JP2018109207A - Method of recovering selenium - Google Patents

Method of recovering selenium Download PDF

Info

Publication number
JP2018109207A
JP2018109207A JP2016256676A JP2016256676A JP2018109207A JP 2018109207 A JP2018109207 A JP 2018109207A JP 2016256676 A JP2016256676 A JP 2016256676A JP 2016256676 A JP2016256676 A JP 2016256676A JP 2018109207 A JP2018109207 A JP 2018109207A
Authority
JP
Japan
Prior art keywords
selenium
aqueous solution
ketones
acidic aqueous
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016256676A
Other languages
Japanese (ja)
Other versions
JP6964408B2 (en
Inventor
学 真鍋
Manabu Manabe
学 真鍋
正 野呂
Tadashi Noro
正 野呂
大輔 倉井
Daisuke Kurai
大輔 倉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016256676A priority Critical patent/JP6964408B2/en
Publication of JP2018109207A publication Critical patent/JP2018109207A/en
Application granted granted Critical
Publication of JP6964408B2 publication Critical patent/JP6964408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which selenium is efficiently separated from an acidic aqueous solution by precipitation for recovery.SOLUTION: A method of recovering selenium includes the steps of adding a ketone to an acidic aqueous solution containing selenium oxonium, to yield precipitate containing selenium.SELECTED DRAWING: None

Description

本発明はセレンの回収方法に関する。   The present invention relates to a method for recovering selenium.

セレンはカルコゲン元素に属し、各種ガラス産業や半導体的性質を持つことから光学機器に利用されている。その生産はほとんどが銅乾式製錬の副産物として生産されている。   Selenium belongs to the chalcogen element and is used in optical instruments because it has various glass industries and semiconductor properties. Most of its production is produced as a by-product of copper dry smelting.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において純度99.99%以上の電気銅を生産する。銅以外の有価物は電解精製時にスライムとして沈殿する。   In copper dry smelting, copper concentrate is melted and made into 99% or more of crude copper in a converter and refining furnace, and then electrolytic copper with a purity of 99.99% or more is produced in the electrolytic purification process. Valuables other than copper precipitate as slime during electrolytic purification.

このスライムには金、銀、白金、パラジウムのほかにもルテニウムやロジウム、イリジウムといった希少金属、銅精鉱に含まれているセレンやテルルが同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。   In addition to gold, silver, platinum and palladium, this slime is also enriched with rare metals such as ruthenium, rhodium and iridium, and selenium and tellurium contained in copper concentrate. These elements are separated and recovered separately as byproducts of copper smelting.

このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸−過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留して除去して貴金属類を濃縮する方法が開示されている。   A hydrometallurgical process is often applied to the treatment of this slime. For example, Patent Document 1 discloses a method in which silver is recovered with hydrochloric acid-hydrogen peroxide and slime is recovered by solvent extraction, and then other valuable materials are sequentially reduced and recovered with sulfur dioxide. Patent Document 2 discloses a method of concentrating noble metals by recovering gold and silver by the same method, reducing and precipitating valuables with sulfur dioxide, and distilling and removing only selenium.

貴金属を回収した後の溶液にはテルル、セレンが含まれておりさらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られる。   The solution after recovering the precious metal contains tellurium and selenium, and it is necessary to recover these valuable materials. As a recovery method, there are known a method of recovering a precipitate generated by a reducing agent, and a method of mixing the solution together with copper concentrate, drying it with a dryer and repeating it in a smelting furnace.

とりわけ特許文献1に示されているように二酸化硫黄により生じた沈殿を回収する方法はコストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。   In particular, as shown in Patent Document 1, a method for recovering a precipitate caused by sulfur dioxide has many advantages in terms of cost and production scale. In addition, since each element precipitates sequentially, it is effective for separation and purification.

特開2001−316735号公報JP 2001-316735 A 特開2004−190134号公報JP 2004-190134 A

セレンの回収に二酸化硫黄や亜硫酸もしくはその塩を使用する場合、析出する不定形セレンの固着や閉塞を防ぐため液温を上げて黒色セレンを回収する反応となる。ところが液温が高い場合はセレンの還元速度が遅くなる。液温を二段階で上げて還元する方法も考えられるが溶液中に析出したセレンは低温から高温に加温する際に反応槽に固着する性質を持つ。   When sulfur dioxide, sulfurous acid, or a salt thereof is used for recovery of selenium, the reaction is carried out to recover black selenium by raising the liquid temperature in order to prevent the adhering amorphous selenium from sticking or clogging. However, when the liquid temperature is high, the reduction rate of selenium is slow. Although a method of reducing the temperature by raising the liquid temperature in two stages is conceivable, selenium precipitated in the solution has the property of adhering to the reaction vessel when heated from a low temperature to a high temperature.

二酸化硫黄は金属の乾式製錬において各種硫化鉱を焙焼すれば安価に生産できるものの、ガスとして購入すれば反応時間が長い場合に回収コストに見合わない。大量に二酸化硫黄を使用するとなるとその刺激臭や毒性、環境基準のためにガス処理設備の設置が必要である。そのため設備投資は大きなものになる。   Sulfur dioxide can be produced at low cost by roasting various sulfide ores in dry smelting of metals, but if it is purchased as gas, it does not meet the recovery cost when the reaction time is long. When sulfur dioxide is used in large quantities, it is necessary to install gas treatment equipment because of its pungent odor, toxicity, and environmental standards. Therefore, the capital investment becomes large.

還元剤として卑金属を添加すれば効果的ではあるが、酸性溶液では副反応として水素が発生し安全上問題がある。また、ヒドラジンやアルデヒド類を用いても安全上の問題がある。   Although it is effective to add a base metal as a reducing agent, in an acidic solution, hydrogen is generated as a side reaction, which causes a safety problem. Moreover, there is a safety problem even if hydrazine or aldehydes are used.

本発明はこのような従来の事情を鑑み、酸性水溶液からセレンを効率的に沈殿分離させて回収する方法を提供する。   In view of such conventional circumstances, the present invention provides a method for efficiently separating and recovering selenium from an acidic aqueous solution.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、還元剤としてケトン類を用いることで酸性水溶液中のセレンオキソニウムをセレンとして沈殿分離できることを見出した。本発明はかかる知見により完成されたものである。   As a result of intensive studies to solve the above problems, the present inventors have found that selenium oxonium in acidic aqueous solution can be precipitated and separated as selenium by using ketones as a reducing agent. The present invention has been completed based on such findings.

上記知見を基礎にして完成した本発明は一側面において、セレンオキソニウムを含む酸性水溶液にケトン類を添加してセレンを含む沈殿を生じさせることを特徴とするセレンの回収方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a method for recovering selenium characterized by adding a ketone to an acidic aqueous solution containing selenium oxonium to cause precipitation containing selenium.

本発明のセレンの回収方法は一実施形態において、前記ケトン類はセレンオキソニウムの1〜8モル倍添加する。   In one embodiment of the method for recovering selenium according to the present invention, the ketones are added 1 to 8 moles of selenium oxonium.

本発明のセレンの回収方法は別の一実施形態において、前記ケトン類のほかに二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を前記酸性水溶液に添加して、セレンとその他有価物の沈殿を生じさせる。   In another embodiment of the method for recovering selenium according to the present invention, in addition to the ketones, at least one of sulfur dioxide, sulfite and sulfite is added to the acidic aqueous solution to precipitate selenium and other valuable substances. Give rise to

本発明のセレンの回収方法は更に別の一実施形態において、前記ケトン類が水溶性のケトン類である。   In still another embodiment of the method for recovering selenium of the present invention, the ketones are water-soluble ketones.

本発明のセレンの回収方法は更に別の一実施形態において、前記水溶性のケトン類がアセトンまたは2−ブタノンである。   In still another embodiment of the method for recovering selenium of the present invention, the water-soluble ketones are acetone or 2-butanone.

本発明のセレンの回収方法は更に別の一実施形態において、前記ケトン類を添加する前に、予め前記酸性水溶液に二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を添加して前記酸性水溶液に存在する単体セレンを酸化させることができる酸化剤を分解しておく。   In yet another embodiment of the method for recovering selenium according to the present invention, before adding the ketones, at least one of sulfur dioxide, sulfurous acid and sulfite is added to the acidic aqueous solution in advance to add the acidic aqueous solution. An oxidant that can oxidize simple selenium present in the catalyst is decomposed.

本発明のセレンの回収方法は更に別の一実施形態において、前記ケトン類を添加してセレンを含む沈殿を生じさせる際の前記酸性水溶液の液温を65℃以上にすることで、黒色セレンを含む沈殿を生じさせる。   In yet another embodiment of the method for recovering selenium of the present invention, the liquid temperature of the acidic aqueous solution when the ketones are added to cause precipitation containing selenium is 65 ° C. or higher, whereby black selenium is obtained. This produces a precipitate containing.

本発明のセレンの回収方法は更に別の一実施形態において、前記セレンオキソニウムを含む酸性水溶液に前記ケトン類を添加して、前記ケトン類のケトン基のα位の水素を酸化する。   In still another embodiment of the method for recovering selenium of the present invention, the ketones are added to an acidic aqueous solution containing selenium oxonium to oxidize hydrogen at the α-position of the ketone group of the ketones.

本発明によれば、酸性水溶液からセレンを効率的に沈殿分離させて回収する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of carrying out the precipitation separation | separation efficiently from acidic aqueous solution and collect | recovering can be provided.

非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解スライムはカルコゲン元素と貴金属を多く含む。一例を示すと金を10〜30kg/t、銀を100〜250kg/t、パラジウムを1〜3kg/t、白金を200〜500g/t、セレンを5〜15wt%程度含有する。   Electrolytic slime generated in the electrolytic refining process of nonferrous metal smelting, especially copper smelting, contains a lot of chalcogen elements and noble metals. As an example, gold contains 10 to 30 kg / t, silver 100 to 250 kg / t, palladium 1 to 3 kg / t, platinum 200 to 500 g / t, and selenium about 5 to 15 wt%.

塩酸と過酸化水素を添加してこの電解スライムを溶解するが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には貴金属元素、希少金属元素、セレン、テルルが分配する。セレンは、当該酸性水溶液中にセレンオキソニウムとして含まれる。   Hydrochloric acid and hydrogen peroxide are added to dissolve the electrolytic slime, but silver forms an insoluble silver chloride precipitate with chloride ions immediately after dissolution. In the case of a solution containing an oxidizing agent and chlorine, such as aqua regia or chlorine water, noble metals can be dissolved to separate silver as silver chloride. Since it is a chloride bath, noble metal elements, rare metal elements, selenium, and tellurium are distributed in the leached noble liquid (PLS). Selenium is contained as selenium oxonium in the acidic aqueous solution.

貴金属類を回収した後にセレンを還元回収するが、この時、二酸化硫黄を使用して回収する方法が一般的である。ところがセレンは二酸化硫黄が一度水に溶解して亜硫酸に変化した時に還元を受ける。二酸化硫黄の溶解度のためセレンは低温で還元すると効率的である。   Selenium is reduced and recovered after recovering the precious metals. At this time, a method of recovering by using sulfur dioxide is common. However, selenium undergoes reduction when sulfur dioxide is once dissolved in water and converted into sulfurous acid. Due to the solubility of sulfur dioxide, selenium is efficient when reduced at low temperatures.

セレンオキソニウムを含む酸性水溶液において、セレンを二段階に加熱して還元する手法は先に析出した赤色セレンが加熱により変性して壁面に固着してしまう。固着したセレンは回収や後工程での操作性に問題が生じるおそれがある。このため、二段階に加熱せず、一段階の加熱(単一温度での加熱)でセレンを黒色セレンとして回収することが好ましい。   In the acidic aqueous solution containing selenium oxonium, the method of heating and reducing selenium in two steps causes red selenium deposited earlier to be modified by heating and to be fixed to the wall surface. The fixed selenium may cause problems in recovery and operability in the subsequent process. For this reason, it is preferable to collect selenium as black selenium by one-stage heating (heating at a single temperature) without heating in two stages.

本発明においてはケトン類を還元剤として利用することで、酸性水溶液の液温を単一温度として効果的に亜セレン酸をセレンとして還元・沈殿することができる。液温は液中の残留セレンが還元されて反応槽に固着しない条件であればいずれでもよい。すなわち赤色セレンが析出する50℃以下、黒色セレンが析出する65℃以上である。   In the present invention, by using ketones as a reducing agent, it is possible to effectively reduce and precipitate selenous acid as selenium with the temperature of the acidic aqueous solution as a single temperature. The liquid temperature may be any as long as the residual selenium in the liquid is reduced and does not stick to the reaction vessel. That is, the temperature is 50 ° C. or lower at which red selenium precipitates and 65 ° C. or higher at which black selenium is precipitated.

本発明のセレンの回収方法は、このようにセレンオキソニウムを含む酸性水溶液にケトン類を添加してセレンを含む沈殿を生じさせる。このため、セレンの回収に二酸化硫黄や亜硫酸もしくはその塩を使用する場合のようにセレンの還元速度が遅くなることも無く、液温を二段階で上げて還元しなくてもよい。また、二酸化硫黄や亜硫酸もしくはその塩を使用しないため、刺激臭や毒性、環境基準のためのガス処理設備の設置の必要が無く、安全に処理することができる。   In the method for recovering selenium according to the present invention, a ketone is added to an acidic aqueous solution containing selenium oxonium as described above to cause precipitation containing selenium. For this reason, the reduction rate of selenium does not become slow as in the case of using sulfur dioxide, sulfurous acid or a salt thereof for the recovery of selenium, and the liquid temperature does not have to be increased in two stages. Moreover, since sulfur dioxide, sulfurous acid, or a salt thereof is not used, there is no need to install gas treatment equipment for irritating odor, toxicity, and environmental standards, and the treatment can be performed safely.

ケトン類の中でもアセトンや2−ブタノンは水溶性のケトン類であり水溶液中の亜セレン酸の還元には好適である。ケトン類はケト−エノール互変性により極一部がエノールとして存在する。エノールのπ電子がセレンオキソニウムに移動することで還元が生じると考えられる。   Among ketones, acetone and 2-butanone are water-soluble ketones and are suitable for reduction of selenious acid in an aqueous solution. Ketones are partly present as enols due to keto-enol tautomerism. It is thought that reduction occurs when the π electron of enol moves to selenium oxonium.

添加するケトンの量はセレンオキソニウムの合計モル量の1〜8モル倍とするのが好ましい。多すぎると排水の負荷が大きい。さらには加熱した際にアルドール反応を生じ、セレンオキソニウムと反応する前に自己消費により有効濃度以下になるおそれがある。反対に添加量が少なすぎると反応速度が低下するおそれがある。   The amount of ketone to be added is preferably 1 to 8 mol times the total molar amount of selenium oxonium. If too much, the load of drainage is large. Furthermore, when heated, an aldol reaction occurs, and there is a possibility that it will be less than the effective concentration due to self-consumption before reacting with selenium oxonium. On the other hand, if the amount added is too small, the reaction rate may decrease.

ケトンの使用量を抑えるには、予め安価な還元剤で6価セレンを4価にしておくことが好ましい。その他並びに6価テルルや高酸化数の金属イオンも還元しておくとコストを抑制できる。安価な還元剤とは還元性硫黄、塩化物イオン、卑金属等が挙げられる。   In order to reduce the amount of ketone used, it is preferable to convert hexavalent selenium to tetravalent with an inexpensive reducing agent in advance. In addition, the cost can be reduced by reducing hexavalent tellurium and high oxidation number metal ions. Inexpensive reducing agents include reducing sulfur, chloride ions, base metals, and the like.

酸性水溶液にケトン類を添加して60℃以上に加熱すると還元が生じる。酸性水溶液に硝酸イオンが含まれていると沈殿が再溶解するので予めこれを除いておく。硝酸イオンの除去には還元性硫黄や各種金属を利用することができる。溶液を酸性にして加熱することによっても硝酸イオンは除くことが可能である。   Reduction occurs when ketones are added to an acidic aqueous solution and heated to 60 ° C. or higher. If nitrate solution is contained in the acidic aqueous solution, the precipitate is re-dissolved and removed beforehand. For removal of nitrate ions, reducing sulfur and various metals can be used. Nitrate ions can also be removed by heating the solution to be acidic.

セレンオキソニウムは4価もしくは6価であり、アセトンのみによる還元では試薬コストが増大する。アセトンを還元のトリッガーとしてのみ作用させ、同時に還元性硫黄も供給するとコストが抑制できる。還元性硫黄としては二酸化硫黄、亜硫酸、亜硫酸塩、硫化水素が挙げられる。いずれの化合物も条件を整えればセレンオキソニウムを0価まで還元する事が知られている。   Selenium oxonium is tetravalent or hexavalent, and reduction with only acetone increases the reagent cost. Cost can be suppressed by making acetone act only as a reduction trigger and simultaneously supplying reducing sulfur. Examples of reducing sulfur include sulfur dioxide, sulfurous acid, sulfite, and hydrogen sulfide. Any compound is known to reduce selenium oxonium to zero valence if conditions are adjusted.

また、ケトン類のほかに二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を前記酸性水溶液に添加して、セレンとその他有価物の沈殿を生じさせてもよい。   In addition to ketones, at least one of sulfur dioxide, sulfurous acid and sulfite may be added to the acidic aqueous solution to cause precipitation of selenium and other valuable substances.

二酸化硫黄を併用する場合、アセトンの添加量は処理液1Lに対して0.3〜40mlでよい。反応液の組成によって異なるがセレンに対してアセトンは1モル倍以上で効果が認められ2モル倍以上あれば効果は顕著である。   When sulfur dioxide is used in combination, the addition amount of acetone may be 0.3 to 40 ml with respect to 1 L of the treatment liquid. Although it depends on the composition of the reaction solution, the effect of acetone is 1 mol times or more with respect to selenium, and the effect is remarkable if it is 2 mol times or more.

ケトン類を添加する前に、予め酸性水溶液に二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を添加して酸性水溶液に存在する単体セレンを酸化させることができる酸化剤を分解しておくことが好ましい。このような構成によれば、単体セレンが酸化されてしまうのを良好に抑制することができる。ここで、「酸性水溶液に存在する単体セレンを酸化させることができる酸化剤」は、硝酸、過酸化水素、次亜塩素酸、過塩素酸等が挙げられる。   Before adding ketones, at least one of sulfur dioxide, sulfurous acid and sulfite is added to the acidic aqueous solution in advance to decompose the oxidizing agent capable of oxidizing the simple selenium present in the acidic aqueous solution. Is preferred. According to such a structure, it can suppress favorably that single selenium will be oxidized. Here, examples of the “oxidizing agent capable of oxidizing single selenium present in an acidic aqueous solution” include nitric acid, hydrogen peroxide, hypochlorous acid, perchloric acid, and the like.

析出した沈殿はフィルタープレス等により固液分離する。対象液の組成によるが、沈殿はセレン、テルルのカルコゲン元素の他にも貴金属類が含まれる。   The deposited precipitate is solid-liquid separated by a filter press or the like. Depending on the composition of the target solution, the precipitate contains precious metals in addition to the chalcogen elements of selenium and tellurium.

セレン精製工程ばかりではなく、セレン含有排水からセレンを除く場合においても本方法は適用可能である。   This method can be applied not only to the selenium refining process but also to removing selenium from selenium-containing wastewater.

また、本発明では、セレンオキソニウムを含む酸性水溶液にケトン類を添加して、ケトン類のケトン基のα位の水素を酸化することができる。このような構成によれば、例えばアセトン等のケトン類の酸化を、銅製錬等で生じるセレンオキソニウムを含む酸性水溶液を用いて行うことができるため、コストの点でメリットがある。   In the present invention, ketones can be added to an acidic aqueous solution containing selenium oxonium to oxidize hydrogen at the α-position of the ketone group of the ketones. According to such a configuration, for example, the oxidation of ketones such as acetone can be performed using an acidic aqueous solution containing selenium oxonium produced by copper smelting or the like, which is advantageous in terms of cost.

以下、実験例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically by experimental examples. However, the present invention is not limited to these.

(実験例1)
銅製錬から回収された電解スライムを硫酸により浸出し銅を除いた。濃塩酸と60%過酸化水素水を添加して溶解し、固液分離して浸出貴液(pregnant leached solution、以下PLSとも言う)を得た。
溶媒抽出により金を除いた後のPLSを撹拌しながら加温し、70℃に達したところで二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5〜20%)を0.1L/分で吹き込んだ。1時間30分後に沈殿した白金、パラジウム、セレンを溶液から分離した。表1に分離後液の各主成分を示す。
分離後液を所定の温度に調節し、アセトンを1mL添加した。一定時間ごとにスラリーとしてサンプルをおよそ10mL分取した。
得られたスラリーを5Cのろ紙で固液分離した。液は希塩酸で25倍希釈してICP−OES(セイコー社製SPS−3100)によりイットリウムを内部標準として各種成分濃度を測定した。実験結果を表2に示す。
(Experimental example 1)
The electrolytic slime recovered from the copper smelting was leached with sulfuric acid to remove the copper. Concentrated hydrochloric acid and 60% aqueous hydrogen peroxide were added and dissolved, and solid-liquid separation was performed to obtain a precipitating leached solution (hereinafter also referred to as PLS).
PLS after removing gold by solvent extraction was heated with stirring, and when it reached 70 ° C., a mixed gas of sulfur dioxide and air (sulfur dioxide concentration 5 to 20%) was blown at 0.1 L / min. Platinum, palladium and selenium precipitated after 1 hour 30 minutes were separated from the solution. Table 1 shows the main components of the liquid after separation.
After separation, the liquid was adjusted to a predetermined temperature, and 1 mL of acetone was added. Approximately 10 mL of the sample was taken as a slurry at regular intervals.
The obtained slurry was subjected to solid-liquid separation with 5C filter paper. The solution was diluted 25 times with dilute hydrochloric acid, and various component concentrations were measured by ICP-OES (SEPS SPS-3100) using yttrium as an internal standard. The experimental results are shown in Table 2.

Figure 2018109207
Figure 2018109207

Figure 2018109207
Figure 2018109207

表2では60℃以上では液蒸発による濃縮のために3時間後の濃度が上昇している。セレンはいずれの温度帯でも還元効果を示した。特に60℃以上では効果が高いことが判る。   In Table 2, at 60 ° C. or higher, the concentration after 3 hours increases due to concentration by liquid evaporation. Selenium showed a reducing effect at any temperature range. It can be seen that the effect is particularly high at 60 ° C. or higher.

(実験例2)
実験例1と同様の操作で表1に示す組成の分離後液を調製した。
300mlを分取し所定の温度に加熱しアセトンを1mL添加した。撹拌しながら二酸化硫黄(純度99.9%)を0.1L/分で吹き込んだ。液温は初期の温度を保持して還元を続けた。一定時間ごとにスラリーとしてサンプルを分取した。
実験例1と同様の操作で液中の各種濃度を定量した。実験結果を表3に示す。
(Experimental example 2)
A post-separation solution having the composition shown in Table 1 was prepared in the same manner as in Experimental Example 1.
300 ml was collected and heated to a predetermined temperature, and 1 ml of acetone was added. Sulfur dioxide (purity 99.9%) was blown at 0.1 L / min with stirring. The liquid temperature was maintained at the initial temperature and the reduction was continued. Samples were taken as slurry at regular intervals.
Various concentrations in the liquid were quantified in the same manner as in Experimental Example 1. The experimental results are shown in Table 3.

Figure 2018109207
Figure 2018109207

二酸化硫黄の供給を併用した場合、いずれの温度域においても迅速にセレンに加えてテルルの還元沈殿が生じていることが判る。特に50℃以上ではテルルの還元速度が速いことが判る。アセトンは気化しやすい物質であるが二酸化硫黄ガスを吹き込んでも大きな問題はおこらない。   It can be seen that when sulfur dioxide supply is used in combination, tellurium is rapidly reduced and precipitated in addition to selenium in any temperature range. It can be seen that the reduction rate of tellurium is particularly fast at 50 ° C. or higher. Acetone is a substance that is easily vaporized, but even if sulfur dioxide gas is blown in, it does not cause a big problem.

アセトンと二酸化硫黄を併用することでセレンの還元は大幅な反応時間の短縮が達成された。さらにはテルルの同時回収も可能であることが判る。   By using acetone and sulfur dioxide in combination, the reduction of selenium achieved a significant reduction in reaction time. It can also be seen that tellurium can be recovered simultaneously.

(実験例3)
2.5Nの塩酸3Lに亜セレン酸ナトリウム(和光純薬工業社製、1級)を19.7g溶解して実験対象液を調製した。
500mLを分取し70〜75℃に加熱しアセトンもしくは2−ブタノンを所定量添加(いずれも和光純薬工業社製、特級)した。液温は初期の温度を保持したまま撹拌した。一定時間ごとにサンプルを分取した。
実験例1と同様の操作で液中の各種濃度を定量した。実験結果を表4に示す。
(Experimental example 3)
19.7 g of sodium selenite (manufactured by Wako Pure Chemical Industries, Ltd., first grade) was dissolved in 3 L of 2.5N hydrochloric acid to prepare a test solution.
500 mL was collected and heated to 70 to 75 ° C., and a predetermined amount of acetone or 2-butanone was added (both manufactured by Wako Pure Chemical Industries, Ltd., special grade). The liquid temperature was stirred while maintaining the initial temperature. Samples were taken at regular intervals.
Various concentrations in the liquid were quantified in the same manner as in Experimental Example 1. The experimental results are shown in Table 4.

Figure 2018109207
Figure 2018109207

水溶性のケトン類であればセレンを還元できることが判る。アセトンの添加量は対象液500mlに対して2ml(54mmol)で効果が見られ、添加量が増えるにつれ反応速度は低下した。この理由は酸性条件下ではセレンオキソニウムと反応する前にアルドール反応によりアセトン同士が反応することによると考えられる。   It can be seen that water-soluble ketones can reduce selenium. The effect was observed when the amount of acetone added was 2 ml (54 mmol) with respect to 500 ml of the target solution, and the reaction rate decreased as the amount added increased. The reason for this is thought to be that acetone reacts by an aldol reaction before reacting with selenium oxonium under acidic conditions.

試薬を溶かした液のセレンは38mmol/Lであり、アセトン2ml添加した時に実際に還元されたセレンは36mmol/Lである。セレンに対して1.5モル倍反応している。熱で揮散する量もあるのでおよそ2倍が等量であろう。セレンは4価であるからアセトンは2電子供与していると推察される。   The selenium in the solution in which the reagent is dissolved is 38 mmol / L, and the selenium actually reduced when 2 ml of acetone is added is 36 mmol / L. It reacts 1.5 times as much as selenium. Since there is also a quantity that volatilizes with heat, approximately twice will be equivalent. Since selenium is tetravalent, it is assumed that acetone donates two electrons.

アセトンを過剰に添加するとセレンの回収率が低下するが還元能を完全に損なうことはなかった。特に添加量に上限はないが1Lに対して20mLで大きく還元能力を損ねているため添加量は20mL/L未満とすることが好ましい。   When acetone was added excessively, the recovery rate of selenium was reduced, but the reduction ability was not completely impaired. There is no particular upper limit to the amount added, but the amount added is preferably less than 20 mL / L because the reducing ability is greatly impaired at 20 mL per 1 L.

ブタノンを添加して亜セレン酸を還元した時、反応後液は特有の臭気を持ち、ガスクロマトグラフィーにより3−ヒドロキシ−2−ブタノンであると推定された。3−ヒドロキシ−2−ブタノンは元の2−ブタノンのα水素が水酸基に置換された形であり、亜セレン酸との反応で選択的に酸化されたことを示す。   When butanone was added to reduce selenious acid, the post-reaction solution had a specific odor and was estimated to be 3-hydroxy-2-butanone by gas chromatography. 3-Hydroxy-2-butanone is a form in which the α-hydrogen of the original 2-butanone is substituted with a hydroxyl group, and is selectively oxidized by reaction with selenious acid.

Claims (8)

セレンオキソニウムを含む酸性水溶液にケトン類を添加してセレンを含む沈殿を生じさせることを特徴とするセレンの回収方法。   A method for recovering selenium, comprising adding a ketone to an acidic aqueous solution containing selenium oxonium to cause precipitation containing selenium. 前記ケトン類はセレンオキソニウムの1〜8モル倍添加することを特徴とする請求項1に記載のセレンの回収方法。   The method for recovering selenium according to claim 1, wherein the ketones are added in an amount of 1 to 8 moles of selenium oxonium. 前記ケトン類のほかに二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を前記酸性水溶液に添加して、セレンとその他有価物の沈殿を生じさせることを特徴とする請求項1または2に記載のセレンの回収方法。   3. The selenium and other valuable substances are precipitated by adding at least one of sulfur dioxide, sulfite and sulfite to the acidic aqueous solution in addition to the ketones. To recover selenium. 前記ケトン類が水溶性ケトン類であることを特徴とする請求項1〜3のいずれか一項に記載のセレンの回収方法。   The method for recovering selenium according to any one of claims 1 to 3, wherein the ketones are water-soluble ketones. 前記水溶性ケトンがアセトンまたは2−ブタノンであることを特徴とする請求項4に記載のセレンの回収方法。   The method for recovering selenium according to claim 4, wherein the water-soluble ketone is acetone or 2-butanone. 前記ケトン類を添加する前に、予め前記酸性水溶液に二酸化硫黄、亜硫酸及び亜硫酸塩のうちの少なくとも1種を添加して前記酸性水溶液に存在する単体セレンを酸化させることができる酸化剤を分解しておくことを特徴とする請求項1〜5のいずれか一項に記載のセレンの回収方法。   Before adding the ketones, at least one of sulfur dioxide, sulfurous acid, and sulfite is added to the acidic aqueous solution in advance to decompose an oxidant that can oxidize elemental selenium present in the acidic aqueous solution. The method for recovering selenium according to any one of claims 1 to 5, wherein 前記ケトン類を添加してセレンを含む沈殿を生じさせる際の前記酸性水溶液の液温を65℃以上にすることで、黒色セレンを含む沈殿を生じさせることを特徴とする請求項1〜6のいずれか一項に記載のセレンの回収方法。   The precipitate containing black selenium is produced by setting the liquid temperature of the acidic aqueous solution when the ketones are added to cause precipitation containing selenium to 65 ° C or higher. The method for recovering selenium according to any one of the above. 前記セレンオキソニウムを含む酸性水溶液に前記ケトン類を添加して、前記ケトン類のケトン基のα位の水素を酸化することを特徴とする請求項1〜7のいずれか一項に記載のセレンの回収方法。   The selenium according to any one of claims 1 to 7, wherein the ketone is added to an acidic aqueous solution containing the selenium oxonium to oxidize hydrogen at the α-position of the ketone group of the ketone. Recovery method.
JP2016256676A 2016-12-28 2016-12-28 How to collect selenium Active JP6964408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256676A JP6964408B2 (en) 2016-12-28 2016-12-28 How to collect selenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256676A JP6964408B2 (en) 2016-12-28 2016-12-28 How to collect selenium

Publications (2)

Publication Number Publication Date
JP2018109207A true JP2018109207A (en) 2018-07-12
JP6964408B2 JP6964408B2 (en) 2021-11-10

Family

ID=62844311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256676A Active JP6964408B2 (en) 2016-12-28 2016-12-28 How to collect selenium

Country Status (1)

Country Link
JP (1) JP6964408B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121840A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Reduction of metal ion
JPS55128595A (en) * 1979-03-26 1980-10-04 Furukawa Electric Co Ltd:The Removal of selenium eluted from decoppering liquid of anode slime of copper electrolysis
JPH09281619A (en) * 1996-04-10 1997-10-31 Konica Corp Silver halide photosensitive material, development processing method therefor and silver halide image forming method
JP2000169117A (en) * 1998-12-08 2000-06-20 Sumitomo Metal Mining Co Ltd Selectively reductive recovery process of selenium
JP2000239753A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Mining Co Ltd Method for separating and purifying tellurium
JP2001316735A (en) * 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2009292660A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Method for manufacturing metal selenium powder
US20100329969A1 (en) * 2009-06-29 2010-12-30 Pacific Rare Specialty Metals & Chemicals, Inc. Process for the recovery of selenium from minerals and/or acidic solutions
US20100326840A1 (en) * 2009-06-29 2010-12-30 Robert John Hisshion Process for the recovery of tellurium from minerals and/or acidic solutions
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime
JP2012224481A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for separating selenium

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121840A (en) * 1979-03-12 1980-09-19 Hitachi Ltd Reduction of metal ion
JPS55128595A (en) * 1979-03-26 1980-10-04 Furukawa Electric Co Ltd:The Removal of selenium eluted from decoppering liquid of anode slime of copper electrolysis
JPH09281619A (en) * 1996-04-10 1997-10-31 Konica Corp Silver halide photosensitive material, development processing method therefor and silver halide image forming method
JP2000169117A (en) * 1998-12-08 2000-06-20 Sumitomo Metal Mining Co Ltd Selectively reductive recovery process of selenium
JP2000239753A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Mining Co Ltd Method for separating and purifying tellurium
JP2001316735A (en) * 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2009292660A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Method for manufacturing metal selenium powder
US20100329969A1 (en) * 2009-06-29 2010-12-30 Pacific Rare Specialty Metals & Chemicals, Inc. Process for the recovery of selenium from minerals and/or acidic solutions
US20100326840A1 (en) * 2009-06-29 2010-12-30 Robert John Hisshion Process for the recovery of tellurium from minerals and/or acidic solutions
US20100329968A1 (en) * 2009-06-29 2010-12-30 Robert John Hisshion Process for the recovery of selenium from minerals and/or acidic solutions
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime
JP2012224481A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for separating selenium

Also Published As

Publication number Publication date
JP6964408B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
RU2650663C1 (en) Hydro-metallurgical processing of anode slime
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7198172B2 (en) Method for treating solution containing selenosulfuric acid
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
JP7337209B2 (en) Iridium recovery method
EP1577408B1 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP6882095B2 (en) Method for recovering precipitates containing platinum group elements
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP7423467B2 (en) Ruthenium recovery method
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6964408B2 (en) How to collect selenium
JP6835577B2 (en) How to collect valuables
JP7247049B2 (en) Method for treating selenosulfuric acid solution
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP5573763B2 (en) High purity silver production waste liquid treatment method
JP6882110B2 (en) Method for recovering precipitates containing platinum group elements
JP7198036B2 (en) Selenium production method
JP7423479B2 (en) Ruthenium recovery method
JP2019147718A (en) Method for recovering tellurium
JP2019214485A (en) Method of recovering selenium
JP6882081B2 (en) Method for recovering precipitates containing platinum group elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R151 Written notification of patent or utility model registration

Ref document number: 6964408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151