JP6810887B2 - Separation and recovery methods for selenium, tellurium, and platinum group elements - Google Patents

Separation and recovery methods for selenium, tellurium, and platinum group elements Download PDF

Info

Publication number
JP6810887B2
JP6810887B2 JP2016201034A JP2016201034A JP6810887B2 JP 6810887 B2 JP6810887 B2 JP 6810887B2 JP 2016201034 A JP2016201034 A JP 2016201034A JP 2016201034 A JP2016201034 A JP 2016201034A JP 6810887 B2 JP6810887 B2 JP 6810887B2
Authority
JP
Japan
Prior art keywords
leaching
tellurium
selenium
platinum group
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016201034A
Other languages
Japanese (ja)
Other versions
JP2018062685A (en
Inventor
翔太 中山
翔太 中山
亮介 佐藤
亮介 佐藤
宇野 貴博
貴博 宇野
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016201034A priority Critical patent/JP6810887B2/en
Publication of JP2018062685A publication Critical patent/JP2018062685A/en
Application granted granted Critical
Publication of JP6810887B2 publication Critical patent/JP6810887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、脱銅電解スライム浸出液から金を抽出した後液などに含まれているセレン、テルル、および白金族元素を効率よく分離し回収する処理方法に関する。 The present invention relates to a treatment method for efficiently separating and recovering selenium, tellurium, and platinum group elements contained in a liquid after extracting gold from a decopper electrolytic slime leachate.

銅製錬工程における銅電解工程では、副産物として銅電解スライムが生じる。この銅電解スライム中には、銅と共に微量の金、銀、白金族元素などの貴金属が含まれており、さらにセレンおよびテルルが含まれている。そのため上記貴金属を回収するには不純物として含まれるセレン、テルルを分離する必要がある。 In the copper electrolysis process in the copper smelting process, copper electrolysis slime is produced as a by-product. This copper electrolytic slime contains a trace amount of precious metals such as gold, silver and platinum group elements together with copper, and further contains selenium and tellurium. Therefore, in order to recover the precious metal, it is necessary to separate selenium and tellurium contained as impurities.

白金族元素からセレンおよびテルルを分離する方法として、非特許文献1に記載されている方法が知られている。この方法は、銅電解スライムを脱銅処理した後に塩化浸出処理して金、白金族元素、セレン、テルルを浸出し、この浸出液に抽出溶媒を接触させて金を抽出する。次いで、金抽出後液に亜硫酸ガスを吹き込み、セレンとテルルと白金族元素を還元滓にして回収し、該還元滓からセレンを蒸留して分離し、テルルと白金族元素を含む蒸留残を回収する。 As a method for separating selenium and tellurium from a platinum group element, the method described in Non-Patent Document 1 is known. In this method, gold, a platinum group element, selenium, and tellurium are leached by decopperation treatment of copper electrolytic slime and then chloride leaching treatment, and the leachate is brought into contact with an extraction solvent to extract gold. Next, sulfite gas is blown into the liquid after gold extraction to recover selenium, tellurium and platinum group elements as a reducing slag, and selenium is distilled and separated from the reducing slag to recover the distillation residue containing tellurium and platinum group elements. To do.

非特許文献1の上記処理方法は、セレンとテルルと白金族元素を含む還元滓を加熱してセレンを蒸留精製する際に、蒸留セレン中のテルルの含有量が高くなり、高品位のセレンの回収ができない難点があった。そこで、上記還元滓を段階的に形成してセレン等を分離回収する処理方法(特許文献1)、該還元滓をアルカリ溶融してセレンと白金族元素を分離する処理方法(特許文献2)、該還元滓を酸化焙焼してセレンを分離した後にアルカリ浸出ないしアルカリ溶融してテルルと白金族元素を分離する処理方法(特許文献3)などが知られている。 In the above treatment method of Non-Patent Document 1, when selenium is distilled and purified by heating a reducing selenium containing selenium, tellurium and a platinum group element, the content of tellurium in the distilled selenium becomes high, and high-grade selenium is produced. There was a difficulty that it could not be collected. Therefore, a treatment method in which the reducing slag is formed stepwise to separate and recover selenium and the like (Patent Document 1), a treatment method in which the reducing slag is alkali-melted to separate selenium and a platinum group element (Patent Document 2). A treatment method (Patent Document 3) is known in which the reducing slag is oxidatively roasted to separate selenium and then alkaline leached or alkaline melted to separate tellurium and a platinum group element.

具体的には、特許文献1に記載されている処理方法では、金抽出後液に亜硫酸ガスを吹き込んで還元滓を形成する際に、塩素イオン濃度を1.5モル/L以下に制御してセレンおよびテルルの沈澱を抑制しつつ白金族元素を還元滓にして分離し、次にこの還元滓を分離した液分にさらに亜硫酸ガスを吹き込み、塩素イオン濃度を2モル/L以下および液中のセレン濃度を3g/L以上に制御してテルルの還元を抑制しながらセレンを還元滓にして分離する。さらに、この還元滓を分離した液分にさらに亜硫酸ガスを吹き込んでテルルを還元滓にして分離する。 Specifically, in the treatment method described in Patent Document 1, the chlorine ion concentration is controlled to 1.5 mol / L or less when the sulfite gas is blown into the liquid after gold extraction to form a reducing slag. While suppressing the precipitation of selenium and tellurium, the platinum group element was separated into a reducing slag, and then sulfite gas was further blown into the separated liquid to reduce the chlorine ion concentration to 2 mol / L or less and in the liquid. The concentration of selenium is controlled to 3 g / L or more to suppress the reduction of tellurium, and selenium is used as a reducing residue for separation. Further, sulfur dioxide gas is further blown into the separated liquid of the reducing slag to turn tellurium into a reducing slag for separation.

特許文献2に記載されている処理方法では、金抽出後液に亜硫酸ガスを吹き込んでセレン、テルル、および白金族元素を含む還元滓を形成した後に、この還元滓に苛性ソーダと硝酸ソーダの混合フラックスを添加して加熱溶融し、この溶融物を水浸出して、亜セレン酸ソーダを含む液分と、白金族元素を含む残渣に分離し、残渣の白金族元素を塩酸酸化浸出して回収する。 In the treatment method described in Patent Document 2, after sulfite gas is blown into the liquid after gold extraction to form a reducing slag containing selenium, tellurium, and platinum group elements, a mixed flux of caustic soda and sodium nitrate is formed in the reducing slag. Is added and heated and melted, and this melt is leached with water to separate it into a liquid containing sodium selenate and a residue containing a platinum group element, and the platinum group element of the residue is recovered by leaching with hydrochloric acid oxidation. ..

特許文献3に記載されている処理方法では、金抽出後液などのセレン、テルルおよび白金族元素を含有する溶液を還元処理してセレンとテルルおよび白金族元素が濃縮した還元滓を形成し、該還元滓を酸化焙焼してセレンを選択的に揮発させて分離した後に、焙焼残渣をアルカリ浸出してテルルを浸出させ、あるいはアルカリ溶融と水浸出を組み合わせて行い、浸出残渣に残る白金族元素を回収する。 In the treatment method described in Patent Document 3, a solution containing selenium, tellurium and platinum group elements such as a liquid after gold extraction is reduced to form a reducing slag in which selenium, tellurium and platinum group elements are concentrated. After the reducing slag is oxidatively roasted to selectively volatilize and separate selenium, the roasting residue is leached with alkali to leach tellurium, or a combination of alkali melting and water leaching is performed, and platinum remaining in the leaching residue is performed. Recover group elements.

特開2001−316735号公報Japanese Unexamined Patent Publication No. 2001-316735 特開2003−268457号公報Japanese Unexamined Patent Publication No. 2003-268457 特開2016−160479号公報Japanese Unexamined Patent Publication No. 2016-160479

J. E. Hoffmann et al.、 Proceeding of Copper 95- Cobre 95 International ConferenceJ. E. Hoffmann et al., Proceeding of Copper 95- Cobre 95 International Conference

特許文献1の処理方法は、塩酸濃度、温度、亜硫酸ガス濃度、亜硫酸ガス量などのセレン還元時のパラメータが多いため、制御が難しく、白金族元素とセレン、テルルの回収率が低下するなどの問題がある。特許文献2の処理方法は、セレン、テルル、白金族元素を含む還元滓をアルカリ溶融して水浸出し、セレンを亜セレン酸ソーダ浸出液にして白金族元素を含む残渣と分離するが、アルカリ溶融するとテルルが浸出し難くなり、白金族元素と共に残るので、白金族元素とテルルの分離に手間がかかる。特許文献3の処理方法も同様に、酸化焙焼残渣を直にアルカリ溶融すると、テルルが浸出し難くなると云う問題がある。 The treatment method of Patent Document 1 has many parameters at the time of selenium reduction such as hydrochloric acid concentration, temperature, sulfurous acid gas concentration, and sulfur dioxide gas amount, so that it is difficult to control, and the recovery rate of platinum group elements, selenium, and tellurium is lowered. There's a problem. In the treatment method of Patent Document 2, a reducing slag containing selenium, tellurium, and a platinum group element is alkali-melted and leached with water, and selenium is made into a sodium selenate leachate and separated from a residue containing a platinum group element. Then, tellurium becomes difficult to exude and remains together with the platinum group element, so it takes time and effort to separate the platinum group element and tellurium. Similarly, the treatment method of Patent Document 3 has a problem that tellurium is difficult to leached when the oxidative roasting residue is directly alkali-melted.

本発明の処理方法は、還元滓等を酸化焙焼し、この焙焼残をアルカリ浸出した後にアルカリ溶融することによって、特許文献2、3に記載されている処理方法における上記問題を解決し、また特許文献1のような制御が難しい処理方法とは異なり、テルルと白金族元素との分離性が良く、テルルと白金族元素の浸出率が高く、これらの回収率が高い処理方法を提供する。 The treatment method of the present invention solves the above-mentioned problems in the treatment methods described in Patent Documents 2 and 3 by oxidatively roasting reducing slag and the like, leaching the roasted residue with alkali, and then melting the roasted residue with alkali. Further, unlike the treatment method that is difficult to control as in Patent Document 1, a treatment method is provided in which the separability between tellurium and platinum group elements is good, the leaching rate of tellurium and platinum group elements is high, and the recovery rate of these is high. ..

本発明は、以下の構成を有する、セレン、テルル、および白金族元素の分離回収方法に関する。
〔1〕金属状のセレン、テルル、および白金族元素を含有する焙焼原料から、セレン、テルル、および白金族元素を分離回収する方法において、
該焙焼原料を酸化雰囲気下で加熱してセレンを選択的に揮発させる酸化焙焼工程、酸化焙焼残をアルカリ溶液に加えてテルルを浸出するアルカリ浸出工程、アルカリ浸出残にアルカリ物質のフラックスを加えて加熱溶融するアルカリ溶融工程、アルカリ溶融物に酸化剤と塩酸を加えて白金族元素を浸出する塩酸酸化浸出工程を有し、
上記酸化焙焼工程において、上記焙焼原料を400℃〜550℃に加熱してセレンを選択的に揮発させ、上記アルカリ浸出工程において、上記酸化焙焼残をアルカリ溶液に懸濁させてpH13以上でテルルを浸出させて固液分離し、テルル浸出液と白金族元素を含むアルカリ浸出残を回収し、上記アルカリ溶融工程において、上記アルカリ浸出残とフラックスの混合物を350℃〜500℃に加熱してアルカリ溶融を行うことを特徴とするセレン、テルル、および白金族元素の分離回収方法。
〔2〕上記アルカリ溶融工程において、フラックスとして水酸化ナトリウムおよび硝酸ナトリウムの何れか又は両方を用い、該フラックス量がアルカリ浸出残に対して重量比で1〜3倍である上記[1]に記載する分離回収方法。
〔3〕上記塩酸酸化浸出工程において、フリーの塩素濃度が4mol/L〜6mol/Lであり、液温が60℃〜70℃である上記[1]または上記[2]の何れかに記載する分離回収方法。
〔4〕上記焙焼原料が、セレン、テルル、および白金族元素を含有する溶液を還元処理してなる還元滓である上記[1]〜上記[3]の何れかに記載する分離回収方法。
The present invention relates to a method for separating and recovering selenium, tellurium, and a platinum group element having the following constitutions.
[1] In a method for separating and recovering selenium, tellurium, and platinum group elements from a roasting raw material containing metallic selenium, tellurium, and platinum group elements.
An oxidative roasting step in which the roasting raw material is heated in an oxidizing atmosphere to selectively volatilize selenium, an alkaline leaching step in which the oxidative roasting residue is added to an alkaline solution to leach tellur, and an alkaline substance flux in the alkaline leaching residue. It has an alkali melting step of adding and heating and melting, and a hydrochloric acid oxidation leaching step of adding an oxidizing agent and hydrochloric acid to the alkaline melt to leach platinum group elements.
In the oxidative roasting step, the roasting raw material is heated to 400 ° C. to 550 ° C. to selectively volatilize selenium, and in the alkali leaching step, the oxidative roasting residue is suspended in an alkaline solution to pH 13 or higher. Tellurium is leached and separated into solid and liquid, and the alkali leaching residue containing the tellurium leaching solution and platinum group elements is recovered. In the alkali melting step, the mixture of the alkali leaching residue and the flux is heated to 350 ° C. to 500 ° C. A method for separating and recovering selenium, tellurium, and platinum group elements, which comprises performing alkali melting.
[2] The above-mentioned [1], wherein either or both of sodium hydroxide and sodium nitrate are used as the flux in the alkali melting step, and the amount of the flux is 1 to 3 times the weight ratio of the alkali leaching residue. Separation and recovery method.
[3] Described in any of the above [1] or [2], wherein the free chlorine concentration is 4 mol / L to 6 mol / L and the liquid temperature is 60 ° C. to 70 ° C. in the hydrochloric acid oxidation leaching step. Separation and recovery method.
[4] The separation and recovery method according to any one of the above [1] to [3], wherein the roasting raw material is a reduction slag obtained by reducing a solution containing selenium, tellurium, and a platinum group element.

以下、本発明の処理方法を具体的に説明する。
本発明の処理方法は、金属状のセレン、テルル、および白金族元素を含有する焙焼原料から、セレン、テルル、および白金族元素を分離回収する方法において、
該焙焼原料を酸化雰囲気下で加熱してセレンを選択的に揮発させる酸化焙焼工程、酸化焙焼残をアルカリ溶液に加えてテルルを浸出するアルカリ浸出工程、アルカリ浸出残にアルカリ物質のフラックスを加えて加熱溶融するアルカリ溶融工程、アルカリ溶融物に酸化剤と塩酸を加えて白金族元素を浸出する塩酸酸化浸出工程を有し、
上記酸化焙焼工程において、上記焙焼原料を400℃〜550℃に加熱してセレンを選択的に揮発させ、上記アルカリ浸出工程において、上記酸化焙焼残をアルカリ溶液に懸濁させてpH13以上でテルルを浸出させて固液分離し、テルル浸出液と白金族元素を含むアルカリ浸出残を回収し、上記アルカリ溶融工程において、上記アルカリ浸出残とフラックスの混合物を350℃〜500℃に加熱してアルカリ溶融を行うことを特徴とするセレン、テルル、および白金族元素の分離回収方法である。本発明の処理方法の概要を図1に示す。
Hereinafter, the processing method of the present invention will be specifically described.
The treatment method of the present invention is a method for separating and recovering selenium, tellurium, and platinum group elements from a roasting raw material containing metallic selenium, tellurium, and platinum group elements.
An oxidative roasting step in which the roasting raw material is heated in an oxidizing atmosphere to selectively volatilize selenium, an alkaline leaching step in which the oxidative roasting residue is added to an alkaline solution to leach tellur, and an alkaline substance flux in the alkaline leaching residue It has an alkali melting step of adding and heating and melting, and a hydrochloric acid oxidation leaching step of adding an oxidizing agent and hydrochloric acid to the alkaline melt to leach platinum group elements.
In the oxidative roasting step, the roasting raw material is heated to 400 ° C. to 550 ° C. to selectively volatilize selenium, and in the alkaline leaching step, the oxidative roasting residue is suspended in an alkaline solution to pH 13 or higher. Tellurium is leached and separated into solid and liquid, and the alkali leaching residue containing the tellurium leaching solution and platinum group elements is recovered. In the alkali melting step, the mixture of the alkali leaching residue and the flux is heated to 350 ° C. to 500 ° C. It is a method for separating and recovering selenium, tellurium, and platinum group elements, which comprises performing alkali melting. The outline of the processing method of this invention is shown in FIG.

〔焙焼原料〕
焙焼原料として、セレン、テルル、および白金族元素を含有する溶液を還元処理してなる還元滓を用いることができる。例えば、脱銅電解スライムの塩化浸出液から金を抽出した後液にはセレン、テルル、および白金族元素が多く含まれている。セレン、テルル、および白金族元素を含有する溶液に還元剤を添加して撹拌し、液中のセレン、テルル、および白金族元素を還元すれば良い。還元剤は亜硫酸ガス、亜硫酸水素ナトリウム溶液などを用いることができる。還元処理の液温は70℃〜80℃に加熱するのが好ましい。この還元処理によって上記含有液に含まれるセレン、白金族元素、およびテルルはメタルに還元されて析出し、還元滓が形成される。
[Roasting ingredients]
As a roasting raw material, a reducing slag obtained by reducing a solution containing selenium, tellurium, and a platinum group element can be used. For example, after extracting gold from the chloride leachate of decopper electrolytic slime, the liquid contains a large amount of selenium, tellurium, and platinum group elements. A reducing agent may be added to a solution containing selenium, tellurium, and a platinum group element and stirred to reduce the selenium, tellurium, and platinum group elements in the solution. As the reducing agent, sulfur dioxide gas, sodium hydrogen sulfite solution and the like can be used. The liquid temperature of the reduction treatment is preferably heated to 70 ° C. to 80 ° C. By this reduction treatment, selenium, platinum group elements, and tellurium contained in the above-mentioned liquid are reduced to metal and precipitated to form a reducing slag.

〔酸化焙焼〕
上記還元滓などの焙焼原料を酸化焙焼してセレンを揮発させる一方、テルルおよび白金族元素を焙焼残渣に残す。酸化焙焼は、大気下ないし空気流通下、400℃〜550℃の焙焼温度が好ましい。焙焼温度が600℃以上では白金族元素が酸化し、後処理の浸出工程において不溶化するので好ましくない。焙焼温度が400℃より低いとセレンが十分に気化しない。焙焼時間は生成する二酸化セレンガスの濃度が低下して頭打ちになれば焙焼を終了すれば良い。
[Oxidation roasting]
The roasting raw material such as the reducing slag is oxidatively roasted to volatilize selenium, while tellurium and platinum group elements are left in the roasting residue. Oxidative roasting is preferably performed at a roasting temperature of 400 ° C. to 550 ° C. under air or air circulation. If the roasting temperature is 600 ° C. or higher, the platinum group elements are oxidized and insolubilized in the leaching step of the post-treatment, which is not preferable. If the roasting temperature is lower than 400 ° C, selenium will not vaporize sufficiently. As for the roasting time, if the concentration of the selenium dioxide gas produced decreases and reaches a plateau, the roasting may be completed.

酸化焙焼によって、原料に含まれるセレンは二酸化セレンを生成して気化する。この二酸化セレンガスを苛性ソーダ水溶液に通じて亜セレン酸ソーダを生成させ、該亜セレン酸ソーダを還元して金属セレンを回収することができる。一方、テルルは酸化物になるが、二酸化テルルは上記温度範囲ではほとんど気化しないので白金族元素と共に焙焼残になる。このように酸化焙焼によって、セレンをテルルおよび白金族元素から分離することができる。 By oxidative roasting, selenium contained in the raw material produces selenium dioxide and vaporizes. This selenium dioxide gas can be passed through an aqueous solution of caustic soda to generate selenite soda, and the selenite soda can be reduced to recover metallic selenium. On the other hand, tellurium becomes an oxide, but tellurium dioxide hardly vaporizes in the above temperature range, so that it becomes a roasted residue together with platinum group elements. By oxidative roasting in this way, selenium can be separated from tellurium and platinum group elements.

〔アルカリ浸出〕
酸化焙焼残にはテルル酸化物および白金族元素が含まれている。この焙焼残をアルカリ浸出してテルルを回収する。例えば、酸化焙焼残を苛性ソーダ溶液などのアルカリ溶液に混合してテルルを浸出させる。このアルカリ浸出はpH13以上の強アルカリ下が好ましい。焙焼残に含まれている酸化テルルは主に4価であり、強アルカリ下で、亜テルル酸イオンを形成して溶出する。アルカリ浸出の液温は25℃〜50℃が好ましい。
[Alkaline leaching]
The oxidative roasted residue contains tellurium oxide and platinum group elements. The roasted residue is leached with alkali to recover tellurium. For example, tellurium is leached by mixing the oxidative roasted residue with an alkaline solution such as caustic soda solution. This alkali leaching is preferably under strong alkali with a pH of 13 or higher. Tellurium oxide contained in the roasted residue is mainly tetravalent, and forms tellurous acid ions and elutes under strong alkali. The liquid temperature for alkali leaching is preferably 25 ° C to 50 ° C.

アルカリ浸出によってテルルは液中に溶出し、ロジウムやパラジウムなどの白金族元素は溶出せずに残る。なお、セレンは酸化焙焼によって先に分離されているので、テルルのみを選択的に溶出させることができる。これを濾別してテルル浸出液を回収し、該テルル浸出液に硫酸または塩酸を加えて中和すると二酸化テルルの沈澱が生成する。この二酸化テルルの品位は概ね99質量%以上であり、高品位の二酸化テルルを回収することができる。 Tellurium elutes into the liquid due to alkali leaching, and platinum group elements such as rhodium and palladium remain uneluted. Since selenium is first separated by oxidative roasting, only tellurium can be selectively eluted. This is filtered off to collect the tellurium leachate, and the tellurium leachate is neutralized by adding sulfuric acid or hydrochloric acid to form a tellurium dioxide precipitate. The grade of this tellurium dioxide is about 99% by mass or more, and high-grade tellurium dioxide can be recovered.

〔アルカリ熔融〕
アルカリ浸出残にアルカリ物質のフラックスを加えてアルカリ熔融を行う。フラックスとして水酸化ナトリウムおよび硝酸ナトリウムの何れか、または両方を用いると良い。この他に炭酸ナトリウムや過酸化ナトリウムをフラックスとして用いることができる。フラックス量はアルカリ浸出残に対して重量比で1〜3倍が好ましい。溶融温度は350℃〜500℃が好ましく、5〜7時間加熱して熔融すれば良い。
[Alkaline melting]
Alkali melting is performed by adding a flux of an alkaline substance to the alkali leaching residue. It is preferable to use either or both of sodium hydroxide and sodium nitrate as the flux. In addition, sodium carbonate and sodium peroxide can be used as the flux. The amount of flux is preferably 1 to 3 times the weight ratio of the alkali leaching residue. The melting temperature is preferably 350 ° C. to 500 ° C., and it may be melted by heating for 5 to 7 hours.

アルカリ熔融によって、アルカリ浸出残に含まれている金属状の白金族元素は、アルカリ複合物、例えばルテニウムはルテニウム酸ソーダの形態になり、次工程の塩酸酸化処理によって浸出され易くになる。このアルカリ熔融はアルカリ浸出後に行うのが好ましい。酸化焙焼残について、アルカリ浸出をせずにアルカリ熔融を行うと、酸化焙焼残に含まれる酸化テルルの大分部が6価になるのでアルカリ熔融後にテルルが水に浸出し難くなり、熔融物が水にほとんど浸出しない。 By alkali melting, the metallic platinum group element contained in the alkali leaching residue becomes an alkali composite, for example ruthenium, in the form of sodium ruthenium acid, and is easily leached by the hydrochloric acid oxidation treatment in the next step. This alkali melting is preferably performed after alkali leaching. If the oxidative roasting residue is subjected to alkaline melting without alkali leaching, most of the tellurium oxide contained in the oxidative roasting residue becomes hexavalent, so that tellurium is less likely to leached into water after the alkali melting, and the melt Almost never seeps into water.

アルカリ熔融物に酸化セレンが残留している場合には、アルカリ熔融物を水浸出することによって、酸化セレンを浸出させて分離することができる。この水浸出は、アルカリ熔融残に水を加えてスラリーにし、これを70℃〜90℃に0.5〜2時間加熱して行えば良い。アルカリ溶融物に酸化セレンなどが殆ど含まれていない場合には、水浸出を省略して次工程の塩酸酸化浸出を行えば良い。 When selenium oxide remains in the alkaline melt, selenium oxide can be leached and separated by leaching the alkaline melt with water. This water leaching may be carried out by adding water to the alkali melt residue to form a slurry and heating the slurry at 70 ° C. to 90 ° C. for 0.5 to 2 hours. When the alkaline melt contains almost no selenium oxide or the like, water leaching may be omitted and hydrochloric acid oxidative leaching may be performed in the next step.

〔塩酸酸化浸出〕
アルカリ熔融物には白金族元素が含まれているので、該熔融物に過酸化水素などの酸化剤を塩酸と共に添加し、加熱して白金族元素を溶出させる。この塩酸酸化浸出(クロリネーション)によって、白金族元素は塩化物錯体を形成して溶出する。塩酸酸化浸出は、液中のフリーの塩素濃度が4mol/L〜6mol/Lになる範囲が好ましく、液温は60℃〜75℃が好ましい。塩酸濃度が上記範囲より低いと、白金族元素が十分に浸出せず、一方、塩酸濃度が上記範囲より高いと装置の腐食が著しくなり、また、液のろ過性が低下するなど工業的な取り扱いが難しくなる。
[Hydrochloric acid oxidative leaching]
Since the alkaline melt contains platinum group elements, an oxidizing agent such as hydrogen peroxide is added to the melt together with hydrochloric acid and heated to elute the platinum group elements. By this hydrochloric acid oxidative leaching (chlorination), the platinum group elements form a chloride complex and elute. Hydrochloric acid oxidative leaching is preferably in the range where the free chlorine concentration in the liquid is 4 mol / L to 6 mol / L, and the liquid temperature is preferably 60 ° C. to 75 ° C. If the hydrochloric acid concentration is lower than the above range, the platinum group elements will not be sufficiently leached, while if the hydrochloric acid concentration is higher than the above range, the equipment will be significantly corroded and the filterability of the liquid will be reduced. Becomes difficult.

白金族の塩化物錯体が含まれる浸出液に、塩化アンモニウム溶液を添加すると白金が塩化白金酸アンモニウムを形成して選択的に沈澱するので、この沈殿を濾別して、800℃〜950℃に加熱して金属白金を回収することができる。
また、塩化白金酸アンモニウムを分離した濾液にはパラジウムなどが残り、この濾液にアンモニア水を添加するとパラジウムを含む沈澱が生成するので、これを回収して800℃以上に加熱すると、スポンジ状の金属パラジウムを得ることができる。ロジウムとルテニウムについても公知の方法によって精製し、回収することができる。
When an ammonium chloride solution is added to a leachate containing a platinum group chloride complex, platinum forms ammonium chloride and selectively precipitates. Therefore, this precipitate is filtered off and heated to 800 ° C to 950 ° C. Metallic platinum can be recovered.
In addition, palladium and the like remain in the filtrate from which ammonium chloride ammonium chloride is separated, and when ammonia water is added to this filtrate, a precipitate containing palladium is formed. When this is recovered and heated to 800 ° C. or higher, a sponge-like metal is formed. Palladium can be obtained. Rhodium and ruthenium can also be purified and recovered by a known method.

本発明の処理方法によれば、脱銅電解スライムの塩化浸出液の金抽出後液を還元処理した還元滓などから、セレン、テルル、および白金族元素を効率よく分離して回収することができる。本発明の処理方法は、セレン、テルル、および白金族元素の分離性がよい。具体的には、発明の処理方法は、セレンを酸化焙焼によって選択的に気化してテルルおよび白金族元素と分離するので、テルルおよび白金族元素が混入しない高純度のセレンを回収することができる。 According to the treatment method of the present invention, selenium, tellurium, and platinum group elements can be efficiently separated and recovered from the reducing slag obtained by reducing the gold-extracted liquid of the chloride leachate of the decopper electrolytic slime. The treatment method of the present invention has good separability of selenium, tellurium, and platinum group elements. Specifically, in the treatment method of the present invention, selenium is selectively vaporized by oxidative roasting to separate tellurium and platinum group elements, so that high-purity selenium that does not contain tellurium and platinum group elements can be recovered. it can.

また、本発明の処理方法は、セレンを分離した酸化焙焼残をアルカリ浸出してテルルを溶出させるので、テルルの浸出率を高めることができる。また、セレンは酸化焙焼によって先に分離されているので、アルカリ浸出によってセレンが混入しないテルル浸出液を得ることができ、高純度のテルルを回収することができる。 Further, in the treatment method of the present invention, the leaching rate of tellurium can be increased because the oxidative roasted residue from which selenium is separated is leached with alkali to elute tellurium. Further, since selenium is first separated by oxidative roasting, a tellurium leaching solution in which selenium is not mixed can be obtained by alkaline leaching, and high-purity tellurium can be recovered.

また、本発明の処理方法は、アルカリ浸出した後に、浸出残をアルカリ溶融して浸出残に含まれる白金族元素を塩酸酸化浸出し易い状態にするので、白金族元素の回収率を高めることができる。また、塩酸酸化浸出までにセレンおよびテルルは分離されるので、高純度の白金族元素を回収することができる。 Further, in the treatment method of the present invention, after alkali leaching, the leaching residue is alkali-melted to make the platinum group elements contained in the leaching residue easy to leached by hydrochloric acid oxidation, so that the recovery rate of the platinum group elements can be increased. it can. In addition, since selenium and tellurium are separated by hydrochloric acid oxidative leaching, high-purity platinum group elements can be recovered.

本発明の処理工程の概要を示す工程図A process diagram showing an outline of the processing process of the present invention.

以下、本発明の実施例を比較例と共に示す。セレン、テルル、白金族元素の濃度はICP−AESによって測定した。 Hereinafter, examples of the present invention will be shown together with comparative examples. Concentrations of selenium, tellurium and platinum group elements were measured by ICP-AES.

〔実施例1〕
焙焼原料100gを焙焼温度450℃、酸素流量1L/min.の条件で4時間酸化焙焼し、焙焼残を得た。この焙焼残中のセレン量は870mgであり、セレン除去率は99%以上であった。この焙焼残を、25℃〜50℃で、NaOH水溶液(NaOH濃度5mol/L)30mL、に懸濁させテルルを浸出し、固液分離して浸出滓を得た。この浸出滓と苛性ソーダと硝酸ナトリウムを重量比で7:5:5となるように混合し、400℃で2時間アルカリ熔融を行った。得られた熔融物を、室温で、蒸留水に浸漬して水浸出を行った。この水浸出残に、過酸化水素水および塩酸を添加し、フリーの塩素濃度が5mol/Lになるようにし、60〜75℃に加熱して塩酸酸化浸出を行った。この浸出後に固液分離して浸出液と浸出残を得た。
焙焼原料、アルカリ浸出液、アルカリ浸出残、アルカリ熔融物、水浸出液、水浸出残、塩酸酸化浸出液、塩酸酸化浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表1に示した。
浸出率は以下の式によって求めた。浸出率は高いことが望ましく、特に白金族元素は、塩酸酸化浸出残への移行を極力抑えるには浸出率が高いことが望ましい。
成分Xの浸出率(%)=(塩酸酸化浸出液中の成分X含有量/(塩酸酸化浸出液中の成分X含有量+塩酸酸化浸出滓中の成分Xの含有量)×100
[Example 1]
100 g of the roasting raw material was oxidatively roasted for 4 hours under the conditions of a roasting temperature of 450 ° C. and an oxygen flow rate of 1 L / min. To obtain a roasted residue. The amount of selenium in the roasted residue was 870 mg, and the selenium removal rate was 99% or more. The roasted residue was suspended in 30 mL of an aqueous NaOH solution (NaOH concentration 5 mol / L) at 25 ° C. to 50 ° C., tellurium was leached, and solid-liquid separation was obtained to obtain an leaching slag. The leaching residue, caustic soda, and sodium nitrate were mixed so as to have a weight ratio of 7: 5: 5, and alkali melting was performed at 400 ° C. for 2 hours. The obtained melt was immersed in distilled water at room temperature for water leaching. Hydrogen peroxide solution and hydrochloric acid were added to the water leaching residue so that the free chlorine concentration became 5 mol / L, and the mixture was heated to 60 to 75 ° C. for hydrochloric acid oxidative leaching. After this leaching, solid-liquid separation was performed to obtain an leaching solution and an leaching residue.
Table 1 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in roasting raw materials, alkaline leachate, alkaline leachate, alkaline melt, water leachate, water leachate, hydrochloric acid oxidation leachate, and hydrochloric acid oxidation leachate. It was.
The leaching rate was calculated by the following formula. It is desirable that the leaching rate is high, and in particular, the platinum group element is desirable to have a high leaching rate in order to suppress the transfer to the hydrochloric acid oxidation leaching residue as much as possible.
Leachage rate of component X (%) = (content of component X in hydrochloric acid oxidation leachate / (content of component X in hydrochloric acid oxidation leachate + content of component X in hydrochloric acid oxidation leachate) x 100

Figure 0006810887
Figure 0006810887

〔実施例2〕
酸化焙焼温度を550℃に変え、アルカリ溶湯温度を500℃に変えた他は実施例1と同様にして、酸化焙焼、アルカリ浸出、アルカリ熔融、水浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表2に示した。
[Example 2]
Oxidation roasting, alkali leaching, alkali melting, water leaching, and hydrochloric acid oxidative leaching were performed in the same manner as in Example 1 except that the oxidative roasting temperature was changed to 550 ° C. and the alkaline molten metal temperature was changed to 500 ° C. Table 2 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

〔実施例3〕
酸化焙焼温度を400℃に変え、アルカリ溶融温度を350℃に変えた他は実施例1と同様にして、酸化焙焼、アルカリ浸出、アルカリ熔融、水浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表3に示した。
[Example 3]
Oxidation roasting, alkali leaching, alkali melting, water leaching, and hydrochloric acid oxidative leaching were performed in the same manner as in Example 1 except that the oxidative roasting temperature was changed to 400 ° C. and the alkali melting temperature was changed to 350 ° C. Table 3 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

〔実施例4〕
アルカリ熔融でのフラックス量を1倍、3倍にした他は実施例1と同様にして、酸化焙焼、アルカリ浸出、アルカリ熔融、水浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表4、5に示した。
[Example 4]
Oxidation roasting, alkali leaching, alkali melting, water leaching, and hydrochloric acid oxidative leaching were performed in the same manner as in Example 1 except that the amount of flux in alkali melting was increased by 1 to 3 times. Tables 4 and 5 show the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

Figure 0006810887
Figure 0006810887

〔実施例5〕
塩酸酸化浸出でのフリー塩素濃度を4mol/L、6mol/Lにした他は実施例1と同様にして、酸化焙焼、アルカリ浸出、アルカリ熔融、水浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表6、7に示した。
[Example 5]
Oxidative roasting, alkali leaching, alkali melting, water leaching, and hydrochloric acid oxidative leaching were carried out in the same manner as in Example 1 except that the free chlorine concentrations in hydrochloric acid oxidative leaching were set to 4 mol / L and 6 mol / L. Tables 6 and 7 show the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

Figure 0006810887
Figure 0006810887

〔比較例1〕
酸化焙焼温度を600℃に変えた他は実施例1と同様にして、酸化焙焼、アルカリ浸出、アルカリ熔融、水浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表8に示した。
[Comparative Example 1]
Oxidation roasting, alkali leaching, alkali melting, water leaching, and hydrochloric acid oxidative leaching were performed in the same manner as in Example 1 except that the oxidative roasting temperature was changed to 600 ° C. Table 8 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

〔比較例2〕
酸化焙焼温度を600℃に変え、アルカリ熔融および水浸出を行わず、アルカリ浸出残を塩酸酸化浸出した他は実施例1と同様にして、酸化焙焼、アルカリ浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表9に示した。
[Comparative Example 2]
Oxidation roasting, alkali leaching, and hydrochloric acid oxidative leaching were performed in the same manner as in Example 1 except that the oxidative roasting temperature was changed to 600 ° C., alkali leaching and water leaching were not performed, and the alkali leaching residue was oxidatively leached with hydrochloric acid. .. Table 9 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

〔比較例3〕
アルカリ熔融および水浸出を行わず、アルカリ浸出残を塩酸酸化浸出した他は実施例1と同様にして、酸化焙焼、アルカリ浸出、塩酸酸化浸出を行った。塩酸酸化浸出後の浸出液および浸出残に含まれるセレン、テルル、白金族元素の量および浸出率を表10に示した。
[Comparative Example 3]
Oxidative roasting, alkali leaching, and hydrochloric acid oxidative leaching were carried out in the same manner as in Example 1 except that the alkaline leaching residue was oxidatively leached with hydrochloric acid without alkali melting and water leaching. Table 10 shows the amounts and leaching rates of selenium, tellurium, and platinum group elements contained in the leaching solution and the leaching residue after hydrochloric acid oxidative leaching.

Figure 0006810887
Figure 0006810887

〔比較例4〕
実施例1と同様にして酸化焙焼した後に、アルカリ浸出を行わずに、焙焼残を実施例1と同様にしてアルカリ溶融を行った。この熔融物を蒸留水で浸出したが、熔融物は水にほとんど溶解せず、次工程の塩酸酸化浸出に供すことができなかった。
[Comparative Example 4]
After oxidative roasting in the same manner as in Example 1, alkali melting was performed on the roasted residue in the same manner as in Example 1 without alkali leaching. This melt was leached with distilled water, but the melt was hardly dissolved in water and could not be used for hydrochloric acid oxidative leaching in the next step.

〔比較例5〕
実施例1と同様の焙焼原料100gを焙焼温度350℃、酸素流量1L/min.の条件で4時間酸化焙焼したが、焙焼が進行せず、るつぼに原料が付着した状態であった。
[Comparative Example 5]
100 g of the same roasting raw material as in Example 1 was roasted by oxidation for 4 hours under the conditions of a roasting temperature of 350 ° C. and an oxygen flow rate of 1 L / min. However, the roasting did not proceed and the raw material adhered to the crucible. It was.

Claims (4)

金属状のセレン、テルル、および白金族元素を含有する焙焼原料から、セレン、テルル、および白金族元素を分離回収する方法において、
焙焼原料を酸化雰囲気下で加熱してセレンを選択的に揮発させる酸化焙焼工程、酸化焙焼残をアルカリ溶液に加えてテルルを浸出するアルカリ浸出工程、アルカリ浸出残にアルカリ物質のフラックスを加えて加熱溶融するアルカリ溶融工程、アルカリ溶融物に酸化剤と塩酸を加えて白金族元素を浸出する塩酸酸化浸出工程を有し、
上記酸化焙焼工程において、上記焙焼原料を400℃〜550℃に加熱してセレンを選択的に揮発させ、上記アルカリ浸出工程において、上記酸化焙焼残をアルカリ溶液に懸濁させてpH13以上でテルルを浸出させ固液分離し、テルル浸出液と白金族元素を含むアルカリ浸出残を回収し、上記アルカリ溶融工程において、上記アルカリ浸出残とフラックスの混合物を350℃〜500℃に加熱してアルカリ溶融を行うことを特徴とするセレン、テルル、および白金族元素の分離回収方法。
In a method for separating and recovering selenium, tellurium, and platinum group elements from roasting raw materials containing metallic selenium, tellurium, and platinum group elements.
Oxidation roasting step of selectively volatilize selenium and heating the roasted material in an oxidizing atmosphere, alkaline leaching step of leaching of tellurium by adding oxidizing roasting residue in an alkaline solution, the flux of alkaline material in an alkaline leach residue It has an alkali melting step of adding and heating and melting, and a hydrochloric acid oxidation leaching step of adding an oxidizing agent and hydrochloric acid to the alkaline melt to leach platinum group elements.
In the oxidation roasting step, the roasting material was selectively volatilize selenium was heated to 400 ° C. to 550 ° C., in the alkali leaching process, pH 13 or higher by the oxidation roasting residue was suspended in an alkaline solution in tellurium and solid-liquid separation by leaching to recover the alkali leaching residue containing tellurium leachate and a platinum group element, in the alkali melt process, by heating a mixture of the alkali leach residue and flux to 350 ° C. to 500 ° C. A method for separating and recovering selenium, tellurium, and platinum group elements, which comprises performing alkali melting.
上記アルカリ溶融工程において、フラックスとして水酸化ナトリウムおよび硝酸ナトリウムの何れか又は両方を用い、該フラックス量がアルカリ浸出残に対して重量比で1〜3倍である請求項1に記載する分離回収方法。 The separation and recovery method according to claim 1, wherein either or both of sodium hydroxide and sodium nitrate are used as the flux in the alkali melting step, and the amount of the flux is 1 to 3 times the weight ratio of the alkali leaching residue. .. 上記塩酸酸化浸出工程において、フリーの塩素濃度が4mol/L〜6mol/Lであり、液温が60℃〜70℃である請求項1または請求項2の何れかに記載する分離回収方法。 The separation and recovery method according to claim 1 or 2, wherein in the hydrochloric acid oxidative leaching step, the free chlorine concentration is 4 mol / L to 6 mol / L and the liquid temperature is 60 ° C. to 70 ° C. 上記焙焼原料が、セレン、テルル、および白金族元素を含有する溶液を還元処理してなる還元滓である請求項1〜請求項3の何れかに記載する分離回収方法。
The separation and recovery method according to any one of claims 1 to 3 , wherein the roasting raw material is a reduction slag obtained by reducing a solution containing selenium, tellurium, and a platinum group element.
JP2016201034A 2016-10-12 2016-10-12 Separation and recovery methods for selenium, tellurium, and platinum group elements Active JP6810887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201034A JP6810887B2 (en) 2016-10-12 2016-10-12 Separation and recovery methods for selenium, tellurium, and platinum group elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201034A JP6810887B2 (en) 2016-10-12 2016-10-12 Separation and recovery methods for selenium, tellurium, and platinum group elements

Publications (2)

Publication Number Publication Date
JP2018062685A JP2018062685A (en) 2018-04-19
JP6810887B2 true JP6810887B2 (en) 2021-01-13

Family

ID=61967494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201034A Active JP6810887B2 (en) 2016-10-12 2016-10-12 Separation and recovery methods for selenium, tellurium, and platinum group elements

Country Status (1)

Country Link
JP (1) JP6810887B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198079B2 (en) * 2018-12-27 2022-12-28 Jx金属株式会社 Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7336075B2 (en) 2020-03-13 2023-08-31 三菱マテリアル株式会社 Separation method of selenium and platinum group elements
CN112609089B (en) * 2021-01-11 2022-04-01 大冶有色金属有限责任公司 Method for enriching tellurium from platinum-palladium concentrate
CN114959274B (en) * 2022-06-01 2024-02-13 紫金铜业有限公司 Method for efficiently separating valuable elements in lead filter cake

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281534B2 (en) * 2002-11-29 2009-06-17 三菱マテリアル株式会社 Treatment method for platinum group-containing materials
JP6376349B2 (en) * 2015-02-28 2018-08-22 三菱マテリアル株式会社 Method for separating selenium, tellurium and platinum group elements

Also Published As

Publication number Publication date
JP2018062685A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6376349B2 (en) Method for separating selenium, tellurium and platinum group elements
US7479262B2 (en) Method for separating platinum group element
CA2949916C (en) Hydrometallurgical treatment of anode sludge
JP2009235525A (en) Method for leaching out gold
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP7016463B2 (en) How to collect tellurium
JP7206142B2 (en) Method for separating and recovering valuable metals
EP1577408B2 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP2019073768A (en) Method of recovering tellurium
JP4155177B2 (en) Method for recovering silver from silver-lead-containing materials
JP6835577B2 (en) How to collect valuables
JP2004218001A (en) Treatment method for selenium and tellurium
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP4155176B2 (en) Method for recovering silver from silver-lead-containing materials
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6882110B2 (en) Method for recovering precipitates containing platinum group elements
JP2017218613A (en) Method of treating metal-containing acidic aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6810887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150