, sodium bisulfite (NaHSO 3 ; also referred to as sodium bisulfite) is used as a reducing agent. The amount of platinum group elements such as palladium contained in the residual liquid after adsorption with an anion exchange resin is very small, so the amount of reducing agent such as sulfur dioxide gas can be accurately controlled while monitoring only the redox potential of the liquid. It is not easy. In contrast, when sodium bisulfite is used in a solution, the addition time, that is, the addition amount can be controlled by a method such as using a metering pump, and the oxidation-reduction potential can be easily controlled. There is an advantage that the reduction of a platinum group element such as palladium can be easily and accurately controlled.

亜硫酸水素ナトリウムの添加量が多いほど、パラジウムの還元量を増加させることができるが、同時にセレンの共沈量も増加するため回収ロスが生じやすい。逆に亜硫酸水素ナトリウムの添加量が少ないと、パラジウムの還元量が減少し、次工程でセレンを回収する際にセレンに分配するパラジウム量が増え、セレンの品質が悪化する。これらの不都合を避けるため、亜硫酸水素ナトリウムの添加量は、NaHSO換算で濃度35〜36重量%の溶液として、陰イオン交換樹脂での吸着後残液の液量に対して1〜3体積%添加することが好ましい。 As the amount of sodium hydrogen sulfite added is increased, the reduction amount of palladium can be increased, but at the same time, the coprecipitation amount of selenium is increased, so that a recovery loss is likely to occur. Conversely, if the amount of sodium bisulfite added is small, the amount of palladium reduced will decrease, and the amount of palladium distributed to selenium will increase when selenium is recovered in the next step, resulting in poor quality of selenium. To avoid these disadvantages, the addition amount of sodium bisulfite is, NaHSO 3 as a solution concentration of 35 to 36 wt% in terms of 1-3 vol% with respect to the liquid amount of the post-adsorption residual liquid in the anion exchange resin It is preferable to add.

また、上記亜硫酸水素ナトリウムの添加量は、酸化還元電位(参照電極:Ag/AgCl)で管理することも可能である。還元剤である亜硫酸水素ナトリウムを添加すると、還元の初期段階ではセレンよりも優先してパラジウムが還元されるためである。具体的には、吸着後残液の酸化還元電位が1050〜800mVの範囲となるように亜硫酸水素ナトリウムを添加することによって、セレンよりもパラジウムが選択的に還元されるので、セレンを含まず主にパラジウムからなる沈殿物のみを分離することができる。   The amount of sodium hydrogen sulfite added can also be controlled by the redox potential (reference electrode: Ag / AgCl). This is because the addition of sodium bisulfite, which is a reducing agent, reduces palladium in preference to selenium in the initial stage of reduction. Specifically, palladium is selectively reduced over selenium by adding sodium bisulfite so that the redox potential of the residual liquid after adsorption is in the range of 1050 to 800 mV. Only the precipitate made of palladium can be separated.

上記亜硫酸水素ナトリウムの添加によるパラジウムの還元分離工程では、亜硫酸水素ナトリウムを添加する前に、吸着後残液中の塩化物イオン濃度を2.0〜2.5モル/lの範囲に調整することが好ましい。一般に塩化物溶液中のパラジウムイオンはPdCl 2−で示される形態で存在するが、この形で態は塩化物イオン濃度が高くなると塩化物錯体の安定度が増して還元し難くなるため、セレンとの選択性が低下して分離し難くなる。そのため、吸着後残液中の塩化物イオン濃度を2.5モル/l以下に調整することにより、セレンとの選択性が確保され、パラジウムを選択的に還元して沈殿させることが容易になる In the reduction and separation step of palladium by adding sodium hydrogen sulfite, the chloride ion concentration in the residual liquid after adsorption should be adjusted to the range of 2.0 to 2.5 mol / l before adding sodium hydrogen sulfite. Is preferred. In general, palladium ions in a chloride solution exist in a form represented by PdCl 6 2- . In this form, when the chloride ion concentration increases, the stability of the chloride complex increases and it is difficult to reduce the selenium. And the selectivity is reduced, making separation difficult. Therefore, by adjusting the chloride ion concentration in the residual liquid after adsorption to 2.5 mol / l or less, selectivity with selenium is ensured, and it becomes easy to selectively reduce and precipitate palladium.

一方、塩化物イオン濃度が低いほどセレンとの選択性は向上するが、塩化物イオン濃度が2.0モル/l未満になると、次工程でセレンを還元分離する際にアンチモンやビスマスなどの不純物も加水分解されて沈殿しやすくなるため、回収されるセレンの品質が低下する恐れがある。このような理由により、吸着後残液中の塩化物イオン濃度は、上記2.0〜2.5モル/lの範囲に調整管理することが好ましい。   On the other hand, the lower the chloride ion concentration, the better the selectivity with selenium. However, when the chloride ion concentration is less than 2.0 mol / l, impurities such as antimony and bismuth are used when reducing and separating selenium in the next step. Since it is also hydrolyzed and easily precipitated, the quality of the recovered selenium may be lowered. For these reasons, it is preferable to adjust and manage the chloride ion concentration in the residual liquid after adsorption within the range of 2.0 to 2.5 mol / l.

尚、上記パラジウムの還元分離工程において、亜硫酸水素ナトリウムを添加する前の吸着後残液中の塩化物イオン濃度が上記基範囲よりも低い場合には、塩化ナトリウム、塩化カリウム、塩酸などの形で塩化物イオンを補充するか、あるいは吸着後残液を加熱して濃縮するなどの方法により、塩化物イオン濃度を調整することができる。反対に塩化物イオン濃度が高い場合には、吸着後残液に水を加えて希釈すればよい。   In the above reduction and separation step of palladium, if the chloride ion concentration in the residual liquid after adsorption before adding sodium bisulfite is lower than the above basic range, it is in the form of sodium chloride, potassium chloride, hydrochloric acid, etc. The chloride ion concentration can be adjusted by replenishing chloride ions or by heating and concentrating the residual liquid after adsorption. On the other hand, when the chloride ion concentration is high, water may be added to the residual liquid after adsorption to dilute.

また、還元時における吸着後残液の温度は、30〜50℃の範囲に調整することが望ましい。吸着後残液の温度が30℃未満でもセレンとパラジウムを選択還元することはできるが、パラジウムの還元速度が遅くなる。そのため、工業的な規模で実施する場合には、操作に手間と時間がかかるうえ、遅い還元速度と必要な処理量に見合った規模の反応槽が必要となるなどの不利益がある。   Moreover, it is desirable to adjust the temperature of the post-adsorption residual liquid at the time of reduction in the range of 30-50 degreeC. Even if the temperature of the residual liquid after adsorption is less than 30 ° C., selenium and palladium can be selectively reduced, but the reduction rate of palladium becomes slow. Therefore, when it implements on an industrial scale, operation takes time and effort, and there are disadvantages such as a slow reduction rate and a reaction tank of a scale corresponding to the required throughput.

一方、吸着後残液の温度が50℃を超えると、生成するセレンが取り扱い難くい性状となるため好ましくない。即ち、セレンの形態は、還元温度が50℃以下では不定型の赤色セレン、50〜60℃ではガラス状のアモルファスセレン、70℃以上では結晶型のセレンへと変化する。ガラス状のアモルファスセレンは、団子状となって反応槽の内側や撹拌羽根に付着しやすいため、生成を避けることが望ましい。また、温度が50℃を超えて高い場合には、パラジウムの再溶解が生じるため、パラジウムの還元も進みに難くなる。これらの理由から、反応温度は50℃を上限とすることが好ましい。   On the other hand, if the temperature of the residual liquid after adsorption exceeds 50 ° C., the generated selenium is difficult to handle, which is not preferable. That is, the form of selenium changes to amorphous red selenium at a reduction temperature of 50 ° C. or lower, glassy amorphous selenium at 50 to 60 ° C., and crystalline selenium at 70 ° C. or higher. Since glassy amorphous selenium tends to adhere to the inside of the reaction vessel and the stirring blade in the form of a dumpling, it is desirable to avoid the generation. Further, when the temperature is higher than 50 ° C., palladium is redissolved, so that the reduction of palladium is difficult to proceed. For these reasons, the reaction temperature is preferably 50 ° C.

上記パラジウムの還元分離工程により吸着後残液からパラジウムを濾過して分離した後の濾液は、従来と同様の処理により、セレン及びテルルを順次還元して回収することができる。即ち、セレンの還元工程では二酸化硫黄を吹き込んで酸化還元電位(参照電極:Ag/AgCl)を400〜500mVに維持することによりセレンを選択的に還元し、次のテルルの還元工程では酸化還元電位を290〜380mVに維持することによりテルルを還元して回収する。セレン及びテルルの還元に用いる還元剤としては、安価で取り扱いの容易な二酸化硫黄ガスが好ましい。 The filtrate after separating palladium by filtration from the residual liquid after adsorption in the palladium reduction and separation step can be recovered by sequentially reducing selenium and tellurium by the same treatment as before. That is, in the selenium reduction step, sulfur dioxide is blown in to maintain the redox potential (reference electrode: Ag / AgCl) at 400 to 500 mV, thereby selectively reducing selenium. In the next tellurium reduction step, the redox potential is reduced. Is maintained at 290-380 mV to reduce and recover tellurium. As a reducing agent used for reduction of selenium and tellurium, sulfur dioxide gas which is inexpensive and easy to handle is preferable.

[実施例1]
銅電解精製で生成した銅電解スライムに水を加え、スラリー濃度を200g/lに調整した。このスラリーにボンベから塩素ガスを吹込み、下記表1に示す組成の浸出液を得た。この浸出液1.5リットルに対し、有機抽出剤として1.5リットルのビス(2−ブトキシエチル)エーテルを混合し、5分間振盪した後静置して、浸出液中に含まれる金を有機相中に抽出して分離した。
[Example 1]
Water was added to the copper electrolytic slime produced by the copper electrolytic purification, and the slurry concentration was adjusted to 200 g / l. Chlorine gas was blown into the slurry from a cylinder to obtain a leachate having the composition shown in Table 1 below. To 1.5 liters of the leachate, 1.5 liters of bis (2-butoxyethyl) ether as an organic extractant is mixed, shaken for 5 minutes, and allowed to stand to allow the gold contained in the leachate to enter the organic phase. Extracted and separated.

次に、金を分離した後の抽出残液をポリアミン型陰イオン交換樹脂(ピュロライト社製、商品名A830W型)100mlを充填したガラス製カラムに、流量がSV=2(200ml/hr)、液量がBV=15(1500ml)となる条件で通液し、抽出残液中に含まれている白金族元素を吸着させた。樹脂通過後の吸着後残液をひとつにまとめ、ICP分析装置を用いて分析した(但し、Cu、As、Sb、Biは除く)。得られた吸着後残液の組成を、上記浸出液の組成と共に、下記表1に示した。   Next, the extraction residual liquid after separating the gold was applied to a glass column packed with 100 ml of a polyamine type anion exchange resin (product name: A830W type, manufactured by Purolite), and the flow rate was SV = 2 (200 ml / hr). The liquid was passed under the condition that the amount was BV = 15 (1500 ml), and the platinum group element contained in the extraction residual liquid was adsorbed. The post-adsorption residual liquid after passing through the resin was put together and analyzed using an ICP analyzer (however, Cu, As, Sb, and Bi were excluded). The composition of the obtained residual liquid after adsorption is shown in Table 1 below together with the composition of the leachate.

Figure 0005454461
Figure 0005454461

次に、上記イオン交換樹脂を通過した後の吸着後残液について、セレンとパラジウムの還元挙動を調査した。即ち、1.5リットルの吸着後残液を容量3リットルの耐熱ガラス製ビーカーに入れ、加温して温度を50℃に調整し、スリーワンモーターで撹拌しながら亜硫酸水素ナトリウム溶液(NaHSO換算で濃度35〜36重量%)を順次添加した。その際10分毎にサンプリングして、液中に残留するセレンとパラジウムの濃度を分析すると共に、液の酸化還元電位(参照電極:Ag/AgCl)を測定してた。得られた結果を図1に示した。 Next, the reduction behavior of selenium and palladium was investigated for the residual liquid after adsorption after passing through the ion exchange resin. That is, 1.5 liters of the remaining liquid after adsorption is put in a heat-resistant glass beaker having a capacity of 3 liters, heated to adjust the temperature to 50 ° C., and stirred with a three-one motor, with a sodium bisulfite solution (in terms of NaHSO 3) . Concentrations of 35 to 36% by weight) were added sequentially. At that time, sampling was performed every 10 minutes to analyze the concentrations of selenium and palladium remaining in the liquid, and the oxidation-reduction potential (reference electrode: Ag / AgCl) of the liquid was measured. The obtained results are shown in FIG.

図1の結果から、パラジウムは還元の初期段階でセレンよりも優先して還元されて分離できることが分かる。具体的には、亜硫酸水素ナトリウム溶液を添加しながら酸化還元電位を1050〜800mVの範囲に管理することによって、パラジウムが選択的に還元され、セレンよりも主にパラジウムからなる沈殿を得ることができる。尚、上記吸着後残液の塩化物濃度は、滴定法により測定したところ2.3モル/lであった。   From the results of FIG. 1, it can be seen that palladium can be reduced and separated in preference to selenium in the initial stage of reduction. Specifically, by controlling the oxidation-reduction potential in the range of 1050 to 800 mV while adding a sodium bisulfite solution, palladium is selectively reduced, and a precipitate mainly composed of palladium rather than selenium can be obtained. . The chloride concentration in the residual liquid after adsorption was 2.3 mol / l as measured by a titration method.

[実施例2]
上記実施例1において白金族をイオン交換樹脂で吸着した後の溶液、即ち上記表1に示す組成の吸着後残液を約2リットル用意し、これを200mlづつ9等分し、それぞれを容量0.5リットルの耐熱ガラス製ビーカーに入れた。
[Example 2]
About 2 liters of the solution after adsorption of the platinum group with the ion exchange resin in Example 1 above, that is, about 2 liters of the residual liquid after adsorption having the composition shown in Table 1 above, is divided into 9 equal portions of 200 ml, and each volume is 0. Place in a .5 liter heat-resistant glass beaker.

上記の各吸着後残液について、液温をそれぞれ下記表2に示す20℃から80℃の各温度に維持し、スラーワンモーターで撹拌しながら、亜硫酸水素ナトリウム溶液(濃度35〜36重量%)を各液量に対して1〜4体積%(2〜8ml)の範囲で添加して1時間撹拌した。   About each said post-adsorption residual liquid, each liquid temperature is maintained at each temperature of 20 degreeC to 80 degreeC shown in following Table 2, and it stirs with a slur one motor, a sodium bisulfite solution (concentration 35-36 weight%) Was added in the range of 1 to 4% by volume (2 to 8 ml) with respect to each liquid amount and stirred for 1 hour.

所定の時間経過後、固液分離して得た濾液のセレン及びパラジウムの濃度をICPにより分析して、得られた濾液中のセレン及びパラジウムの濃度を下記表2に示した。また、回収した沈殿物の外観を目視観察し、その結果を下記表2に併せて示した。   After a predetermined time, the selenium and palladium concentrations of the filtrate obtained by solid-liquid separation were analyzed by ICP, and the selenium and palladium concentrations in the obtained filtrate are shown in Table 2 below. Moreover, the external appearance of the collect | recovered deposit was observed visually, and the result was combined with following Table 2, and was shown.

Figure 0005454461
Figure 0005454461

上記表2に示すように、液温が20℃の場合には還元反応が遅いため、亜硫酸水素ナトリウム溶液を1〜2体積%添加しても1時間の撹拌では顕著な還元が生じず、4体積%までの添加が必要であった。また、液温が60℃以上では、塊状の還元物や塊状が崩壊した粗い黒色の粉状物が得られ、これらの沈殿物は工業的な取り扱い考えると好ましくないものであった。   As shown in Table 2 above, when the liquid temperature is 20 ° C., the reduction reaction is slow, so even if 1 to 2% by volume of sodium bisulfite solution is added, no significant reduction occurs with stirring for 1 hour. Addition up to volume percent was required. In addition, when the liquid temperature is 60 ° C. or higher, a massive reduced product or a coarse black powder having a massive collapse is obtained, and these precipitates are not preferable in view of industrial handling.

[実施例3]
上記実施例1において白金族をイオン交換樹脂で吸着した後の溶液、即ち吸着後残液を用意し、これを100mlづつに分け、液温を40〜43℃の範囲内に維持した。これらの吸着後残液に塩酸を添加して塩化物濃度を調整し、次いで上記実施例1と同様に亜硫酸水素ナトリウム溶液を液量に対して1.5〜2.0体積%(1.5〜2ml)添加した。その後、沈殿物を濾過して分離し、還元後の濾液の塩化物濃度とパラジウム濃度を分析し、得られた結果を図2に示した。
[Example 3]
In Example 1 above, a solution after the platinum group was adsorbed with an ion exchange resin, that is, a residual solution after adsorption, was prepared, divided into 100 ml portions, and the liquid temperature was maintained within the range of 40 to 43 ° C. After the adsorption, hydrochloric acid was added to the residual liquid to adjust the chloride concentration. Then, in the same manner as in Example 1, the sodium bisulfite solution was added in an amount of 1.5 to 2.0% by volume (1.5%). ~ 2 ml) was added. Thereafter, the precipitate was filtered and separated, and the chloride concentration and palladium concentration of the filtrate after the reduction were analyzed, and the obtained results are shown in FIG.

図2に示すように、塩化物濃度が少ないほどパラジウムが還元除去されやすくなることが分かる。即ち、次の二酸化硫黄の吹き込みによってパラジウム品位の低い高純度なセレンを確実に得るためには、亜硫酸水素ナトリウムを添加する前に吸着後残液の塩化物濃度を2.0〜2.5モル/lの範囲に調整しておくことが好ましい。 As shown in FIG. 2, it can be seen that the smaller the chloride concentration, the easier the palladium is reduced and removed. That is, in order to reliably obtain high-purity selenium with low palladium quality by the subsequent blowing of sulfur dioxide , the chloride concentration of the residual liquid after adsorption is set to 2.0 to 2.5 mol before adding sodium bisulfite. It is preferable to adjust to the range of / l.

[実施例4]
上記実施例1において白金族をイオン交換樹脂で吸着した後の溶液、即ち吸着後残液を用意し、これを1.5リットルづつ3等分して、それぞれオーバーフロー管の付いたガラス製ビーカー(容量1リットル)に入れた。スリーワンモーターで撹拌しながら加温して温度を45〜50℃に維持し、次ぎに亜硫酸水素ナトリウム溶液(NaHSO換算で濃度35〜36重量%)を吸着後残液の液量に対してそれぞれ1、2、3体積%添加した。
[Example 4]
In Example 1 above, a solution after the platinum group was adsorbed with an ion exchange resin, that is, a post-adsorption residual solution, was prepared, divided into three equal portions of 1.5 liters, and each glass beaker with an overflow tube ( 1 liter). The temperature is maintained at 45 to 50 ° C. while stirring with a three-one motor, and then a sodium bisulfite solution (concentration of 35 to 36% by weight in terms of NaHSO 3 ) is adsorbed with respect to the amount of residual liquid after adsorption. 1, 2, 3 volume% was added.

亜硫酸水素ナトリウム溶液を添加して30分間反応させた後、生成した沈殿物を濾別して、濾液中のパラジウム濃度とセレン濃度を分析した。また、回収されるセレンの品質を確認するため、濾別して得た濾液に酸化還元電位が500mV(参照電極:Ag/AgCl)になるまで二酸化硫黄を吹き込み、セレンを沈殿させて回収した。回収したセレンの沈殿物は乾燥した後、パラジウム品位を分析した。   After adding a sodium hydrogen sulfite solution and reacting for 30 minutes, the produced precipitate was separated by filtration, and the palladium concentration and selenium concentration in the filtrate were analyzed. Further, in order to confirm the quality of the collected selenium, sulfur dioxide was blown into the filtrate obtained by filtration until the oxidation-reduction potential reached 500 mV (reference electrode: Ag / AgCl), and selenium was precipitated and collected. The collected selenium precipitate was dried and analyzed for palladium quality.

下記表3に、吸着後残液とパラジウ還元後の濾液におけるセレンとパラジウムの濃度、及び沈殿物として回収したセレン粉のパラジウム品位を、亜硫酸水素ナトリウム溶液の添加量ごとに示した。この結果から、回収セレン粉のパラジウム品位は、亜硫酸水素ナトリウムの添加量が1〜3体積%の範囲で増加するのに伴って低下することが分かる。   Table 3 below shows the concentration of selenium and palladium in the residual liquid after adsorption and the filtrate after reduction of paradium, and the palladium quality of the selenium powder recovered as a precipitate for each amount of sodium bisulfite solution added. From this result, it can be seen that the palladium quality of the recovered selenium powder decreases as the amount of sodium bisulfite added increases in the range of 1 to 3% by volume.

Figure 0005454461
Figure 0005454461

尚、亜硫酸水素ナトリウムの添加量が1体積%未満では、セレン中のパラジウム品位が高くなりすぎるので、セレンの品質を維持する観点から好ましくない。一方、亜硫酸水素ナトリウムの添加量が3体積%を超えると、パラジウムと共にセレンの還元量が多くなり、セレンの回収ロスが増加してしまう。また、還元剤である亜硫酸水素ナトリウムの使用量も増加し、コスト上昇をもたらすため好ましくない。   If the amount of sodium bisulfite added is less than 1% by volume, the palladium quality in selenium becomes too high, which is not preferable from the viewpoint of maintaining the quality of selenium. On the other hand, when the addition amount of sodium hydrogen sulfite exceeds 3% by volume, the reduction amount of selenium together with palladium increases, and the recovery loss of selenium increases. In addition, the amount of sodium hydrogen sulfite, which is a reducing agent, is increased, resulting in an increase in cost.

[比較例1]
上記実施例1において白金族をイオン交換樹脂で吸着した後の溶液、即ち吸着後残液を用意し、この吸着後残液1.5リットルを容量3リットルの耐熱ガラス製ビーカーに入れ、温度を80℃に維持し、スリーワンモーターで撹拌しながら亜硫酸水素ナトリウム溶液(濃度35〜36重量%)を酸化還元電位(参照電極:Ag/AgCl)が500mVに低下するまで添加した。
[Comparative Example 1]
In Example 1 above, a solution after the platinum group is adsorbed with an ion exchange resin, that is, a residual liquid after adsorption, is prepared, and 1.5 liters of the residual liquid after adsorption is put in a heat-resistant glass beaker having a capacity of 3 liters. While maintaining at 80 ° C. and stirring with a three-one motor, a sodium bisulfite solution (concentration of 35 to 36% by weight) was added until the oxidation-reduction potential (reference electrode: Ag / AgCl) was reduced to 500 mV.

その後、濾過して固液分離し、得られ濾液に二酸化硫黄ガスを吹き込んでセレンを析出させた。回収したセレン粉を乾燥した後、パラジウム品位を分析したところ、セレン粉中のパラジウム品位は1300ppmとなり、上記実施例4に比較して品質が大幅に低下した。   Then, it filtered and solid-liquid separated, Sulfur dioxide gas was blown into the obtained filtrate, and selenium was deposited. After the collected selenium powder was dried and analyzed for palladium quality, the palladium quality in the selenium powder was 1300 ppm, and the quality was significantly reduced compared to Example 4 above.

Claims (2)

銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、その抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法において、前記吸着後残液中の塩化物濃度を2.0〜2.5モル/lの範囲に調整した後、その吸着後残液の温度を30〜50℃の範囲に調整しながら、吸着後残液にNaHSO 換算で濃度35〜36重量%の溶液とした亜硫酸水素ナトリウムを該吸着後残液の液量に対し1〜3体積%添加して、生成した主にパラジウムを含む沈殿物を濾過して分離した後、得られた濾液に二酸化硫黄を吹き込むことを特徴とする銅電解スライムからのセレンの回収方法。 The copper electrolysis slime slurry is leached with chlorine, and the leachate is contacted with an organic solvent to extract gold. The extracted residue is brought into contact with an anion exchange resin to adsorb platinum group elements, and then the residual solution after adsorption. In the method in which sulfur dioxide is blown into the selenium to reduce and recover selenium, the chloride concentration in the post-adsorption residual liquid is adjusted to a range of 2.0 to 2.5 mol / l, and then the post-adsorption residual liquid While adjusting the temperature in the range of 30 to 50 ° C., 1 to 3 volumes of sodium bisulfite in a concentration of 35 to 36% by weight in terms of NaHSO 3 was added to the residual liquid after adsorption with respect to the liquid volume of the residual liquid after adsorption. A method for recovering selenium from copper electrolytic slime, wherein the precipitate containing mainly palladium is added by filtration and separated by filtration, and then sulfur dioxide is blown into the obtained filtrate. 前記吸着後残液の酸化還元電位が1050〜800mVの範囲となるように亜硫酸水素ナトリウムを添加することを特徴とする、請求項1に記載の銅電解スライムからのセレンの回収方法。 The method for recovering selenium from copper electrolytic slime according to claim 1, wherein sodium bisulfite is added so that the redox potential of the residual liquid after adsorption is in the range of 1050 to 800 mV .
JP2010280238A 2010-12-16 2010-12-16 Method for recovering selenium from copper electrolytic slime Active JP5454461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280238A JP5454461B2 (en) 2010-12-16 2010-12-16 Method for recovering selenium from copper electrolytic slime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280238A JP5454461B2 (en) 2010-12-16 2010-12-16 Method for recovering selenium from copper electrolytic slime

Publications (2)

Publication Number Publication Date
JP2012126611A JP2012126611A (en) 2012-07-05
JP5454461B2 true JP5454461B2 (en) 2014-03-26

Family

ID=46644083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280238A Active JP5454461B2 (en) 2010-12-16 2010-12-16 Method for recovering selenium from copper electrolytic slime

Country Status (1)

Country Link
JP (1) JP5454461B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032496B2 (en) * 2013-12-06 2016-11-30 住友金属鉱山株式会社 Method for producing selenium from copper electrolytic slime
JP6229847B2 (en) * 2014-03-31 2017-11-15 三菱マテリアル株式会社 Method for recovering platinum group elements
JP6400047B2 (en) * 2016-06-03 2018-10-03 Jx金属株式会社 Method for treating metal-containing acidic aqueous solution
JP6964408B2 (en) * 2016-12-28 2021-11-10 Jx金属株式会社 How to collect selenium
JP6835577B2 (en) * 2016-12-28 2021-02-24 Jx金属株式会社 How to collect valuables
CN108251656A (en) * 2016-12-29 2018-07-06 江西瑞林稀贵金属科技有限公司 The method for extracting gold, platinum and palladium in electronic waste copper anode mud
JP6948910B2 (en) * 2017-10-16 2021-10-13 Jx金属株式会社 How to collect selenium
JP6933151B2 (en) * 2018-01-29 2021-09-08 住友金属鉱山株式会社 How to recover selenium from copper electrolytic slime
JP7047492B2 (en) * 2018-03-13 2022-04-05 住友金属鉱山株式会社 Method for removing lead compound and method for recovering selenium or tellurium having it
CN115449642B (en) * 2022-07-28 2023-12-05 江西铜业技术研究院有限公司 Process for deeply recycling platinum and palladium in silver precipitation tail liquid by improved sodium sulfide precipitation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884934A (en) * 1981-11-16 1983-05-21 Furukawa Electric Co Ltd:The Recovering method for palladium
JP3087758B1 (en) * 2000-01-25 2000-09-11 住友金属鉱山株式会社 Method for recovering valuable metals from copper electrolytic slime
JP4144311B2 (en) * 2002-10-08 2008-09-03 住友金属鉱山株式会社 Methods for separating and recovering platinum group elements

Also Published As

Publication number Publication date
JP2012126611A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
US4094668A (en) Treatment of copper refinery slimes
JP3616314B2 (en) Method for treating copper electrolytic deposits
KR100956050B1 (en) Method for separating platinum group element
JP4715627B2 (en) Method for recovering platinum group element from ion exchange resin adsorbed platinum group element
JP5893145B2 (en) Zinc oxide purification method
JP2004131745A (en) Method of separating and recovering platinum group element
WO1998058089A1 (en) Method for smelting noble metal
NO158106B (en) PROCEDURE FOR TREATING Aqueous SOLUTION CONTAINING Precious Metals and Undesirable Elements.
CN106048233B (en) A kind of silver-colored leaching method
US6290749B1 (en) Preparation of ultra-pure silver metal
JP5589854B2 (en) How to recover bismuth
JP2012246198A (en) Method for purifying selenium by wet process
JP5200588B2 (en) Method for producing high purity silver
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
JP6933151B2 (en) How to recover selenium from copper electrolytic slime
JP3975901B2 (en) Iridium separation and purification method
EP1577408A1 (en) Method for separating platinum group element
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2012246197A (en) Method for purifying selenium by wet process
JPH09279264A (en) Method for continuously extracting noble metal and method for recovering the same
JP2010174336A (en) METHOD OF RECOVERING Ru AND/OR Ir FROM SOLUTION CONTAINING PLATINUM GROUP
JP4269693B2 (en) Process for treating selenium mixture
JP7006332B2 (en) How to make gold powder
JP7183748B2 (en) Method for recovering selenium from copper electrolytic slime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150