JP2000239753A - Method for separating and purifying tellurium - Google Patents
Method for separating and purifying telluriumInfo
- Publication number
- JP2000239753A JP2000239753A JP11040972A JP4097299A JP2000239753A JP 2000239753 A JP2000239753 A JP 2000239753A JP 11040972 A JP11040972 A JP 11040972A JP 4097299 A JP4097299 A JP 4097299A JP 2000239753 A JP2000239753 A JP 2000239753A
- Authority
- JP
- Japan
- Prior art keywords
- tellurium
- extraction
- extracted
- hydrochloric acid
- organic phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、銅電解スライム等
のテルル含有物から、テルルを分離して、高純度の金属
テルルに精製して回収する方法に関するものである。[0001] The present invention relates to a method for separating tellurium from tellurium-containing substances such as copper electrolytic slime, and purifying the tellurium into high-purity metallic tellurium.
【0002】[0002]
【従来の技術】テルル(Te)の最も代表的な原料は銅
電解スライムであり、これを原料にして種々の方法でテ
ルルが回収されている。その中でも、既に工業的に実用
化されている代表的な方法としては、以下に述べるアル
カリ浸出法と溶媒抽出法の2つの方法が知られている。2. Description of the Related Art The most typical raw material of tellurium (Te) is copper electrolytic slime, and tellurium is recovered by various methods using this as a raw material. Among them, the following two methods are known as typical methods that have already been industrially put into practical use: an alkali leaching method and a solvent extraction method.
【0003】上記のアルカリ浸出法は、“U.S. Bu
r. Mines Inform. Circ.”、No.8
569(1973)、及び「日本鉱業会秋季大会予稿集
J−11」、(1984)、41〜43頁等に記載され
ているように、アノードスライムか又はそれを処理して
得たテルル含有物を、酸化雰囲気下でアルカリ水溶液又
は溶融アルカリで処理し、テルルを水に可溶性の亜テル
ル酸ナトリウムとして浸出しした後、この浸出液を沈澱
法により精製し、更に還元や電解等により金属テルルと
する方法である。The above alkaline leaching method is disclosed in US Bu.
r. Mines Inform. Circ. ", No. 8
569 (1973) and "Annual slime" or tellurium-containing material obtained by treating the same as described in "Japan Mining Association Autumn Meeting Proceedings J-11" (1984), pp. 41-43, etc. Is treated with an aqueous alkali solution or molten alkali under an oxidizing atmosphere, and leaching tellurium as water-soluble sodium tellurite.The leachate is purified by a precipitation method, and further reduced to metal tellurium by electrolysis or the like. Is the way.
【0004】また、上記溶融抽出法は、“Tsvet
n. Metal ”、No.7(1965)、p74、
“Tsvetn.Metal.No.27(196
7)、p22等に記載されているように、テルル含有物
を硫酸、塩酸、塩素などで溶解し、溶媒抽出法で精製し
た後、トリオクチルアミンのような還元剤により還元し
て金属テルルを得る方法である。The above-mentioned melt extraction method is described in "Tsvet
n. Metal ", No. 7 (1965), p74,
“Tsvetn. Metal. No. 27 (196)
7) As described in p22, etc., tellurium-containing substances are dissolved in sulfuric acid, hydrochloric acid, chlorine, etc., purified by a solvent extraction method, and then reduced with a reducing agent such as trioctylamine to reduce metal tellurium. How to get.
【0005】[0005]
【発明が解決しようとする課題】上記したテルルの回収
方法のうち、アルカリ浸出方法では、原料中の全てのテ
ルルを4価まで完全に酸化することが困難なため、テル
ルの浸出率が低いうえ、アルカリとしてナトリウム化合
物を使用した場合には、工程中で一部のテルルが難溶性
のテルル酸ナトリウムとなって沈澱し、回収率が更に低
下するという欠点があった。例えば、銅電解スライムを
乾式的にアルカリ溶解し、この処理物を水酸化ナトリウ
ムで浸出した場合の浸出率は65%前後に過ぎなかっ
た。Among the above-mentioned methods for recovering tellurium, in the alkali leaching method, it is difficult to completely oxidize all the tellurium in the raw material to tetravalent, so that the leaching rate of tellurium is low. In the case where a sodium compound is used as an alkali, some tellurium is precipitated as sparingly soluble sodium tellurate during the process, and the recovery rate is further reduced. For example, when copper electrolytic slime was dry-dissolved in alkali and the treated product was leached with sodium hydroxide, the leaching rate was only about 65%.
【0006】しかも、アルカリ浸出法での浸出液中には
アルカリに可溶な種々の不純物が存在しているため、テ
ルルを効率よく精製するためには、亜テルル酸の沈澱の
再溶解や再沈澱、部分的な硫化など、種々の固液分離作
業を繰り返す必要があり、従ってまた消費される薬品の
使用量も多くなるため、効率的にも経済的にも優れた方
法とは言えなかった。Furthermore, since various impurities soluble in alkali are present in the leaching solution obtained by the alkali leaching method, in order to purify tellurium efficiently, it is necessary to re-dissolve or re-precipitate tellurous acid. It is necessary to repeat various solid-liquid separation operations such as partial sulfurization, and the amount of used chemicals increases. Therefore, it cannot be said that the method is efficient and economical.
【0007】一方、近年開発された溶媒抽出法は、抽出
剤としてトリオクチルアミン、トリブチルフォスフェイ
ト、又は第四アンモニウム塩を用い、塩化物水溶液から
テルルを選択的に抽出する方法であって、通常の沈澱法
では完全な分離が困難なセレンとの分離が可能であり、
且つ連続的にテルルの分離、回収、精製ができるという
特徴がある。On the other hand, a recently developed solvent extraction method is a method for selectively extracting tellurium from a chloride aqueous solution using trioctylamine, tributyl phosphate or a quaternary ammonium salt as an extractant. Can be separated from selenium, which is difficult to completely separate by the precipitation method,
In addition, there is a characteristic that tellurium can be continuously separated, recovered, and purified.
【0008】しかしながら、酸溶解や塩素浸出など酸性
で溶出されたテルルを溶媒抽出法で精製する場合、セレ
ン及びアルカリ金属など若干の元素からの分離は可能で
あるものの、トリオクチルアミン、トリブチルフォスフ
ェイト、第四アンモニウム塩といった抽出剤では、その
他の重金属類、特に白金族元素の共抽出率が大きくなる
ため、逆抽出液を還元して最終的に回収される金属テル
ルの不純物品位が高くなり、また金属テルルへの混入に
より白金族元素の損失も大きいという欠点があった。However, when tellurium eluted in an acidic state such as acid dissolution or chlorine leaching is purified by a solvent extraction method, it can be separated from some elements such as selenium and alkali metals, but trioctylamine, tributyl phosphate, etc. In the case of an extractant such as a quaternary ammonium salt, since the co-extraction rate of other heavy metals, particularly the platinum group elements, increases, the impurity quality of metal tellurium finally recovered by reducing the back-extraction liquid increases, Further, there is a disadvantage that the loss of the platinum group element is large due to the incorporation into the tellurium metal.
【0009】また、これら従来の抽出剤では、テルルが
有機相から逆抽出されにくいため、水酸化アルカリか又
は中性の塩化アンモニウム水溶液を使用して逆抽出する
必要があった。しかし、その場合には、水酸化アルカリ
を用いると、共抽出された不純物が沈澱してクラッドに
なり、また塩化アンモニウム水溶液では、テルル自体が
難溶性の塩基性塩となって沈澱するため、いずれの場合
も相分離が不良になるという問題があった。Further, in these conventional extractants, tellurium is hardly back-extracted from the organic phase, so that it was necessary to back-extract using alkali hydroxide or a neutral aqueous ammonium chloride solution. However, in this case, when alkali hydroxide is used, co-extracted impurities precipitate and form a clad, and in an ammonium chloride aqueous solution, tellurium itself precipitates as a hardly soluble basic salt. Also in the case of the above, there is a problem that the phase separation becomes poor.
【0010】しかも、テルル回収の原料である銅電解ス
ライムは、通常の場合不純物のレベルが大きく変動する
ため、抽出時の精製負荷が変動し、それに伴って逆抽出
液及び回収される金属テルルの不純物レベルが変動する
恐れがあるが、これらの変動に確実に対応する方法がな
かった。[0010] In addition, the concentration of impurities in copper electrolytic slime, which is a raw material for tellurium recovery, usually fluctuates greatly, so that the purification load at the time of extraction fluctuates. There is a possibility that the impurity level may fluctuate, but there has been no method to reliably cope with these fluctuations.
【0011】本発明は、このような従来の事情に鑑み、
銅電解スライム等の原料を処理して得られたテルルを含
有する水溶液から溶媒抽出法によりテルルを分離する際
に、白金族元素を含む種々の不純物の共抽出を防止し、
また逆抽出時に不純物あるいはテルル化合物の沈澱によ
る相分離不良を引き起こすことなく、且つ原料不純物レ
ベルの変動にも対応可能であって、不純物の少ない高品
位の金属テルルを精製して回収する方法を提供すること
を目的とする。The present invention has been made in view of such a conventional situation,
When separating tellurium from a solution containing tellurium obtained by treating a raw material such as copper electrolytic slime by a solvent extraction method, co-extraction of various impurities including a platinum group element is prevented,
Also, it provides a method for purifying and recovering high-quality metallic tellurium with a small amount of impurities without causing phase separation failure due to precipitation of impurities or tellurium compounds at the time of back-extraction and capable of coping with fluctuations in raw material impurity levels. The purpose is to do.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するテルルの分離精製方法は、テルル
(IV)イオンと、5〜9mol/lの塩化物イオンを含
み、該塩化物イオンのうち3mol/l以上が塩酸の形
態である水溶液に、抽出剤としてジブチルカルビトール
を混合し、テルルを選択的に抽出することを特徴とす
る。In order to achieve the above object, a method for separating and purifying tellurium provided by the present invention comprises:
(IV) Ion and 5 to 9 mol / l of chloride ions, of which 3 mol / l or more of the chloride ions are in the form of hydrochloric acid, mixed with dibutyl carbitol as an extractant, and selected for tellurium It is characteristically extracted.
【0013】この本発明のテルルの分離精製方法におい
て、上記のごとくテルルを抽出した有機相を5〜9mo
l/lの塩酸で洗浄することにより、金属不純物を水相
に分離することが望ましい。また、テルルを抽出した有
機相又はこれを上記のごとく塩酸で洗浄した有機相には
1.5〜4mol/lの塩酸を混合し、テルルを水相に
逆抽出する。In the method for separating and purifying tellurium of the present invention, the organic phase from which tellurium has been extracted as described above is mixed with 5 to 9 mo.
It is desirable to separate metal impurities into an aqueous phase by washing with 1 / l hydrochloric acid. Further, 1.5 to 4 mol / l hydrochloric acid is mixed with the organic phase from which tellurium has been extracted or the organic phase which has been washed with hydrochloric acid as described above, and tellurium is back-extracted into the aqueous phase.
【0014】また、本発明のテルルの分離精製方法で
は、上記の逆抽出したテルルを含む水溶液に還元剤を加
え、テルルを還元することにより金属テルルを分離回収
することを特徴とする。使用する還元剤としては、二酸
化硫黄が好ましい。この還元の際に、好ましくは、逆抽
出液を銀塩化銀電極に対し370〜420mVの電位ま
で還元し、生成した沈澱を分離した母液を280〜30
0mVまで再度還元することにより、金属テルルを回収
する。Further, the method for separating and purifying tellurium of the present invention is characterized in that a reducing agent is added to the above-mentioned aqueous solution containing tellurium which is back-extracted, and tellurium is reduced to separate and collect metallic tellurium. As the reducing agent to be used, sulfur dioxide is preferable. At the time of this reduction, preferably, the back extract is reduced to a potential of 370 to 420 mV with respect to a silver-silver chloride electrode, and a mother liquor obtained by separating a formed precipitate is subjected to 280 to 30 mV.
The metal tellurium is recovered by reducing again to 0 mV.
【0015】[0015]
【発明の実施の形態】本発明では、テルルの分離方法と
して、従来と同様の溶媒抽出法を用いるが、抽出剤とし
てジブチルカルビトールを使用する。抽出剤としてエー
テル系の中性抽出剤であるジブチルカルビトールを用い
ることにより、テルルと共抽出されやすい白金族元素な
どの不純物の共存下でも、これら不純物の大部分が水相
に分配されるため、有機相にテルルを選択的に抽出する
ことができる。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a solvent extraction method similar to the conventional one is used as a method for separating tellurium, but dibutyl carbitol is used as an extractant. By using dibutyl carbitol, which is a neutral ether extractant, as an extractant, most of these impurities are distributed to the aqueous phase even in the presence of impurities such as platinum group elements that are easily co-extracted with tellurium. In addition, tellurium can be selectively extracted into the organic phase.
【0016】しかも、ジブチルカルビトールでテルルを
抽出することにより、有機相に抽出されたテルルは塩酸
濃度が低下すると水相中に分配しやすくなるため、この
性質を利用してテルルを不純物から分離精製する。ま
た、共存する不純物元素が元素単体まで還元される電位
がテルルと異なることを利用して、電位を制御した還元
により不純物の少ない高品質のテルルを回収することが
できる。Furthermore, by extracting tellurium with dibutyl carbitol, the tellurium extracted into the organic phase is likely to be distributed in the aqueous phase when the concentration of hydrochloric acid is reduced. Therefore, this property is used to separate tellurium from impurities. Purify. Further, utilizing the fact that the potential at which the coexisting impurity element is reduced to elemental elements is different from that of tellurium, high-quality tellurium with few impurities can be recovered by reduction at a controlled potential.
【0017】本発明方法について、図1に示すフローチ
ャートに従って、各工程ごとに詳しく説明する。まず最
初に、原料の溶解浸出工程において、テルルを含有する
銅電解スライム等の原料を、塩酸、硫酸、硝酸など種々
の強酸を用いて溶解する。原料が硫化物、セレン化物、
テルル化物など酸に直接溶解しにくい化合物を含む場合
には、塩素などの酸化剤を併用して浸出する必要があ
る。尚、使用する酸の種類としては、テルル塩の溶解
度、加水分解のしやすさ、塩の親油性等の点から、ハロ
ゲン化水素酸が最も望ましく、その中でも入手の容易さ
を配慮すると塩酸が最も適している。The method of the present invention will be described in detail for each step according to the flowchart shown in FIG. First, in a raw material dissolving and leaching step, a raw material such as tellurium-containing copper electrolytic slime is dissolved using various strong acids such as hydrochloric acid, sulfuric acid, and nitric acid. The raw material is sulfide, selenide,
In the case of containing a compound which is hardly soluble directly in an acid such as telluride, it is necessary to leaching with an oxidizing agent such as chlorine. As the type of acid used, hydrohalic acid is most desirable from the viewpoints of solubility of tellurium salt, ease of hydrolysis, lipophilicity of the salt, etc. Most suitable.
【0018】次の抽出工程において、ジブチルカルビト
ールで抽出可能なテルルの価数は4価である。原料がア
ルカリ処理されている場合や、塩化物溶解時の遊離塩酸
濃度が非常に低い場合には、一部のテルルが6価のイオ
ンで存在する場合があるが、フッ化水素酸以外のハロゲ
ン化水素酸中で加熱すれば、容易に全量を4価に還元す
ることができる。塩酸共存下でのテルル(VI)イオンのテ
ルル(IV)イオンへの還元反応の一例を、下記化学式1に
示す。In the next extraction step, the valence of tellurium that can be extracted with dibutyl carbitol is tetravalent. If the raw material has been treated with alkali or the concentration of free hydrochloric acid during chloride dissolution is very low, some tellurium may be present as hexavalent ions, but halogens other than hydrofluoric acid may be present. When heated in hydrofluoric acid, the entire amount can be easily reduced to tetravalent. An example of the reduction reaction of tellurium (VI) ion to tellurium (IV) ion in the presence of hydrochloric acid is shown in the following chemical formula 1.
【0019】[0019]
【化1】Na2TeO4+8HCl → TeCl4+Cl2
+4H2O+2NaClEmbedded image Na 2 TeO 4 + 8HCl → TeCl 4 + Cl 2
+ 4H 2 O + 2NaCl
【0020】また、メタル状のテルルやセレン等を含む
混合物を塩素浸出する場合、反応中に塩酸が生成するた
め、浸出時のスラリー濃度の調整により全量のテルルを
4価で得ることができる。更に、溶解浸出工程の終了
後、還元剤を少量添加するか、原料中に金属、硫化物、
セレン化物、テルル化物等の還元性物質が存在する場合
には、その原料を浸出液に少量添加することによって、
テルルを確実に4価にすることができる。尚、抽出液中
のテルルの価数は酸化還元電位によって知ることが可能
であり、液の電位が銀/塩化銀電極に対して800mV
以下であれば、テルルの全量が4価として存在してい
る。Further, when chlorine is leached from a mixture containing metal tellurium, selenium, etc., hydrochloric acid is generated during the reaction, so that the total amount of tellurium can be obtained in tetravalent by adjusting the slurry concentration at the time of leaching. Furthermore, after the end of the dissolution and leaching step, a small amount of a reducing agent is added, or metals, sulfides,
When reducing substances such as selenide and telluride are present, by adding a small amount of the raw material to the leachate,
Tellurium can be surely made tetravalent. The valence of tellurium in the extract can be known from the oxidation-reduction potential, and the potential of the liquid is 800 mV with respect to the silver / silver chloride electrode.
Below, the total amount of tellurium exists as tetravalent.
【0021】本発明のテルルの抽出工程において、抽出
剤としてジブチルカルビトールを使用する理由は以下の
とおりである。即ち、塩酸酸性溶液中でのテルルの形態
は、クロロ錯塩イオンか又は塩化テルル分子として存在
しているものと考えられている。前者については従来か
ら用いられているトリオクチルアミンのような陰イオン
交換型の抽出剤で、後者については中性抽出剤でそれぞ
れ抽出可能であるが、実際には水相中のテルルの形態は
両者の間で自由に互換し得るため、いずれの抽出剤を使
用しても定量的な抽出は可能である。The reason for using dibutyl carbitol as an extractant in the tellurium extraction step of the present invention is as follows. That is, it is considered that the form of tellurium in the hydrochloric acid acidic solution exists as chloro complex salt ions or tellurium chloride molecules. The former can be extracted with an anion-exchange type extractant such as trioctylamine which has been conventionally used, and the latter can be extracted with a neutral extractant.However, the form of tellurium in the aqueous phase is actually Since the two can be freely interchanged, quantitative extraction is possible using any of the extractants.
【0022】しかし、他の元素との分離性に関しては、
陰イオン交換型の抽出剤では、塩酸中で陰イオンを形成
する大部分のイオンが共抽出されるうえ、有機相中で形
成されるテルルの塩が多くの場合非常に安定であって、
逆抽出のために分解することが困難である。これに対し
て中性抽出剤では、テルルと共抽出されやすい白金族元
素などの不純物の大部分が水相に分配され、有機相に選
択的にテルルを抽出することができると共に、抽出され
たテルルは塩酸濃度を低下させるだけで水相中に逆抽出
することができる。However, regarding the separability from other elements,
In an anion-exchange-type extractant, most of the ions that form anions in hydrochloric acid are co-extracted, and the tellurium salts formed in the organic phase are often very stable,
Difficult to decompose due to back extraction. In contrast, with the neutral extractant, most of the impurities such as the platinum group elements that are easily co-extracted with tellurium are distributed to the aqueous phase, and it is possible to selectively extract tellurium into the organic phase and extract the tellurium. Tellurium can be back-extracted into the aqueous phase simply by lowering the hydrochloric acid concentration.
【0023】更に、中性抽出剤の中でも、炭素、水素、
酸素以外の元素を含む化合物、例えば燐酸アルキルやそ
の類似化合物は抽出種の溶媒和能力が強く、有機相でポ
リマーを形成し、アミン程ではないが逆抽出困難な場合
がある。従って、このような問題のない、抽出種の溶媒
和サイトの塩基性が低い炭素、水素、酸素のみからなる
中性抽出剤が好ましい。また、炭素、水素、酸素のみか
らなる中性抽出剤を比較した場合、分子量が小さい化合
物ほど水溶性、引火性、臭気が増大するため、分子量が
数百程度のエーテル、エステル、ケトンなどが望まし
い。以上のような理由により、本発明では、高級エーテ
ルであるジブチルカルビトールを最適な抽出剤として選
定した。Further, among the neutral extractants, carbon, hydrogen,
Compounds containing elements other than oxygen, such as alkyl phosphates and similar compounds, have a strong solvating ability of the extracted species, form polymers in the organic phase, and may be less difficult to back-extract than amines. Therefore, a neutral extractant which does not have such a problem and is composed only of carbon, hydrogen and oxygen having low basicity of the solvation site of the extracted species is preferable. Also, when comparing neutral extractants consisting only of carbon, hydrogen, and oxygen, compounds having lower molecular weights have higher water solubility, flammability, and odor, so ethers, esters, ketones, and the like having a molecular weight of several hundreds are desirable. . For the above reasons, in the present invention, dibutyl carbitol, which is a higher ether, was selected as the optimal extractant.
【0024】本発明の抽出反応は、水溶液の塩酸濃度及
び塩化物イオン濃度の増大に従って促進される。塩酸以
外の塩化物が殆ど存在しない場合には、相比O/A=1
/1の条件で、塩酸濃度3mol/lでテルル抽出率が
78%、塩酸濃度5mol/lでテルル抽出率が90%
である。しかしながら、塩酸濃度が9.5mol/l以
上では、有機相と水相の相互溶解性が著しく増大し、抽
出操作そのものが困難になる。従って、水溶液の塩酸濃
度としては3〜9.5mol/lが好ましく、5〜9m
ol/lの範囲が更に好ましい。The extraction reaction of the present invention is accelerated as the concentration of hydrochloric acid and the concentration of chloride ions in the aqueous solution increase. When there is almost no chloride other than hydrochloric acid, the phase ratio O / A = 1
/ 1, the tellurium extraction rate is 78% at a hydrochloric acid concentration of 3 mol / l, and the tellurium extraction rate is 90% at a hydrochloric acid concentration of 5 mol / l.
It is. However, when the hydrochloric acid concentration is 9.5 mol / l or more, the mutual solubility between the organic phase and the aqueous phase is significantly increased, and the extraction operation itself becomes difficult. Therefore, the hydrochloric acid concentration of the aqueous solution is preferably 3 to 9.5 mol / l, and 5 to 9 m / l.
The range of ol / l is more preferred.
【0025】実際には、銅電解スライム等を溶解浸出し
て得た水溶液には塩酸以外の塩化物イオンが存在し、且
つ塩酸以外の塩化物イオン濃度の存在によってテルルの
抽出率は増大する。同じ抽出率を得る場合、共存する塩
化物イオン濃度が高いほど塩酸濃度を低くすることがで
きる。しかしながら、全塩化物イオン濃度が飽和濃度ま
で、即ち最大9mol/l程度まで上昇しても、その中
に占める塩酸濃度が3mol/lを下回ると、多段でも
テルルの定量的な抽出は困難になる。一方、塩酸濃度を
3mol/lに固定した場合、テルルをほぼ定量的に抽
出可能な全塩化物イオン濃度は5〜9mol/lであ
る。Actually, an aqueous solution obtained by dissolving and leaching copper electrolytic slime or the like contains chloride ions other than hydrochloric acid, and the presence of chloride ion concentrations other than hydrochloric acid increases the tellurium extraction rate. To obtain the same extraction rate, the higher the concentration of the coexisting chloride ions, the lower the hydrochloric acid concentration. However, even if the total chloride ion concentration rises to the saturation concentration, that is, up to about 9 mol / l, if the hydrochloric acid concentration in the concentration falls below 3 mol / l, quantitative extraction of tellurium becomes difficult even in multiple stages. . On the other hand, when the hydrochloric acid concentration is fixed at 3 mol / l, the total chloride ion concentration at which tellurium can be extracted almost quantitatively is 5 to 9 mol / l.
【0026】以上の理由から、本発明の抽出工程におい
ては、水溶液の塩酸濃度を3mol/l以上、全塩化物
イオン濃度を5〜9mol/lとする。これ以下の塩酸
濃度及び塩化物イオン濃度であっても、原理的には抽出
可能であるが、抽出段数が多く必要とあり、経済的な実
施は困難である。実用的には、相比O/A=1/1及び
抽出段数3段程度の条件で、95%以上のテルルを抽出
できることが好ましいが、そのためには塩酸濃度5mo
l/l以上、全塩化物濃度8〜9mol/lであること
が特に望ましい。For the above reasons, in the extraction step of the present invention, the hydrochloric acid concentration of the aqueous solution is 3 mol / l or more, and the total chloride ion concentration is 5 to 9 mol / l. Even if the hydrochloric acid concentration and the chloride ion concentration are lower than the above, extraction is possible in principle, but it requires a large number of extraction stages, and it is difficult to implement it economically. Practically, it is preferable that 95% or more of tellurium can be extracted under the conditions of a phase ratio O / A = 1/1 and about three extraction stages.
It is particularly desirable that the concentration be 1 / l or more and the total chloride concentration be 8 to 9 mol / l.
【0027】抽出時の相比は、有機相のテルル抽出可能
量を配慮して決める必要がある。有機相へのテルルの負
荷量は、塩酸濃度や塩化物イオン濃度により左右される
が、最適条件下で最大約85g/lまで抽出可能であ
る。The phase ratio at the time of extraction must be determined in consideration of the amount of tellurium that can be extracted from the organic phase. The loading of tellurium on the organic phase depends on the concentration of hydrochloric acid and the concentration of chloride ions, but up to about 85 g / l can be extracted under optimal conditions.
【0028】上記のごとく有機相中に抽出されたテルル
は有機相から水相に逆抽出するが、有機相にはテルルと
共に抽出された白金族元素等の不純物が含まれるので、
逆抽出工程の前に、塩酸で洗浄することにより不純物を
選択的に水相に分離することが好ましい。この不純物洗
浄工程においては、テルルの水相への逆抽出を防止する
ために、抽出時の水溶液とほぼ同様の濃度の塩酸か、テ
ルルの精製に影響を及ぼさない程度の塩化物と塩酸の混
合物の使用が望ましい。一般に、塩化物の中では単位モ
ル当たりの価格は塩酸が最も安価であるから、塩酸単独
の水溶液を使用するのが最も有利である。その場合の塩
酸濃度としては、テルルの逆抽出が起こらず、且つ塩酸
とテルルの相互溶解が起こらないように、5〜9mol
/lの濃度範囲が好ましい。As described above, tellurium extracted into the organic phase is back-extracted from the organic phase to the aqueous phase. However, since the organic phase contains impurities such as platinum group elements extracted together with tellurium,
Prior to the back extraction step, it is preferable to selectively separate impurities into an aqueous phase by washing with hydrochloric acid. In this impurity washing step, in order to prevent tellurium from being back-extracted into the aqueous phase, hydrochloric acid having almost the same concentration as the aqueous solution at the time of extraction, or a mixture of chloride and hydrochloric acid that does not affect the purification of tellurium is used. Is preferred. In general, among chlorides, hydrochloric acid is the cheapest in terms of unit price per mole, so that it is most advantageous to use an aqueous solution of hydrochloric acid alone. In this case, the concentration of hydrochloric acid is 5 to 9 mol so as to prevent back extraction of tellurium and mutual dissolution of hydrochloric acid and tellurium.
/ L concentration range is preferred.
【0029】次に、有機相からのテルルの逆抽出工程で
は、水相中の塩化物イオン濃度及び塩酸濃度をテルルの
抽出可能なレベル以下にする必要があり、このため4m
ol/l以下の濃度の塩酸を使用する。ただし、塩酸濃
度が1.5mol/l未満まで低下すると、テルルが加
水分解して塩基性塩が沈澱する恐れがあるため、塩酸濃
度は1.5mol/l以上の濃度にする必要がある。
尚、特に好ましい塩酸濃度は、2.5〜3.0mol/l
である。また、テルル以上に加水分解しやすい不純物、
例えばアンチモン等が多く共存する場合には、逆抽出液
中に塩酸以外の塩化物を0.3mol/l程度添加する
ことでクロロ錯化を促進させ、加水分解による沈澱生成
を防止することが可能である。Next, in the step of back-extraction of tellurium from the organic phase, the chloride ion concentration and the hydrochloric acid concentration in the aqueous phase must be lower than the level at which tellurium can be extracted.
Use hydrochloric acid with a concentration of not more than ol / l. However, when the hydrochloric acid concentration is reduced to less than 1.5 mol / l, tellurium may be hydrolyzed and a basic salt may be precipitated. Therefore, the hydrochloric acid concentration needs to be 1.5 mol / l or more.
The particularly preferred concentration of hydrochloric acid is 2.5 to 3.0 mol / l.
It is. In addition, impurities that are more easily hydrolyzed than tellurium,
For example, when a large amount of antimony and the like coexist, it is possible to promote the chloro complexation by adding about 0.3 mol / l of a chloride other than hydrochloric acid to the back-extraction solution, thereby preventing the formation of a precipitate due to hydrolysis. It is.
【0030】上記の逆抽出工程により、テルルに随伴す
る不純物元素の大部分は分離可能であるが、依然として
逆抽出液中にはテルルと共に少量の不純物が存在してい
る。これらの不純物のうち、テルルよりも還元されやす
い金及びセレン等の不純物元素は、逆抽出液を弱く還元
する不純物還元工程により沈澱させ、固液分離して容易
に除去することができる。Most of the impurity elements accompanying tellurium can be separated by the above-mentioned back-extraction step, but a small amount of impurities still exist together with tellurium in the back-extraction solution. Among these impurities, impurity elements such as gold and selenium, which are more easily reduced than tellurium, can be precipitated by an impurity reduction step of weakly reducing the back extract, and can be easily removed by solid-liquid separation.
【0031】AuCl4/Au間、H2SeO3/Se
間、及びTeO2/Te間の標準酸化還元電位は、それ
ぞれ1.002V、0.740V、及び0.521Vであ
るから、原理的には銀/塩化銀電極に対して321〜5
40mVの還元で金及びセレン等の不純物を分離できる
可能性があるが、実際の不純物還元工程では370〜4
20mVの範囲が最適である。370mVより電位が低
いとテルルが不純物元素と共還元されるのでテルルの損
失を招き、逆に420mVよりも電位が高いと不純物元
素の還元が不完全となり、最終的に回収されるテルルの
品位が低下するからである。尚、液の還元電位は電解で
も調整可能であるが、銅などのテルル化物を形成しやす
い不純物元素が共存すると、条件によってはテルルの共
還元を招くので好ましくない。H 2 SeO 3 / Se between AuCl 4 / Au
Since the standard oxidation-reduction potentials between TiO 2 and TeO 2 / Te are 1.002 V, 0.740 V, and 0.521 V, respectively, in principle, 321 to 5 with respect to the silver / silver chloride electrode.
There is a possibility that impurities such as gold and selenium can be separated by a reduction of 40 mV, but in the actual impurity reduction step, 370 to 4
The range of 20 mV is optimal. If the potential is lower than 370 mV, tellurium is co-reduced with the impurity element, so that tellurium is lost. Conversely, if the potential is higher than 420 mV, reduction of the impurity element becomes incomplete, and the quality of the finally recovered tellurium is reduced. It is because it falls. The reduction potential of the liquid can be adjusted by electrolysis. However, coexistence of an impurity element such as copper which easily forms telluride is not preferable because co-reduction of tellurium is caused depending on conditions.
【0032】使用する還元剤としては、上記電位に調整
し得る還元剤であれば制限なく使用可能であるが、終点
における電位の安定性、反応速度、テルルの汚染防止、
局部的な電位の低下防止、経済性などを配慮すると二酸
化硫黄が最適である。還元温度は高いほど反応速度が速
くなるが、加熱は必須条件ではない。また、還元電位の
維持時間は、液組成、還元剤の供給速度、還元温度、核
の存在の有無及び核の濃度、その他多くの要因により変
動する。しかし、一般に5分以下ではセレン等の不純物
元素の還元が不完全になり易く、また2時間を越えると
電位調整をしていてもテルルの共沈量が10%付近まで
増大するため、20〜60分程度で還元すると好結果と
なる場合が多い。As the reducing agent to be used, any reducing agent which can be adjusted to the above-mentioned potential can be used without any limitation. However, the stability of the potential at the end point, the reaction speed, the prevention of tellurium contamination, and the like.
Sulfur dioxide is the most suitable in consideration of prevention of local potential drop and economics. The higher the reduction temperature, the faster the reaction rate, but heating is not an essential condition. Further, the time for maintaining the reduction potential varies depending on the liquid composition, the supply speed of the reducing agent, the reduction temperature, the presence or absence of nuclei, the concentration of nuclei, and many other factors. However, in general, the reduction of impurity elements such as selenium tends to be incomplete in less than 5 minutes, and the co-precipitation amount of tellurium increases to around 10% even if the potential is adjusted more than 2 hours. A reduction in about 60 minutes often gives good results.
【0033】尚、この不純物還元工程(第1段還元)に
おいて、セレン及びテルルとも4価である場合には、還
元率を高めてテルルの沈澱率が高くなるほど、後のテル
ル還元工程(第2段還元)でテルル中へのセレンの混入
を防止できる。しかし、実際にはしばしば難還元性の6
価セレンが存在し、これは還元速度が遅く最後に析出す
るため、第1段還元の還元率を高くすると、第2段還元
でのテルル中のセレン品位はむしろ低下することが多
い。In the impurity reduction step (first-stage reduction), when both selenium and tellurium are tetravalent, the higher the reduction rate and the higher the precipitation rate of tellurium, the later the tellurium reduction step (second Selenium in tellurium can be prevented by step reduction). However, in practice, often irreducible 6
Since selenium is present and has a low reduction rate and precipitates at the end, when the reduction rate of the first-stage reduction is increased, the selenium grade in tellurium in the second-stage reduction is rather lowered in many cases.
【0034】上記不純物還元工程により不純物元素を沈
澱除去した母液は、次のテルル還元工程における第2段
還元により、テルルのみを選択的に金属テルルとして回
収することができる。即ち、母液の酸化還元電位が28
0〜300mVとなるまで還元することにより、テルル
の全量が還元されて金属テルルとして沈澱するが、共存
不純物であるアンチモン、銅、ビスマス、ニッケル等の
より還元電位の低い重金属元素は還元されない。従っ
て、固液分離により、高品位の金属テルルを回収するこ
とができる。The mother liquor from which the impurity elements have been removed by precipitation in the impurity reduction step can selectively recover only tellurium as metallic tellurium by the second stage reduction in the next tellurium reduction step. That is, the oxidation-reduction potential of the mother liquor is 28
By reducing to 0 to 300 mV, the entire amount of tellurium is reduced and precipitates as metallic tellurium, but heavy metal elements having a lower reduction potential such as antimony, copper, bismuth, and nickel as coexisting impurities are not reduced. Therefore, high-quality metallic tellurium can be recovered by solid-liquid separation.
【0035】このテルル還元工程においても、還元剤と
しては二酸化硫黄が最適である。他の弱い還元剤も使用
可能であるが、母液中にテルル化物を生成しやすい不純
物が含まれる場合には共折しやすく、純度の高い金属テ
ルルを回収することが困難となるため好ましくない。ま
た、テルル還元工程では、特に電位制御などを行わなく
ても電位が上記最適値より低下することはなく、テルル
のみが選択的に還元される。Also in this tellurium reduction step, sulfur dioxide is optimal as a reducing agent. Other weak reducing agents can be used, but if the mother liquor contains impurities that easily produce telluride, it is not preferable because it tends to bend easily and it becomes difficult to recover highly pure metal tellurium. Further, in the tellurium reduction step, the potential does not drop below the above-mentioned optimum value without performing any potential control, and only tellurium is selectively reduced.
【0036】[0036]
【実施例】実施例1 下記表1の各元素を含む水酸化物と塩酸及び塩化ナトリ
ウムを用い、表1に示すように、同一の元素組成(g/
l)を有し且つ塩酸及び塩化物イオン濃度(mol/
l)のみが異なる2種類の原液1及び原液2を調整し
た。尚、表1は表1−1と表1−2に分割してあり、合
わせて表1全体を表すものである(以下の表に同じ)。 Example 1 Using a hydroxide containing each element shown in Table 1 below, hydrochloric acid and sodium chloride, the same elemental composition (g / g) was used as shown in Table 1.
l) and the concentration of hydrochloric acid and chloride ions (mol /
l) Two kinds of stock solutions 1 and 2 differing only in (1) were prepared. In addition, Table 1 is divided into Table 1-1 and Table 1-2, and represents the entire Table 1 together (same as the following table).
【0037】[0037]
【表1−1】 原液の組成(g/l) 試 料 Cl濃度 HCl濃度 Sb Fe Se Te As Pt 原液 1 4 2.9 2.6 10.2 2.03 6.69 1.79 17.6 原液 2 7 6.6 2.6 10.2 2.03 6.69 1.79 17.6[Table 1-1] Composition of stock solution (g / l) Sample Cl concentration HCl concentration Sb Fe Se Te As Pt stock solution 1 4 2.9 2.6 10.2 2.03 6.69 1.79 17.6 Stock solution 2 7 6.6 2.6 10.2 2.03 6.69 1.79 17.6
【表1−2】 原液の組成(g/l) 試 料 Pd Rh Au Ir Os Ru Bi 原液 1 11.4 7.81 10.1 0.48 0.53 0.64 2.75 原液 2 11.4 7.81 10.1 0.48 0.53 0.64 2.75[Table 1-2] Composition of stock solution (g / l) Sample Pd Rh Au Ir Ir Os Ru Bi Stock solution 1 11.4 7.81 10.1 0.48 0.53 0.64 2.75 Stock solution 2 11.4 7.81 10.1 0.48 0.53 0.64 2.75
【0038】上記の各原液に、抽出剤としてジブチルカ
ルビトールを相比O/A=1/1で10分間混合した
後、得られた有機相と水相に含まれる元素の分析を行っ
た。得られた各元素の組成(g/l)を下記表2に示し
た。After each of the above stock solutions was mixed with dibutyl carbitol as an extractant for 10 minutes at a phase ratio of O / A = 1/1, the elements contained in the obtained organic phase and aqueous phase were analyzed. The composition (g / l) of each element obtained is shown in Table 2 below.
【0039】[0039]
【表2−1】 水相と有機相の組成(g/l) 試 料 Sb Fe Se Te As Pt 原液 1/水 相 2.09 5.64 0.64 6.16 1.66 13.8 原液 1/有機相 0.011 3.80 <0.005 0.010 0.047 0.069 原液 2/水 相 0.019 0.008 2.33 0.33 1.65 17.3 原液 2/有機相 0.79 10.5 0.13 5.80 0.32 1.3 [Table 2-1] Composition of aqueous phase and organic phase (g / l) Sample Sb Fe Se Te As Pt stock solution 1 / water phase 2.09 5.64 0.64 6.16 1.66 13.8 Stock solution 1 / organic phase 0.011 3.80 <0.005 0.010 0.047 0.069 Stock solution 2 / water phase 0.019 0.008 2.33 0.33 1.65 17.3 Stock solution 2 / organic phase 0.79 10.5 0.13 5.80 0.32 1.3
【表2−2】 水相と有機相の組成(g/l) 試 料 Pd Rh Au Ir Os Ru Bi 原液 1/水 相 9.85 7.35 0.041 0.53 0.30 0.41 2.61 原液 1/有機相 0.011 <0.005 9.9 <0.005 0.060 0.039 <0.005 原液 2/水 相 10.9 8.18 <0.005 0.54 0.40 0.53 2.91 原液 2/有機相 0.19 <0.005 10.7 0.068 0.048 0.10 0.019[Table 2-2] Composition of aqueous phase and organic phase (g / l) Sample Pd Rh Au Ir Ir Os Ru Bi stock solution 1 / water phase 9.85 7.35 0.041 0.53 0.30 0.41 2.61 Stock solution 1 / organic phase 0.011 <0.005 9.9 <0.005 0.060 0.039 <0.005 Stock solution 2 / water phase 10.9 8.18 <0.005 0.54 0.40 0.53 2.91 Stock solution 2 / organic phase 0.19 <0.005 10.7 0.068 0.048 0.10 0.019
【0040】この結果から、有機相へのテルルの抽出率
が水溶液の塩化物イオン濃度及び塩酸濃度により大きく
変動することが分かる。また、共存元素のうち白金族元
素、セレン、ヒ素、ビスマスは、テルルに比べて抽出率
が常に低い値を示すが、アンチモンと鉄はテルルと共抽
出される。From these results, it can be seen that the extraction ratio of tellurium into the organic phase greatly varies depending on the chloride ion concentration and the hydrochloric acid concentration of the aqueous solution. In addition, among the coexisting elements, platinum group elements, selenium, arsenic, and bismuth always show lower values than tellurium, but antimony and iron are coextracted with tellurium.
【0041】実施例2 下記表3に示す組成(g/l)を有し、塩化物イオン濃
度が8.4mol/l及び塩酸濃度が6.75mol/l
の原液を用意した。この原液680mlに、ジブチカル
ビトールを相比O/A=1/1にて混合した。抽残液で
ある水相は、更に新しいジブチルカルビトールにて2回
抽出した。これら各3回の抽残液及び第1回抽出の有機
相の組成(g/l)を下記表4に示した。 Example 2 The composition (g / l) shown in Table 3 below has a chloride ion concentration of 8.4 mol / l and a hydrochloric acid concentration of 6.75 mol / l.
Was prepared. Dibutycarbitol was mixed with 680 ml of this stock solution at a phase ratio of O / A = 1/1. The aqueous phase as the raffinate was further extracted twice with fresh dibutyl carbitol. The composition (g / l) of each of the three raffinate solutions and the organic phase of the first extraction is shown in Table 4 below.
【0042】[0042]
【表3】原液の組成(g/l) Se Te Au Ag Cu Pb As Bi Sb Fe 9.33 50.1 0.004 0.63 18.5 7.22 0.28 13.8 0.87 0.38Table 3 Composition of stock solution (g / l) Se Te Au Ag Cu Pb As Bi Sb Fe 9.33 50.1 0.004 0.63 18.5 7.22 0.28 13.8 0.87 0.38
【0043】[0043]
【表4−1】 水相と有機相の組成(g/l) 抽出試料 液量(ml) Se Te Au Ag Cu 1回水相 620 8.62 2.41 <0.001 0.63 20.0 2回水相 540 8.17 0.32 <0.001 0.66 20.5 3回水相 540 8.10 0.048 <0.001 0.67 20.2 1回有機相 715 0.906 37.4 <0.005 0.004 0.14[Table 4-1] Composition of aqueous phase and organic phase (g / l) Extracted sample liquid volume (ml) Se Te Au Ag Cu Once aqueous phase 620 8.62 2.41 <0.001 0.63 20.0 Twice aqueous phase 540 8.17 0.32 <0.001 0.66 20.5 3 times aqueous phase 540 8.10 0.048 <0.001 0.67 20.2 1 time organic phase 715 0.906 37.4 <0.005 0.004 0.14
【表4−2】 [Table 4-2]
【0044】表4の結果から分かるように、ジブチルカ
ルビトールでの1回の抽出によりテルルは99.92%
抽出されたが、不純物元素のうち銀、銅、ヒ素、ビスマ
スは殆ど抽出されず、セレンは若干抽出された。しか
し、アンチモン及び鉄はテルルと共に抽出された。As can be seen from the results in Table 4, a single extraction with dibutyl carbitol resulted in 99.92% tellurium.
Although extracted, silver, copper, arsenic, and bismuth among the impurity elements were hardly extracted, and selenium was slightly extracted. However, antimony and iron were extracted with tellurium.
【0045】次に、上記表4に示す1回抽出の有機相
を、1.5〜7.0mol/lの塩酸と相比O/A=1/
1で混合し、水相へのテルル及び不純物元素の分配を調
べた。その結果、セレン、銀、銅、鉛、ヒ素、ビスマス
に関しては塩酸濃度を問わず完全に水相に逆抽出された
ため、テルル、アンチモン、鉄の水相への溶出濃度(g
/l)のみを下記表5に示した。尚、塩酸濃度が1.5
mol/lの場合、僅かに加水分解物の生成が認められ
た。Next, the organic phase of the single extraction shown in Table 4 above was combined with 1.5 to 7.0 mol / l hydrochloric acid and the phase ratio O / A = 1 /.
1 and the distribution of tellurium and impurity elements into the aqueous phase was examined. As a result, selenium, silver, copper, lead, arsenic, and bismuth were completely back-extracted into the aqueous phase irrespective of the hydrochloric acid concentration, so that the concentrations of tellurium, antimony, and iron dissolved in the aqueous phase (g
/ L) is shown in Table 5 below. The hydrochloric acid concentration was 1.5.
In the case of mol / l, a slight amount of hydrolyzate was observed.
【0046】[0046]
【表5】 [Table 5]
【0047】上記の結果から分かるように、相比O/A
=1/1の場合、スクラビング時の水相へのテルルの損
失を10%以下に抑えるためには、5mol/l以上の
塩酸濃度が必要である。また、逆抽出時には、塩酸濃度
が低いほど水相へのテルルの分配が多くなるが、加水分
解を完全に防止するには2.5mol/l以上の塩酸濃
度とすることが好ましい。As can be seen from the above results, the phase ratio O / A
In the case of = 1/1, a hydrochloric acid concentration of 5 mol / l or more is required to suppress the loss of tellurium to the aqueous phase during scrubbing to 10% or less. Also, at the time of back extraction, the lower the concentration of hydrochloric acid, the greater the distribution of tellurium in the aqueous phase, but in order to completely prevent hydrolysis, the concentration of hydrochloric acid is preferably at least 2.5 mol / l.
【0048】尚、前記実施例1と比較して、実施例2の
方が類似の条件でも全般的にテルルの有機相への分配率
が高くなっているが、これは表1の原液中にテルルと共
抽出される元素が高濃度で共存し、テルルの抽出を抑制
したためである。As compared with Example 1, the distribution of tellurium to the organic phase was generally higher in Example 2 under similar conditions. This is because elements co-extracted with tellurium coexist at a high concentration, thereby suppressing tellurium extraction.
【0049】実施例3 下記表6に示す組成(g/l)の原液を用い、ジブチル
カルビトールでの抽出3段、塩酸でのスクラビング5
段、抽出段の相比O/A=1/2、スクラビング段の相
比O/A=1/1の多段向流抽出を想定したバッチシミ
ュレーションを実施した。尚、原液の塩酸濃度は7.7
mol/lであり、塩化物イオン濃度は9.3mol/
lである。 Example 3 Using a stock solution having the composition (g / l) shown in Table 6 below, three extraction steps with dibutyl carbitol, and a scrubbing step with hydrochloric acid 5
A batch simulation was carried out assuming multistage countercurrent extraction in which the phase ratio of the stage and the extraction stage was O / A = 1/2 and the phase ratio of the scrubbing stage was O / A = 1/1. The hydrochloric acid concentration of the stock solution was 7.7.
mol / l, and the chloride ion concentration is 9.3 mol / l.
l.
【0050】[0050]
【表6】原液の組成(g/l) Se Te Au Ag Cu Rh Pb As Bi Sb Fe 12 92 0.027 0.52 54 0.13 6.5 0.5 32 1.9 1.1Table 6 Composition of stock solution (g / l) Se Te Au Ag Cu Rh Rh Pb As Bi Sb Fe 12 92 0.027 0.52 54 0.13 6.5 0.5 32 1.9 1.1
【0051】操作方法は図2に示すとおりであり、図中
の「原液」は原液50mlを、「DBC」は抽出剤であ
るジブチルカルビトール50mlを、及び「洗液」は7
mol/lの塩酸50mlを意味し、右下へ向かう矢印
は有機相の流れを、及び左下と真下へ向かう矢印は水相
の流れを示す。The method of operation is as shown in FIG. 2. In the figure, "stock solution" is 50 ml of stock solution, "DBC" is 50 ml of dibutyl carbitol as an extractant, and "wash solution" is 7 ml.
The arrows pointing to the lower right indicate the flow of the organic phase, and the arrows pointing to the lower left and right below indicate the flow of the aqueous phase.
【0052】また、図中の○印は10分間の混合操作を
表わし、〜は抽出の1〜3段にそれぞれ対応し、
’〜’はスクラビングの1〜5段にそれぞれ対応す
る。各段の分析試料は、〜及び’〜’の各操作
後に採取した。採取した各試料の分析結果として、下記
表7に各段の水相の組成(g/l)を、表8に各段の有
機相の組成(g/l)を、及び表9に最終抽残液と抽出
有機相への各元素の分配(%)を示した。In the figure, the mark 印 represents the mixing operation for 10 minutes, and ~ corresponds to the first to third stages of extraction, respectively.
'~' Corresponds to 1 to 5 stages of scrubbing, respectively. The analysis sample of each stage was collected after each operation of ~ and '~'. Table 7 shows the composition (g / l) of the aqueous phase in each stage, the composition (g / l) of the organic phase in each stage in Table 8, and the final extraction in Table 9 as the analysis results of the collected samples. The distribution (%) of each element between the residual liquid and the extracted organic phase is shown.
【0053】[0053]
【表7】 各段の水相組成(g/l) 水 相 液量(ml) Cu Se Sb Fe Te 抽 出 3 段 45.0 31 6.7 0.027 <0.005 0.57 抽 出 2 段 44.0 31 7.0 0.027 <0.005 1.8 抽 出 1 段 44.0 31 6.6 0.034 <0.005 9.4 スクラヒ゛ンク゛ 1段 23.0 0.79 0.69 <0.005 <0.005 5.1 スクラヒ゛ンク゛ 2段 24.5 0.044 0.020 0.040 <0.005 3.1 スクラヒ゛ンク゛ 3段 24.5 0.007 0.009 <0.005 <0.005 2.4 スクラヒ゛ンク゛ 4段 26.0 <0.005 0.008 <0.005 <0.005 1.8 スクラヒ゛ンク゛ 5段 25.5 <0.005 0.006 <0.005 <0.005 1.7 Table 7 aqueous phase composition of each stage (g / l) aqueous solution volume (ml) Cu Se Sb Fe Te extractions 3 stages 45.0 31 6.7 0.027 <0.005 0.57 extractions second stage 44.0 31 7.0 0.027 <0.005 1.8 extract Out 1st stage 44.0 31 6.6 0.034 <0.005 9.4 Scratch 1st 23.0 0.79 0.69 <0.005 <0.005 5.1 Scratch 2nd 24.5 0.044 0.020 0.040 <0.005 3.1 Scrunch 3rd 24.5 0.007 0.009 <0.005 <0.005 2.4 5 <8 86.0 0.005 <0.005 1.8 Scramble 5 steps 25.5 <0.005 0.006 <0.005 <0.005 1.7
【0054】[0054]
【表8】 各段の有機相組成(g/l) 有 機 相 液量(ml) Cu Se Sb Fe Te 抽 出 3 段 25.0 0.12 0.30 0.027 0.013 3.56 抽 出 2 段 25.5 0.20 0.38 0.015 0.006 18.5 抽 出 1 段 29.0 0.31 0.39 1.62 0.99 84.3 スクラヒ゛ンク゛ 1段 29.0 0.026 0.27 1.62 0.99 80.5スクラヒ゛ンク゛ 2段 29.5 0.005 0.21 1.53 1.02 78.5スクラヒ゛ンク゛ 3段 30.5 <0.005 0.18 1.56 0.95 76.0スクラヒ゛ンク゛ 4段 31.0 <0.005 0.17 1.47 0.94 74.9スクラヒ゛ンク゛ 5段 30.5 <0.005 0.16 1.55 0.96 74.4TABLE 8 organic phase composition (g / l) organic phase liquid volume (ml) Cu Se Sb Fe Te extractions 3 stages 25.0 0.12 0.30 0.027 0.013 3.56 extractions two stages 25.5 0.20 0.38 0.015 0.006 18.5 out extraction of each stage 1 stage 29.0 0.31 0.39 1.62 0.99 84.3 Scramble 1 stage 29.0 0.026 0.27 1.62 0.99 80.5 Scramble 2 stages 29.5 0.005 0.21 1.53 1.02 78.5 Scrunch 3 stages 30.5 <0.005 0.18 1.56 0.95 76.0 Scrunch 4 stages 31.0 <0.95 0.17 <0.005 0.16 1.55 0.96 74.4
【0055】[0055]
【表9】 最終抽残液及び抽出有機相への分配率(%) Cu Se Sb Fe Te 抽 出 3 段 水 相 99.99 98.4 2.51 0.76 1.12スクラヒ゛ンク゛ 5段有機相 0.01 1.59 97.5 99.2 98.9[Table 9] Partition ratio (%) to the final raffinate and the extracted organic phase Cu Se Sb Fe Te extraction 3 step aqueous phase 99.99 98.4 2.51 0.76 1.12 Scraping 5 step organic phase 0.01 1.59 97.5 99.2 98.9
【0056】この結果から、3段の抽出及び5段のスク
ラビングを経て、原液中の92g/lのテルルはスクラ
ビング液で2倍に希釈された状態で0.57g/lまで
低減し、有機相に98.9%抽出されていることが分か
る。その一方で、主要な不純物元素である銅は99.9
9%、及びセレンは98.4%が水相に留まることが確
認された。しかしながら、少量存在するアンチモン及び
鉄は、ほぼテルルと同じ挙動を示し、テルルと共に有機
相に共抽出された。From the results, after three extraction steps and five scrubbing steps, 92 g / l of tellurium in the stock solution was reduced to 0.57 g / l in a state of being diluted twice with the scrubbing liquid, and It can be seen that 98.9% was extracted. On the other hand, copper, which is a major impurity element, is 99.9%.
It was confirmed that 9% and 98.4% of selenium remained in the aqueous phase. However, antimony and iron present in small amounts behaved almost the same as tellurium and were co-extracted with tellurium into the organic phase.
【0057】実施例4 下記表10に示す組成(g/l)を有するジブチルカル
ビトールでの抽出有機相を原液として用い、3mol/
lの塩酸での逆抽出3段、相比O/A=1/2の多段向
流抽出を想定したバッチシミュレーションを実施した。 Example 4 An organic phase extracted with dibutyl carbitol having the composition (g / l) shown in Table 10 below was used as a stock solution and 3 mol /
A batch simulation was carried out assuming three stages of back extraction with 1 l hydrochloric acid and a multistage countercurrent extraction with a phase ratio of O / A = 1/2.
【0058】[0058]
【表10】抽出有機相の組成(g/l) Se Sb Fe Te 0.21 1.53 0.92 58.9Table 10 Composition of extracted organic phase (g / l) Se Sb Fe Te 0.21 1.53 0.92 58.9
【0059】操作方法は図3に示すとおりであり、図中
の「抽出有機」は表10のジブチルカルビトールでの抽
出有機相30mlを、「3H HCl」は3mol/l
の塩酸60mlを意味し、右下へ向かう矢印は有機相の
流れ及び左下へ向かう矢印は水相の流れを示す。また、
○印はこれらの10分間の混合操作を表わし、〜の
混合操作は多段向流抽出において1〜3段にそれぞれ対
応する。The operation method is as shown in FIG. 3. In FIG. 3, "extracted organic" refers to 30 ml of the organic phase extracted with dibutyl carbitol in Table 10, and "3H HCl" refers to 3 mol / l.
The arrow toward the lower right indicates the flow of the organic phase and the arrow toward the lower left indicates the flow of the aqueous phase. Also,
The circles represent these mixing operations for 10 minutes, and the mixing operations of ~ correspond to the first to third stages in the multi-stage countercurrent extraction, respectively.
【0060】各段の分析試料を〜の各操作後に採取
し、採取した各試料の分析結果として、下記表11に各
段の逆抽出液(水相)の組成(g/l)を、表12に各
段の逆抽出後の有機相の組成(g/l)を、及び表13
に最終逆抽出液と逆抽出有機相への各元素の分配(%)
を示した。The analytical sample of each stage was collected after each of the above operations, and the composition (g / l) of the back extraction liquid (aqueous phase) of each stage is shown in Table 11 below as the analysis result of each sample. 12 shows the composition (g / l) of the organic phase after back extraction in each stage, and Table 13
Of each element to the final back-extraction solution and back-extraction organic phase (%)
showed that.
【0061】[0061]
【表11】 各段の逆抽出液組成(g/l) 逆抽出液 液量(ml) Se Sb Fe Te 逆抽出1段 33.0 0.071 0.26 0.11 26 逆抽出2段 31.7 0.034 0.17 0.32 24 逆抽出3段 30.3 0.029 0.18 0.46 10 [Table 11] Composition of back-extraction solution in each stage (g / l) Volume of back-extraction solution (ml) Se Sb Fe Te Back-extraction 1 stage 33.0 0.071 0.26 0.11 26 Back-extraction 2 stage 31.7 0.034 0.17 0.32 24 Back-extraction 3 stage 30.3 0.029 0.18 0.46 10
【0062】[0062]
【表12】 各段の有機相組成(g/l) 有 機 相 液量(ml) Se Sb Fe Te 逆抽出1段 14.0 0.13 1.31 1.03 54.1 逆抽出2段 13.4 0.13 1.23 1.03 27.3 逆抽出3段 13.0 0.09 0.96 0.42 5.46Table 12 Organic phase composition of each stage (g / l) organic phase liquid volume (ml) Se Sb Fe Te stripping 1 stage 14.0 0.13 1.31 1.03 54.1 back extracted two stages 13.4 0.13 1.23 1.03 27.3 back extracted three stages 13.0 0.09 0.96 0.42 5.46
【0063】[0063]
【表13】 最終逆抽出液及び抽出後有機相への分配率(%) Se Sb Fe Te 逆抽出1段逆抽出液 67.4 40.71 39.96 92.4 逆抽出3段後有機相 32.6 59.3 60.1 7.6[Table 13] Partition ratio (%) to the final back-extract and the organic phase after extraction Se Sb Fe Te Back-extraction one-stage back-extraction 67.4 40.71 39.96 92.4 Organic phase after three-stage back-extraction 32.6 59.3 60.1 7.6
【0064】このように、3段の逆抽出により92%以
上のテルルを26g/lの濃度で水相に逆抽出できた。
前記実施例3のごとくセレンは既にスクラビング段で分
離されているため、逆抽出率としては計算上低い値であ
るが、実際には0.0ng/lのオーダーまで逆抽出さ
れた。この時点での逆抽出1段の逆抽出液の品位は、T
e/(Te+Se+Sb+Fe)=0.983であっ
た。As described above, 92% or more of tellurium could be back-extracted into the aqueous phase at a concentration of 26 g / l by three-stage back-extraction.
Since selenium has already been separated in the scrubbing stage as in Example 3 above, the back extraction rate is a low value in terms of calculation, but it was actually back extracted to the order of 0.0 ng / l. At this time, the grade of the back extraction liquid in the back extraction 1 stage is T
e / (Te + Se + Sb + Fe) = 0.983.
【0065】一方、アンチモンと鉄は、逆抽出後も有機
相に残留しやすかったが、最終的にテルルを抽出した後
の有機相を0.2mol/lの亜硫酸水素ナトリウム水
溶液で洗浄した結果、アンチモン、鉄、テルルともに
0.005g/l未満まで、完全に逆抽出することがで
きた。On the other hand, antimony and iron were likely to remain in the organic phase even after back-extraction, but the organic phase after the final tellurium extraction was washed with a 0.2 mol / l aqueous sodium bisulfite solution. Antimony, iron and tellurium could be completely back-extracted to less than 0.005 g / l.
【0066】実施例5 図4に示すような抽出装置(ミキサーセトラー)によ
り、抽出3段、スクラビング5段、逆抽出3段による連
続テルル回収試験を実施した。図4において、○を付し
た矩形部分が有機相と水相を混合するミキサー1であ
り、○のない長方形部分が有機相と水相を相分離するセ
トラー2であって、水相は実線矢印方向に及び有機相は
破線矢印方向に流れる。 Example 5 A continuous tellurium recovery test was carried out using an extraction apparatus (mixer settler) as shown in FIG. 4 with three extraction stages, five scrubbing stages, and three back extraction stages. In FIG. 4, a rectangular part with a circle is a mixer 1 for mixing an organic phase and an aqueous phase, a rectangular part without a circle is a settler 2 for phase separation of an organic phase and an aqueous phase, and the aqueous phase is a solid arrow. Direction and the organic phase flows in the direction of the dashed arrow.
【0067】即ち、原液中のテルルは3段の抽出段を経
てジブチルカルビトール(DBC)で抽出され、テルル
品位の低下した水相は最終的に抽残液として放出され
る。テルルを抽出した有機相は5段のスクラビング段で
塩酸により洗浄され、主要な不純物は水相に放出され
る。精製された有機相は3段の逆抽出段に送られ、テル
ルが水相に回収される。テルルを逆抽出した後の有機相
は、抽出段の第3段に再度供給される。That is, tellurium in the stock solution is extracted with dibutyl carbitol (DBC) through three extraction stages, and the aqueous phase with reduced tellurium grade is finally released as a raffinate. The organic phase from which tellurium has been extracted is washed with hydrochloric acid in five scrubbing stages and the main impurities are released into the aqueous phase. The purified organic phase is sent to three back extraction stages, and tellurium is recovered in the aqueous phase. The organic phase after tellurium back-extraction is fed again to the third stage of the extraction stage.
【0068】このミキサーセトラーを用い、下記表14
に示す組成を有し、塩酸濃度5.3mol/l、塩化物
イオン濃度8.2mol/l、銀/塩化銀電極に対する
電位620mVの原液からテルルを連続的に回収した。
実際の操作条件を下記表15に示した。Using this mixer settler, the following Table 14
Tellurium was continuously recovered from a stock solution having a composition shown in Table 2 below, a hydrochloric acid concentration of 5.3 mol / l, a chloride ion concentration of 8.2 mol / l, and a potential of 620 mV with respect to a silver / silver chloride electrode.
The actual operating conditions are shown in Table 15 below.
【0069】[0069]
【表14】原液の組成(g/l) Se Te Au Ag Cu Rh Pb Bi Sb 16.6 59.0 0.01 0.41 65.6 0.23 7.41 23.2 0.52 Table 14 Composition of stock solution (g / l) Se Te Au Ag Cu Rh Rh Pb Bi Sb 16.6 59.0 0.01 0.41 65.6 0.23 7.41 23.2 0.52
【0070】[0070]
【表15】 装 入 液 量 相 比 滞留時間(分) 操 作 (ml/分) (O/A) ミキサー セトラー 抽 出 段 原液:40 DBC:40 1/2 5 25 スクラビング段 7mol/l HCl:40 1/1 7.5 37.5 逆 抽 出 段 3mol/l HCl+2%NaCl:80 1/2 5 25[Table 15] Charged liquid phase Specific residence time (min) Operation (ml / min) (O / A) Mixer settler extraction stage Stock solution: 40 DBC: 40 1/2 25 25 Scrubbing stage 7mol / l HCl: 40 1/1 7.5 37.5 Reverse extraction stage 3mol / l HCl + 2% NaCl: 80 1/2 5 25
【0071】上記の条件にて44時間連続運転し、回収
した有機相及び水相の平均試料を分析し、各元素の分配
率(%)を調査した結果を下記表16に示した。尚、逆
抽出有機相に低濃度で残留した金とアンチモンは、前記
実施例4と同様に亜硫酸水素ナトリウム水溶液で処理す
ることにより、0.005g/l未満まで逆抽出するこ
とができた。The samples were operated continuously for 44 hours under the above conditions, and the average samples of the collected organic phase and aqueous phase were analyzed. The results of investigating the distribution (%) of each element are shown in Table 16 below. The gold and antimony remaining at a low concentration in the back-extraction organic phase could be back-extracted to less than 0.005 g / l by treating with sodium hydrogen sulfite aqueous solution in the same manner as in Example 4.
【0072】[0072]
【表16】 各元素の分配率(%) Se Te Au Ag Cu Rh Pb Bi Sb 抽 残 液 99.7 5.1 0 100 100 100 100 100 9.6 逆抽出液 0.3 94.8 0 0 0 0 0 0 59.5 逆抽有機相 0.0 0.1 100 0 0 0 0 0 30.9[Table 16] Partition ratio (%) of each element Se Te Au Ag Cu Rh Rh Pb Bi Sb extraction liquid 99.7 5.1 0 100 100 100 100 100 9.6 Reverse extraction liquid 0.3 94.8 0 0 0 0 0 0 59.5 Reverse extraction organic phase 0.0 0.1 100 0 0 0 0 0 30.9
【0073】実施例6 下記表17に示すテルル逆抽出液610mlを3分割
し、それぞれ90℃に昇温し、二酸化硫黄を用いて下記
表18に示す電位(銀/塩化銀電極に対する値)にて2
0分維持し、第1段還元を行って生成した沈澱を分離し
た。その後、濾液を最低電位(284mV)まで還元す
る第2段還元により、金属テルルの沈澱を得た。 Example 6 610 ml of the tellurium back-extracted solution shown in Table 17 below was divided into three portions, each of which was heated to 90 ° C., and brought to a potential (a value for a silver / silver chloride electrode) shown in Table 18 below using sulfur dioxide. 2
After maintaining for 0 minutes, the first-stage reduction was performed, and the formed precipitate was separated. Thereafter, a precipitate of metallic tellurium was obtained by a second-stage reduction in which the filtrate was reduced to the minimum potential (284 mV).
【0074】[0074]
【表17】原液の組成(g/l) Se Te Au Ag Cu Pb As Bi Sb Fe 0.009 33.9 <0.001 <0.001 <0.001 <0.005 <0.01 <0.005 0.162 0.322Table 17 Composition of stock solution (g / l) Se Te Au Ag Cu Pb As Bi Sb Fe 0.009 33.9 <0.001 <0.001 <0.001 <0.005 <0.01 <0.005 0.162 0.322
【0075】下記表18に、第1段還元電位(mV)と
共に、テルルの還元精製時の損失に相当する第1段還元
沈澱中のテルル沈澱率(%)、及び第2段還元で回収さ
れた金属テルル中のセレン濃度(ppm)を示した。こ
れらの結果より、第1段及び第2段の還元における電位
を調整することにより、テルルの損失を最小にし且つ金
属テルルへのセレンの混入を防止し得ることが分かる。Table 18 below shows, together with the first-stage reduction potential (mV), the tellurium precipitation rate (%) in the first-stage reduction precipitation corresponding to the loss during the reduction purification of tellurium, and the recovery in the second-stage reduction. The selenium concentration (ppm) in the tellurium metal was shown. These results indicate that adjusting the potentials in the first and second reduction stages can minimize tellurium loss and prevent the incorporation of selenium into tellurium metal.
【0076】[0076]
【表18】 [Table 18]
【0077】また、第1段還元を377mVで実施した
後、沈澱を分離した濾液を更に284mVまで第2段還
元した場合、得られた金属テルルの品位(ppm)を下
記表19に示した。抽出工程のみでは完全に分離できな
かったセレン、アンチモン、鉄などの不純物元素も、2
段の還元処理によりほぼ完全に分離された。When the first-stage reduction was carried out at 377 mV and the filtrate from which the precipitate was separated was further reduced to 284 mV in the second stage, the grade (ppm) of the obtained metallic tellurium is shown in Table 19 below. Impurity elements such as selenium, antimony, and iron that could not be completely separated only by the extraction process
Almost completely separated by the reduction treatment of the stage.
【0078】[0078]
【表19】金属テルルの品位(ppm) Na Mg Fe Ni Cu Se Ag Al Si Sb Au Bi 0.08 0.1 0.9 0.1 0.4 12 4.3 0.5 1.8 0.8 0.4 0.9[Table 19] of metallic tellurium quality (ppm) Na Mg Fe Ni Cu Se Ag Al Si Sb Au Bi 0.08 0.1 0.9 0.1 0.4 12 4.3 0.5 1.8 0.8 0.4 0.9
【0079】実施例7 前記実施例5のミキサーセトラー試験と同様にして得ら
れた、下記表20に示す組成(g/l)を有する逆抽出
液150リットルを使用して、還元によるテルルの精製
と回収を実施した。 Example 7 Purification of tellurium by reduction using 150 liters of a back extract obtained in the same manner as in the mixer settler test of Example 5 and having the composition (g / l) shown in Table 20 below And recovery was carried out.
【0080】[0080]
【表20】逆抽出液の組成(g/l) Au Ag Pb Cu Se Sb Te <0.01 <0.01 <0.01 <0.01 <0.01 0.57 22.9Table 20 Composition of back-extraction solution (g / l) Au Ag Pb Cu Se Sb Te <0.01 <0.01 <0.01 <0.01 <0.01 0.57 22.9
【0081】まず、上記逆抽出液を温度90℃まで昇温
した後、撹拌しながら二酸化硫黄を吹き込んで電位が3
90mVになるまで第1段還元を行った。生成した沈澱
を濾過した後、濾液を90℃まで昇温し、再度撹拌しな
がら二酸化硫黄を吹き込んで290mVまで還元した。
この第2段還元で生成した金属テルルを回収し、水洗及
び乾燥した後、その組成を分析した結果を下記表21に
示した。First, the temperature of the above-mentioned back-extraction solution was raised to 90 ° C., and sulfur dioxide was blown into the solution while stirring to reduce the potential to 3 ° C.
The first-stage reduction was performed until the voltage became 90 mV. After filtering the formed precipitate, the filtrate was heated to 90 ° C. and reduced to 290 mV by blowing in sulfur dioxide while stirring again.
The metallic tellurium produced in the second-stage reduction was recovered, washed with water and dried, and the composition was analyzed. The results are shown in Table 21 below.
【0082】[0082]
【表21】金属テルルの品位(ppm) Na Mg Fe Ni Cu Se Ag Sb <1 <1 <1 <1 <5 <1 4 <1[Table 21] Grade of metallic tellurium (ppm) Na Mg Fe Ni Cu Se Ag Sb <1 <1 <1 <1 <5 <14 <1
【0083】前記実施例6との比較から、本実施例7で
は処理量の増大により還元の均一化が図られ、不純物品
位はむしろ低下することが分かった。尚、逆抽出液中の
テルルのうち、3.5%が第1段還元で、残りの96.5
%が第2段還元で沈澱した。最終母液中のテルルは0.
01g/l未満であった。From the comparison with Example 6, it was found that in Example 7, reduction was made uniform by increasing the treatment amount, and impurity quality was rather lowered. In addition, 3.5% of tellurium in the back extract was reduced in the first stage, and the remaining 96.5 was reduced.
% Precipitated in the second stage reduction. Tellurium in the final mother liquor is 0.
It was less than 01 g / l.
【0084】[0084]
【発明の効果】本発明によれば、原料中の不純物の種類
や量に拘らず、ジブチルカルビトールによりテルルを選
択的に抽出分離することができ、更にこれを逆抽出及び
還元して不純物の少ない高品位の金属テルルを回収する
ことができる。しかも、連続的なテルルの分離精製が可
能であるうえ、銅電解スライム等の原料に含まれる白金
族元素の損失もなく、工業的メリットは大きいものであ
る。According to the present invention, tellurium can be selectively extracted and separated by dibutyl carbitol, regardless of the type and amount of impurities in the raw material, and further, this can be back-extracted and reduced to remove impurities. A small amount of high-grade metallic tellurium can be recovered. Moreover, continuous separation and purification of tellurium is possible, and there is no loss of platinum group elements contained in raw materials such as copper electrolytic slime, so that the industrial merit is great.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明方法の各工程を示すフローチャートであ
る。FIG. 1 is a flowchart showing each step of the method of the present invention.
【図2】実施例3での抽出3段及びスクラビング5段の
多段向流抽出を想定したバッチシュミレーションの操作
図である。FIG. 2 is an operation diagram of a batch simulation assuming a multistage countercurrent extraction of three stages of extraction and five stages of scrubbing in Example 3.
【図3】実施例4での逆抽出3段の多段向流抽出を想定
したバッチシュミレーションの操作図である。FIG. 3 is an operation diagram of a batch simulation assuming multistage countercurrent extraction of three stages of back extraction in a fourth embodiment.
【図4】実施例5でのテルルの抽出精製に使用したミキ
サーセトラーを説明するための概念図である。FIG. 4 is a conceptual diagram for explaining a mixer settler used for extracting and purifying tellurium in Example 5.
1 ミキサー 2 セトラー 1 mixer 2 settler
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒川 裕司 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4K001 AA26 BA17 CA07 DB04 DB11 DB17 DB21 DB26 HA12 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yuji Kurokawa 3-5-3 Nishiharacho, Niihama-shi, Ehime F-term in the Besshi Works of Sumitomo Metal Mining Co., Ltd. 4K001 AA26 BA17 CA07 DB04 DB11 DB17 DB21 DB26 HA12
Claims (6)
の塩化物イオンを含み、該塩化物イオンのうち3mol
/l以上が塩酸の形態である水溶液に、抽出剤としてジ
ブチルカルビトールを混合し、テルルを選択的に抽出す
ることを特徴とするテルルの分離精製方法。Claims: 1. A tellurium (IV) ion and 5 to 9 mol / l
Of chloride ions, of which 3 mol
A method for separating and purifying tellurium, comprising mixing dibutyl carbitol as an extractant with an aqueous solution in which at least 1 / l is in the form of hydrochloric acid, and selectively extracting tellurium.
/lの塩酸で洗浄することにより、金属不純物を水相に
分離することを特徴とする、請求項1に記載のテルルの
分離精製方法。2. The organic phase from which tellurium has been extracted is 5 to 9 mol.
2. The method for separating and purifying tellurium according to claim 1, wherein metal impurities are separated into an aqueous phase by washing with hydrochloric acid.
ol/lの塩酸を混合し、テルルを水相に逆抽出するこ
とを特徴とする、請求項1又は2に記載のテルルの分離
精製方法。3. The organic phase from which tellurium has been extracted has a thickness of 1.5 to 4 m.
3. The method for separating and purifying tellurium according to claim 1, wherein ol / l hydrochloric acid is mixed and tellurium is back-extracted into an aqueous phase.
水溶液に還元剤を加え、テルルを還元することにより金
属テルルを分離回収することを特徴とする、請求項3に
記載のテルルの分離精製方法。4. The separation and purification of tellurium according to claim 3, wherein a reducing agent is added to the aqueous solution containing tellurium back-extracted from the organic phase, and tellurium is reduced to separate and recover metallic tellurium. Method.
を特徴とする、請求項4に記載のテルルの分離精製方
法。5. The method for separating and purifying tellurium according to claim 4, wherein sulfur dioxide is used as a reducing agent.
420mVの電位まで還元し、生成した沈澱を分離した
母液を280〜300mVまで再度還元することによ
り、金属テルルを回収することを特徴とする、請求項4
又は5に記載のテルルの分離精製方法。6. A back extraction solution is applied to a silver-silver chloride electrode at 370 to
5. The metal tellurium is recovered by reducing to a potential of 420 mV and reducing the mother liquor from which a formed precipitate is separated again to 280 to 300 mV.
Or the method for separating and purifying tellurium according to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04097299A JP3826603B2 (en) | 1999-02-19 | 1999-02-19 | Tellurium separation and purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04097299A JP3826603B2 (en) | 1999-02-19 | 1999-02-19 | Tellurium separation and purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000239753A true JP2000239753A (en) | 2000-09-05 |
JP3826603B2 JP3826603B2 (en) | 2006-09-27 |
Family
ID=12595377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04097299A Expired - Lifetime JP3826603B2 (en) | 1999-02-19 | 1999-02-19 | Tellurium separation and purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3826603B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105554A (en) * | 2000-09-28 | 2002-04-10 | Furukawa Co Ltd | Method for recovering tellurium |
JP2002105553A (en) * | 2000-09-28 | 2002-04-10 | Furukawa Co Ltd | Method for recovering tellurium |
US7479262B2 (en) | 2002-03-15 | 2009-01-20 | Mitsubishi Materials Corporation | Method for separating platinum group element |
JP2013256419A (en) * | 2012-06-13 | 2013-12-26 | Mitsubishi Materials Corp | Method for separating and recovering tellurium |
KR101494774B1 (en) | 2013-12-03 | 2015-02-23 | 한국과학기술연구원 | Separation of tellurium and selenium, and preration method of tellurium using the same |
JP2015113267A (en) * | 2013-12-13 | 2015-06-22 | 三菱マテリアル株式会社 | Separation/recovery method of tellurium |
JP2018109207A (en) * | 2016-12-28 | 2018-07-12 | Jx金属株式会社 | Method of recovering selenium |
JP2018109208A (en) * | 2016-12-28 | 2018-07-12 | Jx金属株式会社 | Method of recovering valuable material |
JP2018115380A (en) * | 2017-01-19 | 2018-07-26 | 三菱マテリアル株式会社 | Method for separating tellurium and platinum group metal |
JP2019147718A (en) * | 2018-02-27 | 2019-09-05 | Jx金属株式会社 | Method for recovering tellurium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101451789B1 (en) | 2012-10-23 | 2014-10-16 | 한국과학기술연구원 | Separation of tellurium by solvent extraction method |
-
1999
- 1999-02-19 JP JP04097299A patent/JP3826603B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105554A (en) * | 2000-09-28 | 2002-04-10 | Furukawa Co Ltd | Method for recovering tellurium |
JP2002105553A (en) * | 2000-09-28 | 2002-04-10 | Furukawa Co Ltd | Method for recovering tellurium |
JP4574825B2 (en) * | 2000-09-28 | 2010-11-04 | 古河機械金属株式会社 | How to recover tellurium |
JP4574826B2 (en) * | 2000-09-28 | 2010-11-04 | 古河機械金属株式会社 | How to recover tellurium |
US7479262B2 (en) | 2002-03-15 | 2009-01-20 | Mitsubishi Materials Corporation | Method for separating platinum group element |
JP2013256419A (en) * | 2012-06-13 | 2013-12-26 | Mitsubishi Materials Corp | Method for separating and recovering tellurium |
KR101494774B1 (en) | 2013-12-03 | 2015-02-23 | 한국과학기술연구원 | Separation of tellurium and selenium, and preration method of tellurium using the same |
JP2015113267A (en) * | 2013-12-13 | 2015-06-22 | 三菱マテリアル株式会社 | Separation/recovery method of tellurium |
JP2018109207A (en) * | 2016-12-28 | 2018-07-12 | Jx金属株式会社 | Method of recovering selenium |
JP2018109208A (en) * | 2016-12-28 | 2018-07-12 | Jx金属株式会社 | Method of recovering valuable material |
JP2018115380A (en) * | 2017-01-19 | 2018-07-26 | 三菱マテリアル株式会社 | Method for separating tellurium and platinum group metal |
JP2019147718A (en) * | 2018-02-27 | 2019-09-05 | Jx金属株式会社 | Method for recovering tellurium |
JP7005384B2 (en) | 2018-02-27 | 2022-01-21 | Jx金属株式会社 | How to collect tellurium |
Also Published As
Publication number | Publication date |
---|---|
JP3826603B2 (en) | 2006-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741117B2 (en) | Mutual separation of platinum group elements | |
US4293332A (en) | Hydrometallurgical process for recovering precious metals from anode slime | |
AU2009219115B2 (en) | Selective gold extraction from copper anode slime with an alcohol | |
JP5685645B2 (en) | Method for recovering gold by solvent extraction | |
JP3087758B1 (en) | Method for recovering valuable metals from copper electrolytic slime | |
Hong et al. | Selective recovery of Rhenium from industrial leach solutions by synergistic solvent extraction | |
JPH0130896B2 (en) | ||
JP2013508566A (en) | Precious metal recovery method | |
JP5454461B2 (en) | Method for recovering selenium from copper electrolytic slime | |
JP5825484B2 (en) | Method for recovering platinum group metals | |
KR20140069116A (en) | Process for purifying zinc oxide | |
JP4207959B2 (en) | Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same | |
JP2000239753A (en) | Method for separating and purifying tellurium | |
JP7198079B2 (en) | Method for treating acidic liquids containing precious metals, selenium and tellurium | |
JP6636819B2 (en) | Treatment method of metal-containing acidic aqueous solution | |
JP7337209B2 (en) | Iridium recovery method | |
JP2015113503A (en) | Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution | |
JPH08209259A (en) | Method for separating and recovering platinum group from plantinum group-containing iron alloy | |
JP2000169117A (en) | Selectively reductive recovery process of selenium | |
JP2021023851A (en) | Method of treating solution containing seleno sulfate | |
JP5502178B2 (en) | Silver recovery method | |
JP3823307B2 (en) | Method for producing high purity cobalt solution | |
JP7400443B2 (en) | Mutual separation method of platinum group elements | |
JP7293976B2 (en) | Scandium recovery method | |
JPH10265863A (en) | Method for recovering noble metals from smelting residue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060626 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |