JPS6383234A - Recovering method for nickel from nickel-containing iron material - Google Patents

Recovering method for nickel from nickel-containing iron material

Info

Publication number
JPS6383234A
JPS6383234A JP61229312A JP22931286A JPS6383234A JP S6383234 A JPS6383234 A JP S6383234A JP 61229312 A JP61229312 A JP 61229312A JP 22931286 A JP22931286 A JP 22931286A JP S6383234 A JPS6383234 A JP S6383234A
Authority
JP
Japan
Prior art keywords
iron
nickel
solution
precipitate
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61229312A
Other languages
Japanese (ja)
Other versions
JPH029092B2 (en
Inventor
Akihiro Sakata
昭博 坂田
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP61229312A priority Critical patent/JPS6383234A/en
Publication of JPS6383234A publication Critical patent/JPS6383234A/en
Publication of JPH029092B2 publication Critical patent/JPH029092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To efficiently recover Ni from Ni-containing iron materials by simple operations without using large-sized equipments and with minimal energy, by using the oxidizing reaction of iron ions and the forming and precipitating reactions of iron hydroxide by pH regulation. CONSTITUTION:An Ni-containing iron powder is dissolved in an acid such as hydrochloric acid, etc., and then an oxidizing agent such as chlone is added to the resulting solution to oxidize iron ions from bivalence to trivalence. Subsequently, alkali such as caustic soda is added to the above solution to adjust pH to 3-6, so that precipirates of iron hydroxide are formed. Then the above precipitates are removed by a proper means such as filtration, and Ni is recovered by the well-known method, e.g., a method of recovering Ni from the resulting supernatant liquid in the form of metallic Ni by electrolysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニッケル含有鉄材からニッケルを回収する方法
に関するものであシ、更に詳しく述べれば、該二・ケル
含有鉄材は主として塩化第2鉄水溶液の再生時に、鉄粉
を用いてニッケルを除去する際に生成するニッケル含有
鉄粉である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for recovering nickel from a nickel-containing iron material, and more specifically, the nickel-containing iron material is mainly recovered from a ferric chloride aqueous solution. This is nickel-containing iron powder that is generated when nickel is removed using iron powder during recycling.

〔発明の背景〕[Background of the invention]

塩化第2鉄水溶液を用いてアンバー材、アロイ材等の鉄
−二、ケμ合金をエツチングする際、上記鉄−ニッケμ
合金材料中のニッケルが溶出して多量に塩化第2鉄水溶
液中に存在するようになると、該塩化第2鉄水溶液のエ
ツチング能力が低下して使用出来なくなる。そこで上記
塩化第2鉄水溶液を精製、再生することが必要になる。
When etching iron-nickel μ alloys such as amber materials and alloy materials using a ferric chloride aqueous solution, the iron-nickel μ
When nickel in the alloy material is eluted and becomes present in a large amount in the ferric chloride aqueous solution, the etching ability of the ferric chloride aqueous solution decreases and it becomes unusable. Therefore, it is necessary to purify and regenerate the ferric chloride aqueous solution.

このような塩化第2鉄水溶液の精製、再生方法として、
該塩化第2鉄水溶液中に鉄材あるいは鉄粉を投入する方
法が提案さり、ている(特願昭61−84899号およ
び特願昭61−84400号)。
As a method for purifying and regenerating such a ferric chloride aqueous solution,
A method of introducing iron material or iron powder into the ferric chloride aqueous solution has been proposed (Japanese Patent Application No. 84899/1982 and Japanese Patent Application No. 84400/1983).

この際にニッケルを含有する鉄粉が得られる。At this time, iron powder containing nickel is obtained.

本発明は主としてこのような塩化第2鉄水溶液の精製、
再生工程から得られるニッケル含有鉄粉を対象とするも
のであるが、本発明は更にニッケμ鉱石よシニッケμを
製造する際等にも適用され得ることは勿論である。
The present invention mainly focuses on the purification of such ferric chloride aqueous solution,
Although the present invention is directed to nickel-containing iron powder obtained from the regeneration process, it goes without saying that the present invention can also be applied to the production of nickel μ ore and nickel μ.

〔従来の技術〕[Conventional technology]

従来、ニッケル鉱石のようなニッケルー鉄含有物からニ
ッケルを製造する方法としては、ケイ苦ニッケル鉱(N
i:約2.8〜8.5重量%、Co:約0.08〜0.
05重量%、Fe:約7〜15重量%、MgO:約25
〜80重量%、5102 :約85〜40重量%を含む
)のようなニッケルー鉄含有物を約1000’Cで焼結
し、溶鉱炉で石こう2石灰石。
Traditionally, the method of producing nickel from nickel-iron containing materials such as nickel ore has been to use siliconickel ore (N
i: about 2.8-8.5% by weight, Co: about 0.08-0.
05% by weight, Fe: about 7-15% by weight, MgO: about 25%
5102 (containing about 85-40 wt.%) at about 1000'C and gypsum 2 limestone in a blast furnace.

コークスを加えて溶錬してニッケル粗但(Ni+C。Coke is added and smelted to produce nickel crude (Ni+C).

:約20〜25重量%、Fc:約55〜60重量%、S
:13〜15重量%)を得、この溶湯を転炉に装入し、
更にケイ石を加えて衝風溶錬して鉄を酸化除去した後陽
極に鋳造し、このようにして得られた粗ニッケル陽極を
用いて電解製錬を行うことによりニッケルを製造する方
法が提供されている。
: Approximately 20-25% by weight, Fc: Approximately 55-60% by weight, S
: 13 to 15% by weight), and charged this molten metal into a converter,
Furthermore, a method is provided for producing nickel by adding silica stone and blast-smelting it to oxidize and remove iron, then casting it into an anode, and performing electrolytic smelting using the thus obtained crude nickel anode. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の方法では高温、大電力を必要と
し、かつ溶鉱炉、転炉、電解装置等の大規模な設備を必
要とする。したがって上記塩化第2鉄水溶液の精製、再
生工程から得られるニッケル含有鉄粉からニッケμを回
収するような比較的小規模な場合には設備費や工程費が
割高になると言う問題点を有している。
However, the conventional methods described above require high temperatures and large amounts of electric power, and require large-scale equipment such as a blast furnace, a converter, and an electrolyzer. Therefore, in a relatively small-scale case where nickel μ is recovered from nickel-containing iron powder obtained from the purification and regeneration process of the ferric chloride aqueous solution, there is a problem in that the equipment and process costs are relatively high. ing.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は上記従来の欠点を解決する手段としてニッケル
含有鉄相を酸に溶解する工程1゜工程1で調製された溶
解液に酸化剤を添加する工程2゜ 工程2で得られる溶解液にアルカリを添加してpHを3
〜6占して沈澱を生成せしめる工程3゜工程3により溶
解液中に生成した沈澱を除去する工程4゜ 工程4で得られた上澄液からニッケルを回収する工程5
゜ 以上の工程1,2、3、4、5からなるニッケル含有鉄
材からニッケルを回収する方法を提供するものである。
As a means of solving the above-mentioned conventional drawbacks, the present invention provides a step of dissolving a nickel-containing iron phase in an acid, a step of adding an oxidizing agent to the solution prepared in step 1, a step of adding an oxidizing agent to the solution prepared in step 2, and an alkali solution to the solution obtained in step 2. to adjust the pH to 3.
- 6 Step 3 of forming a precipitate by using a sieve. Step 4 of removing the precipitate formed in the solution in step 3. Step 5 of recovering nickel from the supernatant liquid obtained in step 4.
The present invention provides a method for recovering nickel from nickel-containing iron material, which comprises steps 1, 2, 3, 4, and 5 above.

本発明で用いられるニーケル含有鉄材とは主として塩化
第2鉄水溶液の精製、再生工程から得られるニッケル含
有鉄粉であるが、その他ケイ苦ニーケル鉱のよりな二・
ケル−鉄含有物が対象となることは前記した通りである
。そして該ニーケル含有鉄材は粉末状のみならず鱗片状
、f#l状等相等如何形状であって亀よいが、工程1に
おける酸溶解を効率よく行うためには表面積の大きな粉
末状であることが望ましい。粉末状の場合は水分を含ん
で例えばスラリー状になっている方が安全の上から望ま
しいが、乾燥状態であっても使用可能であることは勿論
である。更に該二岬ケル含有鉄材は工程1に先立ち磁石
により分離を行っておくと良い場合もある。何となれば
該ニーケル含有鉄材には特に塩化第2鉄水溶液の精製、
再生工程から得られるユリケル含有鉄粉の場合に多量の
水酸化鉄が含まれており、二−ケル含有鉄粉に多量の水
酸化鉄が含まれていると工程1における酸溶解の際に溶
解に必要な酸の使用量が増えるから、これを防ぐために
二・ケル含有鉄粉と水酸化鉄との磁気分離を行うのであ
る。該二・ケル含有鉄粉中のニッケル含有量は多いほど
好ましいが、通常は二・ケpが5重量%以上含まれてい
ることが望ましい。まだ該二・ケル含有鉄粉には鉄、二
・ケル以外の成分としてクロム等が含まれていても差支
えない。その他の不純分としてはなるべく含まれないほ
うが望ましいが、酸に対して溶解しない成分であれば存
在していても構わない。
The nickel-containing iron material used in the present invention is mainly nickel-containing iron powder obtained from the purification and regeneration process of ferric chloride aqueous solution, but also nickel-containing iron powder obtained from ferric chloride aqueous solution.
As mentioned above, the target is kel-iron-containing substances. The Nikel-containing iron material can be in any shape, including not only powder but also scale, f#l shape, etc., but in order to efficiently perform acid dissolution in step 1, it must be in powder form with a large surface area. desirable. In the case of a powder, it is preferable from the viewpoint of safety that it contains water and is in the form of a slurry, but it is of course possible to use it even in a dry state. Furthermore, it may be advisable to separate the iron material containing Nimisakikeru with a magnet prior to step 1. In particular, the Nikel-containing iron material requires purification of ferric chloride aqueous solution,
In the case of the iron powder containing Urikel obtained from the regeneration process, it contains a large amount of iron hydroxide, and if the iron powder containing Ni-Kel contains a large amount of iron hydroxide, it will dissolve during the acid dissolution in Step 1. In order to prevent this, the iron powder containing Ni-Kel and the iron hydroxide are separated magnetically. The higher the nickel content in the Ni-Kel-containing iron powder, the better, but it is usually desirable for the Ni-Kel content to be 5% by weight or more. There is no problem even if the Ni-Kel-containing iron powder contains chromium or the like as a component other than iron and Ni-Kel. It is desirable that other impurities are not included as much as possible, but they may be present as long as they are insoluble in acids.

以下に上記工程順に本発明の詳細な説明する。The present invention will be described in detail below in the order of the above steps.

工程1においてはニーケル含有鉄材を酸に溶解する。溶
解に用いられる酸としては主として硫酸。
In step 1, the iron material containing Nikel is dissolved in acid. The acid used for dissolution is mainly sulfuric acid.

塩酸等の無機酸があげられる。塩酸を用いた場合の工程
1における溶解反応を下記に示す。
Examples include inorganic acids such as hydrochloric acid. The dissolution reaction in step 1 using hydrochloric acid is shown below.

Fe + 2HC1−+Fe  + 2C1+H2N1
 + 2HC#−>N1+ 2CI2  +H2上記酸
の使用量は上記反応に必要な量に対して1.0〜2.0
倍、好ましくは1.0〜1.5倍程度が良い。何となれ
ば上記酸の使用量が必要量に対して1.0倍未満であれ
ば、ニーケル含有鉄材は酸に充分に溶解せず、一方上記
酸の使用量が必要量に対して2.0倍を超えると二・ケ
ル含有鉄材を充分に溶解させる目的に対しては酸の使用
量が過剰となるからである。上記反応の際の反応温度は
高いほうが反応を速やかに進行せしめるけれども通常4
0〜90°C程度で実用的に充分な反応速度が得られる
。このような温度範囲であれば上記反応は発熱反応であ
るから反応中に反応器を加熱する必要はない。上記反応
温度は使用する酸の濃度、あるいは酸に対するニッケル
含有鉄材の投入速度等によシ調節可能であシ、反応中反
応器を加熱しなければ反応器に加熱手段を設ける必要も
なく、かつ熱エネルギーを外部から加える必要もないか
ら設備費や工程費づ節約される。工程1において用込ら
れる反応器の材質は酸に対して耐蝕性あるものであれば
いかなるものでもよく、上記温度範囲であれば例えばポ
リエチレン、ポリ塩化ビニル等の合成樹脂やグラス2イ
ニングした反応器が用いられ得る。また該反応器には溶
解を速やかに行うだめに攪拌機、空気吹込み装置等の攪
拌手段を設けてもよい。また工程1においては上記溶解
反応によって水素が発生するので安全上の配慮が必要で
あり、反応器内の水素濃度を爆発限界以下に保つ必要が
ある。このためには大気開放型の反応器を用いたり、空
気吹込みにより反応器内の水素濃度を希釈する手段を適
用することが望ましい。工程1における反応時間は大部
分の二・ケμおよび鉄が溶解する程度に設定する。この
ようにして溶解を行った後に得られる溶解液中のニッケ
ルおよび鉄分濃度は工程8による沈滞生成を効率よく行
うためには高いほうが良いけれども、過剰になると鉄塩
、二・ケ/V塩が析出する場合があシ、鉄単体と二・ケ
/v迅体と換算しての合計濃度はこの観点からみれば2
00 gel以下でしかもなるべく200gallに近
づけることが望ましい。上記した酸の使用量は勿論鉄お
よびニッケμ濃度に影響し、酸の使用量が過剰になれば
鉄と二・ケルの合計濃度は200 g/IIを大巾に下
回ることになる。上記溶解反応忙よシ得られた溶解液中
には不溶解成分が含まれる場合もあシ、この場合には該
溶解液を濾過するか、もしくは濾過することなくそのま
ま工程2に進んでもよい。該溶解液が充分かつ安定に鉄
あるbは二−ケpを溶解しているために好ましいpHは
2以下であり、更に奸才しくけ1以下である。
Fe + 2HC1-+Fe + 2C1+H2N1
+ 2HC#->N1+ 2CI2 +H2 The amount of the above acid used is 1.0 to 2.0 with respect to the amount required for the above reaction.
It is good to have about 1.0 to 1.5 times, preferably about 1.0 to 1.5 times. This is because if the amount of the acid used is less than 1.0 times the required amount, the Nikel-containing iron material will not dissolve sufficiently in the acid; This is because if the amount exceeds twice that, the amount of acid used becomes excessive for the purpose of sufficiently dissolving the iron material containing Ni.Kel. The higher the reaction temperature during the above reaction, the faster the reaction will proceed, but usually 4
A practically sufficient reaction rate can be obtained at about 0 to 90°C. Within this temperature range, the reaction is exothermic and there is no need to heat the reactor during the reaction. The above reaction temperature can be adjusted by adjusting the concentration of the acid used or the rate at which the nickel-containing iron material is added to the acid, etc., and there is no need to provide a heating means in the reactor unless the reactor is heated during the reaction, and There is no need to add heat energy from outside, so equipment costs and process costs are saved. The material of the reactor used in step 1 may be any material as long as it is resistant to acid, and if the temperature is within the above range, a reactor made of synthetic resin such as polyethylene or polyvinyl chloride, or a glass-coated reactor may be used. can be used. Further, the reactor may be provided with a stirring means such as a stirrer or an air blower in order to quickly dissolve the mixture. Furthermore, in step 1, safety considerations are necessary because hydrogen is generated by the above-mentioned dissolution reaction, and it is necessary to maintain the hydrogen concentration in the reactor below the explosion limit. For this purpose, it is desirable to use a reactor that is open to the atmosphere, or to apply a means of diluting the hydrogen concentration within the reactor by blowing air. The reaction time in step 1 is set to such an extent that most of the dioxins and iron are dissolved. Although it is better for the nickel and iron concentrations in the solution obtained after dissolving in this way to be high in order to efficiently generate sediment in step 8, if they are excessive, iron salts and di-ke/V salts Although precipitation may occur, the total concentration in terms of iron alone and 2.ke/v iron body is 2 from this point of view.
It is desirable that the amount be less than 0.00 gel and as close to 200 gal as possible. The amount of acid used above will of course affect the iron and nickel μ concentrations, and if the amount of acid used is excessive, the total concentration of iron and nickel will be significantly below 200 g/II. The solution obtained during the above-mentioned dissolution reaction may contain undissolved components, and in this case, the solution may be filtered, or the solution may proceed directly to step 2 without filtration. Since the solution contains iron in a sufficient and stable manner, the preferable pH is 2 or less, and furthermore, the pH is 1 or less.

工程2においては工程1において得られた溶解液に酸化
剤を添加して該溶解液中の鉄イオンを2価から8価にす
る。工程2において用いられる酸化剤としては過酸化水
素、塩素9次亜塩素酸塩。
In step 2, an oxidizing agent is added to the solution obtained in step 1 to change the iron ions in the solution from divalent to octavalent. The oxidizing agent used in step 2 is hydrogen peroxide, chlorine 9-hypochlorite.

空気(酸素)、オゾン等の周知の酸化剤の何れでもよい
。工程2にとって好適な例として以下に塩素による方法
を説明する。第1図に示す反応装置は反応容器(1)と
、該反応容器(1)に連絡する循還径路0)と、該循還
径路(2)に介在する循還ポンプ(8)およびエゼクタ
−(4)と、該反応容器(1)に装着される攪拌機(5
)とからなり、該エゼクタ−(4)には塩素供給路(6
)が連絡する。J:記反応装置において、反応容器(1
)に工程1の溶解液を投入し、循還ポンプ(3)を作動
させて該溶解液を循還径路(2)内に循還せしめる。循
還径路(2)を循還する溶解液はエゼクタ−(4)にお
いて塩素供給路(6)から供給される塩素を混合し反応
させる。反応を円滑に進めるためには反応温度は40°
C以上が望ましく、反応温度を40℃以上にするために
は所望ならば該反応装置に更に加熱手段を付加する。工
程2における酸化反応により溶解液中の鉄イオンを2価
から3価にするのは工程8においてこのようにして得ら
れた8価鉄イオンを水酸化鉄として二〜ケμから分離す
るためであシ、このような観点からみて工程2の後に溶
解液に残存する2価鉄イオンの濃度は0.5g/l以下
、更に望ましくは0.1 g/(!以下とする。
Any known oxidizing agent such as air (oxygen) or ozone may be used. As a preferable example for step 2, a method using chlorine will be described below. The reaction apparatus shown in FIG. 1 includes a reaction vessel (1), a circulation path 0) communicating with the reaction vessel (1), a circulation pump (8) interposed in the circulation path (2), and an ejector. (4), and a stirrer (5) attached to the reaction vessel (1).
), and the ejector (4) has a chlorine supply path (6
) will contact you. J: In the reaction apparatus, a reaction vessel (1
), and the circulation pump (3) is operated to circulate the solution into the circulation path (2). The solution circulating through the circulation path (2) mixes and reacts with chlorine supplied from the chlorine supply path (6) in the ejector (4). In order for the reaction to proceed smoothly, the reaction temperature should be 40°.
C or higher, and if desired, a heating means may be added to the reaction apparatus in order to raise the reaction temperature to 40° C. or higher. The reason why the iron ions in the solution are changed from divalent to trivalent by the oxidation reaction in step 2 is to separate the octavalent iron ions thus obtained from the divalent iron hydroxide as iron hydroxide in step 8. From this point of view, the concentration of divalent iron ions remaining in the solution after step 2 is 0.5 g/l or less, more preferably 0.1 g/(! or less).

工程8においては工程2において得られた2価鉄イオン
(Fe8+)および二9ヶμイオン(Nt 2+)を含
む溶解液にアルカリを添加してpHを8〜6に調整する
。この時の更に好ましいpHは4〜5.5である。工程
8において用いられるアルカリとしては苛性ソーダ、苛
性カリ、炭酸ソーダ、炭酸カリ。
In step 8, an alkali is added to the solution containing divalent iron ions (Fe8+) and 29-μ ions (Nt 2+) obtained in step 2 to adjust the pH to 8 to 6. A more preferable pH at this time is 4 to 5.5. The alkali used in step 8 is caustic soda, caustic potash, soda carbonate, and potassium carbonate.

石灰、アンモニア等の無機アルカリ、アミン等の有機ア
ルカリ等の周知のアルカリがあるが、価格の点からみて
苛性ソーダあるいは炭酸ソーダの使用が望ましい。工程
8においてはFe8+は水酸化鉄として沈澱する。上記
溶解液にクロムが含まれる場合には水酸化クロムも同時
に生成して沈澱する。
Although there are well-known alkalis such as inorganic alkalis such as lime and ammonia, and organic alkalis such as amines, it is preferable to use caustic soda or soda carbonate from the viewpoint of cost. In step 8, Fe8+ is precipitated as iron hydroxide. When the solution contains chromium, chromium hydroxide is also produced and precipitated.

該水酸化鉄の沈澱はコロイド状になる場合があシ凝集剤
をアルカリ添加と同時にあるいはアルカリ添加後に添加
して該沈澱を凝集させ、沈澱の分離を容易にすることも
推奨される。上記したように溶解液のpHをアルカリに
よって8以上にすると溶解液中のFe8+が水酸化鉄と
して沈澱して来るが更に該水酸化鉄の沈澱を円滑に行う
にはpHは4以上が望ましい。しかし溶解液のpHが6
を超えると水酸化工・ケルが生成するようになり、該水
酸化ニーダ/l/は水酸化鉄と共沈し、二・ケル−鉄分
離効率が悪くなるので溶解液のpHは6以下にすべきで
あり、更に確実に水酸化ニーケルの生成を防止するkは
pHは5.F;以下にすることが望ましい。また溶解液
のpHが8未満の場合には水酸化鉄の沈澱生成が完全に
は行われない。苛性ソーダのような強アルカリを使用す
る場合には水酸化鉄の沈澱中に水酸化工・ケμが含まれ
ることがある。その理由は明らかでないが、溶解液の苛
性ソーダが添加された部分が一時的にpH6以上のKp
Hとなって水酸化鉄と共に水酸化工・ケルも生成して水
酸化鉄と水酸化ニーケルとの混合沈澱が生成し、その後
溶解液のpHが均一化されて全体として8〜6になって
も水酸化工・ケμの再溶解速度がおそいために該混合沈
澱中に二・ケμが残存するものと推定される。炭酸ソー
ダのような弱アルカリを用いる場合には上記のような溶
解液のpHの部分的上昇は起υにくいと考えられ、水酸
化鉄の沈澱のみが生成するので望ましいものではあるけ
れども、炭酸ソーダは苛性ソーダに比して価格が高いの
で炭酸ソーダと苛性ソーダとの併用が推奨される。即ち
溶解液のpHが約1〜2程度までは苛性ソーダを用いて
も水酸化鉄および水酸化工・・ケルの沈澱生成が全く起
らないからこの程度までは苛性ソーダを用い、次いで炭
酸ソーダを用いて溶解液のpHを8〜6に調整すること
が望ましい。
Since the iron hydroxide precipitate may become colloidal, it is also recommended that a flocculant be added at the same time as or after the addition of the alkali to coagulate the precipitate and facilitate separation of the precipitate. As mentioned above, when the pH of the solution is raised to 8 or higher with an alkali, Fe8+ in the solution will precipitate as iron hydroxide, but in order to further facilitate the precipitation of the iron hydroxide, the pH is preferably 4 or higher. However, the pH of the solution is 6.
If the temperature exceeds 1,000 ml, hydroxide kneader/l/l will be produced, and the hydroxide kneader/l will co-precipitate with iron hydroxide, reducing the efficiency of iron hydroxide separation, so the pH of the solution should be 6 or less. The pH should be set at 5.0 to more reliably prevent the formation of hydroxide. F: It is desirable to do the following. Further, if the pH of the solution is less than 8, precipitation of iron hydroxide will not be completely formed. When using a strong alkali such as caustic soda, iron hydroxide may be included in the precipitate of iron hydroxide. The reason is not clear, but the part of the solution to which caustic soda was added temporarily has a Kp of 6 or more.
It becomes H, and hydroxides and kels are also produced together with iron hydroxide, and a mixed precipitate of iron hydroxide and nickel hydroxide is formed.Then, the pH of the solution becomes uniform and becomes 8 to 6 as a whole. It is presumed that because the redissolution rate of hydroxide is slow, 2.mu. remains in the mixed precipitate. When using a weak alkali such as soda carbonate, it is thought that the above-mentioned partial increase in the pH of the solution is unlikely to occur, and only iron hydroxide precipitates are formed, which is desirable. is more expensive than caustic soda, so it is recommended to use carbonated soda and caustic soda in combination. In other words, even if caustic soda is used until the pH of the solution reaches approximately 1 to 2, precipitation of iron hydroxide and hydroxide kel does not occur at all. It is desirable to adjust the pH of the solution to 8-6.

工程4においてはこのようにして生成した水酸化鉄の沈
澱は、濾過、沈降分離等の周知の固液分離手段によって
分離される。前記したように該沈澱は粒径が非常に小さ
くコロイド状になっていることがあシ、この場合は凝集
剤を溶解液に添加して沈澱の粗大を図るととが望ましい
が、一方濾過によって分離する場合には凝集剤の使用に
加えであるいは凝集剤を使用することなくケイ藻土等の
濾過助剤をあらかじめプレコートした濾布等を用いて粗
濾過を行って該沈澱の大部分を除去したシ沈降分離によ
って該沈澱の大部分を除去したシした後にミクロフィル
ター等によシ細濾過を行うこともまた望ましい。このよ
うにして沈澱を分離された上澄液は多量の二・ケルを含
み鉄分は殆んど含まれない。そして上記工程2,8.4
を所定に管理すれば上澄液に含まれる鉄分をI PP”
以下とすることが出来る。
In step 4, the iron hydroxide precipitate thus produced is separated by known solid-liquid separation means such as filtration and sedimentation separation. As mentioned above, the precipitate may have a very small particle size and be in the form of a colloid. In this case, it is desirable to add a flocculant to the solution to make the precipitate coarser, but on the other hand, filtration When separating, in addition to using a flocculant or without using a flocculant, coarse filtration is performed using a filter cloth pre-coated with a filter aid such as diatomaceous earth to remove most of the precipitate. It is also desirable to perform fine filtration using a microfilter or the like after most of the precipitate has been removed by the precipitate separation. The supernatant liquid from which the precipitate has been separated contains a large amount of Ni-Kel and almost no iron. And the above steps 2, 8.4
If the iron content in the supernatant liquid is managed as specified, the iron content in the supernatant liquid can be
The following can be done.

工程5においては、工程4によって得られた上澄液から
ユリケルを回収する。上記二−ケ/L’回収方法として
は、(a)濃縮晶析により硫酸ニーケル。
In step 5, urikel is recovered from the supernatant obtained in step 4. The above Ni-K/L' recovery method includes (a) Ni-K sulfuric acid by concentration crystallization.

塩化ニーケル等の塩として回収する方法、(b)アルカ
リを添加して水酸化ニヤケルとしこれを沈澱させて回収
する方法、(c)電解により金属ニーケルとして回収す
る方法等周知の方法が挙げられる。
Well-known methods include a method of recovering it as a salt such as nickel chloride, (b) a method of adding an alkali to precipitate it into nickel hydroxide, and (c) a method of recovering it as a metal nickel by electrolysis.

〔作 用〕[For production]

本発明は二・ケル含有鉄材から二・ケルを回収するに当
って、鉄イオンの酸化反応と、pH調整による水酸化鉄
の生成、沈澱反応を利用したもので 1ある。即ち、先
に述べたように本発明は、二・ケル含有鉄材に酸を加え
ることによシ鉄およびニーケルを溶解させ(工程1)、
得られた溶液に酸化剤を加えることにより、2価の鉄を
3価に酸化しく工程2)、この溶液にアルカリを加えp
H8〜6に調整すると七によって水酸化鉄の沈澱を生成
せしめ(工程8)、次いで沈澱を濾過しく工程4)、残
シの溶液から二・ケμを回収する(工程5)ものである
The present invention utilizes the oxidation reaction of iron ions, the production of iron hydroxide through pH adjustment, and the precipitation reaction in recovering Ni-Kel from iron materials containing Ni-Kel. That is, as mentioned above, the present invention dissolves iron and Ni-Kel by adding acid to the Ni-Kel-containing iron material (Step 1),
By adding an oxidizing agent to the obtained solution, divalent iron is oxidized to trivalent iron (Step 2), and an alkali is added to this solution to p
When the temperature is adjusted to 8 to 6, a precipitate of iron hydroxide is formed (step 8), the precipitate is then filtered (step 4), and 2.mu. is recovered from the remaining solution (step 5).

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、溶鉱炉や電解精錬上いった大き
な設備を用いることなく、又概く僅かなエネルギーによ
って、二・ケル含有鉄材、特に塩化第2鉄水溶液の再生
時に鉄粉を用いてニッケルを除去する際に生成する二−
ケル含有鉄材から、二〜ケルを簡単な操作によシ効率よ
く回収することを可能としたものであり、産業上大いに
寄与するものである。
According to the method of the present invention, iron powder can be used to regenerate di-Kel-containing iron materials, especially ferric chloride aqueous solutions, without using large equipment such as blast furnaces or electrolytic refining equipment, and with generally little energy. Ni- produced when removing nickel
The present invention makes it possible to efficiently recover 2 to 2 Kels from Kel-containing iron materials through simple operations, making a great contribution to industry.

〔実施例〕〔Example〕

塩化第2鉄の精製再生時に鉄粉を用いて脱ニーケルを行
って生成した二・ケル含有鉄粉2kQ(二〜ケ/L’1
1.8重量%、鉄51.0重量%、残水分等)を用いた
。これに水を約51加えた後、塩酸(85%)101を
少しずつ加えて温度60〜70°Cで反応させた。気泡
の発生がなくなったところで濾過し、反応残渣をとシ除
いた後全量を701ト1.*。コ(7)溶液ケ= −ケ
18.1 g/L 鉄14.0g/l)を含んでいた(
工程1)。上記工程1で得られた溶解液を第1図に示す
装置に投入してC12と反応させた。温度1d60〜7
0°Cに保たれた。反応が終了したことを過マンガン酸
滴定法により確認した(工程2)。この溶液に30重量
%NaOHを加えてpHを1とした後、2N−i酸ソー
ダを加えてpHを5とした。沈澱が多量に生成した(工
程3)。上記沈澱が生成した溶解液を活性炭をプレコー
トした濾布による濾過器およびカートリッジ式のミクロ
フィルターによる濾過器によるニ段濾過を行って沈澱を
分離した。沈澱を分離した後の上澄液に水を加えて全量
を1401とした。該上澄液の二−ケA/濃度は1.5
g/lで鉄濃度は1.OFであった(工程4)。該上澄
液からの二雫ケμの回収を以下の2つの方式によ!ll
実施した。
2 kQ (2-K/L'1) of iron powder containing 2-Kel produced by denickeling using iron powder during refining and regeneration of ferric chloride.
1.8% by weight, 51.0% by weight of iron, residual moisture, etc.). After adding about 51 liters of water to this, 101 ml of hydrochloric acid (85%) was added little by little, and the mixture was reacted at a temperature of 60 to 70°C. After the generation of bubbles stopped, it was filtered, and after removing the reaction residue, the total amount was reduced to 701 tons. *. (7) Solution ke = -ke 18.1 g/L Iron 14.0 g/L)
Step 1). The solution obtained in step 1 above was charged into the apparatus shown in FIG. 1 and reacted with C12. Temperature 1d60~7
It was kept at 0°C. Completion of the reaction was confirmed by permanganate titration (Step 2). After adding 30% by weight NaOH to this solution to adjust the pH to 1, 2N-i acid sodium was added to adjust the pH to 5. A large amount of precipitate was generated (Step 3). The solution containing the precipitate was subjected to two-stage filtration using a filter using a filter cloth precoated with activated carbon and a cartridge-type microfilter to separate the precipitate. After separating the precipitate, water was added to the supernatant liquid to make a total volume of 1,401 ml. The concentration of Ni-ke A/concentration of the supernatant is 1.5
The iron concentration in g/l is 1. It was OF (Step 4). The following two methods are used to recover Nishizukuga μ from the supernatant liquid! ll
carried out.

(a)該上澄液のうち701を用いて30重量%Na 
OHによりpHを8.5とした。生成した沈澱を濾過し
回収した。回収された沈澱は160gであシニ・ケ/1
159.5重量%を含んでいた。したがって最初の工程
からの回収率は84%であった。
(a) Using 701 of the supernatant, 30% by weight Na
The pH was adjusted to 8.5 with OH. The generated precipitate was collected by filtration. The recovered precipitate was 160g, 1/1
It contained 159.5% by weight. Therefore, the recovery rate from the first step was 84%.

(b)該上澄液のうち51を用い、これにホウ酸80g
/lの割合で添加し陽極として炭素陽極を用い陰極にニ
ッケル板を用いIA/dmでlhr電解した。終了後陰
極の重量変化よシミ解による二一ケμの析出効率は93
重最軽であった。
(b) Use 51 of the supernatant liquid and add 80 g of boric acid to it.
/l, a carbon anode was used as an anode, a nickel plate was used as a cathode, and electrolysis was carried out at IA/dm for 1hr. The deposition efficiency of 21 ke μ is 93 based on the change in weight of the cathode after completion of stain analysis.
It was the lightest.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は工程2において用いられる反応装置の一例を示
す説明図である。 図中、(1)・・・・反応容器、(2)・・・・循還径
路、(8)・・・・循環ポンプ、(4)・・・・エゼク
タ−1(5)・・・・攪拌機、(6)・・・・塩素供給
FIG. 1 is an explanatory diagram showing an example of a reaction apparatus used in step 2. In the figure, (1)... Reaction vessel, (2)... Circulation path, (8)... Circulation pump, (4)... Ejector 1 (5)...・Agitator, (6)...Chlorine supply path

Claims (1)

【特許請求の範囲】 ニッケル含有鉄材を酸に溶解する工程1、 工程1で調製された溶解液に酸化剤を添加する工程2、 工程2で得られる溶解液にアルカリを添加してpHを3
〜6として沈澱を生成せしめる工程3、工程3により溶
解液中に生成した沈澱を除去する工程を 工程4で得られた上澄液からニッケルを回収する工程5
、 以上の工程1、2、3、4、5からなることを特徴とす
るニッケル含有鉄材からニッケルを回収する方法。
[Claims] Step 1 of dissolving the nickel-containing iron material in acid; Step 2 of adding an oxidizing agent to the solution prepared in Step 1; Adding an alkali to the solution obtained in Step 2 to adjust the pH to 3.
Step 3 of generating a precipitate as ~6, and step 5 of recovering nickel from the supernatant liquid obtained in step 4, a step of removing the precipitate generated in the solution solution in step 3.
, A method for recovering nickel from a nickel-containing iron material, comprising steps 1, 2, 3, 4, and 5 above.
JP61229312A 1986-09-26 1986-09-26 Recovering method for nickel from nickel-containing iron material Granted JPS6383234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229312A JPS6383234A (en) 1986-09-26 1986-09-26 Recovering method for nickel from nickel-containing iron material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229312A JPS6383234A (en) 1986-09-26 1986-09-26 Recovering method for nickel from nickel-containing iron material

Publications (2)

Publication Number Publication Date
JPS6383234A true JPS6383234A (en) 1988-04-13
JPH029092B2 JPH029092B2 (en) 1990-02-28

Family

ID=16890166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229312A Granted JPS6383234A (en) 1986-09-26 1986-09-26 Recovering method for nickel from nickel-containing iron material

Country Status (1)

Country Link
JP (1) JPS6383234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
JP2015209551A (en) * 2014-04-24 2015-11-24 住友金属鉱山株式会社 Purification method of nickel chloride solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513201A (en) * 2011-02-25 2014-05-29 ドイチェ エーデルスタールヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of hard material particles
JP2015209551A (en) * 2014-04-24 2015-11-24 住友金属鉱山株式会社 Purification method of nickel chloride solution

Also Published As

Publication number Publication date
JPH029092B2 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
US5453111A (en) Method for separation of metals from waste stream
AU2018225820A1 (en) Metallurgical and chemical processes for recovering vanadium and iron values from vanadiferous titanomagnetite and vanadiferous feedstocks
CN101643243B (en) Method for recycling copper, nickel, chromium, zinc and iron from plating sludge
CA1075015A (en) Process for working up manganese modules and recovery of the contained valuable constituents
CN100497674C (en) Method for processing cunico
EP0028634B1 (en) Method for producing cobalt metal powder
CN107954474B (en) Method for producing vanadium product and basic chromium sulfate by using vanadium-chromium solution
US4233063A (en) Process for producing cobalt powder
CN106119560B (en) Zinc-cobalt separation method
JP2007530778A5 (en)
AU2011213512A1 (en) Process for the recovery of titanium dioxide and value metals by reducing the concentration of hydrochloric acid in leach solution and system for same
CN111278997A (en) Method for producing cobalt and related oxides from various feed materials
CN110643815B (en) Recycling harmless treatment method for black copper mud
CN105779777A (en) Method for separating and recycling nickel and cobalt from nickel and cobalt slag
CN110616328A (en) Method for preparing iron-chromium black from chromium-containing electroplating sludge
US5464596A (en) Method for treating waste streams containing zinc
US4201648A (en) Nickel recovery from sulfur-deficient mattes
CN102925701A (en) Method using wet alkaline process of cobalt-nickel (Co-Ni) residue containing arsenic to prepare arsenate
US4214895A (en) Method for producing cobalt metal powder
CN104762483B (en) A kind of method that copper bismuth slag produces copper sulphate
JPH02197533A (en) Separation of valuable metal
JPS62188791A (en) Electrowinning method for ni, co, zn, cu, mn and cr
US6783744B2 (en) Method for the purification of zinc oxide controlling particle size
JPS6383234A (en) Recovering method for nickel from nickel-containing iron material
WO2015171010A1 (en) Process of extracting gold and silver from ores and mining by-products