WO2021059940A1 - Method for recovering scandium, and ion exchange method - Google Patents

Method for recovering scandium, and ion exchange method Download PDF

Info

Publication number
WO2021059940A1
WO2021059940A1 PCT/JP2020/033773 JP2020033773W WO2021059940A1 WO 2021059940 A1 WO2021059940 A1 WO 2021059940A1 JP 2020033773 W JP2020033773 W JP 2020033773W WO 2021059940 A1 WO2021059940 A1 WO 2021059940A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
chelate resin
acidic solution
nickel
ion exchange
Prior art date
Application number
PCT/JP2020/033773
Other languages
French (fr)
Japanese (ja)
Inventor
小林 宙
中井 修
小原 剛
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2021059940A1 publication Critical patent/WO2021059940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a scandium recovery method and an ion exchange treatment method applied to the recovery method.
  • Scandium (Sc) is extremely useful as an additive for high-strength aluminum alloys and as an electrode material for fuel cells.
  • its use has been limited due to its low production volume and high cost.
  • nickel oxide ores represented by laterite ore and limonite ore contain a small amount of scandium.
  • nickel oxide ore has a low nickel-containing grade, there is a problem that it is costly to recover nickel. Therefore, it could not be used for anything other than dry smelting, which melts at high temperature using a furnace, to obtain ferronickel, which is an alloy of iron and nickel, and to use it as a raw material for stainless steel.
  • a neutralizing agent is added to the leachate obtained by the leachate treatment to separate impurities, and then a sulfide agent is added to recover nickel as nickel sulfide. Then, by treating the recovered nickel sulfide in an existing nickel smelting process, a nickel salt compound such as electrolytic nickel or nickel sulfate can be obtained.
  • the acidic solution after the addition of the sulfide agent is brought into contact with a chelate resin having an iminodia acetate as a functional group to adsorb scandium, and further neutralization, solvent extraction, and further Scandium oxide powder can be obtained by separating impurities by a treatment such as sulfur oxidation and finally performing a roasting treatment.
  • scandium contained in the acidic solution after the addition of the sulfide agent in the HPAL process often has a low concentration of about several tens of mg / L, and the above-mentioned impurities are far more in the acidic solution. It is not uncommon for it to be contained in high concentrations.
  • the amount of impurities adsorbed on the chelate resin cannot be ignored due to the distribution of adsorption of each element on the chelate resin.
  • the impurities adsorbed on the chelate resin increase, the purity of scandium is affected, and the amount of scandium adsorbed on the chelate resin also decreases. Therefore, it also affects the actual yield (recovery rate) of scandium, which is not preferable.
  • the present invention has been proposed in view of such circumstances, and at least when recovering scandium from an acidic solution containing scandium, nickel, and chromium through an ion exchange treatment using a chelate resin.
  • An object of the present invention is to provide a method for suppressing adsorption of impurities to a chelate resin in an ion exchange treatment.
  • the present inventors have conducted a column packed with a chelate resin in an ion exchange treatment in which an acidic solution containing at least scandium, nickel, and chromium is brought into contact with the chelate resin to adsorb the scandium.
  • the linear velocity (moving distance per unit time in the column) when passing an acidic solution through the column is used as a control index, and by adjusting the linear velocity and passing the solution, a chelate resin of components such as nickel and chromium is passed.
  • the first invention of the present invention is a method for recovering scandium from an acidic solution containing at least scandium, nickel, and chromium, wherein the acidic solution is passed through a column packed with a chelate resin.
  • the ion exchange treatment step of adsorbing scandium in an acidic solution to the chelate resin and then obtaining a scandium eluent is included, and in the ion exchange treatment step, when the acidic solution is passed through the column, it is placed in the column.
  • This is a scandium recovery method in which a solution is passed by adjusting the moving distance (linear velocity) per unit time.
  • the acidic solution is subjected to leachation treatment of nickel oxide ore with sulfuric acid, and a sulfide agent is added to the obtained leachate to obtain nickel sulfide.
  • This is a method for recovering scandium, which is a solution after separation.
  • the third invention of the present invention is a method for recovering scandium in which the chelate resin is a resin having iminodiacetic acid as a functional group in the first or second invention.
  • the ion exchange treatment step is carried out by passing the acidic solution through a column filled with the chelate resin.
  • a method for recovering scandium which comprises a step of removing chromium.
  • the fifth invention of the present invention is an ion exchange treatment in which an acidic solution containing at least scandium, nickel, and chromium is subjected to an ion exchange treatment using a chelate resin to obtain a solution in which scandium is concentrated.
  • the method includes a step of adsorbing scandium in the acidic solution to the chelate resin by passing the acidic solution through a column filled with the chelate resin, and when the acidic solution is passed through the column.
  • This is an ion exchange treatment method in which a moving distance (linear velocity) per unit time in the column is adjusted and a solution is passed.
  • the amount of scandium adsorbed on the chelate resin can be increased, and high-purity scandium can be recovered.
  • the present embodiment is not limited to the following embodiments, and the gist of the present invention is changed. It can be implemented by making appropriate changes within the range that does not apply.
  • the notation "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less”.
  • the scandium recovery method is a method for recovering scandium from an acidic solution containing at least scandium (Sc), nickel (Ni), and chromium (Cr).
  • the acidic solution include a solution obtained by subjecting nickel oxide ore to a leachation treatment with sulfuric acid and adding a sulfide agent to the obtained leachate to separate nickel sulfide.
  • this scandium recovery method involves an ion exchange treatment step in which an acidic solution is passed through a column packed with a chelate resin to adsorb the scandium in the acidic solution to the chelate resin, and then a scandium eluent is obtained.
  • the ion exchange treatment step is characterized in that when the acidic solution is passed through the column, the moving distance (linear velocity) per unit time in the column is adjusted and the solution is passed.
  • the flow of the acidic solution through the column packed with the chelate resin is adjusted by using the linear velocity in the column as a control index. I try to do it.
  • the adsorption of nickel and chromium contained in the acidic solution on the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin can be increased accordingly.
  • the scandium concentration of the scandium eluent obtained by elution from the chelate resin can be increased, and the purity of the recovered scandium can be improved.
  • FIG. 1 is a process diagram showing an example of the flow of the scandium recovery method.
  • a flow of recovering scandium from the post-sulfidation liquid which is an acidic solution obtained through a hydrometallurgical process of nickel oxide ore, is shown.
  • the post-sulfurization liquid contains at least scandium, nickel, and chromium.
  • the method for recovering scandium includes a hydrometallurgy step S1 in which a hydrometallurgy process of nickel oxide ore is executed to produce a nickel sulfide and a post-sulfide liquid, and a hydrometallurgy step S1. It has an ion exchange treatment step S2 for obtaining a scandium eluent by subjecting the acidic solution obtained from the above to an ion exchange treatment, and a scandium recovery step S3 for recovering scandium from the scandium eluent. It is also possible to have a re-adsorption treatment step S4 for re-adsorbing the scandium eluent on the chelate resin.
  • a leaching step S11 in which nickel oxide ore is leached with sulfuric acid under high temperature and high pressure to obtain a leachate, and a neutralized starch containing impurities by adding a neutralizing agent to the leachate. Obtained by a wet smelting treatment step S1 having a neutralization step S12 for obtaining the solution after neutralization and a sulfurization step S13 for adding a sulfurizing agent to the solution after neutralization to obtain nickel sulfide and the solution after sulfurization.
  • a post-sulfidation solution can be used.
  • the leaching step S11 is composed of a leachate and a leaching residue by adding sulfuric acid to a slurry of nickel oxide ore and stirring the slurry at a temperature of 240 ° C. to 260 ° C. using, for example, a high-temperature pressure vessel (autoclave). This is a step of forming a leaching slurry.
  • the treatment in the leaching step S11 may be performed according to a conventionally known HPAL process.
  • Nickel oxide ores mainly include so-called laterite ores such as limonite ore and saprolite ore.
  • the nickel content of the laterite ore is usually 0.8% by weight to 2.5% by weight, and is contained as a hydroxide or a siliceous earth (magnesium silicate) mineral.
  • these nickel oxide ores contain scandium.
  • the leaching solution containing nickel, cobalt, scandium and the like and the leaching residue which is hematite are solid-liquid separated.
  • the solid-liquid separation treatment can be performed, for example, by mixing the leaching slurry with the cleaning liquid and then using a solid-liquid separation facility such as a thickener using a coagulant supplied from a coagulant supply facility or the like.
  • the neutralization step S12 is a step of adding a neutralizing agent to the obtained leachate to adjust the pH to obtain a neutralized starch containing an impurity element and a neutralized liquid.
  • a neutralizing agent such as nickel, cobalt, and scandium are contained in the liquid after neutralization, and most of the impurities such as iron and aluminum become neutralized starch.
  • neutralizing agent conventionally known ones can be used, and examples thereof include calcium carbonate, slaked lime, sodium hydroxide and the like.
  • the sulfurization step S13 is a step of adding a sulfurizing agent to the post-neutralization liquid obtained in the neutralization step S12 to obtain nickel sulfide and a post-sulfide liquid.
  • a sulfurizing agent to the post-neutralization liquid obtained in the neutralization step S12 to obtain nickel sulfide and a post-sulfide liquid.
  • a sulfurizing agent such as hydrogen sulfide gas, sodium sulfide, and sodium hydride sulfide is added to the obtained after neutralization liquid, and a sulfide containing nickel and cobalt having a small amount of impurity components is added.
  • nickel sulfide a sulfide containing nickel and cobalt having a small amount of impurity components
  • the slurry containing nickel sulfide is subjected to a sedimentation separation treatment using a sedimentation separation device such as a thickener, and the nickel sulfide is separated and recovered from the bottom of the thickener.
  • a sedimentation separation device such as a thickener
  • the post-sulfurization liquid containing scandium which is an aqueous solution component, is recovered by overflowing.
  • the post-smelting liquid obtained through each step of the hydrometallurgical treatment step S1 of the nickel oxide ore as described above contains at least scandium, nickel, and chromium to be subject to the scandium recovery treatment. It can be used as an acidic solution.
  • Ion exchange treatment step S2 scandium is obtained by subjecting the post-sulfurized liquid obtained through the hydrometallurgy step S1 to an ion exchange treatment using a chelate resin (ion exchange resin). Is a step of obtaining a concentrated scandium eluate.
  • a chelate resin ion exchange resin
  • the post-sulfurization solution which is an acidic solution containing scandium, contains impurities such as nickel and chromium that remain in the solution without being sulfurized in the sulfurization treatment in the above-mentioned sulfurization step S13, for example. For this reason, when recovering scandium from the post-sulfidation liquid, it is preferable to remove impurities contained in the post-sulfurization liquid in advance to concentrate scandium.
  • the ion exchange treatment step S2 includes, for example, an adsorption step S21 in which the post-sulfurized liquid is brought into contact with a chelate resin to adsorb scandium, and a chelate resin adsorbed with scandium is brought into contact with sulfuric acid having a predetermined normal concentration to remove aluminum.
  • An example thereof includes a chromium removing step S24 for removing.
  • the type of chelate resin used for the ion exchange treatment is not particularly limited.
  • a resin having iminodiacetic acid as a functional group can be used, and such a chelate resin can enhance the adsorption selectivity of scandium.
  • the chelate resin is filled in the column, and the scandium in the acidic solution is adsorbed on the chelate resin by passing the acidic solution through the column.
  • the post-sulfurization liquid which is an acidic solution
  • the chelate resin filled in the column is brought into contact with the chelate resin filled in the column, and scandium in the solution is adsorbed on the chelate resin.
  • the chelating resin for example, a resin having iminodiacetic acid as a functional group can be used as described above.
  • the inside of the column of the post-sulfurized liquid that is passed through the column (ion exchange resin tower) filled with the chelate resin is characterized in that the moving distance per unit time, that is, the linear velocity is adjusted within a predetermined range. That is, when the post-sulfurization liquid is passed through the column filled with the chelate resin, the linear velocity in the column is used as a control index to adjust the linear velocity and pass the liquid.
  • the adsorption of nickel and chromium contained in the post-sulfurized liquid to the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin (adsorption amount) can be increased.
  • adsorption amount the amount of scandium adsorbed on the chelate resin
  • the scandium concentration of the scandium eluent obtained by elution from the chelate resin can be increased, and the purity of the recovered scandium can be improved.
  • the effect of suppressing the adsorption of nickel (Ni) and chromium (Cr) on the chelate resin can be evaluated by the content ratio of chromium and nickel to scandium (Sc) in the scandium eluent obtained by elution from the chelate resin.
  • the larger the value of the Ni / Sc ratio or the Cr / Sc ratio the higher the content of nickel and chromium contained in the scandium eluent, which means that it is not preferable.
  • it is preferable to suppress the mixing of nickel and chromium with scandium that is, the percentage of the content ratio of Ni and Cr to Sc in the scandium eluent to about 5% or less.
  • the liquid is passed at a relatively high flow velocity having a linear velocity of at least 8 m / h or more. Is preferable.
  • the adsorption of nickel is suppressed to 5% or less, the adsorption of nickel is generally less than that of chromium, but it is preferable to pass the liquid at a relatively slow flow velocity of, for example, a linear velocity of 12 m / h or less. In terms of suppressing the adsorption of nickel, it is more preferable to set the linear velocity to a flow rate of 8 m / h or less because the mixing can be suppressed almost sufficiently.
  • the relationship between the abundance ratio of impurities such as nickel and chromium to scandium and the linear velocity when passing the liquid through the column packed with the chelate resin is examined, and the linear velocity is adjusted to a predetermined range.
  • the scandium adsorption ratio can be effectively increased while suppressing the adsorption of impurities to the chelate resin.
  • Al removing step S22 sulfuric acid of less than 0.3 N is brought into contact with the chelate resin adsorbed with scandium in the adsorption step S21, and the aluminum adsorbed on the chelate resin is removed.
  • the solution in which aluminum is eluted (aluminum eluent) is recovered.
  • the pH of sulfuric acid When removing aluminum, it is preferable to maintain the pH of sulfuric acid in contact with the chelate resin in the range of 1.0 to 2.5, and more preferably to maintain it in the range of 1.5 to 2.0. If the pH of sulfuric acid is less than 1.0, not only aluminum but also adsorbed scandium may be removed from the chelate resin. On the other hand, if the pH of sulfuric acid exceeds 2.5, aluminum may not be properly removed from the chelate resin. Therefore, the sulfuric acid concentration is set to less than 0.3N, preferably about 0.1N to 0.2N.
  • scandium elution step S23 sulfuric acid of 0.3N or more and less than 3.0N is brought into contact with the chelate resin from which aluminum has been removed, and scandium is eluted from the chelate resin to obtain a scandium eluent.
  • the normality of sulfuric acid used in the eluent in the range of 0.3N or more and less than 3.0N, and 0.5N or more and less than 2.0N. It is more preferable to keep it in the range. If the normality is 3.0 N or more, not only scandium but also chromium, which is an impurity adsorbed on the chelate resin, may be eluted and contained in the scandium eluent. On the other hand, if the normality is less than 0.3N, scandium is not properly eluted from the chelate resin, which is not preferable.
  • the scandium eluent obtained from the scandium elution step S23 may be repeatedly used, that is, the obtained scandium eluent may be brought into contact with the chelate resin again to repeat the scandium elution step S23 (scandium eluent). Purification). This makes it possible to increase the concentration of scandium contained in the scandium eluent.
  • chromium removal process In the chromium removing step S24, sulfuric acid of 3.0 N or more is brought into contact with the chelate resin to which scandium is eluted through the scandium elution step S23 to remove chromium which is an impurity adsorbed on the chelate resin.
  • chromium eluted When chromium is removed from the chelate resin with sulfuric acid, the solution in which chromium is eluted (chromium eluent) is recovered.
  • the normality of sulfuric acid is 3.0 N or more. If the normality of sulfuric acid is less than 3.0 N, chromium may not be properly removed from the chelate resin.
  • an iron removing step for removing iron as an impurity may be provided prior to the aluminum removing step S22 described above.
  • the post-sulfidation liquid may contain iron derived from the nickel oxide ore as its raw material. In such a case, from the viewpoint of reducing impurities and increasing the scandium concentration in the scandium eluate, it is preferable to provide an iron removing step to remove iron adsorbed on the chelate resin.
  • the iron removing step is provided as a pre-step of the aluminum removing step S22, and sulfuric acid having a normality smaller than the normality of sulfuric acid used in the aluminum removing step S22 is brought into contact with the chelate resin to form the chelate resin.
  • the pH of sulfuric acid is preferably maintained in the range of 1.0 to 3.0. If the pH of sulfuric acid is less than 1.0, not only iron but also scandium may be removed from the chelate resin, while if the pH of sulfuric acid exceeds 3.0, iron will be properly removed from the chelate resin. It may not be removed.
  • the scandium recovery step S3 is a step of recovering scandium from the scandium eluate obtained through the ion exchange treatment step S2.
  • scandium can be recovered in the form of scandium oxide.
  • the treatment method in the scandium recovery step S3 is not particularly limited, and a known method can be used.
  • a method of adding alkali to a scandium eluent and neutralizing it to recover it as a precipitate of scandium hydroxide, or a method of adding oxalic acid to a scandium eluent and recovering it as a precipitate of oxalate. (Oxalization treatment) can be used.
  • Oxalization treatment can be used.
  • impurities can be separated more effectively.
  • oxalic acid is added to the scandium eluent to form a precipitate of scandium oxalate, and then scandium oxalate is dried and roasted to be oxidized. Recover as scandium.
  • a scandium oxalate precipitate may be produced by adding the extraction residual liquid to the reaction vessel containing the oxalic acid solution.
  • the roasting treatment is, for example, a treatment in which a scandium oxalate precipitate obtained by a oxalate treatment is washed with water, dried, and then roasted. By undergoing this roasting treatment, scandium can be recovered as extremely high-purity scandium oxide.
  • the roasting treatment conditions are not particularly limited, but for example, they may be placed in a tube furnace and heated at about 900 ° C. for about 2 hours.
  • the scandium eluate obtained through the ion exchange treatment step S2 may be subjected to a solvent extraction treatment prior to the scandium recovery step S3 (solvent extraction step).
  • solvent extraction treatment By performing the solvent extraction treatment in this manner, for example, the impurities contained in the scandium eluent can be selectively extracted into an organic solvent containing an extractant to purify the scandium eluent, and the scandium is concentrated. A solution (extraction residue) can be obtained.
  • Re-adsorption treatment step S4 a re-adsorption treatment for re-adsorbing the scandium eluent obtained through the ion exchange treatment step S2 on the chelate resin may be performed (re-adsorption treatment).
  • Adsorption treatment step S4) a re-adsorption treatment for re-adsorbing the scandium eluent obtained through the ion exchange treatment step S2 on the chelate resin may be performed (re-adsorption treatment).
  • Adsorption treatment step S4) a re-adsorption treatment for re-adsorbing the scandium eluent obtained through the ion exchange treatment step S2 on the chelate resin may be performed (re-adsorption treatment).
  • a neutralizing agent is added to the scandium eluent to adjust the pH to a range of 2.0 or more and 4.0 or less, preferably pH 3.
  • the pH is adjusted to the range of 2.7 to 3.3 centered on 0, then a reducing agent is added, and then sulfuric acid is added to adjust the pH to a range of 1.0 or more and 2.5 or less, preferably pH 2.
  • the process of adjusting to the range of 1.7 to 2.3 centered on 0 is performed.
  • the treatment in the ion exchange treatment step S2 (adsorption step S21, aluminum removal step S22, scandium elution step S23) is performed again.
  • the obtained scandium eluate is re-adsorbed in this manner, and the treated solution (pH-adjusted solution) is repeatedly adsorbed on the chelate resin in the ion exchange treatment step S2 to recover the scandium eluate.
  • the quality of scandium can be further improved.
  • the drug cost and equipment scale for separating scandium from the scandium eluent can be reduced.
  • neutralizing agent conventionally known ones can be used, and examples thereof include calcium carbonate and the like.
  • reducing agent conventionally known ones can be used, and examples thereof include sulfurizing agents such as hydrogen sulfide gas and sodium sulfide, sulfur dioxide gas, hydrazine, and metallic iron.
  • the addition of the reducing agent is preferably carried out so that the redox potential (ORP) is maintained in a range of more than 200 mV and 300 mV or less with the silver / silver chloride electrode as a reference electrode.
  • ORP redox potential
  • the oxidation-reduction potential is 200 mV or less
  • the sulfur content derived from the added sulfurizing agent is precipitated as a fine solid
  • the filter cloth is clogged in the filtration treatment after sulfurization. This may worsen solid-liquid separation and cause a decrease in productivity.
  • the liquid is re-passed through the chelate resin, clogging or uneven liquid flow may occur in the column, which may cause uniform liquid passage.
  • the redox potential of all reducing agents exceeds 300 mV, there is a possibility that residual iron ions and the like may be adsorbed on the chelate resin, causing problems such as inhibition of scandium adsorption.
  • the already used chelate resin may be reused or a new chelate resin may be used.
  • by reusing the chelate resin recovered through the chromium removing step S24 not only can contamination of impurities be prevented, but also the amount of the chelate resin used can be suppressed.
  • Example 1 (Hydrometallurgy process) A slurry (ore slurry) obtained by crushing nickel oxide ore to an appropriate particle size is charged into a high-pressure reaction vessel (autoclave) together with concentrated sulfuric acid, and valuable metals such as scandium and nickel are leached over 1 hour while maintaining the temperature at 245 ° C. The resulting slurry (leaching slurry) was generated (leaching step). Then, the obtained leaching slurry was taken out from the reaction vessel, cooled, and solid-liquid separated into a leaching liquid containing a valuable metal and a leaching residue using a thickener.
  • a chelate resin having iminodiacetic acid as a functional group (manufactured by Mitsubishi Chemical Corporation, Diaion CR11) was used. 550 ml of this chelate resin was filled in a glass cylindrical column having an inner diameter of 25.4 mm and a length of 1500 mm.
  • a post-sulfurization liquid (composition shown in Table 1), which is an adsorption starting liquid, was passed through a column filled with a chelate resin to perform an adsorption treatment (adsorption step).
  • the temperature at the time of adsorption was maintained at 30 ° C.
  • scandium adsorbed on the chelate resin was eluted by bringing a sulfuric acid solution having a predetermined concentration into contact with the chelate resin to obtain a scandium eluent (elution step).
  • BV Bed Volume
  • LV indicates the distance that the liquid moves in the column per hour, that is, the linear velocity.
  • LV8 indicates a flow velocity that travels a length (distance) of 8 m per hour in a column having an inner diameter of 25.4 mm (cross-sectional area 5.07 cm 2).
  • the scandium eluent obtained by elution of scandium from a chelate resin was analyzed for the contents of chromium, nickel, and scandium using ICP. From the analysis results, the effect of the linear velocity during liquid passage on the adsorption of nickel, chromium, and scandium was confirmed.
  • FIG. 2 shows chromium (Cr) and nickel (Ni) with respect to scandium (Sc) in the scandium eluent obtained through elution with respect to the linear velocity when the solution after sulfide was passed through a column packed with a chelate resin. It is a figure which shows the measurement result of the content ratio.
  • the smaller the linear velocity of the post-sulfurized liquid at the time of adsorption, the smaller the value of the Ni / Sc ratio in the obtained scandium eluent. That is, it can be seen that the effect of purifying scandium in the scandium eluent is high. Since the Ni / Sc ratio reaches a plateau at 3% ( 0.03) or less, passing the liquid at a linear velocity of 8 m / h or less increases the adsorption amount of scandium while suppressing the adsorption of nickel, and scandium is increased. It turns out that it is desirable for high purification.
  • the post-sulfurized solution which is an acidic solution containing at least scandium, nickel, and chromium
  • the line in the post-sulfurized solution column By using the velocity as a control index and adjusting the linear velocity to pass the solution, the adsorption of nickel or chromium to the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin can be increased accordingly. As a result, the concentration of scandium eluted from the chelate resin can be maintained high, and the purity of scandium can be improved and the productivity can be improved.

Abstract

The present invention provides a method for recovering scandium from an acidic solution, which contains at least scandium, nickel and chromium, through an ion exchange treatment using a chelating resin, said method recovering high-purity scandium by suppressing adsorption of impurities onto the chelating resin. According to the present invention, a method for recovering scandium from an acidic solution, which contains at least scandium, nickel and chromium, comprises an ion exchange treatment step S2 wherein the acidic solution is passed through a column that is filled with a chelating resin, thereby having the scandium in the acidic solution adsorb onto the chelating resin and subsequently obtaining a scandium eluent. In the ion exchange treatment step S2, the length of move per unit time (linear velocity) within the column is regulated during the time when the acidic solution is passed through the column.

Description

スカンジウムの回収方法、並びにイオン交換処理方法Scandium recovery method and ion exchange treatment method
 本発明は、スカンジウムの回収方法、並びにその回収方法に適用されるイオン交換処理方法に関する。 The present invention relates to a scandium recovery method and an ion exchange treatment method applied to the recovery method.
 スカンジウム(Sc)は、高強度アルミ合金の添加剤や燃料電池の電極材料として極めて有用である。しかしながら、生産量が少なく、高価であるため、利用は限られていた。 Scandium (Sc) is extremely useful as an additive for high-strength aluminum alloys and as an electrode material for fuel cells. However, its use has been limited due to its low production volume and high cost.
 ところで、ラテライト鉱やリモナイト鉱等に代表されるニッケル酸化鉱石には、微量のスカンジウムが含まれていることが知られている。しかしながら、ニッケル酸化鉱石はニッケル含有品位が低いことから、ニッケルを回収するにあたってコストを要するという問題があった。そのため、炉を用いて高温で熔解する乾式製錬に付し、鉄とニッケルの合金であるフェロニッケルを得てステンレスの原料に用いること以外には利用できなかった。 By the way, it is known that nickel oxide ores represented by laterite ore and limonite ore contain a small amount of scandium. However, since nickel oxide ore has a low nickel-containing grade, there is a problem that it is costly to recover nickel. Therefore, it could not be used for anything other than dry smelting, which melts at high temperature using a furnace, to obtain ferronickel, which is an alloy of iron and nickel, and to use it as a raw material for stainless steel.
 乾式製錬法を用いてニッケル酸化鉱石を処理した場合、スカンジウムはニッケルと分離されるものの、多くの不純物と共に化学的に安定した形態であるスラグに分配されてしまうため、スカンジウムを高純度で回収することは技術的に困難となる。そのため、ニッケル酸化鉱石に含まれるスカンジウムを工業的に回収研究はほとんどなされていなかった。 When nickel oxide ore is treated using the pyrometallurgy method, scandium is separated from nickel, but it is distributed to slag, which is a chemically stable form, together with many impurities, so scandium is recovered with high purity. It becomes technically difficult to do. Therefore, almost no research has been conducted on the industrial recovery of scandium contained in nickel oxide ore.
 しかしながら、近年、ニッケル酸化鉱石を硫酸と共に加圧容器に装入し、240℃~260℃程度の高温に加熱してニッケルを含有する浸出液と浸出残渣とに固液分離する高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスが工業的に実用化された。 However, in recent years, high pressure acid leaching (High Pressure) in which nickel oxide ore is charged into a pressure vessel together with sulfuric acid and heated to a high temperature of about 240 ° C. to 260 ° C. to solid-liquid separation into a nickel-containing leachate and a leachate residue. The Acid Leach (HPAL) process has been industrially put into practical use.
 このHPALプロセスでは、浸出処理により得られた浸出液に中和剤を添加して不純物を分離し、次いで硫化剤を添加してニッケルをニッケル硫化物として回収する。そして、回収したニッケル硫化物を既存のニッケル製錬工程で処理することで、電気ニッケルや硫酸ニッケルのようなニッケル塩化合物を得ることができる。 In this HPAL process, a neutralizing agent is added to the leachate obtained by the leachate treatment to separate impurities, and then a sulfide agent is added to recover nickel as nickel sulfide. Then, by treating the recovered nickel sulfide in an existing nickel smelting process, a nickel salt compound such as electrolytic nickel or nickel sulfate can be obtained.
 このようなHPALプロセスを用いた場合、ニッケル酸化鉱石に含まれるスカンジウムは、ニッケルと共に浸出液に含まれる(例えば特許文献1を参照)。そして、得られた浸出液に対し、中和剤を添加して不純物を分離し、次いで硫化剤を添加して硫化処理を施すと、ニッケルはニッケル硫化物として回収される一方で、スカンジウムは硫化剤添加後の酸性溶液(硫化後液)に含まれるようになる。そのため、HPALプロセスを使用することで、ニッケルとスカンジウムとを効果的に分離することができる。 When such an HPAL process is used, scandium contained in nickel oxide ore is contained in the leachate together with nickel (see, for example, Patent Document 1). Then, when the obtained leachate is subjected to a sulfide treatment by adding a neutralizing agent to separate impurities and then adding a sulfide agent, nickel is recovered as nickel sulfide, while scandium is a sulfide agent. It will be included in the acidic solution (after sulfurization) after addition. Therefore, nickel and scandium can be effectively separated by using the HPAL process.
 そして、例えば特許文献2に開示されるように、硫化剤添加後の酸性溶液を、イミノジ酢酸塩を官能基とするキレート樹脂に接触させてスカンジウムを吸着させ、さらに中和や溶媒抽出、さらにはシュウ酸化等の処理に付して不純物を分離し、最後に焙焼処理を施すことで、酸化スカンジウムの粉末を得ることができる。 Then, for example, as disclosed in Patent Document 2, the acidic solution after the addition of the sulfide agent is brought into contact with a chelate resin having an iminodia acetate as a functional group to adsorb scandium, and further neutralization, solvent extraction, and further Scandium oxide powder can be obtained by separating impurities by a treatment such as sulfur oxidation and finally performing a roasting treatment.
 ここで、特許文献2に開示の方法では、イミノジ酢酸を官能基とする、スカンジウム、アルミニウム、及びクロムが吸着されたキレート樹脂に、0.1N以下の硫酸を接触させることでキレート樹脂からアルミニウムを除去し、その後、そのキレート樹脂に1N以上3N未満の硫酸を接触させてスカンジウム溶離液を得て、最後に、3N以上の高濃度の硫酸を用いてクロムを溶離するという多段階の溶離処理を行っている。 Here, in the method disclosed in Patent Document 2, aluminum is removed from the chelate resin by contacting a chelate resin having iminodiacetic acid as a functional group and adsorbed with scandium, aluminum, and chromium with sulfuric acid of 0.1 N or less. After removal, the chelate resin is contacted with sulfuric acid of 1N or more and less than 3N to obtain a scandium eluent, and finally, a multi-step elution treatment in which chromium is eluted with a high concentration of sulfuric acid of 3N or more is performed. Is going.
 しかしながら、特許文献2の方法を用いた場合でも、スカンジウムを濃縮しながら不純物を効率よく除去することは容易ではなかった。 However, even when the method of Patent Document 2 was used, it was not easy to efficiently remove impurities while concentrating scandium.
 特に、HPALプロセスにおける硫化剤添加後の酸性溶液に含有されるスカンジウムは、概して数十mg/L程度の低濃度である場合が多く、その酸性溶液中には、上述した不純物の方がはるかに高濃度で含有されることも珍しくない。 In particular, scandium contained in the acidic solution after the addition of the sulfide agent in the HPAL process often has a low concentration of about several tens of mg / L, and the above-mentioned impurities are far more in the acidic solution. It is not uncommon for it to be contained in high concentrations.
 このような酸性溶液からスカンジウムを回収する場合、キレート樹脂への各元素の吸着の分配から、不純物がキレート樹脂に吸着する量も決して無視できなくなる。キレート樹脂に吸着する不純物が増加すると、スカンジウムの純度に影響を及ぼすとともに、そのキレート樹脂へのスカンジウムの吸着量も減少する。そのため、スカンジウムの実収率(回収率)にも影響することになり、好ましくない。 When recovering scandium from such an acidic solution, the amount of impurities adsorbed on the chelate resin cannot be ignored due to the distribution of adsorption of each element on the chelate resin. When the impurities adsorbed on the chelate resin increase, the purity of scandium is affected, and the amount of scandium adsorbed on the chelate resin also decreases. Therefore, it also affects the actual yield (recovery rate) of scandium, which is not preferable.
 高純度なスカンジウム含有液を得るためには、例えば、キレート樹脂の吸着と溶離を2回以上繰り返したり、他の処理方法を組み合わせたりする等の処理が必要となる。しかしながら、手間やコストが増えてカンジウムの実収率(回収率)が低下する等の問題がある。特に、物量が多いニッケルや、キレート樹脂ヘの吸着性能がスカンジウムに類似するクロムの効果的な除去が課題となっていた。 In order to obtain a high-purity scandium-containing liquid, for example, treatment such as repeating adsorption and elution of the chelate resin twice or more, or combining other treatment methods is required. However, there are problems such as an increase in labor and cost and a decrease in the actual yield (recovery rate) of candium. In particular, effective removal of nickel, which has a large amount of material, and chromium, which has an adsorption performance to a chelating resin similar to scandium, has been an issue.
特開2014-177391号公報Japanese Unexamined Patent Publication No. 2014-177391 特開2016-108664号公報Japanese Unexamined Patent Publication No. 2016-108664
 本発明は、このような実情に鑑みて提案されたものであり、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液から、キレート樹脂を用いたイオン交換処理を経てスカンジウムを回収するにあたり、そのイオン交換処理において、キレート樹脂への不純物の吸着を抑制する方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and at least when recovering scandium from an acidic solution containing scandium, nickel, and chromium through an ion exchange treatment using a chelate resin. An object of the present invention is to provide a method for suppressing adsorption of impurities to a chelate resin in an ion exchange treatment.
 本発明者らは、鋭意検討を重ねた結果、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液をキレート樹脂に接触させることでスカンジウムを吸着させるイオン交換処理において、キレート樹脂を充填させたカラムに酸性溶液を通液させる際の線速度(カラム内での単位時間当たりの移動距離)を管理指標とし、その線速度を調整して通液することで、ニッケルやクロム等の成分のキレート樹脂への吸着を抑制し、スカンジウムの吸着量を増加させることができることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors have conducted a column packed with a chelate resin in an ion exchange treatment in which an acidic solution containing at least scandium, nickel, and chromium is brought into contact with the chelate resin to adsorb the scandium. The linear velocity (moving distance per unit time in the column) when passing an acidic solution through the column is used as a control index, and by adjusting the linear velocity and passing the solution, a chelate resin of components such as nickel and chromium is passed. We have found that it is possible to suppress the adsorption to the chelate and increase the adsorption amount of scandium, and have completed the present invention.
 (1)本発明の第1の発明は、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液からスカンジウムを回収する方法において、キレート樹脂を充填したカラムに前記酸性溶液を通液することにより該酸性溶液中のスカンジウムを該キレート樹脂に吸着させ、その後スカンジウム溶離液を得るイオン交換処理工程を含み、前記イオン交換処理工程では、前記酸性溶液を前記カラムに通液するに際し、該カラム内での単位時間あたりの移動距離(線速度)を調整して通液する、スカンジウムの回収方法である。 (1) The first invention of the present invention is a method for recovering scandium from an acidic solution containing at least scandium, nickel, and chromium, wherein the acidic solution is passed through a column packed with a chelate resin. The ion exchange treatment step of adsorbing scandium in an acidic solution to the chelate resin and then obtaining a scandium eluent is included, and in the ion exchange treatment step, when the acidic solution is passed through the column, it is placed in the column. This is a scandium recovery method in which a solution is passed by adjusting the moving distance (linear velocity) per unit time.
 (2)本発明の第2の発明は、第1の発明において、前記酸性溶液は、ニッケル酸化鉱石を硫酸による浸出処理に付し、得られた浸出液に硫化剤を添加してニッケル硫化物を分離した後の溶液である、スカンジウムの回収方法である。 (2) In the second invention of the present invention, in the first invention, the acidic solution is subjected to leachation treatment of nickel oxide ore with sulfuric acid, and a sulfide agent is added to the obtained leachate to obtain nickel sulfide. This is a method for recovering scandium, which is a solution after separation.
 (3)本発明の第3の発明は、第1又は第2の発明において、前記キレート樹脂が、イミノジ酢酸を官能基とする樹脂である、スカンジウムの回収方法である。 (3) The third invention of the present invention is a method for recovering scandium in which the chelate resin is a resin having iminodiacetic acid as a functional group in the first or second invention.
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記イオン交換処理工程は、前記酸性溶液を、前記キレート樹脂を充填したカラムに通液させることにより、該キレート樹脂にスカンジウムを吸着させる工程と、スカンジウムを吸着したキレート樹脂に0.3N未満の硫酸を接触させ、該キレート樹脂に吸着したアルミニウムを除去する工程と、アルミニウムを除去したキレート樹脂に0.3N以上3N未満の硫酸を接触させ、該キレート樹脂に吸着したスカンジウムを溶離してスカンジウム溶離液を得る工程と、スカンジウムを溶離したキレート樹脂に3N以上の硫酸を接触させ、該キレート樹脂に吸着したクロムを除去する工程と、を有する、スカンジウムの回収方法である。 (4) In the fourth invention of the present invention, in any one of the first to third inventions, the ion exchange treatment step is carried out by passing the acidic solution through a column filled with the chelate resin. A step of adsorbing scandium on the chelate resin, a step of bringing sulfuric acid of less than 0.3N into contact with the chelate resin adsorbing scandium to remove aluminum adsorbed on the chelate resin, and a step of removing aluminum adsorbed on the chelate resin. A step of contacting 3N or more and less than 3N of sulfuric acid to elute the scandium adsorbed on the chelate resin to obtain a scandium eluent, and contacting the chelate resin on which the scandium was eluted with 3N or more of sulfuric acid and adsorbing the chelate resin. A method for recovering scandium, which comprises a step of removing chromium.
 (5)本発明の第5の発明は、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液に対してキレート樹脂を用いたイオン交換処理を施し、スカンジウムを濃縮させた溶液を得るイオン交換処理方法であって、前記キレート樹脂を充填したカラムに前記酸性溶液を通液することにより該酸性溶液中のスカンジウムを該キレート樹脂に吸着させる工程を含み、前記酸性溶液を前記カラムに通液するに際し、該カラム内での単位時間あたりの移動距離(線速度)を調整して通液する、イオン交換処理方法である。 (5) The fifth invention of the present invention is an ion exchange treatment in which an acidic solution containing at least scandium, nickel, and chromium is subjected to an ion exchange treatment using a chelate resin to obtain a solution in which scandium is concentrated. The method includes a step of adsorbing scandium in the acidic solution to the chelate resin by passing the acidic solution through a column filled with the chelate resin, and when the acidic solution is passed through the column. This is an ion exchange treatment method in which a moving distance (linear velocity) per unit time in the column is adjusted and a solution is passed.
 本発明によれば、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液から、キレート樹脂を用いたイオン交換処理を経てスカンジウムを回収するにあたり、キレート樹脂への不純物の吸着を抑制することができる。 According to the present invention, when scandium is recovered from an acidic solution containing at least scandium, nickel, and chromium through an ion exchange treatment using a chelate resin, adsorption of impurities to the chelate resin can be suppressed. ..
 そしてこれにより、キレート樹脂へのスカンジウムの吸着量を増加させることができ、高純度なスカンジウムを回収することができる。 As a result, the amount of scandium adsorbed on the chelate resin can be increased, and high-purity scandium can be recovered.
スカンジウムの回収方法の流れの一例を示す工程図である。It is a process drawing which shows an example of the flow of the scandium recovery method. 実施例において、キレート樹脂を充填したカラムへ硫化後液を通液したときの線速度に対する、スカンジウム溶離液中のスカンジウム(Sc)に対するクロム(Cr)、ニッケル(Ni)の含有比率の測定結果を示す図である。In the examples, the measurement results of the content ratios of chromium (Cr) and nickel (Ni) to scandium (Sc) in the scandium eluate with respect to the linear velocity when the post-sulfidation liquid was passed through a column packed with a chelate resin are shown. It is a figure which shows.
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, specific embodiments of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the following embodiments, and the gist of the present invention is changed. It can be implemented by making appropriate changes within the range that does not apply. In this specification, the notation "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less".
 本発明に係るスカンジウムの回収方法は、少なくとも、スカンジウム(Sc)、ニッケル(Ni)、及びクロム(Cr)を含有する酸性溶液からスカンジウムを回収する方法である。例えば、その酸性溶液としては、ニッケル酸化鉱石を硫酸による浸出処理に付し、得られた浸出液に硫化剤を添加してニッケル硫化物を分離した後の溶液が挙げられる。 The scandium recovery method according to the present invention is a method for recovering scandium from an acidic solution containing at least scandium (Sc), nickel (Ni), and chromium (Cr). For example, examples of the acidic solution include a solution obtained by subjecting nickel oxide ore to a leachation treatment with sulfuric acid and adding a sulfide agent to the obtained leachate to separate nickel sulfide.
 具体的に、このスカンジウムの回収方法は、キレート樹脂を充填したカラムに酸性溶液を通液することによりその酸性溶液中のスカンジウムをキレート樹脂に吸着させ、その後スカンジウム溶離液を得るイオン交換処理工程を含む。そして、イオン交換処理工程では、酸性溶液をカラムに通液するに際し、そのカラム内での単位時間あたりの移動距離(線速度)を調整して通液することを特徴としている。 Specifically, this scandium recovery method involves an ion exchange treatment step in which an acidic solution is passed through a column packed with a chelate resin to adsorb the scandium in the acidic solution to the chelate resin, and then a scandium eluent is obtained. Including. The ion exchange treatment step is characterized in that when the acidic solution is passed through the column, the moving distance (linear velocity) per unit time in the column is adjusted and the solution is passed.
 このように、本発明に係るスカンジウムの回収方法では、キレート樹脂を用いたイオン交換処理工程において、キレート樹脂を充填したカラムへの酸性溶液の通液を、カラム内の線速度を管理指標として調整して行うようにしている。これにより、酸性溶液に含まれるニッケルやクロムのキレート樹脂への吸着を抑制でき、その分だけキレート樹脂に対するスカンジウムの吸着量を増加させることができる。その結果、キレート樹脂から溶離させて得られるスカンジウム溶離液のスカンジウム濃度を高くすることができ、回収するスカンジウムの純度を向上させることができる。 As described above, in the scandium recovery method according to the present invention, in the ion exchange treatment step using the chelate resin, the flow of the acidic solution through the column packed with the chelate resin is adjusted by using the linear velocity in the column as a control index. I try to do it. As a result, the adsorption of nickel and chromium contained in the acidic solution on the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin can be increased accordingly. As a result, the scandium concentration of the scandium eluent obtained by elution from the chelate resin can be increased, and the purity of the recovered scandium can be improved.
 図1は、スカンジウムの回収方法の流れの一例を示す工程図である。この例では、ニッケル酸化鉱石の湿式製錬プロセスを経て得られる酸性溶液である硫化後液を用いて、その硫化後液からスカンジウムを回収する流れを示している。なお、硫化後液には、少なくとも、スカンジウム、ニッケル、及びクロムが含まれている。 FIG. 1 is a process diagram showing an example of the flow of the scandium recovery method. In this example, a flow of recovering scandium from the post-sulfidation liquid, which is an acidic solution obtained through a hydrometallurgical process of nickel oxide ore, is shown. The post-sulfurization liquid contains at least scandium, nickel, and chromium.
 図1に示すように、スカンジウムの回収方法は、ニッケル酸化鉱石の湿式製錬プロセスを実行してニッケル硫化物と硫化後液とを生成させる湿式製錬処理工程S1と、湿式製錬処理工程S1から得られた酸性溶液に対してイオン交換処理を施してスカンジウム溶離液を得るイオン交換処理工程S2と、スカンジウム溶離液からスカンジウムを回収するスカンジウム回収工程S3と、を有する。また、スカンジウム溶離液をキレート樹脂に再吸着させるための再吸着処理工程S4を有するようにすることもできる。 As shown in FIG. 1, the method for recovering scandium includes a hydrometallurgy step S1 in which a hydrometallurgy process of nickel oxide ore is executed to produce a nickel sulfide and a post-sulfide liquid, and a hydrometallurgy step S1. It has an ion exchange treatment step S2 for obtaining a scandium eluent by subjecting the acidic solution obtained from the above to an ion exchange treatment, and a scandium recovery step S3 for recovering scandium from the scandium eluent. It is also possible to have a re-adsorption treatment step S4 for re-adsorbing the scandium eluent on the chelate resin.
 (1)湿式製錬処理工程
 スカンジウム回収の処理対象となるスカンジウムを含有する酸性溶液としては、上述したように、ニッケル酸化鉱石に対して硫酸により浸出して得られる硫酸酸性溶液等の、ニッケル酸化鉱石の湿式製錬処理を経て得られる溶液を用いることができる。
(1) Hydrometallurgy process As the acidic solution containing scandium to be treated for recovering scandium, as described above, nickel oxidation such as a sulfuric acid acidic solution obtained by leaching nickel oxide ore with sulfuric acid is used. A solution obtained through hydrometallurgy of ore can be used.
 具体的に、スカンジウムを含有する酸性溶液としては、ニッケル酸化鉱石を高温高圧下で硫酸により浸出して浸出液を得る浸出工程S11と、浸出液に中和剤を添加して不純物を含む中和澱物と中和後液とを得る中和工程S12と、中和後液に硫化剤を添加してニッケル硫化物と硫化後液とを得る硫化工程S13と、を有する湿式製錬処理工程S1により得られる硫化後液を用いることができる。以下では、湿式製錬処理工程S1の流れを簡単に説明する。 Specifically, as an acidic solution containing scandium, a leaching step S11 in which nickel oxide ore is leached with sulfuric acid under high temperature and high pressure to obtain a leachate, and a neutralized starch containing impurities by adding a neutralizing agent to the leachate. Obtained by a wet smelting treatment step S1 having a neutralization step S12 for obtaining the solution after neutralization and a sulfurization step S13 for adding a sulfurizing agent to the solution after neutralization to obtain nickel sulfide and the solution after sulfurization. A post-sulfidation solution can be used. Hereinafter, the flow of the hydrometallurgical process step S1 will be briefly described.
  (浸出工程)
 浸出工程S11は、例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸を添加して240℃~260℃の温度下で撹拌処理を施し、浸出液と浸出残渣とからなる浸出スラリーを形成する工程である。なお、浸出工程S11における処理は、従来知られているHPALプロセスに従って行えばよい。
(Leaching process)
The leaching step S11 is composed of a leachate and a leaching residue by adding sulfuric acid to a slurry of nickel oxide ore and stirring the slurry at a temperature of 240 ° C. to 260 ° C. using, for example, a high-temperature pressure vessel (autoclave). This is a step of forming a leaching slurry. The treatment in the leaching step S11 may be performed according to a conventionally known HPAL process.
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、これらのニッケル酸化鉱石には、スカンジウムが含まれている。 Nickel oxide ores mainly include so-called laterite ores such as limonite ore and saprolite ore. The nickel content of the laterite ore is usually 0.8% by weight to 2.5% by weight, and is contained as a hydroxide or a siliceous earth (magnesium silicate) mineral. In addition, these nickel oxide ores contain scandium.
 浸出工程S11では、得られた浸出液と浸出残渣とからなる浸出スラリーを洗浄しながら、ニッケルやコバルト、スカンジウム等を含む浸出液と、ヘマタイトである浸出残渣とに固液分離する。固液分離処理では、例えば、浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用いて、シックナー等の固液分離設備を利用して行うことができる。 In the leaching step S11, while washing the leaching slurry composed of the obtained leaching solution and the leaching residue, the leaching solution containing nickel, cobalt, scandium and the like and the leaching residue which is hematite are solid-liquid separated. The solid-liquid separation treatment can be performed, for example, by mixing the leaching slurry with the cleaning liquid and then using a solid-liquid separation facility such as a thickener using a coagulant supplied from a coagulant supply facility or the like.
  (中和工程)
 中和工程S12は、得られた浸出液に中和剤を添加してpH調整し、不純物元素を含む中和澱物と中和後液とを得る工程である。中和工程S12における中和処理により、ニッケルやコバルト、スカンジウム等の有価金属は中和後液に含まれるようになり、鉄、アルミニウムをはじめとした不純物の大部分が中和澱物となる。
(Neutralization process)
The neutralization step S12 is a step of adding a neutralizing agent to the obtained leachate to adjust the pH to obtain a neutralized starch containing an impurity element and a neutralized liquid. By the neutralization treatment in the neutralization step S12, valuable metals such as nickel, cobalt, and scandium are contained in the liquid after neutralization, and most of the impurities such as iron and aluminum become neutralized starch.
 中和剤としては、従来公知のもの使用することができ、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられる。 As the neutralizing agent, conventionally known ones can be used, and examples thereof include calcium carbonate, slaked lime, sodium hydroxide and the like.
  (硫化工程)
 硫化工程S13は、中和工程S12にて得られた中和後液に硫化剤を添加してニッケル硫化物と硫化後液とを得る工程である。硫化工程S13における硫化処理により、ニッケル、コバルト、亜鉛等は硫化物となり、スカンジウムは硫化後液に含まれることになる。
(Sulfurization process)
The sulfurization step S13 is a step of adding a sulfurizing agent to the post-neutralization liquid obtained in the neutralization step S12 to obtain nickel sulfide and a post-sulfide liquid. By the sulfurization treatment in the sulfurization step S13, nickel, cobalt, zinc and the like become sulfurized, and scandium is contained in the post-sulfurized liquid.
 具体的に、硫化工程S13では、得られた中和後液に対して、硫化水素ガス、硫化ナトリウム、水素化硫化ナトリウム等の硫化剤を添加し、不純物成分の少ないニッケル及びコバルトを含む硫化物(以下では単に「ニッケル硫化物」ともいう)と、ニッケル濃度を低い水準で安定させ、スカンジウムを含有させた硫化後液とを生成させる。 Specifically, in the sulfurization step S13, a sulfurizing agent such as hydrogen sulfide gas, sodium sulfide, and sodium hydride sulfide is added to the obtained after neutralization liquid, and a sulfide containing nickel and cobalt having a small amount of impurity components is added. (Hereinafter, simply referred to as "nickel sulfide") and a post-sulfurization liquid containing scandium are produced by stabilizing the nickel concentration at a low level.
 硫化工程S13における硫化処理では、ニッケル硫化物を含むスラリーに対してシックナー等の沈降分離装置を用いた沈降分離処理を施し、ニッケル硫化物をシックナーの底部より分離回収する。一方で、水溶液成分であって、スカンジウムを含有する硫化後液についてはオーバーフローさせて回収する。 In the sulfurization treatment in the sulfurization step S13, the slurry containing nickel sulfide is subjected to a sedimentation separation treatment using a sedimentation separation device such as a thickener, and the nickel sulfide is separated and recovered from the bottom of the thickener. On the other hand, the post-sulfurization liquid containing scandium, which is an aqueous solution component, is recovered by overflowing.
 スカンジウムの回収方法では、以上のようなニッケル酸化鉱石の湿式製錬処理工程S1の各工程を経て得られる硫化後液を、スカンジウム回収処理の対象となる、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液として用いることができる。 In the scandium recovery method, the post-smelting liquid obtained through each step of the hydrometallurgical treatment step S1 of the nickel oxide ore as described above contains at least scandium, nickel, and chromium to be subject to the scandium recovery treatment. It can be used as an acidic solution.
 (2)イオン交換処理工程
 イオン交換処理工程S2は、湿式製錬処理工程S1を経て得られた硫化後液に対してキレート樹脂(イオン交換樹脂)を用いたイオン交換処理を施すことによって、スカンジウムを濃縮させたスカンジウム溶離液を得る工程である。
(2) Ion exchange treatment step In the ion exchange treatment step S2, scandium is obtained by subjecting the post-sulfurized liquid obtained through the hydrometallurgy step S1 to an ion exchange treatment using a chelate resin (ion exchange resin). Is a step of obtaining a concentrated scandium eluate.
 スカンジウムを含有する酸性溶液である硫化後液には、スカンジウムのほかに、例えば上述した硫化工程S13における硫化処理では硫化されずに溶液中に残留したニッケルやクロム等の不純物が含まれている。このことから、硫化後液からスカンジウムを回収するにあたり、予め、その硫化後液中に含まれる不純物を除去してスカンジウムを濃縮させることが好ましい。 In addition to scandium, the post-sulfurization solution, which is an acidic solution containing scandium, contains impurities such as nickel and chromium that remain in the solution without being sulfurized in the sulfurization treatment in the above-mentioned sulfurization step S13, for example. For this reason, when recovering scandium from the post-sulfidation liquid, it is preferable to remove impurities contained in the post-sulfurization liquid in advance to concentrate scandium.
 イオン交換処理工程S2としては、例えば、硫化後液をキレート樹脂に接触させてスカンジウムを吸着させる吸着工程S21と、スカンジウムを吸着したキレート樹脂に所定の規定度の硫酸を接触させてアルミニウムを除去するアルミニウム除去工程S22と、キレート樹脂に所定の規定度の硫酸を接触させてスカンジウム溶離液を得るスカンジウム溶離工程S23と、キレート樹脂に所定の規定度の硫酸を接触させてキレート樹脂に吸着したクロムを除去するクロム除去工程S24と、を有するものを例示できる。 The ion exchange treatment step S2 includes, for example, an adsorption step S21 in which the post-sulfurized liquid is brought into contact with a chelate resin to adsorb scandium, and a chelate resin adsorbed with scandium is brought into contact with sulfuric acid having a predetermined normal concentration to remove aluminum. Aluminum removal step S22, scandium elution step S23 to obtain a scandium eluent by contacting the chelate resin with sulfuric acid of a predetermined normality, and chromium adsorbed on the chelate resin by contacting the chelate resin with sulfuric acid of a predetermined normality. An example thereof includes a chromium removing step S24 for removing.
 イオン交換処理に用いるキレート樹脂の種類としては、特に限定されない。例えばイミノジ酢酸を官能基とする樹脂を用いることができ、このようなキレート樹脂によれば、スカンジウムの吸着選択性を高めることができる。また、キレート樹脂はカラムに充填されており、酸性溶液をカラムに通液させることによって、酸性溶液中のスカンジウムをキレート樹脂に吸着させる。 The type of chelate resin used for the ion exchange treatment is not particularly limited. For example, a resin having iminodiacetic acid as a functional group can be used, and such a chelate resin can enhance the adsorption selectivity of scandium. Further, the chelate resin is filled in the column, and the scandium in the acidic solution is adsorbed on the chelate resin by passing the acidic solution through the column.
 このとき、本発明に係るスカンジウムの回収方法では、酸性溶液を、キレート樹脂を充填したカラムに通液させるに際して、カラム内の線速度を調整して行う。 At this time, in the scandium recovery method according to the present invention, when the acidic solution is passed through the column filled with the chelate resin, the linear velocity in the column is adjusted.
  (吸着工程)
 吸着工程S21では、酸性溶液である硫化後液をカラムに充填させたキレート樹脂に接触させて、溶液中のスカンジウムをキレート樹脂に吸着させる。キレート樹脂としては、上述したように、例えばイミノジ酢酸を官能基とする樹脂を用いることができる。
(Adsorption process)
In the adsorption step S21, the post-sulfurization liquid, which is an acidic solution, is brought into contact with the chelate resin filled in the column, and scandium in the solution is adsorbed on the chelate resin. As the chelating resin, for example, a resin having iminodiacetic acid as a functional group can be used as described above.
 ここで、本発明に係るスカンジウムの回収方法では、この吸着工程S21において、キレート樹脂にスカンジウムを吸着させるに際し、キレート樹脂を充填したカラム(イオン交換樹脂塔)に通液する硫化後液のカラム内での単位時間当たりの移動距離、すなわち線速度を所定の範囲に調整することを特徴としている。つまり、キレート樹脂を充填したカラムに硫化後液を通液させるに際して、カラム内の線速度を管理指標としてその線速度を調整して通液する。 Here, in the method for recovering scandium according to the present invention, in the adsorption step S21, when the scandium is adsorbed on the chelate resin, the inside of the column of the post-sulfurized liquid that is passed through the column (ion exchange resin tower) filled with the chelate resin. It is characterized in that the moving distance per unit time, that is, the linear velocity is adjusted within a predetermined range. That is, when the post-sulfurization liquid is passed through the column filled with the chelate resin, the linear velocity in the column is used as a control index to adjust the linear velocity and pass the liquid.
 これにより、硫化後液中に含まれるニッケルやクロムのキレート樹脂への吸着を抑制して、キレート樹脂に吸着するスカンジウムの量(吸着量)を増加させることができる。このように、キレート樹脂に吸着する不純物量を減少させ、一方でその分だけスカンジウム吸着を増加させることで、スカンジウムの高純度化を促進させることができる。そしてその結果、キレート樹脂から溶離させて得られるスカンジウム溶離液のスカンジウム濃度を高くすることができ、回収するスカンジウムの純度を向上させることができる。 As a result, the adsorption of nickel and chromium contained in the post-sulfurized liquid to the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin (adsorption amount) can be increased. In this way, by reducing the amount of impurities adsorbed on the chelate resin and increasing the adsorption of scandium by that amount, it is possible to promote the purification of scandium. As a result, the scandium concentration of the scandium eluent obtained by elution from the chelate resin can be increased, and the purity of the recovered scandium can be improved.
 ニッケル(Ni)やクロム(Cr)のキレート樹脂への吸着抑制の効果は、キレート樹脂から溶離させて得られるスカンジウム溶離液におけるスカンジウム(Sc)に対するクロムやニッケルの含有比率で評価することができる。具体的に、Ni/Sc比、又は、Cr/Sc比の値が大きいほど、スカンジウム溶離液中に含まれるニッケルやクロムの含有量が多くなり、好ましくないことを意味する。なお、工業的には、ニッケルやクロムのスカンジウムへの混在、すなわち、スカンジウム溶離液中のScに対するNiやCrの含有比率の百分率は、5%以下程度に抑制することが好ましい。 The effect of suppressing the adsorption of nickel (Ni) and chromium (Cr) on the chelate resin can be evaluated by the content ratio of chromium and nickel to scandium (Sc) in the scandium eluent obtained by elution from the chelate resin. Specifically, the larger the value of the Ni / Sc ratio or the Cr / Sc ratio, the higher the content of nickel and chromium contained in the scandium eluent, which means that it is not preferable. Industrially, it is preferable to suppress the mixing of nickel and chromium with scandium, that is, the percentage of the content ratio of Ni and Cr to Sc in the scandium eluent to about 5% or less.
 クロムの吸着を5%以下に抑制する場合、例えば、硫化後液を、キレート樹脂を充填したカラムに通液させるに際して、線速度が少なくとも8m/h以上となる比較的速めの流速で通液することが好ましい。一方で、ニッケルの吸着を5%以下に抑制する場合、一般的にニッケルの吸着はクロムほど少ないが、例えば線速度が12m/h以下の比較的遅めの流速で通液することが好ましい。なお、ニッケルの吸着抑制の点では、線速度8m/h以下の流速とすることで、ほぼ十分に混入を抑制できより好ましい。 When the adsorption of chromium is suppressed to 5% or less, for example, when the post-sulfurized liquid is passed through a column packed with a chelate resin, the liquid is passed at a relatively high flow velocity having a linear velocity of at least 8 m / h or more. Is preferable. On the other hand, when the adsorption of nickel is suppressed to 5% or less, the adsorption of nickel is generally less than that of chromium, but it is preferable to pass the liquid at a relatively slow flow velocity of, for example, a linear velocity of 12 m / h or less. In terms of suppressing the adsorption of nickel, it is more preferable to set the linear velocity to a flow rate of 8 m / h or less because the mixing can be suppressed almost sufficiently.
 硫化後液に含まれるクロムとニッケルとの両方の吸着を抑制しようとする場合、例えば線速度が10m/h~12m/h程度となるように通液することにより、クロムとニッケルの両方の吸着を抑制しつつ、スカンジウムの吸着量を増加させることができる。 When trying to suppress the adsorption of both chromium and nickel contained in the post-sulfurization liquid, for example, by passing the liquid so that the linear velocity is about 10 m / h to 12 m / h, the adsorption of both chromium and nickel is performed. It is possible to increase the amount of scandium adsorbed while suppressing the above.
 このように、スカンジウムに対するニッケルやクロム等の不純物の存在比率と、キレート樹脂を充填したカラムへの通液に際しての線速度と、の関係を検討し、その線速度を所定の範囲に調整して通液を行うことによって、不純物のキレート樹脂への吸着を抑制しながら、スカンジウム吸着比率を効果的に高めることができる。 In this way, the relationship between the abundance ratio of impurities such as nickel and chromium to scandium and the linear velocity when passing the liquid through the column packed with the chelate resin is examined, and the linear velocity is adjusted to a predetermined range. By passing the liquid through, the scandium adsorption ratio can be effectively increased while suppressing the adsorption of impurities to the chelate resin.
  (アルミニウム除去工程)
 アルミニウム除去工程S22では、吸着工程S21でスカンジウムを吸着したキレート樹脂に0.3N未満の硫酸を接触させ、そのキレート樹脂に吸着したアルミニウムを除去する。なお、硫酸によりキレート樹脂からアルミニウムを除去すると、アルミニウムを溶離させた溶液(アルミニウム溶離液)が回収される。
(Aluminum removal process)
In the aluminum removing step S22, sulfuric acid of less than 0.3 N is brought into contact with the chelate resin adsorbed with scandium in the adsorption step S21, and the aluminum adsorbed on the chelate resin is removed. When aluminum is removed from the chelate resin with sulfuric acid, the solution in which aluminum is eluted (aluminum eluent) is recovered.
 アルミニウムを除去するに際しては、キレート樹脂に接触させる硫酸のpHを1.0~2.5の範囲に維持することが好ましく、1.5~2.0の範囲に維持することがより好ましい。硫酸のpHが1.0未満であると、アルミニウムだけでなく、吸着させたスカンジウムもキレート樹脂から除去される可能性がある。一方で、硫酸のpHが2.5を超えると、アルミニウムが適切にキレート樹脂から除去されない可能性がある。そのため、硫酸濃度としては、0.3N未満とし、好ましくは0.1N~0.2N程度とする。 When removing aluminum, it is preferable to maintain the pH of sulfuric acid in contact with the chelate resin in the range of 1.0 to 2.5, and more preferably to maintain it in the range of 1.5 to 2.0. If the pH of sulfuric acid is less than 1.0, not only aluminum but also adsorbed scandium may be removed from the chelate resin. On the other hand, if the pH of sulfuric acid exceeds 2.5, aluminum may not be properly removed from the chelate resin. Therefore, the sulfuric acid concentration is set to less than 0.3N, preferably about 0.1N to 0.2N.
  (スカンジウム溶離工程)
 スカンジウム溶離工程S23では、アルミニウムを除去したキレート樹脂に0.3N以上3.0N未満の硫酸を接触させ、キレート樹脂からスカンジウムを溶離し、スカンジウム溶離液を得る。
(Scandium elution step)
In the scandium elution step S23, sulfuric acid of 0.3N or more and less than 3.0N is brought into contact with the chelate resin from which aluminum has been removed, and scandium is eluted from the chelate resin to obtain a scandium eluent.
 スカンジウム溶離液を得るに際しては、溶離液(溶離させるための溶液)に用いる硫酸の規定度を0.3N以上3.0N未満の範囲に維持することが好ましく、0.5N以上2.0N未満の範囲に維持することがより好ましい。規定度が3.0N以上であると、スカンジウムだけでなく、キレート樹脂に吸着した不純物のクロムまでも溶離してスカンジウム溶離液に含まれてしまうことがある。一方で、規定度が0.3N未満であると、スカンジウムが適切にキレート樹脂から溶離されないため、好ましくない。 When obtaining a scandium eluent, it is preferable to maintain the normality of sulfuric acid used in the eluent (solution for elution) in the range of 0.3N or more and less than 3.0N, and 0.5N or more and less than 2.0N. It is more preferable to keep it in the range. If the normality is 3.0 N or more, not only scandium but also chromium, which is an impurity adsorbed on the chelate resin, may be eluted and contained in the scandium eluent. On the other hand, if the normality is less than 0.3N, scandium is not properly eluted from the chelate resin, which is not preferable.
 なお、このスカンジウム溶離工程S23から得られたスカンジウム溶離液を繰り返し用い、すなわち、得られたスカンジウム溶離液をキレート樹脂に再度接触させてスカンジウム溶離工程S23を繰り返し行うようにしてもよい(スカンジウム溶離液の精製)。これにより、スカンジウム溶離液に含まれるスカンジウムの濃度を高めることができる。 The scandium eluent obtained from the scandium elution step S23 may be repeatedly used, that is, the obtained scandium eluent may be brought into contact with the chelate resin again to repeat the scandium elution step S23 (scandium eluent). Purification). This makes it possible to increase the concentration of scandium contained in the scandium eluent.
  (クロム除去工程)
 クロム除去工程S24では、スカンジウム溶離工程S23を経てスカンジウムを溶離させたキレート樹脂に3.0N以上の硫酸を接触させ、キレート樹脂に吸着した不純物であるクロムを除去する。なお、硫酸によりキレート樹脂からクロムを除去すると、クロムを溶離させた溶液(クロム溶離液)が回収される。
(Chromium removal process)
In the chromium removing step S24, sulfuric acid of 3.0 N or more is brought into contact with the chelate resin to which scandium is eluted through the scandium elution step S23 to remove chromium which is an impurity adsorbed on the chelate resin. When chromium is removed from the chelate resin with sulfuric acid, the solution in which chromium is eluted (chromium eluent) is recovered.
 クロムを除去するに際しては、硫酸の規定度を3.0N以上とすることが好ましい。硫酸の規定度が3.0Nを下回ると、クロムが適切にキレート樹脂から除去されない可能性がある。 When removing chromium, it is preferable that the normality of sulfuric acid is 3.0 N or more. If the normality of sulfuric acid is less than 3.0 N, chromium may not be properly removed from the chelate resin.
  (鉄除去工程)
 また、図示していないが、上述したアルミニウム除去工程S22に先立ち、不純物である鉄を除去する鉄除去工程を設けるようにしてもよい。硫化後液には、その原料のニッケル酸化鉱石に由来して鉄が含まれることがある。このようなとき、不純物を低減してスカンジウム溶離液中のスカンジウム濃度を高める観点から、鉄除去工程を設けて、キレート樹脂に吸着した鉄を除去することが好ましい。
(Iron removal process)
Further, although not shown, an iron removing step for removing iron as an impurity may be provided prior to the aluminum removing step S22 described above. The post-sulfidation liquid may contain iron derived from the nickel oxide ore as its raw material. In such a case, from the viewpoint of reducing impurities and increasing the scandium concentration in the scandium eluate, it is preferable to provide an iron removing step to remove iron adsorbed on the chelate resin.
 具体的に、鉄除去工程は、アルミニウム除去工程S22の前工程として設けるようにし、アルミニウム除去工程S22で使用する硫酸の規定度よりも小さい規定度の硫酸をキレート樹脂に接触させて、キレート樹脂に吸着した鉄を除去する。鉄を除去するに際して、硫酸のpHとしては1.0~3.0の範囲に維持することが好ましい。硫酸のpHが1.0未満であると、鉄だけでなく、スカンジウムもキレート樹脂から除去される可能性があり、一方で硫酸のpHが3.0を超えると、鉄が適切にキレート樹脂から除去されない可能性がある。 Specifically, the iron removing step is provided as a pre-step of the aluminum removing step S22, and sulfuric acid having a normality smaller than the normality of sulfuric acid used in the aluminum removing step S22 is brought into contact with the chelate resin to form the chelate resin. Remove the adsorbed iron. When removing iron, the pH of sulfuric acid is preferably maintained in the range of 1.0 to 3.0. If the pH of sulfuric acid is less than 1.0, not only iron but also scandium may be removed from the chelate resin, while if the pH of sulfuric acid exceeds 3.0, iron will be properly removed from the chelate resin. It may not be removed.
 (3)スカンジウム回収工程
 スカンジウム回収工程S3は、イオン交換処理工程S2を経て得られたスカンジウム溶離液からスカンジウムを回収する工程である。例えば、スカンジウムは、酸化スカンジウムの形態として回収することができる。
(3) Scandium Recovery Step The scandium recovery step S3 is a step of recovering scandium from the scandium eluate obtained through the ion exchange treatment step S2. For example, scandium can be recovered in the form of scandium oxide.
 スカンジウム回収工程S3における処理方法としては、特に限定されず公知の方法を用いることができる。例えば、スカンジウム溶離液にアルカリを添加して中和処理を施すことにより水酸化スカンジウムの沈澱物として回収する方法や、スカンジウム溶離液にシュウ酸を添加してシュウ酸塩の沈澱物として回収する方法(シュウ酸塩化処理)を用いることができる。中でも、シュウ酸塩化処理を用いた方法によれば、より効果的に不純物を分離することができる。 The treatment method in the scandium recovery step S3 is not particularly limited, and a known method can be used. For example, a method of adding alkali to a scandium eluent and neutralizing it to recover it as a precipitate of scandium hydroxide, or a method of adding oxalic acid to a scandium eluent and recovering it as a precipitate of oxalate. (Oxalization treatment) can be used. Above all, according to the method using the oxalate treatment, impurities can be separated more effectively.
 具体的に、シュウ酸塩化処理を用いた回収方法では、スカンジウム溶離液にシュウ酸を加えることによりシュウ酸スカンジウムの沈澱物を生成させ、その後、シュウ酸スカンジウムを乾燥し、焙焼することにより酸化スカンジウムとして回収する。なお、シュウ酸塩化処理では、シュウ酸溶液を収容した反応槽に抽出残液を添加することでシュウ酸スカンジウムの沈澱物を生成させてもよい。 Specifically, in the recovery method using the oxalate treatment, oxalic acid is added to the scandium eluent to form a precipitate of scandium oxalate, and then scandium oxalate is dried and roasted to be oxidized. Recover as scandium. In the oxalate treatment, a scandium oxalate precipitate may be produced by adding the extraction residual liquid to the reaction vessel containing the oxalic acid solution.
 焙焼処理は、例えばシュウ酸塩化処理により得られたシュウ酸スカンジウムの沈澱物を水で洗浄し、乾燥させた後に、焙焼する処理である。この焙焼処理を経ることで、スカンジウムを極めて高純度な酸化スカンジウムとして回収することができる。焙焼処理条件は、特に限定されないが、例えば管状炉に入れて約900℃で2時間程度加熱すればよい。 The roasting treatment is, for example, a treatment in which a scandium oxalate precipitate obtained by a oxalate treatment is washed with water, dried, and then roasted. By undergoing this roasting treatment, scandium can be recovered as extremely high-purity scandium oxide. The roasting treatment conditions are not particularly limited, but for example, they may be placed in a tube furnace and heated at about 900 ° C. for about 2 hours.
 なお、図示していないが、スカンジウム回収工程S3に先立ち、イオン交換処理工程S2を経て得られたスカンジウム溶離液に対して溶媒抽出処理を施すようにしてもよい(溶媒抽出工程)。このようにして溶媒抽出処理を施すことにより、例えば抽出剤を含む有機溶媒に、スカンジウム溶離液に含まれる不純物を選択的に抽出し、スカンジウム溶離液を精製することができ、スカンジウムを濃縮させた溶液(抽出残液)を得ることができる。 Although not shown, the scandium eluate obtained through the ion exchange treatment step S2 may be subjected to a solvent extraction treatment prior to the scandium recovery step S3 (solvent extraction step). By performing the solvent extraction treatment in this manner, for example, the impurities contained in the scandium eluent can be selectively extracted into an organic solvent containing an extractant to purify the scandium eluent, and the scandium is concentrated. A solution (extraction residue) can be obtained.
 (4)再吸着処理工程
 また、必須の態様ではないが、イオン交換処理工程S2を経て得られたスカンジウム溶離液をキレート樹脂に再吸着させるための再吸着処理を行うようにしてもよい(再吸着処理工程S4)。
(4) Re-adsorption treatment step Although it is not an essential aspect, a re-adsorption treatment for re-adsorbing the scandium eluent obtained through the ion exchange treatment step S2 on the chelate resin may be performed (re-adsorption treatment). Adsorption treatment step S4).
 具体的に、キレート樹脂を再吸着させるためのスカンジウム溶離液に対する処理としては、例えば、スカンジウム溶離液に中和剤を添加してpHを2.0以上4.0以下の範囲、好ましくはpH3.0を中心とした2.7~3.3の範囲に調整し、次いで、還元剤を添加し、次いで、硫酸を添加してpHを1.0以上2.5以下の範囲、好ましくはpH2.0を中心とした1.7~2.3の範囲に調整する処理を行う。このようにしてpHを調整した後の溶液(pH調整後液)を用いて、イオン交換処理工程S2(吸着工程S21、アルミニウム除去工程S22、スカンジウム溶離工程S23)での処理を再び行う。 Specifically, as a treatment for the scandium eluate for re-adsorbing the chelate resin, for example, a neutralizing agent is added to the scandium eluent to adjust the pH to a range of 2.0 or more and 4.0 or less, preferably pH 3. The pH is adjusted to the range of 2.7 to 3.3 centered on 0, then a reducing agent is added, and then sulfuric acid is added to adjust the pH to a range of 1.0 or more and 2.5 or less, preferably pH 2. The process of adjusting to the range of 1.7 to 2.3 centered on 0 is performed. Using the solution after adjusting the pH in this way (the solution after adjusting the pH), the treatment in the ion exchange treatment step S2 (adsorption step S21, aluminum removal step S22, scandium elution step S23) is performed again.
 このようにして、得られたスカンジウム溶離液に対して再吸着処理を行い、処理後の溶液(pH調整後液)をイオン交換処理工程S2に繰り返してキレート樹脂に再吸着させることで、回収されるスカンジウムの品位をより一層に高めることができる。また、スカンジウム溶離液からスカンジウムを分離する際の薬剤コストや設備規模を縮減できる。 The obtained scandium eluate is re-adsorbed in this manner, and the treated solution (pH-adjusted solution) is repeatedly adsorbed on the chelate resin in the ion exchange treatment step S2 to recover the scandium eluate. The quality of scandium can be further improved. In addition, the drug cost and equipment scale for separating scandium from the scandium eluent can be reduced.
 ここで、中和剤としては、従来公知のものを用いることができ、例えば、炭酸カルシウム等が挙げられる。また、還元剤についても、従来公知のものを用いることができ、例えば、硫化水素ガス、硫化ナトリウム等の硫化剤や、二酸化硫黄ガス、ヒドラジン、金属鉄等が挙げられる。 Here, as the neutralizing agent, conventionally known ones can be used, and examples thereof include calcium carbonate and the like. Further, as the reducing agent, conventionally known ones can be used, and examples thereof include sulfurizing agents such as hydrogen sulfide gas and sodium sulfide, sulfur dioxide gas, hydrazine, and metallic iron.
 還元剤の添加は、酸化還元電位(ORP)が銀/塩化銀電極を参照電極とする値で200mVを越えて300mV以下となる範囲に維持するように行うことが好ましい。例えば還元剤として硫化剤を使用した場合、酸化還元電位が200mV以下であると、添加された硫化剤に由来する硫黄分が微細な固体として析出し、硫化後の濾過処理において濾布を目詰まりさせて固液分離を悪化させ生産性低下の原因となることがある。また、キレート樹脂に再通液する際に、カラム内で目詰まりや液流れの偏りを生じ、均一な通液が行えない等の原因となることがある。一方、全ての還元剤において、酸化還元電位が300mVを超えると、残留する鉄イオン等がキレート樹脂に吸着して、スカンジウムの吸着を阻害する等の問題が生じる可能性がある。 The addition of the reducing agent is preferably carried out so that the redox potential (ORP) is maintained in a range of more than 200 mV and 300 mV or less with the silver / silver chloride electrode as a reference electrode. For example, when a sulfurizing agent is used as the reducing agent, if the oxidation-reduction potential is 200 mV or less, the sulfur content derived from the added sulfurizing agent is precipitated as a fine solid, and the filter cloth is clogged in the filtration treatment after sulfurization. This may worsen solid-liquid separation and cause a decrease in productivity. In addition, when the liquid is re-passed through the chelate resin, clogging or uneven liquid flow may occur in the column, which may cause uniform liquid passage. On the other hand, if the redox potential of all reducing agents exceeds 300 mV, there is a possibility that residual iron ions and the like may be adsorbed on the chelate resin, causing problems such as inhibition of scandium adsorption.
 また、スカンジウム溶離液のキレート樹脂への再吸着を行うにあたり、そのキレート樹脂としては、既に使用したものを再使用してもよいし、新たなキレート樹脂を使用してもよい。不純物のコンタミを防止する観点から、クロム除去工程S24を経て回収されたキレート樹脂を再使用するか、あるいは新たなキレート樹脂を使用することが好ましい。特に、クロム除去工程S24を経て回収されたキレート樹脂を再使用することによれば、不純物のコンタミを防止できるだけでなく、キレート樹脂の使用量を抑えることができる。 Further, when re-adsorbing the scandium eluent to the chelate resin, the already used chelate resin may be reused or a new chelate resin may be used. From the viewpoint of preventing contamination of impurities, it is preferable to reuse the chelate resin recovered through the chromium removing step S24 or to use a new chelate resin. In particular, by reusing the chelate resin recovered through the chromium removing step S24, not only can contamination of impurities be prevented, but also the amount of the chelate resin used can be suppressed.
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.
 [実施例1]
 (湿式製錬処理工程)
 ニッケル酸化鉱石を適当な粒度に破砕したスラリー(鉱石スラリー)を、濃硫酸と共に高圧反応容器(オートクレーブ)に装入し、245℃に維持しながら1時間かけてスカンジウムやニッケル等の有価金属を浸出したスラリー(浸出スラリー)を生成させた(浸出工程)。そして、得られた浸出スラリーを反応容器から取り出して冷却し、シックナーを用いて有価金属を含有する浸出液と浸出残渣とに固液分離した。
[Example 1]
(Hydrometallurgy process)
A slurry (ore slurry) obtained by crushing nickel oxide ore to an appropriate particle size is charged into a high-pressure reaction vessel (autoclave) together with concentrated sulfuric acid, and valuable metals such as scandium and nickel are leached over 1 hour while maintaining the temperature at 245 ° C. The resulting slurry (leaching slurry) was generated (leaching step). Then, the obtained leaching slurry was taken out from the reaction vessel, cooled, and solid-liquid separated into a leaching liquid containing a valuable metal and a leaching residue using a thickener.
 続いて、浸出工程で得られた浸出液に炭酸カルシウムを添加してpHを1~4の範囲に調整し、中和澱物と中和後液とを得た(中和工程)。スカンジウムやニッケル等の有価金属は中和後液に含まれ、アルミニウムをはじめとした不純物の大部分は中和澱物に含まれ除去された。 Subsequently, calcium carbonate was added to the leachate obtained in the leaching step to adjust the pH in the range of 1 to 4, and a neutralized starch and a neutralized liquid were obtained (neutralization step). Valuable metals such as scandium and nickel were contained in the neutralized liquid, and most of the impurities such as aluminum were contained in the neutralized starch and removed.
 続いて、中和工程で得られた中和後液に硫化水素ガスを吹き込み、ニッケルやコバルト、亜鉛を硫化物として回収し、硫化後液と分離した(硫化工程)。なお、下記表1に、硫化工程を経て得られた硫化後液の組成を示す。 Subsequently, hydrogen sulfide gas was blown into the neutralized liquid obtained in the neutralization step, nickel, cobalt, and zinc were recovered as sulfides and separated from the post-sulfurized liquid (sulfide step). Table 1 below shows the composition of the post-sulfurization liquid obtained through the sulfurization step.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (イオン交換処理工程)
 次に、湿式製錬処理工程における硫化工程を経て回収された硫化後液を吸着始液として用い、硫化後液をイオン吸着樹脂に接触させてスカンジウムを吸着させる処理を行った。
(Ion exchange processing process)
Next, the post-sulfurization liquid recovered through the sulfurization step in the wet smelting treatment step was used as the adsorption starting liquid, and the post-sulfidation liquid was brought into contact with the ion adsorption resin to adsorb scandium.
 イオン吸着樹脂として、イミノジ酢酸を官能基とするキレート樹脂(三菱化学株式会社製,ダイヤイオンCR11)を用いた。このキレート樹脂550mlを内径25.4mm、長さ1500mmのガラス製の円筒形をしたカラムに充填した。 As the ion adsorption resin, a chelate resin having iminodiacetic acid as a functional group (manufactured by Mitsubishi Chemical Corporation, Diaion CR11) was used. 550 ml of this chelate resin was filled in a glass cylindrical column having an inner diameter of 25.4 mm and a length of 1500 mm.
 そして、キレート樹脂を充填したカラムに、吸着始液である硫化後液(表1に示す組成)を通液して吸着処理を行った(吸着工程)。なお、吸着時の温度は30℃に維持した。また、キレート樹脂に吸着させたスカンジウムを、所定濃度の硫酸溶液をキレート樹脂に接触させることで溶離させて、スカンジウム溶離液を得た(溶離工程)。 Then, a post-sulfurization liquid (composition shown in Table 1), which is an adsorption starting liquid, was passed through a column filled with a chelate resin to perform an adsorption treatment (adsorption step). The temperature at the time of adsorption was maintained at 30 ° C. Further, scandium adsorbed on the chelate resin was eluted by bringing a sulfuric acid solution having a predetermined concentration into contact with the chelate resin to obtain a scandium eluent (elution step).
 ここで、下記表2に、キレート樹脂への吸着条件及びキレート樹脂からの溶離条件を示す。なお、「BV(Bed Volume)」は、キレート樹脂を充填したカラム内の樹脂体積に対する硫化後液の通液量を示す。例えばBV30とは、充填したキレート樹脂550mlの30倍の量の液を通液したことを示す。また、「LV」は、1時間当たりに液がカラム内を移動する距離、すなわち線速度を示す。例えばLV8とは、内径25.4mm(断面積5.07cm)のカラム内を1時間あたりに8mの長さ(距離)を移動する流速であることを示す。 Here, Table 2 below shows the adsorption conditions for the chelate resin and the elution conditions from the chelate resin. In addition, "BV (Bed Volume)" indicates the amount of the post-sulfidation liquid passing through the column filled with the chelate resin with respect to the resin volume. For example, BV30 means that 30 times the amount of the filled chelate resin 550 ml has been passed. Further, "LV" indicates the distance that the liquid moves in the column per hour, that is, the linear velocity. For example, LV8 indicates a flow velocity that travels a length (distance) of 8 m per hour in a column having an inner diameter of 25.4 mm (cross-sectional area 5.07 cm 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 キレート樹脂からスカンジウムを溶離させて得られたスカンジウム溶離液について、ICPを用いてクロム、ニッケル、及びスカンジウムの含有量を分析した。その分析結果から、通液時の線速度によるニッケル、クロム、スカンジウムの吸着への影響を確認した。 The scandium eluent obtained by elution of scandium from a chelate resin was analyzed for the contents of chromium, nickel, and scandium using ICP. From the analysis results, the effect of the linear velocity during liquid passage on the adsorption of nickel, chromium, and scandium was confirmed.
 図2は、キレート樹脂を充填したカラムへ硫化後液を通液したときの線速度に対する、溶離を経て得られたスカンジウム溶離液中のスカンジウム(Sc)に対するクロム(Cr)、ニッケル(Ni)の含有比率の測定結果を示す図である。 FIG. 2 shows chromium (Cr) and nickel (Ni) with respect to scandium (Sc) in the scandium eluent obtained through elution with respect to the linear velocity when the solution after sulfide was passed through a column packed with a chelate resin. It is a figure which shows the measurement result of the content ratio.
 図2に示されるように、吸着時における硫化後液の線速度が大きくなるほど、得られるスカンジウム溶離液中のCr/Sc比は小さくなることがわかる。つまり、スカンジウムの量が相対的に増加していることから、スカンジウム精製効果が高くなったことを示している。また、図2のグラフから、スカンジウムに対するクロムの割合を5%以下に抑制することを基準にみると、8m/h以上の線速度で通液することがクロムの吸着を抑制しつつスカンジウムの吸着量を増加させ、スカンジウムを高純度化するのに望ましいことがわかる。 As shown in FIG. 2, it can be seen that the higher the linear velocity of the post-sulfurized liquid at the time of adsorption, the smaller the Cr / Sc ratio in the obtained scandium eluent. That is, since the amount of scandium is relatively increased, it is shown that the scandium purification effect is enhanced. Further, from the graph of FIG. 2, based on the fact that the ratio of chromium to scandium is suppressed to 5% or less, passing the liquid at a linear velocity of 8 m / h or more suppresses the adsorption of chromium while adsorbing scandium. It turns out that it is desirable to increase the amount and purify scandium.
 さらに、図2のグラフから、吸着時における硫化後液の線速度が小さいほど、得られるスカンジウム溶離液中のNi/Sc比は小さい値を示している。つまり、スカンジウム溶離液中のスカンジウムの精製効果が高いことがわかる。Ni/Sc比は3%(=0.03)以下で頭打ちになるため、8m/h以下の線速度で通液することがニッケルの吸着を抑制しつつスカンジウムの吸着量を増加させ、スカンジウムを高純度化するのに望ましいことがわかる。 Furthermore, from the graph of FIG. 2, the smaller the linear velocity of the post-sulfurized liquid at the time of adsorption, the smaller the value of the Ni / Sc ratio in the obtained scandium eluent. That is, it can be seen that the effect of purifying scandium in the scandium eluent is high. Since the Ni / Sc ratio reaches a plateau at 3% (= 0.03) or less, passing the liquid at a linear velocity of 8 m / h or less increases the adsorption amount of scandium while suppressing the adsorption of nickel, and scandium is increased. It turns out that it is desirable for high purification.
 このように、少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液である硫化後液を、キレート樹脂を充填したカラムに通液させてイオン交換処理を行うに際して、硫化後液のカラム内の線速度を管理指標として、その線速度を調整して通液することで、ニッケルやクロムのキレート樹脂への吸着を抑制し、その分だけキレート樹脂へのスカンジウムの吸着量を増加させることができる。そしてその結果、キレート樹脂から溶離するスカンジウム濃度を高く維持でき、スカンジウムの高純度化と生産性の向上を果たすことができる。 As described above, when the post-sulfurized solution, which is an acidic solution containing at least scandium, nickel, and chromium, is passed through a column packed with a chelate resin to perform an ion exchange treatment, the line in the post-sulfurized solution column. By using the velocity as a control index and adjusting the linear velocity to pass the solution, the adsorption of nickel or chromium to the chelate resin can be suppressed, and the amount of scandium adsorbed on the chelate resin can be increased accordingly. As a result, the concentration of scandium eluted from the chelate resin can be maintained high, and the purity of scandium can be improved and the productivity can be improved.

Claims (5)

  1.  少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液からスカンジウムを回収する方法において、
     キレート樹脂を充填したカラムに前記酸性溶液を通液することにより該酸性溶液中のスカンジウムを該キレート樹脂に吸着させ、その後スカンジウム溶離液を得るイオン交換処理工程を含み、
     前記イオン交換処理工程では、
     前記酸性溶液を前記カラムに通液するに際し、該カラム内での単位時間あたりの移動距離(線速度)を調整して通液する、
     スカンジウムの回収方法。
    At least in the method of recovering scandium from an acidic solution containing scandium, nickel, and chromium.
    It comprises an ion exchange treatment step of adsorbing scandium in the acidic solution to the chelate resin by passing the acidic solution through a column packed with a chelate resin, and then obtaining a scandium eluent.
    In the ion exchange treatment step,
    When passing the acidic solution through the column, the moving distance (linear velocity) per unit time in the column is adjusted and the solution is passed.
    Scandium recovery method.
  2.  前記酸性溶液は、ニッケル酸化鉱石を硫酸による浸出処理に付し、得られた浸出液に硫化剤を添加してニッケル硫化物を分離した後の溶液である、
     請求項1に記載のスカンジウムの回収方法。
    The acidic solution is a solution obtained by subjecting nickel oxide ore to a leachation treatment with sulfuric acid and adding a sulfide agent to the obtained leachate to separate nickel sulfide.
    The scandium recovery method according to claim 1.
  3.  前記キレート樹脂が、イミノジ酢酸を官能基とする樹脂である、
     請求項1又は2に記載のスカンジウムの回収方法。
    The chelate resin is a resin having iminodiacetic acid as a functional group.
    The scandium recovery method according to claim 1 or 2.
  4.  前記イオン交換処理工程は、
     前記酸性溶液を、前記キレート樹脂を充填したカラムに通液させることにより、該キレート樹脂にスカンジウムを吸着させる工程と、
     スカンジウムを吸着したキレート樹脂に0.3N未満の硫酸を接触させ、該キレート樹脂に吸着したアルミニウムを除去する工程と、
     アルミニウムを除去したキレート樹脂に0.3N以上3N未満の硫酸を接触させ、該キレート樹脂に吸着したスカンジウムを溶離してスカンジウム溶離液を得る工程と、
     スカンジウムを溶離したキレート樹脂に3N以上の硫酸を接触させ、該キレート樹脂に吸着したクロムを除去する工程と、を有する、
     請求項1乃至3のいずれかに記載のスカンジウムの回収方法。
    The ion exchange treatment step is
    A step of adsorbing scandium on the chelate resin by passing the acidic solution through a column filled with the chelate resin.
    A step of contacting a chelate resin adsorbed with scandium with sulfuric acid of less than 0.3N to remove aluminum adsorbed on the chelate resin, and a step of removing the aluminum adsorbed on the chelate resin.
    A step of contacting a chelate resin from which aluminum has been removed with sulfuric acid of 0.3 N or more and less than 3 N, and elution of scandium adsorbed on the chelate resin to obtain a scandium eluent.
    It comprises a step of contacting a chelate resin in which scandium is eluted with sulfuric acid of 3N or more to remove chromium adsorbed on the chelate resin.
    The method for recovering scandium according to any one of claims 1 to 3.
  5.  少なくとも、スカンジウム、ニッケル、及びクロムを含有する酸性溶液に対してキレート樹脂を用いたイオン交換処理を施し、スカンジウムを濃縮させた溶液を得るイオン交換処理方法であって、
     前記キレート樹脂を充填したカラムに前記酸性溶液を通液することにより該酸性溶液中のスカンジウムを該キレート樹脂に吸着させる工程を含み、
     前記酸性溶液を前記カラムに通液するに際し、該カラム内での単位時間あたりの移動距離(線速度)を調整して通液する、
     イオン交換処理方法。
    An ion exchange treatment method in which an acidic solution containing at least scandium, nickel, and chromium is subjected to an ion exchange treatment using a chelate resin to obtain a concentrated scandium solution.
    A step of adsorbing scandium in the acidic solution to the chelate resin by passing the acidic solution through a column filled with the chelate resin is included.
    When passing the acidic solution through the column, the moving distance (linear velocity) per unit time in the column is adjusted and the solution is passed.
    Ion exchange processing method.
PCT/JP2020/033773 2019-09-24 2020-09-07 Method for recovering scandium, and ion exchange method WO2021059940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173048A JP7276042B2 (en) 2019-09-24 2019-09-24 Scandium recovery method and ion exchange treatment method
JP2019-173048 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021059940A1 true WO2021059940A1 (en) 2021-04-01

Family

ID=75156087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033773 WO2021059940A1 (en) 2019-09-24 2020-09-07 Method for recovering scandium, and ion exchange method

Country Status (2)

Country Link
JP (1) JP7276042B2 (en)
WO (1) WO2021059940A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053596A1 (en) * 2022-09-05 2024-03-14 日本製鉄株式会社 Method for recovering scandium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504847A (en) * 1973-05-16 1975-01-18
JPS6389635A (en) * 1986-10-01 1988-04-20 Mitsubishi Metal Corp Method for separating and recovering in
JPH107407A (en) * 1996-06-20 1998-01-13 Tokai Denka Kogyo Kk Purification of hydrogen peroxide solution
JP2014177391A (en) * 2013-02-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for recovering scandium
JP2014218719A (en) * 2013-05-10 2014-11-20 住友金属鉱山株式会社 Scandium collecting method
JP2015040332A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Method for recovering scandium
JP2015163729A (en) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 Scandium recovery method
JP2016065283A (en) * 2014-09-25 2016-04-28 住友金属鉱山株式会社 Method for recovering scandium
JP2017150019A (en) * 2016-02-23 2017-08-31 住友金属鉱山株式会社 Method for recovering scandium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504847A (en) * 1973-05-16 1975-01-18
JPS6389635A (en) * 1986-10-01 1988-04-20 Mitsubishi Metal Corp Method for separating and recovering in
JPH107407A (en) * 1996-06-20 1998-01-13 Tokai Denka Kogyo Kk Purification of hydrogen peroxide solution
JP2014177391A (en) * 2013-02-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for recovering scandium
JP2014218719A (en) * 2013-05-10 2014-11-20 住友金属鉱山株式会社 Scandium collecting method
JP2015040332A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Method for recovering scandium
JP2015163729A (en) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 Scandium recovery method
JP2016065283A (en) * 2014-09-25 2016-04-28 住友金属鉱山株式会社 Method for recovering scandium
JP2017150019A (en) * 2016-02-23 2017-08-31 住友金属鉱山株式会社 Method for recovering scandium

Also Published As

Publication number Publication date
JP7276042B2 (en) 2023-05-18
JP2021050377A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP5652503B2 (en) Scandium recovery method
US9963762B2 (en) Scandium recovery method
JP5994912B2 (en) Scandium recovery method
EP3249062B1 (en) Method for recovering scandium
AU2017369090B2 (en) Ion exchange processing method, and scandium recovery method
JP6319362B2 (en) Scandium recovery method
AU2017222881A1 (en) Method for recovering scandium
JP6172100B2 (en) Scandium recovery method
WO2019163285A1 (en) Ion exchange method and method for recovering scandium
WO2021059940A1 (en) Method for recovering scandium, and ion exchange method
WO2021059941A1 (en) Method for recovering scandium and ion-exchange treatment method
JP2023130638A (en) Method for recovering scandium
JP6206358B2 (en) Scandium recovery method
WO2021010165A1 (en) Method for recovering scandium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869661

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869661

Country of ref document: EP

Kind code of ref document: A1