JP2015113267A - Separation/recovery method of tellurium - Google Patents

Separation/recovery method of tellurium Download PDF

Info

Publication number
JP2015113267A
JP2015113267A JP2013258231A JP2013258231A JP2015113267A JP 2015113267 A JP2015113267 A JP 2015113267A JP 2013258231 A JP2013258231 A JP 2013258231A JP 2013258231 A JP2013258231 A JP 2013258231A JP 2015113267 A JP2015113267 A JP 2015113267A
Authority
JP
Japan
Prior art keywords
tellurium
solution
selenium
added
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258231A
Other languages
Japanese (ja)
Other versions
JP6304530B2 (en
Inventor
正丈 永長
Masatake Nagaosa
正丈 永長
俊一 吉武
Shunichi Yoshitake
俊一 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013258231A priority Critical patent/JP6304530B2/en
Publication of JP2015113267A publication Critical patent/JP2015113267A/en
Application granted granted Critical
Publication of JP6304530B2 publication Critical patent/JP6304530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a separation/recovery method of tellurium, with which separation of impurity metals is easy and a recovery rate of tellurium is high.SOLUTION: Provided is a separation/recovery method of tellurium comprising: a step of mixing a tellurium raw material into hydrochloric acid, and oxidize tellurium in the presence of an oxidizing agent and make it leach; a step of precipitating tellurium by neutralizing the leachate containing tellurium to pH 1.5 to 7.0; a purification step where a sulfidizing agent is added to a solution, obtained by dissolving the above precipitate with alkali, to precipitate and separate impurity metals in the solution; a step of removing selenium where the solution after the purification step is made strongly acidic and a reducing agent is added to precipitate and separate selenium in the solution at an oxidation-reduction potential of 350 mV or more; and a step of reduction/precipitation of tellurium in the solution by adding a reducing agent to the solution from which selenium has been removed and making the oxidation/reduction potential less than 350 mV.

Description

本発明は、テルル化銅やテルル還元滓などのテルル含有物からテルルを効率よく分離回収する方法に関する。 The present invention relates to a method for efficiently separating and recovering tellurium from tellurium-containing materials such as copper telluride and tellurium reducing soot.

銅の電解精製の副産物として世界中の多くの銅製錬所においてテルル化銅が製造され、精製テルルの原料として用いられている。また、最近では、テルル化銅の他に、湿式貴金属回収工程の副産物としてテルルとセレンを主成分とする還元滓が副産・製造され、精製テルルの原料として使われはじめている。 As a by-product of electrolytic refining of copper, copper telluride is produced in many copper smelters around the world and used as a raw material for refined tellurium. Recently, in addition to copper telluride, as a by-product of the wet precious metal recovery process, reduced soot containing tellurium and selenium as by-products has been produced as a by-product and has begun to be used as a raw material for refined tellurium.

テルル化銅からテルルを回収する方法として乾式法または湿式法が知られている(非特許文献1)。これらの方法は何れもテルル化銅をアルカリ性領域で酸化させてテルルを水溶性亜テルル酸ソーダにし、難溶の水酸化銅と分離する。しかし、一般にテルル化銅には少量のセレンが含有されており、セレンも水溶性亜セレン酸イオンとして存在するので、この状態ではセレンとテルルを分離するのは難しい。セレンとテルルを分離するには、アルカリ性浸出液を鉱酸で中和(pH6)して粗酸化テルル(TeO2)を沈殿させることによって液中のセレンと分離し、この粗酸化テルル沈殿を洗浄、溶解、再結晶などの処理をして精製酸化テルルとし、この精製した酸化テルルを溶解させた後に化学的還元または電気化学的に金属テルルが得られる。 A dry method or a wet method is known as a method for recovering tellurium from copper telluride (Non-patent Document 1). In any of these methods, copper telluride is oxidized in an alkaline region to convert tellurium into water-soluble sodium tellurite and separated from hardly soluble copper hydroxide. However, since copper telluride generally contains a small amount of selenium, and selenium also exists as a water-soluble selenite ion, it is difficult to separate selenium and tellurium in this state. In order to separate selenium and tellurium, the alkaline leachate is neutralized with mineral acid (pH 6) to precipitate crude tellurium oxide (TeO 2 ) to separate it from selenium in the liquid, and this crude tellurium oxide precipitate is washed. Dissolution, recrystallization, and the like are performed to obtain purified tellurium oxide, and after the purified tellurium oxide is dissolved, metal reduction can be obtained by chemical reduction or electrochemically.

特許文献1(特開2011−214092号公報)には、テルル還元滓などの処理方法が記載されている。この方法は、セレンやテルルなどを含む還元滓を水酸化ナトリウム水溶液スラリーにし、このスラリーに空気を吹き込んで酸化雰囲気にしてセレンおよびテルルをアルカリ酸化溶出させる。この溶出液に鉱酸を加えて中和し、テルルを沈降させて液中のセレンと分離回収する。 Patent Document 1 (Japanese Patent Laid-Open No. 2011-214092) describes a treatment method such as tellurium reducing soot. In this method, reduced soot containing selenium, tellurium and the like is made into a sodium hydroxide aqueous solution slurry, and air is blown into this slurry to create an oxidizing atmosphere to elute selenium and tellurium by alkaline oxidation. Mineral acid is added to the eluate to neutralize it, tellurium is allowed to settle, and selenium in the liquid is separated and recovered.

特許文献2(特許第3616314号:特開2001−316735号公報)には、テルル含有物を必要に応じテルル化銅と併せて、アルカリ浸出した後に中和して二酸化テルルを沈澱させ、この沈澱を回収してさらにアルカリ浸出し、この浸出液から電解採取によりテルルを回収する処理方法が記載されている。 In Patent Document 2 (Patent No. 3616314: JP-A-2001-316735), tellurium-containing materials are combined with copper telluride as necessary, and alkali leached and then neutralized to precipitate tellurium dioxide. And a method of recovering tellurium from the leaching solution by electrolytic collection is described.

特許文献3(特許第4574825号公報:特開2002−105553号公報)には、テルル化銅に硫黄を添加し加熱処理(500-600℃)して銅を硫化銅(CuS、Cu9S5)にし、次に減圧下で200℃〜1000℃に加熱してテルルを揮発分離する方法が開示されている。 In Patent Document 3 (Japanese Patent No. 4574825: JP 2002-105553 A), sulfur is added to copper telluride, and heat treatment (500-600 ° C.) is performed to convert copper to copper sulfide (CuS, Cu 9 S 5). And then heating to 200 ° C. to 1000 ° C. under reduced pressure to volatilize tellurium.

しかし、特許文献1の処理方法では、セレンとテルルに対し2〜5倍当量の苛性ソーダを使用し、酸化浸出は1〜2日と長い。また、浸出工程でテルルと共にセレンも溶出するので、これらを分けるにはテルルをTeO2として沈殿させ、この沈澱は数回洗浄を繰り返すことによってセレンをある程度まで分離することはできるものの十分にテルルとセレンを分離することはできない。 However, in the treatment method of Patent Document 1, 2-5 times equivalent of caustic soda is used for selenium and tellurium, and the oxidative leaching is as long as 1-2 days. In addition, since selenium is eluted together with tellurium in the leaching process, tellurium is precipitated as TeO 2 in order to separate these, and this precipitation can be separated to a certain extent by repeating washing several times, but it is sufficiently separated from tellurium. Selenium cannot be separated.

また、特許文献2の処理方法では、テルル化銅を苛性ソーダ液で酸化浸出するとき、原料の約半分を占める銅分は水酸化銅になってテルル化銅の表面を覆うのでテルルの溶解が妨げられ、浸出時間が長くかかり、テルルの一部が未溶解のまま残る。また、浸出されるテルルの一部は6価まで酸化されて苛性ソーダ液に難溶なテルル酸ナトリウム(Na2TeO4)の形で浸出中に析出することもある。さらに、共存するセレンの一部も6価まで酸化されることもあり、SO2還元によるセレンの還元時間が長くかかる。 Further, in the treatment method of Patent Document 2, when copper telluride is oxidized and leached with caustic soda solution, the copper content that occupies about half of the raw material becomes copper hydroxide and covers the surface of copper telluride, so that dissolution of tellurium is hindered. And leaching takes longer and some tellurium remains undissolved. Also, some of the tellurium that is leached is oxidized to hexavalent and may precipitate during leaching in the form of sodium tellurate (Na 2 TeO 4 ), which is sparingly soluble in caustic soda solution. Furthermore, part of the coexisting selenium may be oxidized to hexavalent, and it takes a long time to reduce selenium by SO 2 reduction.

特開2011−214092号公報JP 2011-214092 A 特許第3616314号公報Japanese Patent No. 3616314 特許第4574825号公報Japanese Patent No. 4557425

Recent Trends in Extraction of Selenium & Tellurium from Electrolytic Copper Slimes, NML Technical Journal, Vol.12, November 1970, pp.101-110Recent Trends in Extraction of Selenium & Tellurium from Electrolytic Copper Slimes, NML Technical Journal, Vol.12, November 1970, pp.101-110

本発明は、従来の処理方法における上記問題を解決したものであり、不純物金属の分離が容易であって、テルルの回収率が高く、また、例えばテルル化銅を原料として用いたときには、共存する銅の浸出率が高く、しかも銅滓の発生を従来の約1/10まで低減することができるテルルの分離回収方法を提供する。 The present invention solves the above-mentioned problems in the conventional processing method, is easy to separate impurity metals, has a high recovery rate of tellurium, and coexists when, for example, copper telluride is used as a raw material. Provided is a tellurium separation and recovery method which has a high copper leaching rate and can reduce the occurrence of copper soot to about 1/10 of the conventional one.

本発明の処理方法は以下の構成からなるテルルの分離回収方法である。
〔1〕テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出する工程、テルルを含む浸出液のpHを1.5〜7.0に中和してテルルを沈殿させる工程、この沈殿物をアルカリ溶解した溶液に硫化剤を添加して液中の不純物金属を沈殿させて分離する浄液工程、浄液工程後の溶液を強酸性にし、還元剤を加えて酸化還元電位(Ag/AgCl電極)350mV以上で液中のセレンを沈澱させて分離する脱セレン工程、セレンを除去した溶液に還元剤を加えて酸化還元電位(Ag/AgCl電極)350mV未満にして液中のテルルを還元析出させる工程を有することを特徴とするテルルの分離回収方法。
〔2〕酸化浸出工程において、テルル含有原料を塩酸に混合して、固形分の初期濃度500g/L以下および塩酸の初期濃度4〜6モル/Lの浸出スラリーにしてテルルを酸化浸出させる上記[1]に記載するテルルの分離回収方法。
〔3〕酸化浸出工程において、浸出スラリーに酸化剤を添加して酸化還元電位(Ag/AgCl電極)を400〜1100mVにしてテルルを浸出させる上記[1]または上記[2]に記載するテルルの分離回収方法。
〔4〕脱セレン工程において、浄液工程後の溶液に塩酸を加えてpHを−1〜2にする上記[1]〜上記[3]の何れかに記載するテルルの分離回収方法。
〔5〕脱セレン工程において、浄液工程後の強酸性溶液に、10〜300g/Lの還元剤を加えて溶液の酸化還元電位(Ag/AgCl電極)を350mV〜360mVに調整する上記[1]〜上記[4]の何れかに記載するテルルの分離回収方法。
〔6〕テルルの還元析出工程において、脱セレン工程後の溶液に、酸化還元電位(Ag/AgCl電極)が300mV〜350mV未満になるまで還元剤を加えて液中のテルルを還元析出させる上記[1]〜上記[5]の何れかに記載するテルルの分離回収方法。
〔7〕テルル含有原料がテルル化銅またはテルル還元滓である上記[1]〜上記[6]の何れかに記載するテルルの分離回収方法。
The treatment method of the present invention is a tellurium separation and recovery method having the following constitution.
[1] A step of mixing tellurium-containing raw material with hydrochloric acid to oxidize and leach tellurium in the presence of an oxidizing agent, a step of neutralizing the pH of the leachate containing tellurium to 1.5 to 7.0 to precipitate tellurium, A solution obtained by adding a sulfiding agent to a solution obtained by dissolving the precipitate in an alkali solution to precipitate and separate impurity metals in the solution, making the solution after the solution step strongly acidic, adding a reducing agent and adding a redox potential ( Ag / AgCl electrode) Deselenium process that precipitates and separates selenium in the liquid at 350 mV or higher, tellurium in liquid to reduce the redox potential (Ag / AgCl electrode) to less than 350 mV by adding a reducing agent to the selenium-removed solution A method for separating and recovering tellurium, characterized by comprising a step of reducing and precipitating.
[2] In the oxidation leaching step, tellurium is oxidized and leached by mixing a tellurium-containing raw material with hydrochloric acid to obtain a leaching slurry having an initial concentration of solids of 500 g / L or less and an initial concentration of hydrochloric acid of 4 to 6 mol / L. The method for separating and recovering tellurium according to 1].
[3] In the oxidative leaching step, tellurium as described in [1] or [2] above, wherein an oxidant is added to the leached slurry and the redox potential (Ag / AgCl electrode) is set to 400 to 1100 mV to leached tellurium. Separation and recovery method.
[4] The tellurium separation and recovery method according to any one of [1] to [3] above, wherein hydrochloric acid is added to the solution after the liquid purification step to adjust the pH to −1 to 2 in the deselenization step.
[5] In the de-selenium step, 10 to 300 g / L of a reducing agent is added to the strongly acidic solution after the liquid purification step to adjust the oxidation-reduction potential (Ag / AgCl electrode) of the solution to 350 mV to 360 mV. ] To tellurium separation and recovery method according to any one of [4] above.
[6] In the reduction deposition step of tellurium, the reducing agent is added to the solution after the deselenization step until the oxidation-reduction potential (Ag / AgCl electrode) becomes 300 mV to less than 350 mV to reduce and deposit tellurium in the solution [ [1] A method for separating and recovering tellurium according to any one of [5] above.
[7] The tellurium separation and recovery method according to any one of [1] to [6] above, wherein the tellurium-containing raw material is copper telluride or tellurium reduced soot.

本発明の処理方法は、原料に含まれるテルルを塩酸で酸化浸出するので、浸出時間を大幅に短縮することができる。例えば、従来のアルカリ浸出では16時間〜24時間の浸出時間を要するが、本発明の塩酸酸化浸出の時間は30分〜40分程度で良い。 In the treatment method of the present invention, tellurium contained in the raw material is oxidized and leached with hydrochloric acid, so that the leaching time can be greatly shortened. For example, the conventional alkali leaching requires a leaching time of 16 to 24 hours, but the hydrochloric acid leaching time of the present invention may be about 30 to 40 minutes.

本発明の処理方法は、原料に含まれる銅の浸出率をほぼ100%に高めることができる。また、浸出後に液のpHを1.5〜7.0に調整してテルルを沈澱させるときに、このpH域で銅は沈降せず濾液に残るので、浸出した銅のほぼ全量を濾液から回収することができる。回収した銅は銅製錬工程内で処理することができる。 The treatment method of the present invention can increase the leaching rate of copper contained in the raw material to almost 100%. Also, when tellurium is precipitated by adjusting the pH of the solution to 1.5 to 7.0 after leaching, copper does not settle in this pH range and remains in the filtrate, so almost all of the leached copper is recovered from the filtrate. can do. The recovered copper can be processed in the copper smelting process.

従来のアルカリ浸出では、原料中の銅は水酸化銅を形成して残渣に含まれ、これを濾過して濾液のテルルと分離するが、このアルカリ性スラリーは濾過し難く、テルルの10%以上が銅残渣に取り込まれるので、テルルの回収率が大幅に低下する。一方、本発明の処理方法では、テルルオキシ塩化物を沈澱させて分離する方法であり、このテルルオキシ塩化物は濾過しやすいので処理が容易であり、また不純物金属に対して分離性が良い。 In conventional alkali leaching, copper in the raw material forms copper hydroxide and is contained in the residue, which is filtered and separated from the tellurium of the filtrate, but this alkaline slurry is difficult to filter, and more than 10% of the tellurium Since it is taken up by the copper residue, the tellurium recovery rate is significantly reduced. On the other hand, the treatment method of the present invention is a method in which tellurium oxychloride is precipitated and separated. This tellurium oxychloride is easy to filter and easy to treat, and has good separability against impurity metals.

本発明の処理方法では、塩酸を用いた酸化浸出において、酸化還元電位(ORP)をコントロールしやすく、セレン化物の溶解を抑えられるなどテルル化銅に対する浸出の選択性が良い。また、酸化浸出において少量のセレンや銀が溶出しても、浸出後にスラリーのpHを1.5〜7.0の範囲に調整することによって、このpH域ではテルルが選択的に沈降し、セレンおよび銀は溶液に残るので、テルルをこれら不純物から容易に分離することができる。 In the treatment method of the present invention, in oxidation leaching using hydrochloric acid, the oxidation-reduction potential (ORP) can be easily controlled, and the leaching selectivity to copper telluride is good, for example, the dissolution of selenide can be suppressed. Moreover, even if a small amount of selenium or silver is eluted in the oxidative leaching, by adjusting the pH of the slurry to 1.5 to 7.0 after leaching, tellurium selectively settles in this pH range, And since silver remains in solution, tellurium can be easily separated from these impurities.

本発明の処理方法の概略工程図。The schematic process drawing of the processing method of the present invention. pHとテルルイオン濃度の関係を示すグラフ。The graph which shows the relationship between pH and tellurium ion concentration. pHとヒ素、セレン、銀、銅の溶解量の関係を示すグラフ。The graph which shows the relationship between pH and the dissolution amount of arsenic, selenium, silver, and copper. 実施例2の中和澱物のXRD回折チャート。3 is an XRD diffraction chart of the neutralized starch of Example 2. FIG.

以下、本発明を実施形態に基づいて具体的に説明する。本発明のテルル分離回収方法の処理工程を図1に示す。なお、以下の説明において%は質量%である。酸化還元電位はAg/AgCl電極基準である。 Hereinafter, the present invention will be specifically described based on embodiments. The processing steps of the tellurium separation and recovery method of the present invention are shown in FIG. In the following description,% is mass%. The redox potential is based on the Ag / AgCl electrode.

本発明の処理方法は、テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出する工程、テルルを含む浸出液のpHを1.5〜7.0に中和してテルルを沈殿させる工程、この沈殿物をアルカリ溶解した溶液に硫化剤を添加して液中の不純物金属を沈殿させて分離する浄液工程、浄液工程後の溶液を強酸性にし、還元剤を加えて酸化還元電位350mV以上で液中のセレンを沈澱させて分離する脱セレン工程、セレンを除去した溶液に還元剤を加えて酸化還元電位350mV未満にして液中のテルルを還元析出させる工程を有することを特徴とするテルルの分離回収方法である。 The treatment method of the present invention comprises a step of mixing tellurium-containing raw material with hydrochloric acid and oxidizing and leaching tellurium in the presence of an oxidizing agent, and neutralizing the pH of the leachate containing tellurium to 1.5 to 7.0 to obtain tellurium. Precipitation step, a purification step of adding a sulfiding agent to a solution in which the precipitate is dissolved in an alkali to precipitate and separate impurity metals in the solution, making the solution after the purification step strong acid, adding a reducing agent A de-selenium step of precipitating and separating selenium in the liquid at a redox potential of 350 mV or more, and a step of reducing and precipitating tellurium in the liquid to a redox potential of less than 350 mV by adding a reducing agent to the solution from which selenium has been removed. This is a method for separating and recovering tellurium.

テルル含有原料として、例えば、テルル化銅やテルル還元滓が用いられる。テルル化銅は銅の電解精製の副産物として得られ、テルルと銅をおのおの約50%含有している。また、テルル還元滓は湿式貴金属回収工程の副産物として得られ、主成分のテルルの他に、セレン、銅、ヒ素、銀を数%含有している。 As the tellurium-containing raw material, for example, copper telluride or tellurium reducing soot is used. Copper telluride is obtained as a byproduct of the electrolytic refining of copper and contains about 50% tellurium and copper each. Further, tellurium reduced soot is obtained as a by-product of the wet noble metal recovery step, and contains several percent of selenium, copper, arsenic and silver in addition to the main component tellurium.

〔テルル浸出工程〕
テルル含有原料を塩酸に混合してスラリーにし、このスラリーに酸化剤を添加してテルルを酸化浸出する。テルル含有原料としてテルル化銅などを用いた場合には、この塩酸酸化浸出によって原料中のテルルと銅はほぼ全量が浸出される。
[Tellurium leaching process]
A tellurium-containing raw material is mixed with hydrochloric acid to form a slurry, and an oxidizing agent is added to the slurry to oxidize and leach tellurium. When copper telluride or the like is used as the tellurium-containing raw material, almost all of tellurium and copper in the raw material are leached by this hydrochloric acid leaching.

スラリーの初期固形分濃度(浸出工程での固形分濃度)は500g/L以下が好ましい。初期固形分濃度が500g/Lより高いと固形分が多すぎて安定に酸化浸出が進まない。初期固形分濃度は100g/L〜300g/Lがより好ましい。 The initial solid content concentration (solid content concentration in the leaching process) of the slurry is preferably 500 g / L or less. When the initial solid content concentration is higher than 500 g / L, there is too much solid content, and oxidation leaching does not proceed stably. The initial solid content concentration is more preferably 100 g / L to 300 g / L.

スラリーの初期塩酸濃度(浸出工程での塩酸濃度)は4モル/L〜6モル/Lが好ましい。初期塩酸濃度が4モル/Lより低いと、スラリー濃度が300g/Lに近いときにテルルの浸出が不十分になる可能性がある。一方、初期塩酸濃度が6モル/Lを上回ると、浸出後のフリーの塩酸濃度が高くなり、中和に必要な中和剤の消費量が多くなる。 The initial hydrochloric acid concentration (hydrochloric acid concentration in the leaching step) of the slurry is preferably 4 mol / L to 6 mol / L. If the initial hydrochloric acid concentration is lower than 4 mol / L, tellurium leaching may be insufficient when the slurry concentration is close to 300 g / L. On the other hand, when the initial hydrochloric acid concentration exceeds 6 mol / L, the concentration of free hydrochloric acid after leaching increases, and the consumption of the neutralizing agent necessary for neutralization increases.

酸化剤として、過酸化水素(H22)、塩素酸ソーダ(NaClO3)などを用いることができる。酸化剤の添加量は、酸化還元電位(ORP)が400〜1100mV(Ag/AgCl電極)になる範囲が好ましい。ORPが400mV未満ではテルルの酸化浸出が十分でなく、1100mVより高いと酸化剤の消費が増大し、またセレンの酸化溶解が大きくなる。 As an oxidizing agent, hydrogen peroxide (H 2 O 2 ), sodium chlorate (NaClO 3 ), or the like can be used. The addition amount of the oxidizing agent is preferably in a range where the oxidation-reduction potential (ORP) is 400 to 1100 mV (Ag / AgCl electrode). If the ORP is less than 400 mV, the tellurium is not sufficiently oxidized and leached.

浸出スラリーの温度は60℃〜90℃が好ましい。スラリーの固形分濃度および塩酸濃度が上記範囲であると、その酸化反応熱で上記温度範囲を維持することができる。なお、浸出条件の変化に対応できるように、リアクタに加熱手段や冷却機構を備えると良い。 The temperature of the leaching slurry is preferably 60 ° C to 90 ° C. When the solid content concentration and hydrochloric acid concentration of the slurry are in the above ranges, the above temperature range can be maintained by the heat of oxidation reaction. Note that the reactor may be provided with a heating means and a cooling mechanism so as to cope with changes in the leaching conditions.

上記酸化浸出条件において、浸出時間は30分〜2時間程度である。酸化剤の添加速度やリアクタによる放熱ないし冷却能力によって浸出時間は異なるので、これらを考慮して浸漬時間を定めると良い。 In the above oxidative leaching conditions, the leaching time is about 30 minutes to 2 hours. The leaching time varies depending on the rate of addition of the oxidant and the heat radiation or cooling ability of the reactor, so it is preferable to determine the immersing time in consideration of these.

〔テルル沈澱化(中和)工程〕
テルルを含む浸出液に苛性ソーダなどのアルカリを加えて浸出液のpHを1.5〜7.0に中和し、液中のテルルを沈澱させる。Te−HCl−NaOH系において、pHを変化させたときのテルル溶解度変化を図2に示す。図示するように、pH約1.5〜約7.0の範囲でテルルの溶解度は低いのでテルルが沈殿する。pHが1.5未満の範囲またはpH7.0を超える範囲ではテルルの溶解性が高くなり、沈殿形成が不十分になる。
[Tellurium precipitation (neutralization) process]
An alkali such as caustic soda is added to the leachate containing tellurium to neutralize the pH of the leachate to 1.5 to 7.0, thereby precipitating tellurium in the liquor. In the Te-HCl-NaOH system, the change in tellurium solubility when the pH is changed is shown in FIG. As shown in the figure, tellurium precipitates because the solubility of tellurium is low in the range of about pH 1.5 to about 7.0. When the pH is less than 1.5 or more than pH 7.0, tellurium has a high solubility, resulting in insufficient precipitation.

この中和処理によって、液中のテルルは、例えば次式[1]のようにテルルオキシ塩化物(Te6O11Cl2)を形成して沈澱する。
6H2TeCl6 + 34NaOH → Te6O11Cl2↓ + 34NaCl + 23H2O……[1]
By this neutralization treatment, tellurium in the liquid is precipitated by forming tellurium oxychloride (Te 6 O 11 Cl 2 ), for example, as shown in the following formula [1].
6H 2 TeCl 6 + 34NaOH → Te 6 O 11 Cl 2 ↓ + 34NaCl + 23H 2 O …… [1]

テルル化銅やテルル還元滓を浸出したスラリーにはテルルと共に銅、ヒ素、セレン、銀などが含まれている。浸出液のpH変化によるこれら金属イオン濃度の変化を図3に示す。図示するように、セレンおよびヒ素はpH2.5以上になると沈殿しやすくなるので、テルルに対するセレンおよびヒ素の分離効果を高めるには、pH1.5〜2.5に中和するとよい。
一方、液中の銅および銀はpH2.5以上でも液中に残るので、浸出スラリーのpHを1.5〜7.0に中和することによって、テルルを選択的に沈殿させて液中の銅および銀と分離することができる。
The slurry leached with copper telluride or tellurium reducing soot contains copper, arsenic, selenium, silver and the like together with tellurium. FIG. 3 shows changes in these metal ion concentrations due to changes in the pH of the leachate. As shown in the figure, selenium and arsenic are likely to precipitate when the pH is 2.5 or higher. Therefore, in order to enhance the effect of separating selenium and arsenic from tellurium, neutralization to pH 1.5 to 2.5 is preferable.
On the other hand, since copper and silver in the liquid remain in the liquid even at a pH of 2.5 or higher, neutralizing the pH of the leaching slurry to 1.5 to 7.0 selectively precipitates tellurium and Can be separated from copper and silver.

処理温度は室温より高い方が、オキシ塩化テルル沈殿のろ過性が増すので望ましい。pH調整後に数時間〜一晩静置すると良い。また、塩酸酸化浸出直後のスラリー温度が常温より高いうちに、中和処理を開始すると再加熱に必要な手間が省けるので好ましい。 A treatment temperature higher than room temperature is desirable because the filterability of the tellurium oxychloride precipitate is increased. It is good to leave it for several hours to overnight after pH adjustment. Moreover, it is preferable to start the neutralization treatment while the slurry temperature immediately after the hydrochloric acid oxidation leaching is higher than the room temperature, because the labor required for reheating can be saved.

銅の大部分は濾液に含まれるので、濾液の後処理で回収することができる。一方、オキシ塩化テルル沈殿に取り込まれる銅の量は僅かなので、テルル沈殿の後処理で発生する銅滓の発生量は従来の処理方法の約1/10まで低減し、銅滓に取り込まれるテルルの損失量も大幅に低下する。 Since most of the copper is contained in the filtrate, it can be recovered by post-treatment of the filtrate. On the other hand, since the amount of copper incorporated into the tellurium oxychloride precipitate is small, the amount of copper soot generated in the post-treatment of tellurium precipitation is reduced to about 1/10 of the conventional treatment method, and the amount of tellurium incorporated into the copper soot is reduced. The amount of loss is also greatly reduced.

〔固液分離工程〕
テルルオキシ塩化物沈澱を濾過して回収する。大部分の銅、セレン、ヒ素、銀などは沈澱せずに濾液に含まれるので、テルルとこれらの不純物金属を固液分離することができる。テルルオキシ塩化物沈澱は水酸化銅などのアルカリ性スラリーに比べて濾過性が良いので、テルルと上記不純物金属との分離性が良い。例えば、テルルオキシ塩化物沈澱を十分に濾過すればテルルの濾液への移行率を1%以下に抑えることができる。
[Solid-liquid separation process]
The tellurium oxychloride precipitate is recovered by filtration. Most of copper, selenium, arsenic, silver and the like are contained in the filtrate without being precipitated, so that tellurium and these impurity metals can be separated into solid and liquid. Tellurium oxychloride precipitates have better filterability than alkaline slurries such as copper hydroxide, so that separation between tellurium and the above impurity metals is good. For example, if the tellurium oxychloride precipitate is sufficiently filtered, the transfer rate of tellurium to the filtrate can be suppressed to 1% or less.

テルルオキシ塩化物を分離した濾液には、炭酸カルシウムなどを添加して不純物金属を沈澱させる。この排水処理によって、例えば液中の銅は次式[2]のように水酸化銅を形成して沈澱するので、これを濾過して除去する。
CuCl2+CaCO3+H2O→Cu(OH)2↓+CaCl2+CO2 ……[2]
To the filtrate from which the tellurium oxychloride has been separated, calcium carbonate or the like is added to precipitate the impurity metal. By this waste water treatment, for example, copper in the liquid is precipitated by forming copper hydroxide as shown in the following formula [2], which is removed by filtration.
CuCl 2 + CaCO 3 + H 2 O → Cu (OH) 2 ↓ + CaCl 2 + CO 2 …… [2]

〔テルル回収工程〕
回収したテルルオキシ塩化物沈澱から、例えば以下の処理工程によって、金属テルルを回収することができる。
テルルオキシ塩化物沈澱をアルカリ溶解して残渣を分離し(アルカリ溶解処理)、このアルカリ溶解液に硫化剤を添加して液中の不純物金属を沈澱させて分離し(硫化浄液処理)、この浄液処理したアルカリ溶解液を強酸性にして還元剤を加え、酸化還元電位350mV以上で液中のセレンを沈澱させて分離し(脱セレン還元処理)、セレンを除去した溶液に還元剤を加え、酸化還元電位350mV未満で液中のテルルを還元析出させて金属テルルを回収する(テルル還元処理)。
[Tellurium recovery process]
Metal tellurium can be recovered from the recovered tellurium oxychloride precipitate, for example, by the following processing steps.
Dissolve the tellurium oxychloride precipitate in an alkali to separate the residue ( alkali dissolution treatment ), add a sulfiding agent to the alkaline solution to precipitate and separate the impurity metal in the solution ( sulfurized and purified liquid treatment ). Add the reducing agent by making the alkaline solution treated with liquid strong acid, add selenium in the solution at a redox potential of 350 mV or more to separate it ( deselenium reduction treatment ), add the reducing agent to the solution from which selenium has been removed, Metal tellurium is recovered by reducing and precipitating tellurium in the liquid at an oxidation-reduction potential of less than 350 mV ( tellurium reduction treatment ).

アルカリ溶解処理
テルルオキシ塩化物沈澱を苛性ソーダで溶解する。沈澱に少量含まれる銅、銀などは溶解せずに固形分として残る。液温は室温〜60℃程度で良く、溶液のpHは10〜13程度が好ましい。pH10未満ではテルルオキシ塩化物の溶解が不十分であり、pH13より高いと沈澱に含まれる銅などの重金属の溶出が進むので好ましくない。
Alkaline dissolution treatment Tellurium oxychloride precipitate is dissolved in caustic soda. Copper, silver, etc. contained in a small amount in the precipitate remain as solids without dissolving. The liquid temperature may be about room temperature to about 60 ° C., and the pH of the solution is preferably about 10 to 13. When the pH is less than 10, the dissolution of tellurium oxychloride is insufficient. When the pH is higher than 13, the elution of heavy metals such as copper contained in the precipitate proceeds, which is not preferable.

硫化浄液処理
上記アルカリ溶解液に水硫化ソーダ(NaHS)などの硫化剤を添加して液中の不純物金属を沈澱させて分離する。液中の銅、鉛、鉄、銀などの不純物金属はpH10〜13の液性下で硫化物を形成して沈澱するので、これを濾過してこれらの不純物金属を分離することができる。
Sulfurized liquid treatment A sulfurizing agent such as sodium hydrosulfide (NaHS) is added to the alkaline solution to precipitate and separate impurity metals in the liquid. Impurity metals such as copper, lead, iron, and silver in the liquid form a sulfide under the pH of 10 to 13 and precipitate, and can be filtered to separate these impurity metals.

脱セレン還元処理
浄液処理したアルカリ溶解液に酸を加えて強酸性にする。例えば、アルカリ溶解液に塩酸を加えて溶液のpHを−1から2の強酸性にする。
Deselenium reduction treatment An acid is added to the alkali solution that has been subjected to the purification treatment to make it strongly acidic. For example, hydrochloric acid is added to the alkaline solution to make the solution pH strongly acidic from −1 to 2.

この強酸性液に還元剤(NaHSO3等)を加え、酸化還元電位350mV以上、好ましくは350mV〜360mVにして液中のセレンを還元し析出させる。このセレン沈殿物を濾過して回収する。液中にはテルルが残る。
還元剤の濃度は10〜300g/L(セレンに対して0.05〜1.5グラム当量/L)が好ましい。還元剤の濃度が10g/Lより低いと添加量が多くなり好ましくない。一方、還元剤の濃度が300g/Lより高いと、添加した還元剤の周囲の酸化還元電位が局所的に350mV未満に低下し、セレンと共にテルルが還元析出するようになり、セレン沈殿物に取り込まれるテルルのロスが多くなるので好ましくない。
A reducing agent (NaHSO 3 or the like) is added to the strongly acidic liquid to reduce and precipitate selenium in the liquid at an oxidation-reduction potential of 350 mV or higher, preferably 350 mV to 360 mV. The selenium precipitate is collected by filtration. Tellurium remains in the liquid.
The concentration of the reducing agent is preferably 10 to 300 g / L (0.05 to 1.5 gram equivalent / L with respect to selenium). If the concentration of the reducing agent is lower than 10 g / L, the amount added is not preferable. On the other hand, when the concentration of the reducing agent is higher than 300 g / L, the oxidation-reduction potential around the added reducing agent is locally reduced to less than 350 mV, and tellurium is reduced and precipitated together with selenium, and is taken into the selenium precipitate. This is not preferable because the loss of tellurium increases.

テルル還元処理
セレンを除去した溶液に還元剤(NaHSO3等)を加え、酸化還元電位350mV未満、好ましくは300mV〜350mV未満にして液中のテルルを還元し析出させる。このテルル沈殿物を濾過して回収する。回収したテルル沈殿物を温水洗浄し、脱水乾燥して3N純度の金属テルルを得ることができる。酸化還元電位が350mVより高いとテルルが析出しない。
Tellurium reduction treatment <br/> solution to the reducing agent to remove selenium (NaHSO 3, etc.) is added, than the redox potential 350 mV, is preferably reduced tellurium in the liquid be less than 300mV~350mV precipitation. The tellurium precipitate is collected by filtration. The recovered tellurium precipitate can be washed with warm water, dehydrated and dried to obtain metal tellurium with 3N purity. If the redox potential is higher than 350 mV, tellurium does not precipitate.

以下、本発明の実施例を示す。テルル、セレン、銅の濃度はICP-AESを用いて測定した。酸化還元電位はAg/AgCl電極基準である。 Examples of the present invention will be described below. The concentrations of tellurium, selenium and copper were measured using ICP-AES. The redox potential is based on the Ag / AgCl electrode.

〔実施例1〕
テルル含有固体(Te 40%)乾燥重量700gを、2Lの塩酸性水溶液(HCl 6mol)と混合してスラリーにし、40℃まで加熱した。次に、スラリー温度と酸化還元電位を監視しながら、過酸化水素液(H2O235%濃度)約1L(CuとTeの酸化に必要な量の1.2倍当量)を加えた。スラリーの酸化還元電位は600〜1000mV(対Ag/AgCl電極)まで上昇し、スラリー温度は最高80℃に達してから下がり始めた。次いで、このスラリーを攪拌しながら、pH0.5〜9.0になるまで苛性ソーダ液(NaOH48%濃度)を加え、約1時間攪拌し続け、テルル沈澱を生成させた。この沈殿を固液分離して回収した。回収した沈殿量に基づいてテルルの回収率を求めた。この結果を表1に示す。
[Example 1]
A tellurium-containing solid (Te 40%) dry weight of 700 g was mixed with 2 L of a hydrochloric acid aqueous solution (HCl 6 mol) to form a slurry and heated to 40 ° C. Next, while monitoring the slurry temperature and oxidation-reduction potential, about 1 L of hydrogen peroxide solution (35% concentration of H 2 O 2 ) (1.2 times equivalent to the amount required for oxidation of Cu and Te) was added. The oxidation-reduction potential of the slurry increased to 600 to 1000 mV (vs. Ag / AgCl electrode), and the slurry temperature began to decrease after reaching a maximum of 80 ° C. Next, while this slurry was stirred, caustic soda solution (NaOH 48% concentration) was added until the pH reached 0.5 to 9.0, and stirring was continued for about 1 hour to produce tellurium precipitation. This precipitate was collected by solid-liquid separation. The tellurium recovery rate was determined based on the recovered precipitation. The results are shown in Table 1.

表1に示すように、スラリーのpH1.5〜7.0の範囲でテルルの回収率は95%以上である。一方、スラリーのpH1.5未満、またはpH8.0以上の範囲ではテルルの回収率は急激に低下する。 As shown in Table 1, the tellurium recovery rate is 95% or more in the pH range of the slurry from 1.5 to 7.0. On the other hand, when the slurry has a pH of less than 1.5 or a pH of 8.0 or more, the tellurium recovery rate decreases rapidly.

Figure 2015113267
Figure 2015113267

〔実施例2〕
テルル化銅(Te44%、Cu40%、Se0.3%)乾燥重量660gを、2Lの塩酸性水溶液(HCl 6mol)と混合してスラリーにし、40℃まで加熱した。次に、スラリー温度と酸化還元電位を監視しながら、過酸化水素液(H2O235%濃度)約1L(CuとTeの酸化に必要な量の1.2倍当量)を加えた。スラリーの酸化還元電位は640mV(対Ag/AgCl電極)まで上昇し、スラリー温度は最高80℃に達してから下がり始めた。次いで、このスラリーを攪拌しながら、pH2.0になるまで苛性ソーダ液(NaOH48%濃度)約90mlを加え、約1時間攪拌し続け、沈澱を生成させた。攪拌終了時のスラリー温度は約50℃であった。静置4時間後のスラリー温度は30℃まで低下し、吸引ろ過機を使って固液分離を行った。
乾燥重量450gの沈殿物を回収し、2.9Lの濾液を回収した。
濾液中のテルル濃度および銅濃度、沈殿物中のテルル濃度および銅濃度を測定した。この結果を表2に示す。
[Example 2]
Copper telluride (Te44%, Cu40%, Se0.3%) dry weight of 660 g was mixed with 2 L hydrochloric acid aqueous solution (HCl 6 mol) to make a slurry and heated to 40 ° C. Next, while monitoring the slurry temperature and oxidation-reduction potential, about 1 L of hydrogen peroxide solution (35% concentration of H 2 O 2 ) (1.2 times equivalent to the amount required for oxidation of Cu and Te) was added. The oxidation-reduction potential of the slurry increased to 640 mV (vs. Ag / AgCl electrode), and the slurry temperature began to decrease after reaching a maximum of 80 ° C. Next, while stirring this slurry, about 90 ml of caustic soda solution (NaOH 48% concentration) was added until pH 2.0, and stirring was continued for about 1 hour to form a precipitate. The slurry temperature at the end of stirring was about 50 ° C. The slurry temperature after standing for 4 hours was lowered to 30 ° C., and solid-liquid separation was performed using a suction filter.
A precipitate having a dry weight of 450 g was recovered, and a 2.9 L filtrate was recovered.
Tellurium concentration and copper concentration in the filtrate, tellurium concentration and copper concentration in the precipitate were measured. The results are shown in Table 2.

表2に示すように、原料中の銅の90%以上が濾液に残り、一方、テルルの98.5%が沈澱物中に含まれており、スラリーpH2.0になるように中和処理することによってテルルと銅の分離性が高い結果が得られた。 As shown in Table 2, 90% or more of the copper in the raw material remains in the filtrate, while 98.5% of tellurium is contained in the precipitate and is neutralized so that the slurry has a pH of 2.0. As a result, the result of high separation between tellurium and copper was obtained.

Figure 2015113267
Figure 2015113267

実施例2で回収した中和澱物のXRD回折チャートを図4に示す。図示するように、この沈澱はテルルオキシ塩化物(Te6O11Cl2)と一致するピークを有しており、テルルはテルルオキシ塩化物を形成していることが判る。また澱物中の銅は塩化銅(CuCl2)と一致するピークを有しているが、その強度は低く、表2に示すように大部分の銅は濾液に含まれている。 An XRD diffraction chart of the neutralized starch recovered in Example 2 is shown in FIG. As shown, this precipitate has a peak consistent with tellurium oxychloride (Te 6 O 11 Cl 2 ), indicating that tellurium forms tellurium oxychloride. Further, copper in the starch has a peak corresponding to copper chloride (CuCl 2 ), but its strength is low, and most of the copper is contained in the filtrate as shown in Table 2.

〔実施例3〕
実施例2の中和澱物(テルルオキシ塩化物)750g(水分率40%)を苛性ソーダ液(20%濃度、2.4L)に溶解させた。このテルル溶解液(2.35L、Te:121g/L、 Cu:50ppm)と銅残渣(7.5gdry、Cu含有率60%、Te含有率6%)とを濾別した。この結果より、テルル化銅中のテルル量100%に対し、97.5%以上のテルルが溶出してアルカリ溶解液に移行した。
Example 3
750 g (water content 40%) of the neutralized starch (tellurium oxychloride) of Example 2 was dissolved in a caustic soda solution (20% concentration, 2.4 L). This tellurium solution (2.35 L, Te: 121 g / L, Cu: 50 ppm) and copper residue (7.5 g dry, Cu content 60%, Te content 6%) were separated by filtration. From this result, 97.5% or more of tellurium eluted with respect to 100% of tellurium in copper telluride and transferred to an alkali solution.

〔実施例4〕
実施例3のアルカリ溶解液(2.35L)に水硫化ソーダ(NaHS)を添加して生じた沈澱を濾過分離した。この濾液(2.3L)に塩酸を添加して強酸性(pH=0)にし、さらに濃度10g/L〜300g/Lの亜硫酸水素ナトリウム(NaHSO3)液を用い、表3に示す量を添加して酸化還元電位360mVでセレンを還元析出させた。これを濾過分離してセレンの回収量およびテルル含有量を調べた。この結果を表3に示す。
Example 4
A precipitate formed by adding sodium hydrosulfide (NaHS) to the alkali solution (2.35 L) of Example 3 was separated by filtration. Hydrochloric acid was added to the filtrate (2.3 L) to make it strongly acidic (pH = 0). Further, using sodium hydrogen sulfite (NaHSO 3 ) solution having a concentration of 10 g / L to 300 g / L, the amounts shown in Table 3 were added. Then, selenium was reduced and precipitated at an oxidation-reduction potential of 360 mV. This was separated by filtration, and the recovered amount of selenium and the tellurium content were examined. The results are shown in Table 3.

表3に示すように、濃度10g/L〜300g/Lの亜硫酸水素ナトリウムを使用した試料No.2〜4では析出したセレン沈殿物に取り込まれるテルル量は1.7g〜12gであるが、濃度340g/L、400g/Lの亜硫酸水素ナトリウムを使用した試料No.5〜6ではセレン沈殿物に取り込まれるテルル量は27g〜50gであり、格段に多くなる。 As shown in Table 3, in sample Nos. 2 to 4 using sodium hydrogen sulfite having a concentration of 10 g / L to 300 g / L, the amount of tellurium incorporated into the precipitated selenium precipitate is 1.7 g to 12 g. In sample Nos. 5 to 6 using sodium hydrogen sulfite of 340 g / L and 400 g / L, the amount of tellurium incorporated into the selenium precipitate is 27 to 50 g, which is remarkably increased.

Figure 2015113267
Figure 2015113267

〔実施例5〕
実施例3のアルカリ溶解液(2.35L)に水硫化ソーダ(NaHS)を添加して生じた沈澱を濾過分離した。この濾液(2.3L)に塩酸を添加して強酸性, pHを0にし、さらに濃度300g/Lの亜硫酸水素ナトリウム(NaHSO3)液を用い、表4に示す量の亜硫酸水素ナトリウムを添加して酸化還元電位340mV〜365mVでセレンを還元析出させた。これを濾過分離してセレンの回収量およびテルル含有量を調べた。この結果を表4に示す。
試料11,12に示すように、酸化還元電位が350mVより低いと析出したセレン沈殿物中のテルル含有量が多くなる。
Example 5
A precipitate formed by adding sodium hydrosulfide (NaHS) to the alkali solution (2.35 L) of Example 3 was separated by filtration. Hydrochloric acid was added to the filtrate (2.3 L) to make it strongly acidic, pH was set to 0, and sodium hydrogen sulfite (NaHSO 3 ) solution having a concentration of 300 g / L was added, and the amount of sodium bisulfite shown in Table 4 was added. Selenium was reduced and precipitated at an oxidation-reduction potential of 340 mV to 365 mV. This was separated by filtration, and the recovered amount of selenium and the tellurium content were examined. The results are shown in Table 4.
As shown in Samples 11 and 12, when the oxidation-reduction potential is lower than 350 mV, the tellurium content in the deposited selenium precipitate increases.

Figure 2015113267
Figure 2015113267

〔実施例6〕
実施例4の試料No.3について、セレンを濾過分離した濾液(強酸性)の亜硫酸水素ナトリウム(NaHSO3)を添加し、酸化還元電位300mV〜355mVでテルルを還元析出させた。このテルル沈殿物を固液分離し、温水洗浄、脱水乾燥して金属テルルを回収した。テルルの回収量を表5に示した。このように、酸化還元電位が350mVより高いとテルルを十分に還元出来ない。
Example 6
For sample No. 3 of Example 4, sodium hydrogen sulfite (NaHSO 3 ) in a filtrate (strongly acidic) from which selenium was separated by filtration was added, and tellurium was reduced and precipitated at a redox potential of 300 mV to 355 mV. The tellurium precipitate was separated into solid and liquid, washed with warm water, dehydrated and dried to recover metal tellurium. The recovered amount of tellurium is shown in Table 5. Thus, if the redox potential is higher than 350 mV, tellurium cannot be reduced sufficiently.

Figure 2015113267
Figure 2015113267

〔実施例7〕
テルル還元滓(Te93%、Se3.8%)乾燥重量200gを、2Lの塩酸性水溶液(HCl4モル)と混合してスラリーにし、40℃まで加熱した。次に、スラリー温度と酸化還元電位を見ながら、過酸化水素液(H2O235%濃度)約240cc(Teの酸化に必要な量の1.2倍当量)を加えた。液の酸化還元電位は700mV(対Ag/AgCl電極)まで上昇し、スラリー温度は最高70℃に達してから下がり始めた。次いで、このスラリーを攪拌しながら、pH2.0になるまで苛性ソーダを加え、約1時間攪拌し続け、中和澱物を生成させた。静置4時間後のスラリーを固液分離し、中和後の濾液と中和澱物を得た(表6)。表6に示すように、原料中セレンの約68%、テルルの98%以上が中和澱物中に存在することが分かる。次に、中和澱物をNaOH水溶液と混合し、オキシ塩化テルルを溶解させた。このアルカリ性溶解液のテルル濃度は121g/L(原料中テルルに対し97.5%)であり、セレン濃度は63ppm(原料中セレンに対し1.3%)であった。
Example 7
Tellurium reduced soot (Te 93%, Se 3.8%) 200 g dry weight was mixed with 2 L hydrochloric acid aqueous solution (HCl 4 mol) to make a slurry and heated to 40 ° C. Next, while observing the slurry temperature and oxidation-reduction potential, about 240 cc of hydrogen peroxide solution (35% concentration of H 2 O 2 ) (1.2 times equivalent to the amount required for Te oxidation) was added. The oxidation-reduction potential of the liquid increased to 700 mV (vs. Ag / AgCl electrode), and the slurry temperature began to decrease after reaching a maximum of 70 ° C. Next, while stirring the slurry, caustic soda was added until the pH reached 2.0, and stirring was continued for about 1 hour to produce a neutralized starch. The slurry after standing for 4 hours was subjected to solid-liquid separation to obtain a neutralized filtrate and neutralized starch (Table 6). As shown in Table 6, it can be seen that about 68% of selenium in the raw material and 98% or more of tellurium are present in the neutralized starch. Next, the neutralized starch was mixed with an aqueous NaOH solution to dissolve tellurium oxychloride. The tellurium concentration of this alkaline solution was 121 g / L (97.5% with respect to tellurium in the raw material), and the selenium concentration was 63 ppm (1.3% with respect to selenium in the raw material).

Figure 2015113267
Figure 2015113267

〔実施例8〕
実施例7のアルカリ溶解液(1.5L)に水硫化ソーダ(NaHS)を添加して生じた沈澱を濾過し、この濾液(2L)に塩酸を添加して強酸性(pH=0)にし、さらに亜硫酸水素ナトリウム(NaHSO3)液を添加して酸化還元電位360mVでセレンを還元析出させ、これを濾過分離してセレン7.6gを回収した。
一方、セレンを分離した濾液に(2L)に塩酸を添加して強酸性(pH=0)にし、さらに亜硫酸水素ナトリウム(NaHSO3)液を添加して酸化還元電位300mVでテルルを還元析出させ、これを濾過分離して3Nテルル186gを回収した。
Example 8
The precipitate formed by adding sodium hydrosulfide (NaHS) to the alkaline solution (1.5 L) of Example 7 was filtered, and hydrochloric acid was added to the filtrate (2 L) to make it strongly acidic (pH = 0). Sodium bisulfite (NaHSO 3 ) solution was added and selenium was reduced and precipitated at an oxidation-reduction potential of 360 mV, which was separated by filtration to recover 7.6 g of selenium.
On the other hand, hydrochloric acid is added to (2 L) to the filtrate from which selenium has been separated to make it strongly acidic (pH = 0), and further sodium bisulfite (NaHSO 3 ) solution is added to reduce and tellurium at a redox potential of 300 mV. This was separated by filtration to recover 186 g of 3N tellurium.

Claims (7)

テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出する工程、テルルを含む浸出液のpHを1.5〜7.0に中和してテルルを沈殿させる工程、この沈殿物をアルカリ溶解した溶液に硫化剤を添加して液中の不純物金属を沈殿させて分離する浄液工程、浄液工程後の溶液を強酸性にし、還元剤を加えて酸化還元電位(Ag/AgCl電極)350mV以上で液中のセレンを沈澱させて分離する脱セレン工程、セレンを除去した溶液に還元剤を加えて酸化還元電位350mV未満にして液中のテルルを還元析出させる工程を有することを特徴とするテルルの分離回収方法。
A step of mixing tellurium-containing raw material with hydrochloric acid to oxidize and leach tellurium in the presence of an oxidizing agent; a step of neutralizing the pH of the leachate containing tellurium to 1.5 to 7.0 to precipitate tellurium; The solution in which the solution is alkali-dissolved is added with a sulfidizing agent to precipitate and separate the impurity metals in the solution, and the solution after the solution is made strongly acidic, and the reducing agent is added to the redox potential (Ag / AgCl Electrode) having a de-selenium step of precipitating and separating selenium in the liquid at 350 mV or more, and adding a reducing agent to the solution from which the selenium has been removed to reduce the oxidation-reduction potential to less than 350 mV and reducing and depositing tellurium in the solution. A method for separating and recovering tellurium.
酸化浸出工程において、テルル含有原料を塩酸に混合して、固形分の初期濃度500g/L以下および塩酸の初期濃度4〜6モル/Lの浸出スラリーにしてテルルを酸化浸出させる請求項1に記載するテルルの分離回収方法。 The tellurium-containing raw material is mixed with hydrochloric acid in the oxidative leaching step, and tellurium is oxidatively leached into a leaching slurry having an initial concentration of solids of 500 g / L or less and an initial concentration of hydrochloric acid of 4 to 6 mol / L. How to separate and recover tellurium. 酸化浸出工程において、浸出スラリーに酸化剤を添加して酸化還元電位(Ag/AgCl電極)を400〜1100mVにしてテルルを浸出させる請求項1または請求項2に記載するテルルの分離回収方法。 The method for separating and recovering tellurium according to claim 1 or 2, wherein, in the oxidative leaching step, tellurium is leached by adding an oxidizing agent to the leaching slurry and setting the redox potential (Ag / AgCl electrode) to 400 to 1100 mV. 脱セレン工程において、浄液工程後の溶液に塩酸を加えてpHを−1〜2にする請求項1〜請求項3の何れかに記載するテルルの分離回収方法。 The method for separating and recovering tellurium according to any one of claims 1 to 3, wherein hydrochloric acid is added to the solution after the liquid purification step to bring the pH to -1 to 2 in the deselenization step. 脱セレン工程において、浄液工程後の強酸性溶液に、10〜300g/Lの還元剤を加えて溶液の酸化還元電位(Ag/AgCl電極)を350mV〜360mVに調整する請求項1〜請求項4の何れかに記載するテルルの分離回収方法。 In the de-selenium step, 10 to 300 g / L of a reducing agent is added to the strongly acidic solution after the liquid purification step to adjust the redox potential (Ag / AgCl electrode) of the solution to 350 mV to 360 mV. 4. The tellurium separation and recovery method according to any one of 4 above. テルルの還元析出工程において、脱セレン工程後の溶液に、酸化還元電位(Ag/AgCl電極)が300mV〜350mV未満になるまで還元剤を加えて液中のテルルを還元析出させる請求項1〜請求項5の何れかに記載するテルルの分離回収方法。 In the reduction deposition step of tellurium, a reducing agent is added to the solution after the de-selenium step until the oxidation-reduction potential (Ag / AgCl electrode) becomes 300 mV to less than 350 mV to reduce and deposit tellurium in the solution. Item 6. The tellurium separation and recovery method according to any one of Items 5 to 6. テルル含有原料がテルル化銅またはテルル還元滓である請求項1〜請求項6の何れかに記載するテルルの分離回収方法。 The tellurium-containing raw material is copper telluride or tellurium reducing soot, The tellurium separation and recovery method according to any one of claims 1 to 6.
JP2013258231A 2013-12-13 2013-12-13 Tellurium separation and recovery method Active JP6304530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258231A JP6304530B2 (en) 2013-12-13 2013-12-13 Tellurium separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258231A JP6304530B2 (en) 2013-12-13 2013-12-13 Tellurium separation and recovery method

Publications (2)

Publication Number Publication Date
JP2015113267A true JP2015113267A (en) 2015-06-22
JP6304530B2 JP6304530B2 (en) 2018-04-04

Family

ID=53527408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258231A Active JP6304530B2 (en) 2013-12-13 2013-12-13 Tellurium separation and recovery method

Country Status (1)

Country Link
JP (1) JP6304530B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236362A (en) * 2015-09-08 2016-01-13 云南铜业股份有限公司 Method of separating and purifying Se and Te from Se/Te mixture
CN105441970A (en) * 2015-11-18 2016-03-30 金川集团股份有限公司 New method for removing impurities in tellurium electrolyte
JP2016117612A (en) * 2014-12-19 2016-06-30 Dowaメタルマイン株式会社 Production method of metal selenium
CN106435200A (en) * 2016-09-12 2017-02-22 中南大学 Method for enriching as well as separating and recovering tellurium and bismuth from solution
JP2017077983A (en) * 2015-10-19 2017-04-27 Dowaメタルマイン株式会社 Method for producing metal selenium
CN106757118A (en) * 2016-12-08 2017-05-31 湖南稀土金属材料研究院 The method that smart tellurium is extracted from antimony tellurium waste material
CN107792837A (en) * 2017-08-31 2018-03-13 华南农业大学 The nanometer selenium for preparing the method for nanometer selenium using camellia plant nanometer aggregation and being prepared
JP2018040021A (en) * 2016-09-05 2018-03-15 三菱マテリアル株式会社 Separation recovery method of tellurium
CN108559853A (en) * 2018-05-31 2018-09-21 阳谷祥光铜业有限公司 A kind of processing method of tellurium copper slag
JP2019085618A (en) * 2017-11-07 2019-06-06 Dowaメタルマイン株式会社 Recovery method of antimony
JP2019173107A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Method of recovering tellurium
CN111204716A (en) * 2020-03-06 2020-05-29 大冶有色金属有限责任公司 Process method for refining crude tellurium
JP2020158324A (en) * 2019-03-25 2020-10-01 Jx金属株式会社 Method for purifying tellurium
CN112121769A (en) * 2020-08-18 2020-12-25 江苏大学 Biomass-based composite material with double-layer structure and application of biomass-based composite material to tellurium separation in complex environment
JP2021023851A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
CN113148963A (en) * 2021-03-15 2021-07-23 广东先导稀贵金属材料有限公司 Method for separating and recovering tellurium and selenium
CN114920211A (en) * 2022-05-27 2022-08-19 广东先导稀贵金属材料有限公司 Cadmium telluride separation and recovery method
CN115198105A (en) * 2022-07-21 2022-10-18 江西泰和百盛实业有限公司 Method for removing tellurium in process of producing high-purity low-oxygen copper rod from scrap copper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684428A (en) * 1979-12-10 1981-07-09 Nippon Shinkinzoku Kk Method of recovering tellurium and copper from tellurium-containing copper slime
JPS6153103A (en) * 1984-08-23 1986-03-17 Sumitomo Metal Mining Co Ltd Recovery of high-purity tellurium from crude tellurium dioxide
JP2000239753A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Mining Co Ltd Method for separating and purifying tellurium
JP2004035969A (en) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp Method for refining selenium or the like
CN102021338A (en) * 2009-09-10 2011-04-20 周新华 Method for separating and enriching tellurium and nickel from electrolyte waste acid
JP5843069B2 (en) * 2012-06-13 2016-01-13 三菱マテリアル株式会社 Tellurium separation and recovery method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684428A (en) * 1979-12-10 1981-07-09 Nippon Shinkinzoku Kk Method of recovering tellurium and copper from tellurium-containing copper slime
JPS6153103A (en) * 1984-08-23 1986-03-17 Sumitomo Metal Mining Co Ltd Recovery of high-purity tellurium from crude tellurium dioxide
JP2000239753A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Mining Co Ltd Method for separating and purifying tellurium
JP2004035969A (en) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp Method for refining selenium or the like
CN102021338A (en) * 2009-09-10 2011-04-20 周新华 Method for separating and enriching tellurium and nickel from electrolyte waste acid
JP5843069B2 (en) * 2012-06-13 2016-01-13 三菱マテリアル株式会社 Tellurium separation and recovery method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117612A (en) * 2014-12-19 2016-06-30 Dowaメタルマイン株式会社 Production method of metal selenium
CN105236362B (en) * 2015-09-08 2018-01-05 云南铜业股份有限公司 Separating-purifying selenium, the method for tellurium in a kind of mixture from selen-tellurjum
CN105236362A (en) * 2015-09-08 2016-01-13 云南铜业股份有限公司 Method of separating and purifying Se and Te from Se/Te mixture
JP2017077983A (en) * 2015-10-19 2017-04-27 Dowaメタルマイン株式会社 Method for producing metal selenium
CN105441970A (en) * 2015-11-18 2016-03-30 金川集团股份有限公司 New method for removing impurities in tellurium electrolyte
JP2018040021A (en) * 2016-09-05 2018-03-15 三菱マテリアル株式会社 Separation recovery method of tellurium
CN106435200A (en) * 2016-09-12 2017-02-22 中南大学 Method for enriching as well as separating and recovering tellurium and bismuth from solution
CN106757118A (en) * 2016-12-08 2017-05-31 湖南稀土金属材料研究院 The method that smart tellurium is extracted from antimony tellurium waste material
CN106757118B (en) * 2016-12-08 2019-03-01 湖南稀土金属材料研究院 The method of smart tellurium is extracted from antimony tellurium waste material
CN107792837A (en) * 2017-08-31 2018-03-13 华南农业大学 The nanometer selenium for preparing the method for nanometer selenium using camellia plant nanometer aggregation and being prepared
JP2019085618A (en) * 2017-11-07 2019-06-06 Dowaメタルマイン株式会社 Recovery method of antimony
JP2019173107A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Method of recovering tellurium
JP7016463B2 (en) 2018-03-28 2022-02-07 三菱マテリアル株式会社 How to collect tellurium
CN108559853A (en) * 2018-05-31 2018-09-21 阳谷祥光铜业有限公司 A kind of processing method of tellurium copper slag
JP7187368B2 (en) 2019-03-25 2022-12-12 Jx金属株式会社 Method for refining tellurium
JP2020158324A (en) * 2019-03-25 2020-10-01 Jx金属株式会社 Method for purifying tellurium
JP2021023851A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
JP7198172B2 (en) 2019-07-31 2022-12-28 Jx金属株式会社 Method for treating solution containing selenosulfuric acid
CN111204716A (en) * 2020-03-06 2020-05-29 大冶有色金属有限责任公司 Process method for refining crude tellurium
CN112121769A (en) * 2020-08-18 2020-12-25 江苏大学 Biomass-based composite material with double-layer structure and application of biomass-based composite material to tellurium separation in complex environment
CN112121769B (en) * 2020-08-18 2023-03-21 江苏大学 Biomass-based composite material with double-layer structure and application of biomass-based composite material to tellurium separation in complex environment
CN113148963A (en) * 2021-03-15 2021-07-23 广东先导稀贵金属材料有限公司 Method for separating and recovering tellurium and selenium
CN114920211A (en) * 2022-05-27 2022-08-19 广东先导稀贵金属材料有限公司 Cadmium telluride separation and recovery method
CN114920211B (en) * 2022-05-27 2024-01-09 广东先导稀贵金属材料有限公司 Separation and recovery method of cadmium telluride
CN115198105A (en) * 2022-07-21 2022-10-18 江西泰和百盛实业有限公司 Method for removing tellurium in process of producing high-purity low-oxygen copper rod from scrap copper
CN115198105B (en) * 2022-07-21 2023-07-21 江西泰和百盛实业有限公司 Method for removing tellurium in process of producing high-purity low-oxygen copper rod from scrap copper

Also Published As

Publication number Publication date
JP6304530B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP6241661B2 (en) Arsenic separation and immobilization method
MXPA03005959A (en) Production of zinc oxide from complex sulfide concentrates using chloride processing.
JP5843069B2 (en) Tellurium separation and recovery method
KR20090082925A (en) Purified molybdenum technical oxide from molybdenite
WO2003078670A1 (en) Method for separating platinum group element
JP7016463B2 (en) How to collect tellurium
JP5382269B1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JPWO2005023716A1 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
JP4710033B2 (en) Arsenic content treatment method
JP5200588B2 (en) Method for producing high purity silver
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP4801372B2 (en) Method for removing manganese from cobalt sulfate solution
WO2017110572A1 (en) Method for removing sulfidizing agent
JP6233177B2 (en) Method for producing rhenium sulfide
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2010264331A (en) Separation method of arsenic
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP7068618B2 (en) Manufacturing method of scrodite
CN113337724A (en) Method for synchronously separating and extracting rare-dispersion element tellurium and metal copper from cuprous telluride slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180221

R150 Certificate of patent or registration of utility model

Ref document number: 6304530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150