WO2015146329A1 - Copper removal method for aqueous nickel chloride solution - Google Patents

Copper removal method for aqueous nickel chloride solution Download PDF

Info

Publication number
WO2015146329A1
WO2015146329A1 PCT/JP2015/053689 JP2015053689W WO2015146329A1 WO 2015146329 A1 WO2015146329 A1 WO 2015146329A1 JP 2015053689 W JP2015053689 W JP 2015053689W WO 2015146329 A1 WO2015146329 A1 WO 2015146329A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
cobalt
organic phase
nickel
zinc
Prior art date
Application number
PCT/JP2015/053689
Other languages
French (fr)
Japanese (ja)
Inventor
友彦 横川
中井 隆行
柿本 稔
高石 和幸
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA2943483A priority Critical patent/CA2943483C/en
Publication of WO2015146329A1 publication Critical patent/WO2015146329A1/en
Priority to NO20161679A priority patent/NO20161679A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention separates and recovers cobalt from a cobalt chloride-containing aqueous solution of nickel chloride by solvent extraction using an organic solvent formed by diluting a tertiary amine of an extractant with an aromatic hydrocarbon as a diluent. It relates to the hydrometallurgical process of nickel and cobalt.
  • the present invention relates to a method for removing copper chloride aqueous solution from copper chloride aqueous solution which has low copper concentration as aqueous phase after back extraction from concentrated nickel chloride aqueous solution.
  • nickel sulfide obtained by melting nickel sulfide ore in a blast furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, etc.
  • a nickel mat mainly composed of nickel sulfide such as Ni 3 S 2 obtained by a dry smelting process has been produced.
  • low pressure nickel leaching ore is subjected to pressure acid leaching (High Pressure Acid Leaking, commonly known as HPAL), and after removing impurities such as iron from the pressure acid leaching solution, wet sulfurization reaction, for example, sulfurization A mixed sulfide containing nickel and cobalt containing a sulfide as a main component such as NiS obtained by blowing hydrogen gas into a leaching solution containing nickel ions and cobalt ions (hereinafter referred to as mixed sulfide) are also produced.
  • HPAL Pressure Acid Leaking
  • the nickel mat or mixed sulfide As a method of purifying nickel and cobalt using the above-mentioned nickel mat or mixed sulfide as a raw material, as described in, for example, Patent Document 1, the nickel mat or mixed sulfide is leached with chlorine gas and the leached nickel A method of commercializing ions and cobalt ions as electronickel and cobalt by electrowinning has been put to practical use.
  • the above method repulses mixed sulfide into aqueous chloride solution and then chlorine leaches nickel and cobalt into aqueous chloride solution by blowing chlorine gas into the slurry.
  • the nickel leaching solution containing the divalent copper chloro complex ion as an oxidizing agent is brought into contact with the pulverized nickel mat to carry out a substitution reaction between copper and nickel, thereby converting the nickel in the nickel mat into a liquid. Replace leaching.
  • impurities such as iron, lead, copper, zinc and the like are removed from the resulting substituted leaching final solution, and cobalt in the substituted leaching final solution is separated using a method such as solvent extraction, and then nickel is electrocollected. Is a method of producing electric nickel. With respect to cobalt separated here, removal of further impurities is carried out by a treatment route different from nickel, and is commercialized as electrocobalt by electrowinning.
  • This method is simple and realizes efficient and economical production, such as reusing chlorine gas generated by electrowinning for leaching. Furthermore, in the technology of Patent Document 1, copper contained in a small amount in the raw material such as nickel mat and mixed sulfide is an impurity in purifying nickel and cobalt, but in the above-mentioned chlorine leaching step and substitution leaching step It is used as an oxidant and is circulated between the chlorine leaching step and the displacement leaching step.
  • the nickel in the nickel mat is substitutionally leached into the liquid by carrying out the substitution reaction of divalent copper chloro complex ions with Ni 3 S 2 and Ni 0 (metallic nickel) in the nickel mat.
  • the copper chloro complex ion becomes solid in the form of Cu 2 S or Cu 0 (copper metal).
  • the displacement leaching step dechlorination of the chlorine leachate is simultaneously carried out, and the copper concentration in the displacement leached final solution becomes 0.02 g / L or less.
  • the copper introduced from the raw material gradually accumulates in the chlorine leaching step and the displacement leaching step while circulating between the chlorine leaching step and the displacement leaching step, so that the copper concentration in the chlorine leachate is 10 to 60 g / L.
  • copper is extracted as copper powder out of the system, for example, by dechlorination of a chlorine leaching solution to achieve copper balance.
  • the separation of nickel and cobalt contained in the acidic aqueous solution is the most important technical element.
  • a method of separating cobalt as a trivalent hydroxide by adding chlorine gas as an oxidizing agent and a nickel carbonate slurry as a neutralizing agent to an aqueous solution of nickel containing cobalt has also been carried out.
  • nickel which is about 3 times the weight ratio of cobalt, also produces trivalent hydroxide, and because the separation between nickel and cobalt is poor, it is efficient and economical. It was not a good idea.
  • the separation of nickel and cobalt contained in an acidic aqueous solution is mainly performed by solvent extraction using various organic extractants.
  • phosphoric acid ester acidic extractant such as D2EHPA (Di- (2-ethylhexyl) phosphoric acid) as an organic extractant
  • amine such as TNOA (Tri-n-octylamine), etc.
  • a system extractant is used.
  • Both the phosphoric acid ester-based acidic extractant and the amine-based extractant have excellent nickel and cobalt separation performance, but generally, when the anion is a sulfate ion, the phosphoric acid ester-based acidic extractant is When the anion is chloride ion, an amine extractant is used.
  • clad is a solid such as metal hydroxide and is retained and accumulated between the organic phase and the aqueous phase in the oil-water separator, so that oil-water separation which is an important technical element of solvent extraction is largely inhibited.
  • the method of separating cobalt from an aqueous solution of nickel chloride containing cobalt and other impurity elements with an amine-based extractant is a technique as described below in a solvent extraction step comprising an extraction stage, a washing stage and a back extraction stage. Based on
  • a tertiary amine R 3 N
  • RNH 2 primary amine
  • R 2 NH secondary amine
  • R is any saturated or unsaturated hydrocarbon group Represents The reason is that tertiary amines are more polar and have higher reactivity, and also have lower solubility in water.
  • This tertiary amine is added with hydrochloric acid and activated to retain the extraction ability of metal chloro complex ion and has excellent separation characteristics of nickel and cobalt.
  • metal species forming chloro complex ions such as Co, Cu, Zn, and Fe are extracted into the organic phase, and an amine supporting chloro complex ions of metal elements is generated.
  • nickel does not form a chloro complex ion, it remains in the extraction residual liquid and is isolate
  • the washing stage is installed if necessary, in the washing stage, entrainment in the organic phase after extraction, that is, when there are many impurities contained in fine water droplets suspended in the organic phase, etc.
  • the impurities are removed by dilution and removal with wash water.
  • cobalt can be desorbed into the aqueous phase by bringing the washed organic phase, that is, the amine supporting the chloro complex ion of cobalt, into contact with a weakly acidic aqueous solution.
  • the organic phase from which cobalt has been back-extracted, i.e., the regenerated extractant, is again returned to the extraction stage for recycling and extraction, washing and back-extraction will be repeated.
  • metals that are more easily supported by amines as chloro complex ions than cobalt such as copper, zinc, and iron, are less likely to be eliminated under relatively weak back-extraction conditions for removing cobalt, and thus, in the solvent extraction step
  • the amine extractant is used cyclically, copper, zinc, iron and the like gradually accumulate in the extractant.
  • the amino group to be contributed to the extraction reaction is occupied by the accumulated metal, leading to a drastic decline in the extraction ability of the extractant.
  • the viscosity of the extractant is increased, the oil-water separation performance is also reduced.
  • a scrubbing stage is provided to regenerate the extractant. It has been done.
  • Patent Document 2 a part of the organic phase after back extraction is extracted, and zinc contained as an impurity is removed by neutralization treatment, and then the extractant is activated, and the organic phase after activation is chlorinated.
  • a method is described for contacting with the aqueous phase after back extraction which is a cobalt aqueous solution.
  • the method of removing copper, zinc, iron, etc. contained in the amine-based extractant after this back extraction by neutralization treatment is based on the reaction accompanied by the formation of a precipitate, and therefore includes an organic phase, an aqueous phase and a precipitate.
  • the mixture needs to be solid-liquid separated by filtration equipment such as a filter press, which not only has poor filterability, handleability and workability, but also has a security problem of filtering hazardous materials by mechanical equipment, which is a preferable method. It was hard to say. Furthermore, the organic phase adheres to the precipitate, leading to loss of the expensive extractant, resulting in an increase in the cost of the extractant. Also, disposal of the mixture of extracted oil and heavy metal requires a great deal of technology and cost to prevent environmental problems.
  • the improved method shown by patent document 3 is proposed and implemented as a means to solve these problems.
  • the organic phase after back extraction is alkali neutralized, and from the mixture containing the organic phase after aqueous alkali neutralization, the aqueous phase and the precipitate, the organic phase not containing the precipitate is removed by sedimentation and the aqueous phase Acid dissolve the mixture containing the precipitate and the remainder of the organic phase.
  • the aqueous phase containing copper, zinc, iron and the like after acid dissolution is sent to the next treatment step such as, for example, a waste water treatment step, and the organic phase containing copper, zinc, iron and the like is repeated in the scrubbing stage.
  • the handling of the precipitate mixed with the organic phase and the aqueous phase was completely lost.
  • Patent Document 2 and Patent Document 3 require an alkali for neutralization and a hydrochloric acid for activation. Then, the method which does not use these agents is also proposed by patent document 4, for example. This is to wash the organic phase after back extraction with water or an aqueous solution with a chloride ion concentration of 0 to 5 g / L so that the (organic phase / aqueous phase) ratio is 1 to 10, Compared to the methods of Document 2 and Patent Document 3, the equipment is simple and cost-effective.
  • this method is a technology that can be realized only under a narrow range of conditions such as extraction iron of 25 mg / L or less and zinc of 0.1 mg / L or less, and the target impurity metal is It is iron or zinc.
  • the copper concentration in the displacement leaching solution needs to be 0.02 g / L or less.
  • a nickel mat containing Ni 0 or Ni 3 S 2 having a stronger reducing power than NiS contained in the mixed sulfide is required. .
  • the strong alkali degrades and decomposes the organic solvent, which lowers the extraction ability of the amine, and increases the concentration of the decomposed organic substance in the aqueous phase after scrubbing, resulting in various problems such as an increase in COD load on the wastewater. Is triggered.
  • JP, 2012-026027 A Japanese Patent Application Laid-Open No. 60-121236 JP, 2010-196162, A JP, 2010-196122, A
  • the present invention separates and recovers cobalt from an aqueous solution of nickel chloride by solvent extraction with an organic solvent formed using a tertiary amine as an extractant and using an aromatic hydrocarbon as a diluent thereof, as well as copper, zinc and iron.
  • an organic solvent formed using a tertiary amine as an extractant and using an aromatic hydrocarbon as a diluent thereof, as well as copper, zinc and iron.
  • the present inventors tend to transfer copper accumulated in the extractant after back extraction into the aqueous phase as compared to zinc and iron. Focusing on the chloride ion concentration of the aqueous phase to be mixed and brought into contact with the organic phase after the back extraction, that is, the extraction conditions such as pH of dilute hydrochloric acid and O / A ratio, the result after the back extraction It is found that copper accumulated in the extractant after the back extraction can be selectively removed by mixing and contacting water or dilute hydrochloric acid having a pH of 1 or more with the organic phase so that the O / A ratio is 1.5 or less.
  • the present invention has been completed.
  • the first invention in the method for copper removal of an aqueous solution of nickel chloride of the present invention uses a solvent extraction method using an organic solvent containing a tertiary amine as an extractant and an aromatic hydrocarbon as a diluent in an organic phase
  • a process for separating and recovering cobalt from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron, and removing copper, zinc and iron characterized in that it comprises the following steps (1) to (3) in order: Copper removal method of nickel chloride aqueous solution.
  • the nickel concentration in the aqueous solution of nickel chloride containing cobalt, copper, zinc, iron in the extraction step (1) of the first invention is 170 to 210 g / L
  • the cobalt concentration is The copper in the organic phase containing cobalt, copper, zinc, and iron obtained in the step (1) with 2 to 10 g / L and a copper concentration of 0.01 to 0.2 g / L, and the copper concentration is 0
  • a third invention of the present invention is the removal of the aqueous solution of nickel chloride characterized in that the volume ratio of the organic relative aqueous phase in the copper recovery step of (3) of the first and second inventions is 1.5 or less. It is a copper method.
  • a fourth invention of the present invention is nickel chloride characterized in that the tertiary amine in the first to third inventions is tri-normal-octylamine (TNOA) or tri-iso-octylamine (TIOA). It is a method of removing copper from an aqueous solution.
  • TNOA tri-normal-octylamine
  • TIOA tri-iso-octylamine
  • the present invention by selectively removing the copper accumulated in the extractant, it is possible to prevent the decrease in the extraction ability of the organic solvent and the oil-water separation property, and copper in the extraction solution which is an aqueous solution of nickel chloride. Even if the concentration increases from 0.02 g / L to 0.2 g / L, the chloride obtained in the back-extraction step is removed by removing the copper in the organic phase until the copper concentration is 0.4 g / L or less.
  • the copper concentration in the cobalt aqueous solution can be 0.3 g / L or less.
  • the present invention is a simple method in which water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction, so it can be coped with simple equipment modification, and low cost and low environmental load and efficient. Operation can be realized.
  • it is possible to increase the production of electronickel and cobalt by increasing the raw material processing ratio of the mixed sulfide to the nickel mat and increasing the mixed sulfide.
  • FIG. 1 is a schematic flow sheet of a nickel and cobalt smelting process including the present invention. It is a schematic flow sheet of the solvent extraction process in the copper removal method of this invention. It is the figure which showed the relationship between the copper concentration in an organic phase, and the copper concentration in a water phase. It shows the relationship between the chloride ion concentration in the aqueous phase and the distribution ratio into the organic phase for copper, zinc and iron.
  • the method of copper removal from aqueous solution of nickel chloride of the present invention uses a tertiary amine as an extractant and an aromatic hydrocarbon as a diluent for diluting the extractant from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron.
  • the solvent is used to separate and recover cobalt and remove copper, zinc and iron by solvent extraction using the organic solvent thus formed, and is characterized by including the following steps (1) to (3) .
  • Extraction process An organic phase is formed by extracting cobalt, copper, zinc and iron from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron used in the aqueous phase to remove cobalt, copper, zinc and iron. Extraction step to obtain an aqueous solution of nickel chloride (aqueous phase).
  • Reverse extraction step A reverse extraction step of obtaining cobalt chloride aqueous solution by removing cobalt from the organic phase from which cobalt, copper, zinc and iron are extracted by the weakly acidic aqueous solution used for the aqueous phase.
  • Copper recovery step Water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction from which cobalt has been eliminated, and copper in the organic phase is backextracted into the aqueous phase, The copper recovery step, wherein the organic phase after removing copper is returned to the extraction step (1).
  • Nickel and Cobalt Smelting Process A schematic flow sheet of the nickel and cobalt smelting process including the present invention is shown in FIG.
  • the present invention relates to scrubbing of the organic phase after back extraction in the solvent extraction step (step shown as A in FIG. 1) in the overall steps of the nickel and cobalt smelting process, but the raw material processing ratio, See Figure 1, as it is a technology to achieve global optimization with respect to key elements of the nickel and cobalt smelting process, such as chlorine leaching, displacement leaching (cementation), purification to solvent extraction, solvent extraction, etc.
  • key elements of the nickel and cobalt smelting process such as chlorine leaching, displacement leaching (cementation), purification to solvent extraction, solvent extraction, etc.
  • the main elements will be described in detail.
  • the main raw materials are nickel mat and mixed sulfide.
  • Nickel matte refers to nickel sulfide obtained by melting nickel sulfide ore in a blast furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, etc. Refers to a nickel sulfide.
  • Ni 3 S 2 and Ni 0 metal nickel
  • the approximate chemical composition is 65 to 80% by weight of Ni, about 1% by weight of Co, and 0.1 to Cu It is 4% by weight, 0.1 to 5% by weight of Fe, and 20 to 25% by weight of S.
  • nickel mats made from nickel oxide ore are characterized by having a high content of impurities, and the main copper input sources for nickel and cobalt smelting processes are , A nickel mat using nickel sulfide ore as a raw material. Therefore, the amount of input of copper fluctuates significantly depending on the amount of nickel matte processed using this nickel sulfide ore.
  • mixed sulfide refers to hydrogen sulfide gas, for example, by wet sulfidation reaction after pressure acid leaching of low nickel grade nickel oxide ore and removal of impurities such as iron from the pressure acid leach solution. It refers to a mixed sulfide containing nickel and cobalt obtained by blowing into a leach solution containing nickel ions and cobalt ions.
  • the main components of this mixed sulfide are NiS and CoS, and the approximate chemical composition thereof is 55 to 60% by weight of Ni, 3 to 6% by weight of Co, less than 0.1% by weight of Cu, and 0 1 to 1% by weight, S is 30 to 35% by weight.
  • the chloro complex ion of divalent copper acts as a direct leaching agent for dissolving metals in mixed sulfides and cementation residues, and chlorine gas converts copper monovalent ion to divalent ion. It indirectly participates in the leaching reaction by oxidation. Therefore, a certain amount of copper is essential for the chlorine leaching reaction, and it is important to maintain the copper concentration in the chlorine leaching solution within the range of 10 to 60 g / L.
  • the main chlorine leaching reaction formulas are shown in the following formulas (1) to (4).
  • the chlorine leaching reaction conditions are such that the oxidation reduction potential of the aqueous solution of nickel chloride during the reaction is 480 to 550 mV (based on Ag / AgCl electrode), and the temperature is 105 to 115 ° C.
  • the displacement leaching step consists of two stages, a first displacement leaching step ("displacement leaching 1" in FIG. 1) and a second displacement leaching step ("displacement leaching 2" in FIG. 1).
  • Nickel and cobalt in the mixed sulfide are leached in the first displacement leaching step using the oxidizing power of the divalent copper chloro complex ion contained in the chlorine leachate.
  • the divalent copper chloro complex ion is reduced to a monovalent copper chloro complex ion.
  • the substitution leaching solution obtained in the first substitution leaching step is brought into contact with the nickel mat to cause a cementation reaction between copper ions in the substitution leaching solution and nickel in the nickel mat.
  • a cementation reaction between copper ions in the substitution leaching solution and nickel in the nickel mat.
  • solid nickel is eluted to become nickel ions, and copper ions in a solution that is electrochemically equivalent to the eluted nickel become solid, and therefore the displacement leaching step is carried out by the copper contained in the chlorine leachate. It can be said that this is a decoppering step to remove
  • the copper ion in the displacement leaching solution becomes a solid in the form of Cu 2 S or Cu metal, so the copper concentration in the displacement leaching final solution obtained in the second displacement leaching step is 0.02 g / L or less .
  • Ni 0 metallic nickel
  • Cementation residue including mixed sulfide and insoluble residue of nickel mat and solid containing copper obtained by cementation reaction, is solid-liquid separated from the displacement leaching final solution obtained in the second displacement leaching step Then, it is sent to the chlorine leaching process.
  • the main substitutional leaching reaction formulas are shown in the following formulas (5) to (7).
  • the conditions for the displacement leaching reaction are 50 to 300 mV (based on Ag / AgCl electrode) of the redox potential of the aqueous solution of nickel chloride at the time of reaction, and the temperature is 70 to 100 ° C.
  • the amount of copper to be removed from the solution in the second displacement leaching step is determined by the product of the amount of chlorine leachate and the concentration of copper in the chlorine leachate.
  • the amount of chlorine leachate is determined by the amount of mixed sulfide to be treated in the chlorine leaching step and the first displacement leaching step.
  • the concentration of copper in the chlorine leachate is a constant value because it is maintained at an appropriate value within the range of 10 to 60 g / L to continue the optimum chlorine leaching operation.
  • the treatment ratio of the nickel mat to the mixed sulfide decreases, there is a concern that the nickel mat may be insufficient for the amount of copper to be removed, in which case the displacement leaching final solution obtained in the second displacement leaching step The copper concentration inside will rise.
  • the substitution leaching final solution (sement cement final solution) is sent to the pure solution process.
  • the liquid purification process is composed of a deironing process, a solvent extraction process, a lead removal process, and a dezincification process.
  • substitution leaching is carried out by adding chlorine gas as an oxidizing agent and a nickel carbonate slurry as a neutralizing agent to the substitution leaching final solution to form a precipitate containing ferric hydroxide as a main component.
  • a treatment is performed to reduce the iron concentration in the final solution from 1 to 2 g / L to 15 mg / L or less. Since the pH of the aqueous solution in this deironization step is about 2.0 to 2.5, copper hydroxide is not generated in this step. Furthermore, since copper is not removed in this deironing step, when the copper concentration in the substitution leaching final solution increases, the copper concentration in the extraction starting solution subjected to the next liquid purification step (solvent extraction) increases. become.
  • the nickel concentration is 170 to 210 g / L
  • the cobalt concentration is 2 to 10 g / L
  • the copper concentration is 0.02 g / L or less
  • the zinc concentration is 0.01 to 0.03 g / L.
  • the lead removal step chlorine gas as an oxidant and a nickel carbonate slurry as a neutralizer are added in the same manner as the iron removal step to remove lead in the nickel chloride solution after solvent extraction as lead oxide. Since the pH of the extraction residue in the lead removal step is 4 to 5, part of nickel also forms a precipitate as a trivalent hydroxide.
  • FIG. 1 A schematic flow sheet of the solvent extraction step according to the present invention is shown in FIG. This flow sheet also represents the flow of the copper removal method according to the present invention.
  • the solvent extraction is adopted in a countercurrent multistage system, and comprises an extraction stage, a washing stage, a back extraction stage, and a copper recovery stage.
  • the extraction stage comprises 3 stages, the washing stage also 3 stages, the back extraction stage 3 stages, and the copper recovery stage 1 stage ing.
  • a predetermined amount of the back-extracted organic phase is extracted, water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact, and copper in the organic phase is back-extracted into the aqueous phase.
  • a predetermined amount of the organic phase after back extraction is extracted and alkali neutralized to remove zinc and iron in the organic phase If the dezincification stages are operated independently of one another, copper, zinc and iron in the organic phase can be efficiently removed.
  • the zinc concentration of the extraction starting solution depends on the zinc content in the mixed sulfide and the amount of mixed sulfide processed.
  • the iron concentration of the extraction start solution is always constant because it is removed in the deferrous step.
  • the copper concentration of the extraction start solution is determined by the treatment ratio of the nickel mat to the mixed sulfide.
  • water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase a after serial extraction, that is, back extraction, and copper in the organic phase a is back extracted to the aqueous phase, and then copper is recovered.
  • the organic phase b is alkali-neutralized to remove zinc and iron in the organic phase, the amount of alkali used in the dezincification stage can be reduced because of the balance of copper content, resulting in cost reduction.
  • Extractant and Reaction uses a tertiary amine, preferably tri-normal-octylamine (TNOA) or tri-iso-octylamine (TIOA).
  • TNOA tri-normal-octylamine
  • TIOA tri-iso-octylamine
  • An aromatic hydrocarbon is used as a diluent for the extractant.
  • the extractant concentration in the organic phase is set to 20 to 40% by volume.
  • Tertiary amines have the ability to extract metal chloro complex ions as shown in formulas (9) and (9 ') by addition of hydrochloric acid and activation according to formula (8) below, and are excellent. Have separation characteristics of nickel and cobalt.
  • M in the above formula (9) represents a metal species that forms a chloro complex ion such as Co, Cu, Zn, etc., but since the form of the chloro complex ion differs depending on the valence of the metal ion, for example, Fe (trivalent)
  • a metal species that forms a chloro complex ion such as Co, Cu, Zn, etc.
  • Fe (trivalent) In the case of, following formula (9 ') follows.
  • “:" in Formula (8), Formula (9), and Formula (9 ') represents the noncovalent electron pair of a nitrogen atom.
  • metal species forming a chloro complex ion such as Co, Cu, Zn, Fe, etc. are extracted into the organic phase by the reaction represented by the formula (9) or the formula (9 ′), and An amine carrying complex ions is formed.
  • nickel does not form a chloro complex ion, it remains in the extraction residual liquid and is isolate
  • the organic phase after washing that is, the amine carrying a chloro complex ion of cobalt is brought into contact with a weakly acidic aqueous solution, according to the following formula (10) which is a reverse reaction of formula (9).
  • Cobalt can be released into the aqueous phase.
  • copper removal from chlorine leachate in the nickel and cobalt smelting process is basically carried out in the substitution leaching (cementation) step, but the copper concentration in the substitution leaching final solution is large due to lack of nickel mat etc. If it fluctuates or rises, decoppering by solvent extraction is effective.
  • this solvent extraction As a copper removal step, even if the copper concentration in the extraction start solution is as high as 0.2 g / L, almost all copper ions can be extracted into the organic phase. This is because the concentration of chloride ion in the initial solution is as high as 200 to 250 g / L and copper forms a stable chloro complex ion.
  • the chloride ion concentration is lower than that of the extraction stage, and is 70 to 100 g / L. Therefore, at a chloride ion concentration of 70 to 100 g / L, copper chloro complex ions in the organic phase become unstable, and part of the copper is back-extracted into the aqueous phase. Since the copper concentration in the aqueous phase is in proportion to the copper concentration in the organic phase, when the copper concentration in the organic phase is increased, the copper concentration in the aqueous solution of cobalt chloride is increased.
  • FIG. 3 shows the relationship between the copper concentration in the organic phase and the copper concentration in the aqueous phase in the back extraction stage.
  • the data in FIG. 3 shows that 20% by volume or 30% by volume of tri-norm-octylamine (TNOA) as an extractant in a countercurrent multistage solvent extraction process of three extraction stages, three washing stages and three back extraction stages.
  • TNOA tri-norm-octylamine
  • the composition of the extraction start solution (mixed aqueous solution of nickel chloride and cobalt chloride) is 170 to 210 g / L in nickel concentration, 2 to 10 g / L in cobalt concentration, and 0.02 to 0.2 g / L in copper concentration.
  • the cobalt concentration of the back extraction residue (cobalt chloride aqueous solution) is 50 to 70 g / L.
  • the slope of the regression line that is, the distribution ratio changes depending on the concentration of the extractant, but the copper in the organic phase is reduced to an aqueous solution of cobalt chloride by lowering the copper concentration to 0.4 g / L or less. It is understood that the copper concentration can be 0.3 g / L or less. It is a second feature of the present invention to produce this low copper concentration cobalt chloride aqueous solution.
  • the copper recovery stage of the present invention is a process of selectively separating and removing copper from copper, zinc and iron concentrated in the organic phase into the aqueous phase.
  • the stability of copper, zinc and iron in the organic phase ie the stability of the chloro complex ion of the metal, is positively correlated with the chloride ion concentration in the aqueous phase.
  • FIG. 4 shows the relationship between the chloride ion concentration in the aqueous phase and the distribution ratio into the organic phase for copper, zinc and iron.
  • copper among copper, zinc and iron, copper has the lowest stability in the organic phase, and is easily distributed in the aqueous phase. Therefore, copper in the organic phase can be selectively eliminated into the aqueous phase by mixing and contacting the aqueous phase having a low chloride ion concentration with the organic phase after the back extraction.
  • the solvent extraction step as shown in FIG. 2 is configured to adjust the copper concentration in the organic phase to 0.4 g / L or less, thereby extracting the copper concentration up to 0.2 g / L.
  • the treatment of the starting solution becomes possible, and the copper concentration in the aqueous solution of cobalt chloride after the back extraction can be 0.3 g / L or less. In other words, it becomes possible to cope with 10 times the copper load of the prior art (dezincification stage by alkali neutralization).
  • the copper recovery solution contains only a low concentration of COD components generated by decomposition of the organic matter, thereby reducing the COD load on the subsequent steps.
  • various conventional techniques dezincification stages by alkali neutralization
  • desorption of hydrochloric acid from the organic phase can also be suppressed by using dilute hydrochloric acid of about pH 1 for the copper recovery solution.
  • the solvent extraction operation was carried out using an organic solvent containing 20% by volume of the organic solvent and 80% by volume of an aromatic hydrocarbon as a diluent.
  • the composition of the first extract (mixed aqueous solution of nickel chloride and cobalt chloride) is 170 to 210 g / L nickel concentration, 2 to 10 g / L cobalt concentration, 0.01 to 0.02 g / L copper concentration, zinc concentration Is 0.02 to 0.03 g / L and iron concentration is 10 to 14 mg / L, and the back extraction residual liquid (cobalt chloride aqueous solution) has a cobalt concentration of 50 to 70 g / L and a copper concentration of 0.1 to 0. It is 2 g / L.
  • Each flow rate is an organic flow rate of 1000 to 1300 L / min, an extraction start flow rate of 1300 to 1600 L / min, and a back extraction start flow rate of 140 to 170 L / min.
  • the solvent extraction operation was performed under the same conditions as in Example 1 except that an organic solvent containing 30% by volume of TNOA and 70% by volume of aromatic hydrocarbon was used. Thereafter, a part of the back-extracted organic phase is sent to a copper recovery stage, and an O / A ratio of 0.9 to 1.1 is obtained in the same manner as in Example 1 except that dilute hydrochloric acid of pH 1 is used as the aqueous phase. The organic and aqueous phases were mixed.
  • Example 1 The solvent extraction was carried out under the same conditions as in Example 1, and then part of the back-extracted organic phase was sent to a 3 m 3 FRP tank three-stage dezincification stage (one stage), and in the first tank It was mixed with diluted caustic soda in a Japanese tank.
  • the caustic soda concentration of the diluted caustic soda used is 118 g / L.
  • the organic phase not containing precipitate is extracted by overflow from the mixture containing the organic phase, the aqueous phase and the precipitate after alkali neutralization, and the mixture containing the remaining portion of the aqueous phase, the precipitate and the organic phase is used as a second tank
  • the solution was sent to an acid dissolving tank and dissolved in 35% hydrochloric acid.
  • the organic extraction flow rate was 48 to 54 L / min, and the diluted caustic soda flow rate was 48 to 54 L / min.
  • the amount of 35% hydrochloric acid used was 15 L / min.
  • the resulting COD concentration in the aqueous phase after zinc removal by alkaline neutralization was 230 mg / L.
  • copper in the organic can be selectively removed and the concentration can be reduced to the target concentration, and the amount of the organic solvent withdrawn, that is, the throughput in the copper recovery stage.
  • the copper concentration in the organic phase after back extraction is adjusted to 0.4 g / L or less.

Abstract

Provided is a copper removal method for an aqueous nickel chloride solution, the method able to prevent a reduction in organic solvent extraction capability and oil/water separation performance and further, when compared to prior art, the method does not increase chemical costs, does not degrade or decompose an extraction agent or increase the COD load of wastewater, and enables an aqueous nickel chloride solution having a high copper concentration to be treated. The copper removal method for an aqueous nickel chloride solution includes separating and recovering cobalt from an aqueous nickel chloride solution containing cobalt, copper, zinc, and iron using a solvent extraction method that uses for the organic phase, an organic solvent containing a tertiary amine as the extraction agent and an aromatic hydrocarbon as the diluent, wherein the method is characterized by comprising, in the following order, (1) an extraction step, (2) a reverse extraction step, and (3) a copper recovery step.

Description

塩化ニッケル水溶液の脱銅方法Copper removal method of nickel chloride aqueous solution
 本発明は、コバルトを含有する塩化ニッケル水溶液から、抽出剤の3級アミンを、芳香族炭化水素を希釈剤に用いて希釈して形成した有機溶媒を用いた溶媒抽出によって、コバルトを分離回収するニッケルおよびコバルトの湿式製錬法に関するものである。 The present invention separates and recovers cobalt from a cobalt chloride-containing aqueous solution of nickel chloride by solvent extraction using an organic solvent formed by diluting a tertiary amine of an extractant with an aromatic hydrocarbon as a diluent. It relates to the hydrometallurgical process of nickel and cobalt.
 より詳しくは、コバルトが抽出された有機相からコバルトを脱離した逆抽出後の有機相中に蓄積された銅を除去し、有機相中の銅濃度を低下させることにより、コバルトを含有する銅濃度の高い塩化ニッケル水溶液から、逆抽出後の水相として銅濃度の低い塩化コバルト水溶液を得る塩化ニッケル水溶液の脱銅方法に関するものである。 More specifically, copper containing cobalt is removed by removing the copper accumulated in the organic phase after the back extraction in which cobalt is desorbed from the organic phase from which cobalt is extracted, and the copper concentration in the organic phase is reduced. The present invention relates to a method for removing copper chloride aqueous solution from copper chloride aqueous solution which has low copper concentration as aqueous phase after back extraction from concentrated nickel chloride aqueous solution.
 ニッケルおよびコバルトの製錬においては、例えば、ニッケル硫化鉱石を溶鉱炉で溶解して得られるニッケル硫化物や、ニッケル酸化鉱石に硫黄を添加して電気炉で溶解して得られるニッケル硫化物等、いわゆる乾式製錬法で得られたNi等のニッケル硫化物を主成分とするニッケルマットが生産されている。 In smelting nickel and cobalt, for example, nickel sulfide obtained by melting nickel sulfide ore in a blast furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, etc. A nickel mat mainly composed of nickel sulfide such as Ni 3 S 2 obtained by a dry smelting process has been produced.
 一方で、低ニッケル品位のニッケル酸化鉱石を加圧酸浸出(High Pressure Acid Leaching、通称HPAL)し、その加圧酸浸出液から鉄をはじめとする不純物を除去した後、湿式硫化反応によって、例えば硫化水素ガスをニッケルイオン及びコバルトイオンを含んだ浸出液中に吹込むことによって、得られたNiS等の硫化物を主成分とするニッケルおよびコバルトを含む混合硫化物(以降、混合硫化物と称する。)も生産されている。 On the other hand, low pressure nickel leaching ore is subjected to pressure acid leaching (High Pressure Acid Leaking, commonly known as HPAL), and after removing impurities such as iron from the pressure acid leaching solution, wet sulfurization reaction, for example, sulfurization A mixed sulfide containing nickel and cobalt containing a sulfide as a main component such as NiS obtained by blowing hydrogen gas into a leaching solution containing nickel ions and cobalt ions (hereinafter referred to as mixed sulfide) Are also produced.
 上記ニッケルマットや混合硫化物を原料として、ニッケルおよびコバルトを精製する方法としては、例えば特許文献1に記載されているように、ニッケルマットや混合硫化物を塩素ガスで浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する方法が実用化されている。 As a method of purifying nickel and cobalt using the above-mentioned nickel mat or mixed sulfide as a raw material, as described in, for example, Patent Document 1, the nickel mat or mixed sulfide is leached with chlorine gas and the leached nickel A method of commercializing ions and cobalt ions as electronickel and cobalt by electrowinning has been put to practical use.
 上記方法は、混合硫化物を、塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによりニッケル及びコバルトを塩化物水溶液中に塩素浸出する。
 そこで得られた、酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したニッケルマットを接触させて、銅とニッケルの置換反応を行うことによりニッケルマット中のニッケルを液に置換浸出する。
The above method repulses mixed sulfide into aqueous chloride solution and then chlorine leaches nickel and cobalt into aqueous chloride solution by blowing chlorine gas into the slurry.
The nickel leaching solution containing the divalent copper chloro complex ion as an oxidizing agent is brought into contact with the pulverized nickel mat to carry out a substitution reaction between copper and nickel, thereby converting the nickel in the nickel mat into a liquid. Replace leaching.
 その後、得られた置換浸出終液から鉄、鉛、銅、亜鉛等の不純物を除去すると共に、置換浸出終液中のコバルトを溶媒抽出等の方法を用いて分離し、次いでニッケルを電解採取して電気ニッケルを製造する方法である。
 ここで分離されたコバルトについては、ニッケルとは別の処理ルートにより、さらなる不純物の除去が行われ、電解採取により電気コバルトとして製品化される。
Thereafter, impurities such as iron, lead, copper, zinc and the like are removed from the resulting substituted leaching final solution, and cobalt in the substituted leaching final solution is separated using a method such as solvent extraction, and then nickel is electrocollected. Is a method of producing electric nickel.
With respect to cobalt separated here, removal of further impurities is carried out by a treatment route different from nickel, and is commercialized as electrocobalt by electrowinning.
 この方法はシンプルで、電解採取で発生した塩素ガスを浸出に再利用する等、効率的かつ経済的な生産を実現している。
 さらに、特許文献1の技術では、ニッケルマットや混合硫化物等の原料中に微量に含まれる銅は、ニッケルおよびコバルトを精製する上での不純物ではあるが、上記塩素浸出工程や置換浸出工程では酸化剤として利用され、塩素浸出工程と置換浸出工程の間を循環している。
This method is simple and realizes efficient and economical production, such as reusing chlorine gas generated by electrowinning for leaching.
Furthermore, in the technology of Patent Document 1, copper contained in a small amount in the raw material such as nickel mat and mixed sulfide is an impurity in purifying nickel and cobalt, but in the above-mentioned chlorine leaching step and substitution leaching step It is used as an oxidant and is circulated between the chlorine leaching step and the displacement leaching step.
 置換浸出工程では、2価の銅クロロ錯イオンとニッケルマット中のNiおよびNi(金属ニッケル)との置換反応を行うことによりニッケルマット中のニッケルは液に置換浸出され、その一方で銅クロロ錯イオンはCuSまたはCu(金属銅)の形態となって固体となる。 In the substitution leaching step, the nickel in the nickel mat is substitutionally leached into the liquid by carrying out the substitution reaction of divalent copper chloro complex ions with Ni 3 S 2 and Ni 0 (metallic nickel) in the nickel mat. The copper chloro complex ion becomes solid in the form of Cu 2 S or Cu 0 (copper metal).
 つまり置換浸出工程では塩素浸出液の脱銅も同時に行われ、置換浸出終液中の銅濃度は0.02g/L以下となる。原料から持ち込まれた銅は、塩素浸出工程と置換浸出工程の間を循環しながら、次第に塩素浸出工程と置換浸出工程に蓄積して行くため、塩素浸出液中の銅濃度を10~60g/Lの範囲内の適正値に維持するために、例えば塩素浸出液を脱銅電解することによって、銅粉として銅を系外に抜き出して銅バランスを取っている。 That is, in the displacement leaching step, dechlorination of the chlorine leachate is simultaneously carried out, and the copper concentration in the displacement leached final solution becomes 0.02 g / L or less. The copper introduced from the raw material gradually accumulates in the chlorine leaching step and the displacement leaching step while circulating between the chlorine leaching step and the displacement leaching step, so that the copper concentration in the chlorine leachate is 10 to 60 g / L. In order to maintain the proper value within the range, copper is extracted as copper powder out of the system, for example, by dechlorination of a chlorine leaching solution to achieve copper balance.
 ところで、ニッケルの湿式製錬法において、酸性水溶液中に含まれるニッケルとコバルトの分離は、最も重要な技術要素である。
 例えば、コバルトを含んだニッケル水溶液中に、酸化剤として塩素ガスを、中和剤として炭酸ニッケルスラリーを添加して、コバルトを3価の水酸化物として分離する方法も行われてきたが、水溶液中のコバルトを固体として完全に除去するためには、重量比でコバルトの3倍程度のニッケルも3価の水酸化物を生成してしまい、ニッケルとコバルトの分離性が悪いため効率的かつ経済的な方法とは言えなかった。
By the way, in the hydrometallurgical process of nickel, the separation of nickel and cobalt contained in the acidic aqueous solution is the most important technical element.
For example, a method of separating cobalt as a trivalent hydroxide by adding chlorine gas as an oxidizing agent and a nickel carbonate slurry as a neutralizing agent to an aqueous solution of nickel containing cobalt has also been carried out. In order to completely remove cobalt in solids as solid, nickel, which is about 3 times the weight ratio of cobalt, also produces trivalent hydroxide, and because the separation between nickel and cobalt is poor, it is efficient and economical. It was not a good idea.
 そこで、現在では、酸性水溶液中に含まれるニッケルとコバルトの分離は、各種の有機抽出剤による溶媒抽出法が主流となっている。
 ニッケルとコバルトを分離するための溶媒抽出法では、有機抽出剤としてD2EHPA(Di-(2-ethylhexyl)phosphoric acid)等の燐酸エステル系酸性抽出剤や、TNOA(Tri-n-octylamine)等のアミン系抽出剤が用いられる。
Therefore, currently, the separation of nickel and cobalt contained in an acidic aqueous solution is mainly performed by solvent extraction using various organic extractants.
In the solvent extraction method for separating nickel and cobalt, phosphoric acid ester acidic extractant such as D2EHPA (Di- (2-ethylhexyl) phosphoric acid) as an organic extractant, amine such as TNOA (Tri-n-octylamine), etc. A system extractant is used.
 使用される燐酸エステル系酸性抽出剤とアミン系抽出剤は、両者ともに優れたニッケルとコバルトの分離性能を有するが、一般的には、アニオンが硫酸イオンの場合は燐酸エステル系酸性抽出剤が、アニオンが塩化物イオンの場合にはアミン系抽出剤が使用されている。 Both the phosphoric acid ester-based acidic extractant and the amine-based extractant have excellent nickel and cobalt separation performance, but generally, when the anion is a sulfate ion, the phosphoric acid ester-based acidic extractant is When the anion is chloride ion, an amine extractant is used.
 水溶液中の塩化物イオン濃度が十分に高い、塩化物イオン濃度が200g/L以上の塩化物水溶液の場合、コバルトはクロロ錯イオンを形成するがニッケルはクロロ錯イオンを形成しないため、アミン系抽出剤の方が、燐酸エステル系酸性抽出剤に比べてより高いコバルトとニッケルの分離係数を持つ。 In the case of a chloride aqueous solution having a chloride ion concentration of 200 g / L or more, in which the chloride ion concentration in the aqueous solution is sufficiently high, cobalt forms a chloro complex ion but nickel does not form a chloro complex ion. The agent has a higher cobalt and nickel separation factor compared to the phosphoric acid ester acid extractant.
 また、燐酸エステル系酸性抽出剤では、金属イオンの抽出によって抽出剤からプロトンが放出されるため中和剤コストを要する他、pHの変動によってクラッドが発生することが多い。
 上記クラッドとは金属の水酸化物等の固体で、油水分離装置内で有機相と水相の中間に滞留・蓄積されるため、溶媒抽出の重要な技術要素である油水分離を大きく阻害する。
In addition, in the case of a phosphoric acid ester-based acidic extractant, protons are released from the extractant by extraction of metal ions, which requires a neutralizing agent cost, and in addition, a clad is often generated due to pH fluctuation.
The above-mentioned clad is a solid such as metal hydroxide and is retained and accumulated between the organic phase and the aqueous phase in the oil-water separator, so that oil-water separation which is an important technical element of solvent extraction is largely inhibited.
 コバルトとその他の不純物元素を含有する塩化ニッケル水溶液からアミン系抽出剤によってコバルトを分離する方法は、抽出段、洗浄段および逆抽出段から構成される溶媒抽出工程において、以下に記載するような技術に基づいたものである。 The method of separating cobalt from an aqueous solution of nickel chloride containing cobalt and other impurity elements with an amine-based extractant is a technique as described below in a solvent extraction step comprising an extraction stage, a washing stage and a back extraction stage. Based on
 抽出剤としては、1級アミン(RNH)や2級アミン(RNH)よりも、3級アミン(RN)を用いる方がより好ましい(Rは任意の飽和または不飽和炭化水素基を表す)。
 その理由は、3級アミンの方が、より極性に富み反応性が高く、また、水に対する溶解度が低いためである。
 この3級アミンは、塩酸を付加されて活性化することにより、金属クロロ錯イオンの抽出能力を保有し、しかも優れたニッケルとコバルトの分離特性を有する。
It is more preferable to use a tertiary amine (R 3 N) as the extractant than a primary amine (RNH 2 ) or a secondary amine (R 2 NH) (R is any saturated or unsaturated hydrocarbon group Represents
The reason is that tertiary amines are more polar and have higher reactivity, and also have lower solubility in water.
This tertiary amine is added with hydrochloric acid and activated to retain the extraction ability of metal chloro complex ion and has excellent separation characteristics of nickel and cobalt.
 上記抽出段では、Co、Cu、Zn、Fe等のクロロ錯イオンを形成する金属種が有機相中に抽出され、金属元素のクロロ錯イオンを担持したアミンが生成される。なお、ニッケルはクロロ錯イオンを形成しないので、抽出残液に残留して分離される。
 したがって、塩化ニッケル水溶液中に、コバルトよりもクロロ錯イオンを形成し易い、すなわちクロロ錯イオンの安定度が高い金属、例えば銅、亜鉛、鉄のクロロ錯イオンが含まれている場合には、これらの金属も抽出される。
In the extraction stage, metal species forming chloro complex ions such as Co, Cu, Zn, and Fe are extracted into the organic phase, and an amine supporting chloro complex ions of metal elements is generated. In addition, since nickel does not form a chloro complex ion, it remains in the extraction residual liquid and is isolate | separated.
Therefore, when an aqueous solution of nickel chloride is more likely to form a chloro complex ion than cobalt, that is, contains a metal having a high stability of the chloro complex ion, such as a copper, zinc or iron chloro complex ion, Metals are also extracted.
 洗浄段は、必要により設置されるが、洗浄段では、抽出後の有機相中のエントレインメント、すなわち有機相中に懸濁する微細な水滴中に含まれる不純物が多く存在した場合などには、その不純物を洗浄水による希釈除去処理により取り除くものである。 Although the washing stage is installed if necessary, in the washing stage, entrainment in the organic phase after extraction, that is, when there are many impurities contained in fine water droplets suspended in the organic phase, etc. The impurities are removed by dilution and removal with wash water.
 次に逆抽出段では、洗浄後の有機相を、すなわちコバルトのクロロ錯イオンを担持したアミンを、弱酸性水溶液と接触させることで、コバルトを水相中に脱離することができる。
 ここで、コバルトが逆抽出された有機相は、すなわち再生された抽出剤は、再び抽出段に戻されて循環使用され、抽出、洗浄、逆抽出が繰返されることになる。
Next, in the back extraction stage, cobalt can be desorbed into the aqueous phase by bringing the washed organic phase, that is, the amine supporting the chloro complex ion of cobalt, into contact with a weakly acidic aqueous solution.
Here, the organic phase from which cobalt has been back-extracted, i.e., the regenerated extractant, is again returned to the extraction stage for recycling and extraction, washing and back-extraction will be repeated.
 ところが、銅、亜鉛、鉄等のコバルトよりも、クロロ錯イオンとしてアミンに担持され易い金属は、コバルトを脱離するための比較的弱い逆抽出条件では脱離されにくく、したがって、溶媒抽出工程でアミン系抽出剤を循環使用する場合、銅、亜鉛、鉄等が次第に抽出剤中に蓄積するようになる。
 このような金属の蓄積が進むと、抽出反応に寄与すべきアミノ基が、蓄積した金属に占有されてしまうため、抽出剤の抽出能力の大巾な低下を招くことになる。また、抽出剤の粘性が上がるため、油水分離性の低下も招くことになる。
However, metals that are more easily supported by amines as chloro complex ions than cobalt, such as copper, zinc, and iron, are less likely to be eliminated under relatively weak back-extraction conditions for removing cobalt, and thus, in the solvent extraction step When the amine extractant is used cyclically, copper, zinc, iron and the like gradually accumulate in the extractant.
When such accumulation of metal proceeds, the amino group to be contributed to the extraction reaction is occupied by the accumulated metal, leading to a drastic decline in the extraction ability of the extractant. In addition, since the viscosity of the extractant is increased, the oil-water separation performance is also reduced.
 この問題に対して、例えば、銅、亜鉛、鉄等のクロロ錯イオンを担持したアミン系抽出剤から、これらの金属を分離除去するために、スクラビング段を設けて抽出剤を再生することが行われてきた。
 例えば、特許文献2には、逆抽出後の有機相の一部を抜き取って、不純物として含有される亜鉛を中和処理によって除去した後、抽出剤を活性化し、活性化後の有機相を塩化コバルト水溶液である逆抽出後の水相と接触させる方法が記載されている。
To solve this problem, for example, in order to separate and remove these metals from an amine-based extractant carrying a chloro complex ion such as copper, zinc, or iron, a scrubbing stage is provided to regenerate the extractant. It has been done.
For example, in Patent Document 2, a part of the organic phase after back extraction is extracted, and zinc contained as an impurity is removed by neutralization treatment, and then the extractant is activated, and the organic phase after activation is chlorinated. A method is described for contacting with the aqueous phase after back extraction which is a cobalt aqueous solution.
 この逆抽出後のアミン系抽出剤中に含有された銅、亜鉛、鉄等を中和処理によって除去する方法は、沈殿物形成を伴う反応に基づくため、有機相と水相と沈殿物を含む混合物をフィルタープレス等のろ過設備によって固液分離する必要があり、ろ過性、ハンドリング性、作業性が悪いだけでなく、危険物を機械設備でろ過処理するという保安上の問題もあり、好ましい方法とは言い難かった。
 さらに、沈殿物に有機相が付着するため、高価な抽出剤のロスにつながり、抽出剤コストの増加を招いていた。
 また、この抜き出した油と重金属の混合物を処分するに当たっては、環境上の問題を発生させないようにするために、多大な技術とコストが必要となっていた。
The method of removing copper, zinc, iron, etc. contained in the amine-based extractant after this back extraction by neutralization treatment is based on the reaction accompanied by the formation of a precipitate, and therefore includes an organic phase, an aqueous phase and a precipitate. The mixture needs to be solid-liquid separated by filtration equipment such as a filter press, which not only has poor filterability, handleability and workability, but also has a security problem of filtering hazardous materials by mechanical equipment, which is a preferable method. It was hard to say.
Furthermore, the organic phase adheres to the precipitate, leading to loss of the expensive extractant, resulting in an increase in the cost of the extractant.
Also, disposal of the mixture of extracted oil and heavy metal requires a great deal of technology and cost to prevent environmental problems.
 そこで、これらの問題を解決する手段として、特許文献3で示した改良された方法が提案、実施されている。
 この方法は、逆抽出後の有機相をアルカリ中和し、アルカリ中和後の有機相と水相と沈殿物を含む混合物から、沈殿物を含まない有機相を沈降分離によって抜き出し、水相と沈殿物と有機相の残部を含んだ混合物を酸溶解する。
Then, the improved method shown by patent document 3 is proposed and implemented as a means to solve these problems.
In this method, the organic phase after back extraction is alkali neutralized, and from the mixture containing the organic phase after aqueous alkali neutralization, the aqueous phase and the precipitate, the organic phase not containing the precipitate is removed by sedimentation and the aqueous phase Acid dissolve the mixture containing the precipitate and the remainder of the organic phase.
 酸溶解後の銅、亜鉛、鉄等を含んだ水相は、例えば排水処理工程等の次の処理工程に送られ、銅、亜鉛、鉄等を含んだ有機相は、スクラビング段に繰返される。
 この方法により、有機相および水相と混合された沈殿物の取扱いは皆無になった。
The aqueous phase containing copper, zinc, iron and the like after acid dissolution is sent to the next treatment step such as, for example, a waste water treatment step, and the organic phase containing copper, zinc, iron and the like is repeated in the scrubbing stage.
By this method, the handling of the precipitate mixed with the organic phase and the aqueous phase was completely lost.
 上記特許文献2および特許文献3のスクラビング方法では、中和用のアルカリと活性化用の塩酸が必要となる。そこで、これらの薬剤を使用しない方法も、例えば特許文献4で提案されている。
 これは、逆抽出後の有機相を、塩化物イオン濃度が0~5g/Lの水または水溶液で、(有機相/水相)比が1~10となるように洗浄するというもので、特許文献2および特許文献3の方法と比較して、設備が簡便で、かつコスト上有利な方法である。
The scrubbing methods of Patent Document 2 and Patent Document 3 require an alkali for neutralization and a hydrochloric acid for activation. Then, the method which does not use these agents is also proposed by patent document 4, for example.
This is to wash the organic phase after back extraction with water or an aqueous solution with a chloride ion concentration of 0 to 5 g / L so that the (organic phase / aqueous phase) ratio is 1 to 10, Compared to the methods of Document 2 and Patent Document 3, the equipment is simple and cost-effective.
 しかし、この方法は、抽出始液の鉄が25mg/L以下、亜鉛が0.1mg/L以下という、限られた狭い範囲の条件下のみで成立つ技術であり、さらに対象とする不純物金属は鉄または亜鉛である。 However, this method is a technology that can be realized only under a narrow range of conditions such as extraction iron of 25 mg / L or less and zinc of 0.1 mg / L or less, and the target impurity metal is It is iron or zinc.
 ところで、特許文献1に記載されている、ニッケルマットや混合硫化物を、塩素ガスで浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取により電気ニッケルおよび電気コバルトとして製品化するプロセスでは、ニッケルマットや混合硫化物等の原料中に微量に含まれる銅は、前記塩素浸出工程や置換浸出工程では酸化剤として利用され、塩素浸出工程と置換浸出工程を循環している。
 そのため、塩素浸出液中の銅濃度を10~60g/Lの範囲内の適正値に維持する必要がある。
By the way, in the process described in Patent Document 1, in which nickel mat and mixed sulfide are leached with chlorine gas and the leached nickel ion and cobalt ion are produced as electronickel and cobalt by electrowinning, nickel is used. Copper contained in trace amounts in raw materials such as mats and mixed sulfides is used as an oxidizing agent in the chlorine leaching step and the displacement leaching step, and is circulated in the chlorine leaching step and the displacement leaching step.
Therefore, it is necessary to maintain the copper concentration in the chlorine leachate at an appropriate value within the range of 10 to 60 g / L.
 一方で、銅はニッケルおよびコバルトを精製する上では不純物であるため、置換浸出液中の銅濃度は0.02g/L以下とする必要がある。
 この置換浸出液の銅濃度を塩素浸出液中の銅濃度より低下させるためには、混合硫化物中に含まれるNiSよりも還元力の強いNiやNiを含有したニッケルマットが必要となる。
On the other hand, since copper is an impurity in purifying nickel and cobalt, the copper concentration in the displacement leaching solution needs to be 0.02 g / L or less.
In order to lower the copper concentration of this substituted leachate lower than the copper concentration in the chlorine leachate, a nickel mat containing Ni 0 or Ni 3 S 2 having a stronger reducing power than NiS contained in the mixed sulfide is required. .
 しかしながら、ニッケルおよびコバルトを増産するために混合硫化物を増処理すると、相対的にニッケルマットが不足する事態も発生するため、可能な限り原料構成比の変化に柔軟に対応できる技術が必要となっていた。
 具体的には置換浸出終液中の銅濃度、すなわち溶媒抽出工程における抽出始液中の銅濃度が0.02g/Lから0.2g/Lに上昇しても対応が可能な、銅の除去技術を確立する必要があった。
However, when mixed sulfides are further treated to increase production of nickel and cobalt, there will also be a situation where the nickel mats will be relatively short, so a technology that can respond flexibly to changes in the raw material composition ratio as much as possible is needed. It was
Specifically, removal of copper which can be coped with even if the copper concentration in the displacement leaching final solution, that is, the copper concentration in the extraction starting solution in the solvent extraction step increases from 0.02 g / L to 0.2 g / L It was necessary to establish the technology.
 上記問題への対応として、前記のスクラビング段でアルカリ中和する方法によって抽出剤中に蓄積した銅を除去することもできるが、中和用のアルカリと活性化用の塩酸が必要となりコストアップとなるだけでは無く、逆抽出後の有機相のスクラビング比率が上昇する。 Although copper accumulated in the extractant can be removed by the method of alkali neutralization in the scrubbing stage as a solution to the above problems, alkali for neutralization and hydrochloric acid for activation are required, resulting in cost increase. Not only that, the scrubbing ratio of the organic phase after the back extraction is increased.
 また、強アルカリによって有機溶媒が劣化分解し、アミンの抽出能力が低下すると共に、スクラビング後の水相中の分解された有機物濃度が上昇して排水へのCOD負荷が上昇する等、様々な問題が引き起こされる。 In addition, the strong alkali degrades and decomposes the organic solvent, which lowers the extraction ability of the amine, and increases the concentration of the decomposed organic substance in the aqueous phase after scrubbing, resulting in various problems such as an increase in COD load on the wastewater. Is triggered.
 さらに、上記アルカリ中和法は主に亜鉛を除去対象とした方法であるため、その方法とは独立させて、アミン系抽出剤に蓄積した銅を選択的に除去する技術を確立する必要があった。 Furthermore, since the above alkaline neutralization method is mainly intended to remove zinc, it is necessary to establish a technique for selectively removing copper accumulated in an amine-based extractant independently of the method. The
特開2012-026027号公報JP, 2012-026027, A 特開昭60-121236号公報Japanese Patent Application Laid-Open No. 60-121236 特開2010-196162号公報JP, 2010-196162, A 特開2010-196122号公報JP, 2010-196122, A
 本発明は、塩化ニッケル水溶液から、抽出剤として3級アミンを使用し、その希釈剤として芳香族炭化水素を用いて形成した有機溶媒による溶媒抽出によって、コバルトを分離回収すると共に銅、亜鉛、鉄を除去する方法において、抽出剤に蓄積した銅を選択的に除去することで、有機溶媒の抽出能力や油水分離性の低下を防止することができ、さらには、従来技術と比較して、薬剤コストをアップさせること無く、抽出剤を劣化分解させ、排水のCOD負荷を上昇させることも無く、銅濃度の高い塩化ニッケル水溶液を処理することができる、塩化ニッケル水溶液の脱銅方法を提供することを目的とする。 The present invention separates and recovers cobalt from an aqueous solution of nickel chloride by solvent extraction with an organic solvent formed using a tertiary amine as an extractant and using an aromatic hydrocarbon as a diluent thereof, as well as copper, zinc and iron. By selectively removing copper accumulated in the extractant, it is possible to prevent the deterioration of the extraction ability of the organic solvent and the oil-water separation property, and further, compared with the prior art, To provide a copper chloride aqueous solution decoppering method capable of processing an aqueous nickel chloride solution having a high copper concentration without degrading the decomposition agent and increasing the COD load of the drainage without increasing the cost and increasing the COD load of the wastewater. With the goal.
 上記目的を達成するため、本発明者らは、水相中の塩化物イオン濃度が低い場合、逆抽出後の抽出剤中に蓄積した銅が亜鉛や鉄に比べて水相中に移行し易いことに着目して、逆抽出後の有機相に混合・接触させる水相の塩化物イオン濃度、すなわち希塩酸のpHや、O/A比等の抽出条件について研究を重ねた結果、逆抽出後の有機相にO/A比が1.5以下となるように水またはpH1以上の希塩酸を混合・接触させることによって、逆抽出後の抽出剤中に蓄積した銅を選択的に除去できることを見出し、本発明を完成するに至った。 In order to achieve the above object, when the chloride ion concentration in the aqueous phase is low, the present inventors tend to transfer copper accumulated in the extractant after back extraction into the aqueous phase as compared to zinc and iron. Focusing on the chloride ion concentration of the aqueous phase to be mixed and brought into contact with the organic phase after the back extraction, that is, the extraction conditions such as pH of dilute hydrochloric acid and O / A ratio, the result after the back extraction It is found that copper accumulated in the extractant after the back extraction can be selectively removed by mixing and contacting water or dilute hydrochloric acid having a pH of 1 or more with the organic phase so that the O / A ratio is 1.5 or less. The present invention has been completed.
 すなわち、本発明の塩化ニッケル水溶液の脱銅方法における第一の発明は、抽出剤として3級アミン、希釈剤として芳香族炭化水素を含有した有機溶媒を有機相に用いた溶媒抽出法を用いて、コバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液からコバルトを分離回収すると共に銅、亜鉛、鉄を除去する方法において、下記(1)~(3)の工程を順に含むことを特徴とする塩化ニッケル水溶液の脱銅方法。 That is, the first invention in the method for copper removal of an aqueous solution of nickel chloride of the present invention uses a solvent extraction method using an organic solvent containing a tertiary amine as an extractant and an aromatic hydrocarbon as a diluent in an organic phase A process for separating and recovering cobalt from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron, and removing copper, zinc and iron, characterized in that it comprises the following steps (1) to (3) in order: Copper removal method of nickel chloride aqueous solution.
(1)前記コバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液から、前記有機相にコバルト、銅、亜鉛、鉄を抽出してコバルト、銅、亜鉛、鉄を含む有機相を形成し、コバルト、銅、亜鉛、鉄が除去された塩化ニッケル水溶液を得る抽出工程。
(2)前記(1)の工程で得られた前記コバルト、銅、亜鉛、鉄を含む有機相に弱酸性水溶液を接触させることによって、前記有機相中のコバルトを前記有機相から脱離させ、塩化コバルト水溶液の水相と、逆抽出後の銅、亜鉛、鉄を含む有機相を得る逆抽出工程。
(3)前記逆抽出後の有機相に、水又はpH1以上の希塩酸を混合、接触させ、前記有機相中の銅を水相に逆抽出して銅を回収し、銅を除去した後の亜鉛、鉄を含む有機相は前記(1)の工程の有機溶媒として用いる銅回収工程。
(1) Extract cobalt, copper, zinc, iron into the organic phase from the aqueous solution of nickel chloride containing cobalt, copper, zinc, iron to form an organic phase containing cobalt, copper, zinc, iron, cobalt Extraction step to obtain an aqueous solution of nickel chloride from which copper, zinc and iron have been removed.
(2) Cobalt in the organic phase is desorbed from the organic phase by bringing the weakly acidic aqueous solution into contact with the organic phase containing the cobalt, copper, zinc and iron obtained in the step (1). A back extraction step to obtain an aqueous phase of a cobalt chloride aqueous solution and an organic phase containing copper, zinc and iron after back extraction.
(3) Water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction, and the copper in the organic phase is back extracted to the aqueous phase to recover the copper, and zinc is removed The copper recovery step, wherein the iron-containing organic phase is used as the organic solvent in the step (1).
 次に、本発明の第2の発明は、第1の発明の(1)の抽出工程におけるコバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液のニッケル濃度が170~210g/L、コバルト濃度が2~10g/L、及び銅濃度が0.01~0.2g/Lで、(1)の工程で得られたコバルト、銅、亜鉛、鉄を含む有機相中の銅を、銅濃度が0.4g/L以下となるまで除去することによって、(2)の逆抽出工程で得られる塩化コバルト水溶液中の銅濃度を0.3g/L以下とすることを特徴とする塩化ニッケル水溶液の脱銅方法である。 Next, according to the second invention of the present invention, the nickel concentration in the aqueous solution of nickel chloride containing cobalt, copper, zinc, iron in the extraction step (1) of the first invention is 170 to 210 g / L, and the cobalt concentration is The copper in the organic phase containing cobalt, copper, zinc, and iron obtained in the step (1) with 2 to 10 g / L and a copper concentration of 0.01 to 0.2 g / L, and the copper concentration is 0 Removal of copper to a concentration of 0.3 g / L or less in the aqueous solution of cobalt chloride obtained in the back extraction step of (2) by removing the solution to 4 g / L or less It is a method.
 本発明の第3の発明は、第1及び第2の発明の(3)の銅回収工程における有機相対水相の体積比率が、1.5以下であることを特徴とする塩化ニッケル水溶液の脱銅方法である。 A third invention of the present invention is the removal of the aqueous solution of nickel chloride characterized in that the volume ratio of the organic relative aqueous phase in the copper recovery step of (3) of the first and second inventions is 1.5 or less. It is a copper method.
 本発明の第4の発明は、第1から第3の発明における3級アミンが、トリ-ノルマル-オクチルアミン(TNOA)又はトリ-イソ-オクチルアミン(TIOA)であることを特徴とする塩化ニッケル水溶液の脱銅方法である。 A fourth invention of the present invention is nickel chloride characterized in that the tertiary amine in the first to third inventions is tri-normal-octylamine (TNOA) or tri-iso-octylamine (TIOA). It is a method of removing copper from an aqueous solution.
 本発明によれば、抽出剤に蓄積した銅を選択的に除去することで、有機溶媒の抽出能力や油水分離性の低下を防止することができ、塩化ニッケル水溶液である抽出始液中の銅濃度が0.02g/Lから0.2g/Lに上昇しても、有機相中の銅を、銅濃度が0.4g/L以下となるまで除去することによって、逆抽出工程で得られる塩化コバルト水溶液中の銅濃度を0.3g/L以下とすることができる。 According to the present invention, by selectively removing the copper accumulated in the extractant, it is possible to prevent the decrease in the extraction ability of the organic solvent and the oil-water separation property, and copper in the extraction solution which is an aqueous solution of nickel chloride. Even if the concentration increases from 0.02 g / L to 0.2 g / L, the chloride obtained in the back-extraction step is removed by removing the copper in the organic phase until the copper concentration is 0.4 g / L or less. The copper concentration in the cobalt aqueous solution can be 0.3 g / L or less.
 さらには、従来技術と比較して、中和用のアルカリと活性化用の塩酸を必要としないため、薬剤コストをアップさせることが無く、抽出剤を劣化分解させ、排水のCOD負荷を上昇させることも無い。 Furthermore, as compared with the prior art, since the alkali for neutralization and the hydrochloric acid for activation are not required, the drug cost is not increased, the extractant is degraded and decomposed, and the COD load of the drainage is increased. I have nothing to do.
 本発明は、逆抽出後の有機相に、水またはpH1以上の希塩酸を混合・接触させる簡便な方法であるため、簡単な設備改造で対応することができ、低コスト、低環境負荷で効率的な操業を実現することができる。
 上記の効果に加えて、ニッケルマットに対する混合硫化物の原料処理比率を増加させ、混合硫化物の増処理によって電気ニッケルや電気コバルトを増産することができる。
The present invention is a simple method in which water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction, so it can be coped with simple equipment modification, and low cost and low environmental load and efficient. Operation can be realized.
In addition to the above effects, it is possible to increase the production of electronickel and cobalt by increasing the raw material processing ratio of the mixed sulfide to the nickel mat and increasing the mixed sulfide.
本発明を含むニッケルおよびコバルト製錬プロセスの概略フローシートである。1 is a schematic flow sheet of a nickel and cobalt smelting process including the present invention. 本発明の脱銅方法における溶媒抽出工程の概略フローシートである。It is a schematic flow sheet of the solvent extraction process in the copper removal method of this invention. 有機相中銅濃度と水相中銅濃度の関係を示した図である。It is the figure which showed the relationship between the copper concentration in an organic phase, and the copper concentration in a water phase. 銅、亜鉛、鉄に関する水相中の塩化物イオン濃度と有機相中への分配比の関係を示したものである。It shows the relationship between the chloride ion concentration in the aqueous phase and the distribution ratio into the organic phase for copper, zinc and iron.
 以下、本発明の塩化ニッケル水溶液の脱銅方法に関して、詳細に説明する。
 本発明の塩化ニッケル水溶液の脱銅方法は、コバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液から、抽出剤として3級アミンを、その抽出剤を希釈する希釈剤に芳香族炭化水素を用いて形成した有機溶媒を使用する溶媒抽出によって、コバルトを分離回収すると共に銅、亜鉛、鉄を除去するもので、次の(1)~(3)の工程を含むことを特徴とするものである。
Hereinafter, the copper removal method of the aqueous solution of nickel chloride of the present invention will be described in detail.
The method of copper removal from aqueous solution of nickel chloride of the present invention uses a tertiary amine as an extractant and an aromatic hydrocarbon as a diluent for diluting the extractant from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron. The solvent is used to separate and recover cobalt and remove copper, zinc and iron by solvent extraction using the organic solvent thus formed, and is characterized by including the following steps (1) to (3) .
(1)抽出工程
 水相に用いたコバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液からコバルト、銅、亜鉛、鉄を抽出した有機相を形成し、コバルト、銅、亜鉛、鉄が除去された塩化ニッケル水溶液(水相)を得る抽出工程。
(2)逆抽出工程
 コバルト、銅、亜鉛、鉄を抽出した有機相から、水相に用いた弱酸性水溶液によってコバルトを脱離して、塩化コバルト水溶液を得る逆抽出工程。
(3)銅回収工程
 コバルトが脱離された逆抽出後の有機相に、水またはpH1以上の希塩酸を水相に用いて混合・接触させ、有機相中の銅を水相に逆抽出し、銅を除去した後の有機相を上記(1)の抽出工程に戻す、銅回収工程。
(1) Extraction process An organic phase is formed by extracting cobalt, copper, zinc and iron from an aqueous solution of nickel chloride containing cobalt, copper, zinc and iron used in the aqueous phase to remove cobalt, copper, zinc and iron. Extraction step to obtain an aqueous solution of nickel chloride (aqueous phase).
(2) Reverse extraction step A reverse extraction step of obtaining cobalt chloride aqueous solution by removing cobalt from the organic phase from which cobalt, copper, zinc and iron are extracted by the weakly acidic aqueous solution used for the aqueous phase.
(3) Copper recovery step Water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction from which cobalt has been eliminated, and copper in the organic phase is backextracted into the aqueous phase, The copper recovery step, wherein the organic phase after removing copper is returned to the extraction step (1).
1.ニッケルおよびコバルト製錬プロセス
 本発明を含むニッケルおよびコバルト製錬プロセスの概略フローシートを図1に示す。
 本発明は、ニッケルおよびコバルト製錬プロセスの全体工程の中の、溶媒抽出工程(図1中のAに示す工程)における逆抽出後の有機相のスクラビングに係る技術ではあるが、原料処理比率、塩素浸出、置換浸出(セメンテーション)、溶媒抽出までの浄液、溶媒抽出等、ニッケルおよびコバルト製錬プロセスの主要な要素に関して、全体最適化を達成するための技術であるため、図1を参照して主要要素毎に詳細に説明する。
1. Nickel and Cobalt Smelting Process A schematic flow sheet of the nickel and cobalt smelting process including the present invention is shown in FIG.
The present invention relates to scrubbing of the organic phase after back extraction in the solvent extraction step (step shown as A in FIG. 1) in the overall steps of the nickel and cobalt smelting process, but the raw material processing ratio, See Figure 1, as it is a technology to achieve global optimization with respect to key elements of the nickel and cobalt smelting process, such as chlorine leaching, displacement leaching (cementation), purification to solvent extraction, solvent extraction, etc. The main elements will be described in detail.
(1)原料
 主要な原料は、ニッケルマットと混合硫化物の2種類となる。
 ニッケルマットとは、ニッケル硫化鉱石を溶鉱炉で溶解して得られるニッケル硫化物や、ニッケル酸化鉱石に硫黄を添加して電気炉で溶解して得られるニッケル硫化物等、いわゆる乾式製錬法で得られたニッケル硫化物を指している。
(1) Raw materials The main raw materials are nickel mat and mixed sulfide.
Nickel matte refers to nickel sulfide obtained by melting nickel sulfide ore in a blast furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, etc. Refers to a nickel sulfide.
 このニッケルマットの主成分は、NiとNi(金属ニッケル)であり、そのおおよその化学組成は、Niが65~80重量%、Coが約1重量%、Cuが0.1~4重量%、Feが0.1~5重量%、Sが20~25重量%である。 The main components of this nickel mat are Ni 3 S 2 and Ni 0 (metallic nickel), and the approximate chemical composition is 65 to 80% by weight of Ni, about 1% by weight of Co, and 0.1 to Cu It is 4% by weight, 0.1 to 5% by weight of Fe, and 20 to 25% by weight of S.
 ニッケル酸化鉱石を原料としたニッケルマットと比較して、ニッケル硫化鉱石を原料としたニッケルマットは不純物の含有量が高いという特徴があり、ニッケルおよびコバルト製錬プロセスへの主な銅のインプット源は、ニッケル硫化鉱石を原料としたニッケルマットである。
 したがって、このニッケル硫化鉱石を原料としたニッケルマットの処理量によって、銅のインプット量が大きく変動することになる。
Compared with nickel mats made from nickel oxide ore, nickel mats made from nickel sulfide ore are characterized by having a high content of impurities, and the main copper input sources for nickel and cobalt smelting processes are , A nickel mat using nickel sulfide ore as a raw material.
Therefore, the amount of input of copper fluctuates significantly depending on the amount of nickel matte processed using this nickel sulfide ore.
 一方で、混合硫化物とは、低ニッケル品位のニッケル酸化鉱石を加圧酸浸出し、その加圧酸浸出液から鉄をはじめとする不純物を除去した後、湿式硫化反応によって、例えば硫化水素ガスをニッケルイオン及びコバルトイオンを含んだ浸出液中に吹込むことによって、得られたニッケルおよびコバルトを含む混合硫化物を指している。 On the other hand, mixed sulfide refers to hydrogen sulfide gas, for example, by wet sulfidation reaction after pressure acid leaching of low nickel grade nickel oxide ore and removal of impurities such as iron from the pressure acid leach solution. It refers to a mixed sulfide containing nickel and cobalt obtained by blowing into a leach solution containing nickel ions and cobalt ions.
 この混合硫化物の主成分は、NiSとCoSであり、そのおおよその化学組成は、Niが55~60重量%、Coが3~6重量%、Cuが0.1重量%未満、Feが0.1~1重量%、Sが30~35重量%である。 The main components of this mixed sulfide are NiS and CoS, and the approximate chemical composition thereof is 55 to 60% by weight of Ni, 3 to 6% by weight of Co, less than 0.1% by weight of Cu, and 0 1 to 1% by weight, S is 30 to 35% by weight.
(2)塩素浸出
 混合硫化物および後述するセメンテーション残渣を、塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹込むことによって混合硫化物中のニッケルおよびコバルトと、セメンテーション残渣中のニッケルおよび銅を、塩化物水溶液中に塩素浸出する。
(2) Chlorine leaching After mixed sulfide and cementation residue to be described later are repulped into aqueous chloride solution, nickel and cobalt in mixed sulfide and nickel in cementation residue are obtained by blowing chlorine gas into the slurry. And copper are leached out into aqueous chloride solution.
 この工程では、2価の銅のクロロ錯イオンが混合硫化物やセメンテーション残渣中の金属を溶解するための直接的な浸出剤として作用し、塩素ガスは銅の1価イオンを2価イオンに酸化することにより間接的に浸出反応に関与する。
 そのため、塩素浸出反応には、一定量の銅が必要不可欠であり、塩素浸出液中の銅濃度を10~60g/Lの範囲内の適正値に維持することが重要となっている。
 主要な塩素浸出反応式を下記式(1)~(4)に示した。
In this process, the chloro complex ion of divalent copper acts as a direct leaching agent for dissolving metals in mixed sulfides and cementation residues, and chlorine gas converts copper monovalent ion to divalent ion. It indirectly participates in the leaching reaction by oxidation.
Therefore, a certain amount of copper is essential for the chlorine leaching reaction, and it is important to maintain the copper concentration in the chlorine leaching solution within the range of 10 to 60 g / L.
The main chlorine leaching reaction formulas are shown in the following formulas (1) to (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 塩素浸出反応条件は、反応時の塩化ニッケル水溶液の酸化還元電位が480~550mV(Ag/AgCl電極基準)、温度が105~115℃である。 The chlorine leaching reaction conditions are such that the oxidation reduction potential of the aqueous solution of nickel chloride during the reaction is 480 to 550 mV (based on Ag / AgCl electrode), and the temperature is 105 to 115 ° C.
(3)置換浸出(セメンテーション)
 置換浸出工程は、第1の置換浸出工程(図1の「置換浸出1」)と第2の置換浸出工程(図1の「置換浸出2」)の、2つのステージで構成される。
 塩素浸出液に含まれる2価の銅のクロロ錯イオンの酸化力を使って、第1の置換浸出工程で混合硫化物中のニッケルおよびコバルトを浸出する。
 第1の置換浸出工程で得られた置換浸出液は、2価の銅クロロ錯イオンが1価の銅のクロロ錯イオンに還元されている。
(3) Substitution leaching (cementation)
The displacement leaching step consists of two stages, a first displacement leaching step ("displacement leaching 1" in FIG. 1) and a second displacement leaching step ("displacement leaching 2" in FIG. 1).
Nickel and cobalt in the mixed sulfide are leached in the first displacement leaching step using the oxidizing power of the divalent copper chloro complex ion contained in the chlorine leachate.
In the substituted leachate obtained in the first substitutional leaching step, the divalent copper chloro complex ion is reduced to a monovalent copper chloro complex ion.
 次に、第2の置換浸出工程では、第1の置換浸出工程で得られた置換浸出液とニッケルマットを接触させることにより、その置換浸出液中の銅イオンとニッケルマット中のニッケルのセメンテーション反応が行われる。
 このセメンテーション反応は、固体のニッケルが溶出してニッケルイオンとなり、その溶出したニッケルと電気化学的に当量の液中の銅イオンが固体となるため、置換浸出工程は塩素浸出液中に含まれる銅を固体として除去する脱銅工程であるとも言える。
Next, in the second substitution leaching step, the substitution leaching solution obtained in the first substitution leaching step is brought into contact with the nickel mat to cause a cementation reaction between copper ions in the substitution leaching solution and nickel in the nickel mat. To be done.
In this cementation reaction, solid nickel is eluted to become nickel ions, and copper ions in a solution that is electrochemically equivalent to the eluted nickel become solid, and therefore the displacement leaching step is carried out by the copper contained in the chlorine leachate. It can be said that this is a decoppering step to remove
 置換浸出液中の銅イオンは、CuSまたはCuメタルの形態となって固体となるため、第2の置換浸出工程で得られる置換浸出終液中の銅濃度は0.02g/L以下となる。 The copper ion in the displacement leaching solution becomes a solid in the form of Cu 2 S or Cu metal, so the copper concentration in the displacement leaching final solution obtained in the second displacement leaching step is 0.02 g / L or less .
 この置換浸出終液の銅濃度を低下させるためには、混合硫化物中に含まれるNiSよりも還元力の強いNi(金属ニッケル)やNiを含有したニッケルマットが必要となる。 In order to reduce the copper concentration of this substitution leaching final solution, a nickel mat containing Ni 0 (metallic nickel) having stronger reducing power than NiS contained in the mixed sulfide or Ni 3 S 2 is required.
 混合硫化物とニッケルマットの不溶解残渣とセメンテーション反応によって得られた銅を含んだ固体を含む、セメンテーション残渣は、第2の置換浸出工程で得られた置換浸出終液と固液分離された後、塩素浸出工程に送られる。
 主要な置換浸出反応式を下記式(5)~(7)に示した。
Cementation residue, including mixed sulfide and insoluble residue of nickel mat and solid containing copper obtained by cementation reaction, is solid-liquid separated from the displacement leaching final solution obtained in the second displacement leaching step Then, it is sent to the chlorine leaching process.
The main substitutional leaching reaction formulas are shown in the following formulas (5) to (7).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 置換浸出反応条件は、反応時の塩化ニッケル水溶液の酸化還元電位が50~300mV(Ag/AgCl電極基準)、温度が70~100℃である。 The conditions for the displacement leaching reaction are 50 to 300 mV (based on Ag / AgCl electrode) of the redox potential of the aqueous solution of nickel chloride at the time of reaction, and the temperature is 70 to 100 ° C.
 この第2の置換浸出工程において、液中から除去すべき銅量は塩素浸出液量と塩素浸出液中銅濃度の積で決まってくる。
 塩素浸出液量は塩素浸出工程と第1の置換浸出工程で処理する混合硫化物量で決まってくる。
 塩素浸出液中銅濃度は、最適な塩素浸出操業を継続するために10~60g/Lの範囲内の適正値に維持されるため、一定の値となる。
The amount of copper to be removed from the solution in the second displacement leaching step is determined by the product of the amount of chlorine leachate and the concentration of copper in the chlorine leachate.
The amount of chlorine leachate is determined by the amount of mixed sulfide to be treated in the chlorine leaching step and the first displacement leaching step.
The concentration of copper in the chlorine leachate is a constant value because it is maintained at an appropriate value within the range of 10 to 60 g / L to continue the optimum chlorine leaching operation.
 したがって、混合硫化物に対するニッケルマットの処理比率が下がると、除去すべき銅量に対してニッケルマットが不足する事態が懸念され、その場合、第2の置換浸出工程で得られた置換浸出終液中の銅濃度が上昇することになる。 Therefore, if the treatment ratio of the nickel mat to the mixed sulfide decreases, there is a concern that the nickel mat may be insufficient for the amount of copper to be removed, in which case the displacement leaching final solution obtained in the second displacement leaching step The copper concentration inside will rise.
(4)浄液
 置換浸出終液(セメンテーション終液)は、浄液工程に送られる。浄液工程は、脱鉄工程、溶媒抽出工程、脱鉛工程、脱亜鉛工程で構成される。
(4) Pure solution The substitution leaching final solution (sement cement final solution) is sent to the pure solution process. The liquid purification process is composed of a deironing process, a solvent extraction process, a lead removal process, and a dezincification process.
 脱鉄工程では、置換浸出終液に、酸化剤として塩素ガスを、中和剤として炭酸ニッケルスラリーを添加して、水酸化第二鉄を主成分とする沈殿物を生成させることにより、置換浸出終液中の鉄濃度を1~2g/Lから15mg/L以下まで低下させる処理が行われる。
 この脱鉄工程における水溶液のpHは、2.0~2.5程度であるので、この工程で銅の水酸化物が生成されることは無い。
 さらに、この脱鉄工程では銅の除去がされないため、置換浸出終液中の銅濃度が上昇すると、次工程の浄液工程(溶媒抽出)に供される抽出始液の銅濃度が上昇することになる。
In the iron removal step, substitution leaching is carried out by adding chlorine gas as an oxidizing agent and a nickel carbonate slurry as a neutralizing agent to the substitution leaching final solution to form a precipitate containing ferric hydroxide as a main component. A treatment is performed to reduce the iron concentration in the final solution from 1 to 2 g / L to 15 mg / L or less.
Since the pH of the aqueous solution in this deironization step is about 2.0 to 2.5, copper hydroxide is not generated in this step.
Furthermore, since copper is not removed in this deironing step, when the copper concentration in the substitution leaching final solution increases, the copper concentration in the extraction starting solution subjected to the next liquid purification step (solvent extraction) increases. become.
 詳細は後述するが、溶媒抽出工程では、ニッケル濃度が170~210g/L、コバルト濃度が2~10g/L、銅濃度が0.02g/L以下、亜鉛濃度が0.01~0.03g/L、鉄濃度が15mg/L以下の脱鉄終液に、アミン系抽出剤であるTNOAを混合、接触させることによって、コバルト、銅、亜鉛、鉄を水相から有機相に移行させる処理を行う。 Although details will be described later, in the solvent extraction step, the nickel concentration is 170 to 210 g / L, the cobalt concentration is 2 to 10 g / L, the copper concentration is 0.02 g / L or less, and the zinc concentration is 0.01 to 0.03 g / L. Treatment of transferring cobalt, copper, zinc, iron from aqueous phase to organic phase by mixing and contacting TNOA, which is an amine extractant, with demineralized iron final solution having an iron concentration of 15 mg / L or less .
 脱鉛工程では、脱鉄工程と同様に、酸化剤として塩素ガスを、中和剤として炭酸ニッケルスラリーを添加して、溶媒抽出後の塩化ニッケル溶液中の鉛を酸化鉛として除去する。
 脱鉛工程での抽出残液のpHは4~5なので、ニッケルの一部も3価の水酸化物として沈殿物を形成する。
In the lead removal step, chlorine gas as an oxidant and a nickel carbonate slurry as a neutralizer are added in the same manner as the iron removal step to remove lead in the nickel chloride solution after solvent extraction as lead oxide.
Since the pH of the extraction residue in the lead removal step is 4 to 5, part of nickel also forms a precipitate as a trivalent hydroxide.
 脱亜鉛工程では、脱鉛後の脱鉛終液中に微量に残存した0.1mg/L程度の亜鉛のクロロ錯イオンを、弱塩基性陰イオン交換樹脂に吸着させて除去する。 In the dezincification step, about 0.1 mg / L of a chloro complex ion of zinc remaining in a trace amount in the deleaded final solution after deleading is adsorbed and removed by a weakly basic anion exchange resin.
2.溶媒抽出工程
 次に、本発明に係る脱銅方法を構成すると共に、上記(4)の浄液工程の一部を構成する溶媒抽出工程について、詳細に説明する。
2. Solvent Extraction Step Next, the solvent extraction step constituting the copper removal method according to the present invention and constituting a part of the liquid purification step of the above (4) will be described in detail.
(1)溶媒抽出工程の構成
 本発明に係る溶媒抽出工程の概略フローシートを、図2に示した。このフローシートは、本発明に係る脱銅方法のフローも表している。
 溶媒抽出は向流多段方式で採用し、抽出段、洗浄段、逆抽出段、銅回収段から構成される。
 ミキサーセトラー方式の抽出装置を使用し、本発明の説明に用いた実施例においては、抽出段は3段、洗浄段も3段、逆抽出段も3段、銅回収段は1段から構成されている。
 なお、逆抽出段における逆抽出後の有機相中の亜鉛や鉄を除去するために、脱亜鉛段を銅回収段に対して並列または直列に設けた方が好ましい。
(1) Configuration of Solvent Extraction Step A schematic flow sheet of the solvent extraction step according to the present invention is shown in FIG. This flow sheet also represents the flow of the copper removal method according to the present invention.
The solvent extraction is adopted in a countercurrent multistage system, and comprises an extraction stage, a washing stage, a back extraction stage, and a copper recovery stage.
Using the mixer-settler type extractor, in the embodiment used to explain the present invention, the extraction stage comprises 3 stages, the washing stage also 3 stages, the back extraction stage 3 stages, and the copper recovery stage 1 stage ing.
In order to remove zinc and iron in the organic phase after back extraction in the back extraction stage, it is preferable to provide a dezincification stage in parallel or in series with the copper recovery stage.
 すなわち、抽出始液の銅濃度に応じて逆抽出後の有機相の所定量を抜き取って、水またはpH1以上の希塩酸を混合、接触させ、その有機相中の銅を水相に逆抽出する銅回収段と、逆抽出後の有機相への亜鉛または鉄の濃縮度合いに応じて逆抽出後の有機相の所定量を抜き取って、アルカリ中和し、その有機相中の亜鉛および鉄を除去する脱亜鉛段を、それぞれ独立して運転させれば、効率的に有機相中の銅、亜鉛、鉄を除去することができる。 That is, according to the copper concentration of the extraction starting solution, a predetermined amount of the back-extracted organic phase is extracted, water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact, and copper in the organic phase is back-extracted into the aqueous phase. Depending on the recovery stage and the degree of concentration of zinc or iron in the organic phase after back extraction, a predetermined amount of the organic phase after back extraction is extracted and alkali neutralized to remove zinc and iron in the organic phase If the dezincification stages are operated independently of one another, copper, zinc and iron in the organic phase can be efficiently removed.
 亜鉛と鉄は混合硫化物からインプットされるため、抽出始液の亜鉛濃度については混合硫化物中の亜鉛含有率や混合硫化物の処理量に左右される。
 抽出始液の鉄濃度については脱鉄工程で除去されるので、常に一定である。
 それに対して、抽出始液の銅濃度については、混合硫化物に対するニッケルマットの処理比率によって決まる。
Since zinc and iron are input from the mixed sulfide, the zinc concentration of the extraction starting solution depends on the zinc content in the mixed sulfide and the amount of mixed sulfide processed.
The iron concentration of the extraction start solution is always constant because it is removed in the deferrous step.
On the other hand, the copper concentration of the extraction start solution is determined by the treatment ratio of the nickel mat to the mixed sulfide.
 すなわち、抽出始液の亜鉛濃度と銅濃度は、それぞれ独立して変動し、特に銅濃度の変動巾が大きいため、有機相中の亜鉛と銅の除去は、それぞれ独立して運転させた方が効率的である。 That is, since the zinc concentration and the copper concentration of the extraction start solution independently fluctuate, and the fluctuation range of the copper concentration is particularly large, it is better to operate the removal of zinc and copper in the organic phase independently of each other. It is efficient.
 また、直列配置、すなわち逆抽出後の有機相aに、水相として水またはpH1以上の希塩酸を混合・接触させ、その有機相a中の銅を水相に逆抽出した後、銅回収後の有機相bをアルカリ中和し、有機相中の亜鉛や鉄を除去する方法としても、銅量見合いの脱亜鉛段でのアルカリ使用量を減少させることができるためコストダウンとなる。 In addition, water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase a after serial extraction, that is, back extraction, and copper in the organic phase a is back extracted to the aqueous phase, and then copper is recovered. Even if the organic phase b is alkali-neutralized to remove zinc and iron in the organic phase, the amount of alkali used in the dezincification stage can be reduced because of the balance of copper content, resulting in cost reduction.
(2)抽出剤と反応
 抽出剤は3級アミンを用い、好ましくはトリ-ノルマル-オクチルアミン(TNOA)またはトリ-イソ-オクチルアミン(TIOA)を使用する。
 抽出剤の希釈剤としては、芳香族炭化水素を用いる。
 有機相の粘度を調整するため、有機相(抽出剤と希釈剤)中の抽出剤濃度は、20~40体積%とする。
(2) Extractant and Reaction The extractant uses a tertiary amine, preferably tri-normal-octylamine (TNOA) or tri-iso-octylamine (TIOA).
An aromatic hydrocarbon is used as a diluent for the extractant.
In order to adjust the viscosity of the organic phase, the extractant concentration in the organic phase (extractant and diluent) is set to 20 to 40% by volume.
 3級アミンは、下記式(8)に従って、塩酸を付加されて活性化することにより、式(9)および式(9’)に示すような金属クロロ錯イオンの抽出能力を保有し、しかも優れたニッケルとコバルトの分離特性を有する。 Tertiary amines have the ability to extract metal chloro complex ions as shown in formulas (9) and (9 ') by addition of hydrochloric acid and activation according to formula (8) below, and are excellent. Have separation characteristics of nickel and cobalt.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(9)中のMは、Co、Cu、Zn等のクロロ錯イオンを形成する金属種を表すが、金属イオンの価数によってクロロ錯イオンの形態が異なるため、例えばFe(3価)の場合は、下記式(9’)に従う。
 なお、式(8)、式(9)、式(9’)中の「:」は、窒素原子の非共有電子対を表す。
M in the above formula (9) represents a metal species that forms a chloro complex ion such as Co, Cu, Zn, etc., but since the form of the chloro complex ion differs depending on the valence of the metal ion, for example, Fe (trivalent) In the case of, following formula (9 ') follows.
In addition, ":" in Formula (8), Formula (9), and Formula (9 ') represents the noncovalent electron pair of a nitrogen atom.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 抽出段では、式(9)または式(9’)で示された反応により、Co、Cu、Zn、Fe等のクロロ錯イオンを形成する金属種が有機相中に抽出され、金属元素のクロロ錯イオンを担持したアミンが生成される。なお、ニッケルはクロロ錯イオンを形成しないので、抽出残液に残留して分離される。
 したがって、塩化ニッケル水溶液中に、コバルトよりもクロロ錯イオンを形成し易い、すなわちクロロ錯イオンの安定度が高い金属、例えば銅、亜鉛、鉄のクロロ錯イオンが含まれている場合には、これらの金属も抽出される。
In the extraction stage, metal species forming a chloro complex ion such as Co, Cu, Zn, Fe, etc. are extracted into the organic phase by the reaction represented by the formula (9) or the formula (9 ′), and An amine carrying complex ions is formed. In addition, since nickel does not form a chloro complex ion, it remains in the extraction residual liquid and is isolate | separated.
Therefore, when an aqueous solution of nickel chloride is more likely to form a chloro complex ion than cobalt, that is, contains a metal having a high stability of the chloro complex ion, such as a copper, zinc or iron chloro complex ion, Metals are also extracted.
 一方、逆抽出段では、洗浄後の有機相を、すなわちコバルトのクロロ錯イオンを担持したアミンを、弱酸性水溶液と接触させることにより、式(9)の逆反応である下記式(10)に従って、コバルトを水相中に脱離することができる。 On the other hand, in the reverse extraction stage, the organic phase after washing, that is, the amine carrying a chloro complex ion of cobalt is brought into contact with a weakly acidic aqueous solution, according to the following formula (10) which is a reverse reaction of formula (9). , Cobalt can be released into the aqueous phase.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
3.溶媒抽出による脱銅
 溶媒抽出の主な機能は、第一に抽出始液(塩化ニッケルと塩化コバルトの混合溶液)からコバルトを抽出・分離することにあるが、さらなる機能として逆抽出後の有機相から銅を選択的に脱離することができれば、抽出始液中の銅を除去する工程としての役割も担わせることができる。
3. Dechlorination by solvent extraction The main function of solvent extraction is to extract and separate cobalt from the initial solution (mixed solution of nickel chloride and cobalt chloride) firstly, but as a further function, the organic phase after back extraction If copper can be selectively desorbed from it, it can also play a role as a step of removing copper in the initial solution.
 そこで、ニッケルおよびコバルト製錬プロセスにおける塩素浸出液からの脱銅は、基本的には置換浸出(セメンテーション)工程で実施されるが、ニッケルマットの不足等によって置換浸出終液中の銅濃度が大きく変動したり、上昇した場合、溶媒抽出による脱銅が効果を発揮する。 Therefore, copper removal from chlorine leachate in the nickel and cobalt smelting process is basically carried out in the substitution leaching (cementation) step, but the copper concentration in the substitution leaching final solution is large due to lack of nickel mat etc. If it fluctuates or rises, decoppering by solvent extraction is effective.
 この、溶媒抽出を脱銅工程として利用することが、本発明の第一の特徴である。
 抽出段では抽出始液中の銅濃度が0.2g/Lという高濃度であっても、ほぼ全量の銅イオンを有機相中に抽出することができる。
 これは、抽出始液中の塩化物イオン濃度が200~250g/Lと高濃度であり、銅が安定したクロロ錯イオンを形成しているためである。
It is a first feature of the present invention to utilize this solvent extraction as a copper removal step.
In the extraction stage, even if the copper concentration in the extraction start solution is as high as 0.2 g / L, almost all copper ions can be extracted into the organic phase.
This is because the concentration of chloride ion in the initial solution is as high as 200 to 250 g / L and copper forms a stable chloro complex ion.
 一方、コバルトを塩化コバルト水溶液として回収する逆抽出段では、抽出段に比べて塩化物イオン濃度が低く、70~100g/Lである。
 そのために、その70~100g/Lの塩化物イオン濃度では、有機相中の銅クロロ錯イオンが不安定となり、銅の一部は水相中に逆抽出される。
 その水相中の銅濃度は、有機相中の銅濃度と比例関係にあることから、有機相中の銅濃度が上昇した場合、塩化コバルト水溶液中の銅濃度が上昇することになる。
 この塩化コバルト水溶液中の銅濃度が上昇すると、その後の塩化コバルト水溶液の浄液(脱銅)負荷が上昇するが、さらには製品である電気コバルトの銅含有率を増加させる可能性もある。
On the other hand, in the back extraction stage where cobalt is recovered as a cobalt chloride aqueous solution, the chloride ion concentration is lower than that of the extraction stage, and is 70 to 100 g / L.
Therefore, at a chloride ion concentration of 70 to 100 g / L, copper chloro complex ions in the organic phase become unstable, and part of the copper is back-extracted into the aqueous phase.
Since the copper concentration in the aqueous phase is in proportion to the copper concentration in the organic phase, when the copper concentration in the organic phase is increased, the copper concentration in the aqueous solution of cobalt chloride is increased.
When the concentration of copper in the aqueous solution of cobalt chloride increases, the load (de-copper removal) of the subsequent purification of aqueous solution of cobalt chloride increases, but there is also the possibility of increasing the copper content of the product electrocobalt.
 図3は、逆抽出段における有機相中銅濃度と水相中銅濃度の関係を示したものである。
 図3のデータは、抽出段3段、洗浄段3段、逆抽出段3段の向流多段方式の溶媒抽出工程において、抽出剤としてトリ-ノルマル-オクチルアミン(TNOA)を20体積%または30体積%、希釈剤として芳香族炭化水素を80体積%または70体積%含有する有機溶媒を用いた時の操業データである。
FIG. 3 shows the relationship between the copper concentration in the organic phase and the copper concentration in the aqueous phase in the back extraction stage.
The data in FIG. 3 shows that 20% by volume or 30% by volume of tri-norm-octylamine (TNOA) as an extractant in a countercurrent multistage solvent extraction process of three extraction stages, three washing stages and three back extraction stages. It is operation data at the time of using the organic solvent which contains 80% by volume or 70% by volume of an aromatic hydrocarbon as a diluent by volume.
 なお、抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が170~210g/L、コバルト濃度が2~10g/L、銅濃度が0.02~0.2g/Lであり、逆抽出残液(塩化コバルト水溶液)のコバルト濃度が50~70g/Lである。 The composition of the extraction start solution (mixed aqueous solution of nickel chloride and cobalt chloride) is 170 to 210 g / L in nickel concentration, 2 to 10 g / L in cobalt concentration, and 0.02 to 0.2 g / L in copper concentration. The cobalt concentration of the back extraction residue (cobalt chloride aqueous solution) is 50 to 70 g / L.
 図3より、抽出剤の濃度によって回帰直線の傾き、すなわち分配比は変わるが、有機相中の銅を、銅濃度が0.4g/L以下となるまで低下させることで、塩化コバルト水溶液中の銅濃度を0.3g/L以下とすることができることが分かる。
 この銅濃度の低い塩化コバルト水溶液を製造することが、本発明の第二の特徴である。
According to FIG. 3, the slope of the regression line, that is, the distribution ratio changes depending on the concentration of the extractant, but the copper in the organic phase is reduced to an aqueous solution of cobalt chloride by lowering the copper concentration to 0.4 g / L or less. It is understood that the copper concentration can be 0.3 g / L or less.
It is a second feature of the present invention to produce this low copper concentration cobalt chloride aqueous solution.
 本発明の銅回収段は、有機相中に濃縮した銅、亜鉛、鉄から銅を選択的に水相に分離除去する工程である。
 有機相中の銅、亜鉛、鉄の安定性は、すなわち金属のクロロ錯イオンの安定性であり、水相中の塩化物イオン濃度と正の相関がある。
The copper recovery stage of the present invention is a process of selectively separating and removing copper from copper, zinc and iron concentrated in the organic phase into the aqueous phase.
The stability of copper, zinc and iron in the organic phase, ie the stability of the chloro complex ion of the metal, is positively correlated with the chloride ion concentration in the aqueous phase.
 図4は、銅、亜鉛、鉄に関する水相中の塩化物イオン濃度と有機相中への分配比の関係を示したものである。
 ここで、銅、亜鉛、鉄の中では、有機相中の安定性は銅が最も低く、水相中に分配し易い。
 したがって、逆抽出後の有機相に、塩化物イオン濃度の低い水相を混合・接触させれば、有機相中の銅を選択的に水相に脱離することができる。
FIG. 4 shows the relationship between the chloride ion concentration in the aqueous phase and the distribution ratio into the organic phase for copper, zinc and iron.
Here, among copper, zinc and iron, copper has the lowest stability in the organic phase, and is easily distributed in the aqueous phase.
Therefore, copper in the organic phase can be selectively eliminated into the aqueous phase by mixing and contacting the aqueous phase having a low chloride ion concentration with the organic phase after the back extraction.
 本発明者らは、塩化物イオン濃度と銅の逆抽出挙動について研究を重ねた結果、逆抽出始液としては水またはpH1以上の希塩酸が好適であることを、見出すことができた。
 このうち、水を使用した場合が有機相中から銅を脱離し易いが、pH1の塩酸を使用すれば有機相からの塩酸の脱離を防止することができ、その後の塩酸による抽出剤の活性化処理が不要となるため好都合である。
As a result of repeated studies on the chloride ion concentration and the back extraction behavior of copper, the present inventors have found that water or dilute hydrochloric acid having a pH of 1 or more is suitable as the back extraction starting solution.
Among them, when water is used, copper is easily desorbed from the organic phase, but if hydrochloric acid of pH 1 is used, it is possible to prevent the desorption of hydrochloric acid from the organic phase, and the activity of the extractant by hydrochloric acid thereafter It is convenient because the conversion process is unnecessary.
 本発明によれば、図2に示したような溶媒抽出工程を構成して、有機相中の銅濃度を0.4g/L以下に調整することで、銅濃度0.2g/Lまでの抽出始液の処理が可能となり、逆抽出後の塩化コバルト水溶液中の銅濃度を0.3g/L以下とすることができる。
 言い換えれば、従来技術(アルカリ中和による脱亜鉛段)の10倍の銅負荷に対応することが可能となる。
According to the present invention, the solvent extraction step as shown in FIG. 2 is configured to adjust the copper concentration in the organic phase to 0.4 g / L or less, thereby extracting the copper concentration up to 0.2 g / L. The treatment of the starting solution becomes possible, and the copper concentration in the aqueous solution of cobalt chloride after the back extraction can be 0.3 g / L or less.
In other words, it becomes possible to cope with 10 times the copper load of the prior art (dezincification stage by alkali neutralization).
 本発明では、アルカリを使用せずに銅回収を行うため、例えばアルカリ中和し、該有機中の亜鉛および鉄を除去する従来法の脱亜鉛段と比較して、コストダウンを図ることが可能である。 In the present invention, since copper recovery is performed without using an alkali, for example, cost reduction can be achieved as compared with the conventional zinc removal stage in which alkali neutralization is performed to remove zinc and iron in the organic matter. It is.
 また、有機相が強アルカリと接することがないため、銅回収液中には有機が分解して生成したCOD成分が低濃度でしか存在せず、後工程へのCOD負荷を軽減することができる。
 すなわち、従来のアルカリを使用した強い脱離に対してpH1から中性領域の水を使用した弱い脱離を行う、もしくは併用することで、従来技術(アルカリ中和による脱亜鉛段)の様々な問題を解決することができる。
 なお、銅回収始液にpH1程度の希塩酸を使用することで有機相からの塩酸の脱離を抑えることもできる。
In addition, since the organic phase does not come in contact with a strong alkali, the copper recovery solution contains only a low concentration of COD components generated by decomposition of the organic matter, thereby reducing the COD load on the subsequent steps. .
That is, various conventional techniques (dezincification stages by alkali neutralization) can be performed by performing weak desorption using water of pH 1 to neutral region against strong desorption using conventional alkali, or in combination. It can solve the problem.
In addition, desorption of hydrochloric acid from the organic phase can also be suppressed by using dilute hydrochloric acid of about pH 1 for the copper recovery solution.
 次に、本発明をさらに実施例を用いて説明する。 The invention will now be further described by way of examples.
 抽出段3段、洗浄段3段、逆抽出段3段で構成された向流多段方式のミキサーセトラーを用いた溶媒抽出装置で、抽出剤として3級アミンであるトリ-ノルマル-オクチルアミン(TNOA)を20体積%、希釈剤として芳香族炭化水素を80体積%含有する有機溶媒を用い、溶媒抽出操業を行った。 This is a solvent extraction system using a counterflow multistage mixer / settler consisting of 3 extraction stages, 3 washing stages and 3 back extraction stages, and it is a tertiary amine tri-nor-octylamine (TNOA) as an extractant. The solvent extraction operation was carried out using an organic solvent containing 20% by volume of the organic solvent and 80% by volume of an aromatic hydrocarbon as a diluent.
 抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が170~210g/L、コバルト濃度が2~10g/L、銅濃度が0.01~0.02g/L、亜鉛濃度が0.02~0.03g/L、鉄濃度が10~14mg/Lであり、逆抽出残液(塩化コバルト水溶液)のコバルト濃度が50~70g/L、銅濃度が0.1~0.2g/Lである。
 各流量は、有機流量が1000~1300L/分、抽出始液流量が1300~1600L/分、逆抽出始液流量が140~170L/分である。
The composition of the first extract (mixed aqueous solution of nickel chloride and cobalt chloride) is 170 to 210 g / L nickel concentration, 2 to 10 g / L cobalt concentration, 0.01 to 0.02 g / L copper concentration, zinc concentration Is 0.02 to 0.03 g / L and iron concentration is 10 to 14 mg / L, and the back extraction residual liquid (cobalt chloride aqueous solution) has a cobalt concentration of 50 to 70 g / L and a copper concentration of 0.1 to 0. It is 2 g / L.
Each flow rate is an organic flow rate of 1000 to 1300 L / min, an extraction start flow rate of 1300 to 1600 L / min, and a back extraction start flow rate of 140 to 170 L / min.
 その後、逆抽出後の有機相の一部を抽出段等と同様にミキサーセトラーを用いた銅回収段(1段)に送り、中性の水と混合した。
 有機相流量は48~54L/分、水相流量は48~54L/分、O/A比は0.9~1.1とした。
Thereafter, a part of the organic phase after the back extraction was sent to a copper recovery stage (one stage) using a mixer-settler in the same manner as in the extraction stage and the like, and mixed with neutral water.
The organic phase flow rate was 48 to 54 L / min, the aqueous phase flow rate was 48 to 54 L / min, and the O / A ratio was 0.9 to 1.1.
 その結果を表1に示すが、表1より有機相中の銅は水相中に選択的に逆抽出されることが分かる。
 なお、銅回収後の水相中のCODは20mg/Lであった。
 表1、2における「逆抽出有機」は図2中の逆抽出後の有機相「a」を表し、「銅回収有機」は図2中の銅回収後の有機相「b」を示すものである。
The results are shown in Table 1. From Table 1, it can be seen that copper in the organic phase is selectively back extracted into the aqueous phase.
The COD in the aqueous phase after copper recovery was 20 mg / L.
"Back-extraction organic" in Tables 1 and 2 represents the organic phase "a" after back-extraction in FIG. 2, and "copper recovery organic" represents the organic phase "b" after copper recovery in FIG. is there.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 TNOAを30体積%、芳香族炭化水素を70体積%含有する有機溶媒を用いた以外は実施例1と同様の条件で、溶媒抽出操業を行った。
 その後、逆抽出後の有機相の一部を銅回収段に送り、水相としてpH1の希塩酸を用いた以外は実施例1と同様の方法で、O/A比0.9~1.1にて有機相と水相を混合した。
The solvent extraction operation was performed under the same conditions as in Example 1 except that an organic solvent containing 30% by volume of TNOA and 70% by volume of aromatic hydrocarbon was used.
Thereafter, a part of the back-extracted organic phase is sent to a copper recovery stage, and an O / A ratio of 0.9 to 1.1 is obtained in the same manner as in Example 1 except that dilute hydrochloric acid of pH 1 is used as the aqueous phase. The organic and aqueous phases were mixed.
 その結果を表2に示したが、中性の水と同様にpH1の塩酸でも、有機相中の銅は水相中に選択的に逆抽出されることが分かった。 The results are shown in Table 2. It was found that copper in the organic phase was selectively back-extracted into the aqueous phase even with pH 1 hydrochloric acid as in neutral water.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(比較例1)
 実施例1と同様の条件で溶媒抽出を行い、その後、逆抽出後の有機相の一部を3mのFRP槽3基から成る脱亜鉛段(1段)に送り、第1槽目の中和槽で希釈苛性ソーダと混合した。なお、使用した希釈苛性ソーダの苛性ソーダ濃度は118g/Lである。
 その後、アルカリ中和後の有機相と水相と沈殿物を含む混合物から、沈殿物を含まない有機相をオーバーフローで抜き出し、水相と沈殿物と有機相の残部を含んだ混合物を第2槽目の酸溶解槽に送り、35%塩酸にて酸溶解した。
(Comparative example 1)
The solvent extraction was carried out under the same conditions as in Example 1, and then part of the back-extracted organic phase was sent to a 3 m 3 FRP tank three-stage dezincification stage (one stage), and in the first tank It was mixed with diluted caustic soda in a Japanese tank. The caustic soda concentration of the diluted caustic soda used is 118 g / L.
Thereafter, the organic phase not containing precipitate is extracted by overflow from the mixture containing the organic phase, the aqueous phase and the precipitate after alkali neutralization, and the mixture containing the remaining portion of the aqueous phase, the precipitate and the organic phase is used as a second tank The solution was sent to an acid dissolving tank and dissolved in 35% hydrochloric acid.
 なお、有機の抜出し流量は48~54L/分、希釈苛性ソーダ流量は48~54L/分とした。使用した35%塩酸の使用量は15L/分とした。 The organic extraction flow rate was 48 to 54 L / min, and the diluted caustic soda flow rate was 48 to 54 L / min. The amount of 35% hydrochloric acid used was 15 L / min.
 得られたアルカリ中和による脱亜鉛後の水相中のCOD濃度は、230mg/Lであった。 The resulting COD concentration in the aqueous phase after zinc removal by alkaline neutralization was 230 mg / L.
 このように逆抽出有機を銅回収段で処理することで有機中の銅を選択的に除去し、目標濃度まで低下させることが可能となり、有機溶媒の抜取り量、すなわち銅回収段での処理量を調整することにより、逆抽出後有機相中の銅濃度は0.4g/L以下に調整されるものである。 Thus, by treating the back-extracted organic in the copper recovery stage, copper in the organic can be selectively removed and the concentration can be reduced to the target concentration, and the amount of the organic solvent withdrawn, that is, the throughput in the copper recovery stage. The copper concentration in the organic phase after back extraction is adjusted to 0.4 g / L or less.
 さらに、比較例(従来法)と比較して、中和用の苛性ソーダや酸溶解用の塩酸を必要とせず、処理後の水相のCOD濃度も10分の1程度に低減することを可能としている。
 なお、有機相中の銅濃度がさらに上昇した場合には、それに対応して水相中の銅濃度が上昇するため有機溶媒中からの除去量が増えることになる。
Furthermore, as compared with the comparative example (conventional method), it is possible to reduce the COD concentration of the aqueous phase after treatment to about 1/10 without requiring caustic soda for neutralization or hydrochloric acid for acid dissolution. There is.
In addition, when the copper concentration in the organic phase further increases, the copper concentration in the aqueous phase correspondingly increases, so the amount of removal from the organic solvent is increased.
 a  逆抽出後の有機相
 b  銅回収後の有機相
a Organic phase after back extraction b Organic phase after copper recovery

Claims (4)

  1.  抽出剤として3級アミン、希釈剤として芳香族炭化水素を含有した有機溶媒を有機相に用いた溶媒抽出法を用いて、コバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液からコバルトを分離回収すると共に銅、亜鉛、鉄を除去する方法において、下記(1)~(3)の工程を順に含むことを特徴とする塩化ニッケル水溶液の脱銅方法。
                 (記)
    (1)前記コバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液から、前記有機相にコバルト、銅、亜鉛、鉄を抽出してコバルト、銅、亜鉛、鉄を含む有機相を形成し、コバルト、銅、亜鉛、鉄が除去された塩化ニッケル水溶液を得る抽出工程。
    (2)前記(1)の工程で得られた前記コバルト、銅、亜鉛、鉄を含む有機相に弱酸性水溶液を接触させることによって、前記有機相中のコバルトを前記有機相から脱離させ、塩化コバルト水溶液の水相と、逆抽出後の銅、亜鉛、鉄を含む有機相を得る逆抽出工程。
    (3)前記逆抽出後の有機相に、水又はpH1以上の希塩酸を混合、接触させ、前記有機相中の銅を水相に逆抽出して銅を回収し、銅を除去した後の亜鉛、鉄を含む有機相は前記(1)の工程の有機溶媒として用いる銅回収工程。
    The cobalt is separated and recovered from an aqueous solution of nickel chloride containing cobalt, copper, zinc, and iron using a solvent extraction method using an organic solvent containing an tertiary hydrocarbon as an extractant and an aromatic hydrocarbon as a diluent for the organic phase. A method of removing copper chloride aqueous solution comprising the steps of (1) to (3) below in order in the method of removing copper, zinc and iron.
    (Record)
    (1) Extract cobalt, copper, zinc, iron into the organic phase from the aqueous solution of nickel chloride containing cobalt, copper, zinc, iron to form an organic phase containing cobalt, copper, zinc, iron, cobalt Extraction step to obtain an aqueous solution of nickel chloride from which copper, zinc and iron have been removed.
    (2) Cobalt in the organic phase is desorbed from the organic phase by bringing the weakly acidic aqueous solution into contact with the organic phase containing the cobalt, copper, zinc and iron obtained in the step (1). A back extraction step to obtain an aqueous phase of a cobalt chloride aqueous solution and an organic phase containing copper, zinc and iron after back extraction.
    (3) Water or dilute hydrochloric acid having a pH of 1 or more is mixed and brought into contact with the organic phase after the back extraction, and the copper in the organic phase is back extracted to the aqueous phase to recover the copper, and zinc is removed The copper recovery step, wherein the iron-containing organic phase is used as the organic solvent in the step (1).
  2.  前記(1)の抽出工程におけるコバルト、銅、亜鉛、鉄を含有する塩化ニッケル水溶液のニッケル濃度が170~210g/L、コバルト濃度が2~10g/L、及び銅濃度が0.01~0.2g/Lで、
      前記(1)の工程で得られた前記コバルト、銅、亜鉛、鉄を含む有機相中の銅を、銅濃度が0.4g/L以下となるまで除去することによって、前記(2)の逆抽出工程で得られる塩化コバルト水溶液中の銅濃度を0.3g/L以下とすることを特徴とする請求項1に記載の塩化ニッケル水溶液の脱銅方法。
    The nickel concentration of the aqueous solution of nickel chloride containing cobalt, copper, zinc, and iron in the extraction step (1) is 170 to 210 g / L, the cobalt concentration is 2 to 10 g / L, and the copper concentration is 0.01 to 0.s. 2g / L,
    By removing copper in the organic phase containing cobalt, copper, zinc and iron obtained in the step (1) until the copper concentration becomes 0.4 g / L or less, the reverse of the above (2) The copper concentration in the aqueous solution of cobalt chloride obtained in the extraction step is 0.3 g / L or less, The copper chloride aqueous solution decoppering method according to claim 1, characterized in that
  3.  前記(3)の銅回収工程における有機相対水相の体積比率が、1.5以下であることを特徴とする請求項1に記載の塩化ニッケル水溶液の脱銅方法。 The method for copper removal from an aqueous solution of nickel chloride according to claim 1, wherein the volume ratio of the organic relative aqueous phase in the copper recovery step (3) is 1.5 or less.
  4.  前記3級アミンが、トリ-ノルマル-オクチルアミン(TNOA)又はトリ-イソ-オクチルアミン(TIOA)であることを特徴とする請求項1に記載の塩化ニッケル水溶液の脱銅方法。 The method for copper removal from aqueous solution of nickel chloride according to claim 1, wherein the tertiary amine is tri-normal-octylamine (TNOA) or tri-iso-octylamine (TIOA).
PCT/JP2015/053689 2014-03-26 2015-02-10 Copper removal method for aqueous nickel chloride solution WO2015146329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2943483A CA2943483C (en) 2014-03-26 2015-02-10 Copper removal method for aqueous nickel chloride solution
NO20161679A NO20161679A1 (en) 2014-03-26 2016-10-24 Copper removal method for aqueous nickel chloride solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063773 2014-03-26
JP2014063773A JP6176491B2 (en) 2014-03-26 2014-03-26 Method for removing copper from aqueous nickel chloride solution

Publications (1)

Publication Number Publication Date
WO2015146329A1 true WO2015146329A1 (en) 2015-10-01

Family

ID=54194867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053689 WO2015146329A1 (en) 2014-03-26 2015-02-10 Copper removal method for aqueous nickel chloride solution

Country Status (4)

Country Link
JP (1) JP6176491B2 (en)
CA (1) CA2943483C (en)
NO (1) NO20161679A1 (en)
WO (1) WO2015146329A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131682A (en) * 2016-11-24 2018-08-23 住友金属鉱山株式会社 Solvent extraction equipment and solvent extraction method
CN115354167A (en) * 2022-08-10 2022-11-18 格林美(江苏)钴业股份有限公司 Method for reducing COD (chemical oxygen demand) in raffinate in cobalt-nickel extraction production process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540548B2 (en) * 2016-03-01 2019-07-10 住友金属鉱山株式会社 Method for removing copper ions from aqueous solution of nickel chloride, copper ion removal treatment apparatus
JP6728906B2 (en) * 2016-04-05 2020-07-22 住友金属鉱山株式会社 Heat exchanger descaling method
JP6662260B2 (en) * 2016-08-24 2020-03-11 住友金属鉱山株式会社 Chlorine leaching method of nickel from mixed sulfide
CN106350686B (en) * 2016-08-29 2018-05-15 金川集团股份有限公司 A kind of method that nickel chloride solution is produced using noble metal leachate as raw material
JP7119551B2 (en) * 2018-05-11 2022-08-17 住友金属鉱山株式会社 Method for producing aqueous solution of cobalt chloride
CN113955814B (en) * 2021-11-30 2023-10-20 湖南大学 NiCl synthesized at low temperature 2 Powder and application
CN114703377B (en) * 2022-04-15 2023-06-02 重庆康普化学工业股份有限公司 Method for extracting copper from acidic etching waste liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103020A (en) * 1975-03-07 1976-09-11 Morio Watanabe RYUSANSANSEIYOEKYORI NI TO CO NO BUNRIHO
JPS55113845A (en) * 1979-02-16 1980-09-02 Amax Inc Refining of nickel chloride solution
JPH0835023A (en) * 1994-03-22 1996-02-06 Goro Nickel Sa Method of extraction and separation of nickel and/or cobalt
JP2009084655A (en) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd Method for scrubbing amine-based extractant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103020A (en) * 1975-03-07 1976-09-11 Morio Watanabe RYUSANSANSEIYOEKYORI NI TO CO NO BUNRIHO
JPS55113845A (en) * 1979-02-16 1980-09-02 Amax Inc Refining of nickel chloride solution
JPH0835023A (en) * 1994-03-22 1996-02-06 Goro Nickel Sa Method of extraction and separation of nickel and/or cobalt
JP2009084655A (en) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd Method for scrubbing amine-based extractant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131682A (en) * 2016-11-24 2018-08-23 住友金属鉱山株式会社 Solvent extraction equipment and solvent extraction method
CN115354167A (en) * 2022-08-10 2022-11-18 格林美(江苏)钴业股份有限公司 Method for reducing COD (chemical oxygen demand) in raffinate in cobalt-nickel extraction production process
CN115354167B (en) * 2022-08-10 2023-08-29 格林美(江苏)钴业股份有限公司 Method for reducing COD in raffinate in cobalt-nickel extraction production process

Also Published As

Publication number Publication date
CA2943483C (en) 2019-07-30
JP2015183282A (en) 2015-10-22
CA2943483A1 (en) 2015-10-01
NO20161679A1 (en) 2016-10-24
JP6176491B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
JP4921529B2 (en) Copper converter dust treatment method
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
KR101420501B1 (en) Method for separating metal in metal mixed solution
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP6156781B2 (en) Method for producing cobalt chloride aqueous solution
JP6852599B2 (en) Scandium purification method
KR101021180B1 (en) Method for producing high purity cobalt surfate
JP5631948B2 (en) Nickel sludge treatment method
EA020759B1 (en) Method of processing nickel bearing raw material
MX2014002803A (en) Process for purifying zinc oxide.
JP2008266774A (en) Zinc recovery method
CN108603247A (en) The recovery method of scandium
JP4980399B2 (en) Copper converter dust treatment method
KR101447324B1 (en) Method for separating aluminium and manganese
JP6787357B2 (en) Ion exchange treatment method, scandium recovery method
JP6953988B2 (en) How to remove sulfide
JP2010196162A (en) Method for removing metal element from organic phase
JP4215547B2 (en) Cobalt recovery method
PL202742B1 (en) Method for electrolytic production of ultra-pure zinc or zinc compounds from zinc primary and secondary raw materials
JP2013139632A (en) Method of separating metal in metal-mixed solution
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
CN110055425B (en) Electroplating sludge heavy metal recycling method
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP6206358B2 (en) Scandium recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2943483

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770159

Country of ref document: EP

Kind code of ref document: A1