JP7247050B2 - Method for treating selenosulfuric acid solution - Google Patents

Method for treating selenosulfuric acid solution Download PDF

Info

Publication number
JP7247050B2
JP7247050B2 JP2019141760A JP2019141760A JP7247050B2 JP 7247050 B2 JP7247050 B2 JP 7247050B2 JP 2019141760 A JP2019141760 A JP 2019141760A JP 2019141760 A JP2019141760 A JP 2019141760A JP 7247050 B2 JP7247050 B2 JP 7247050B2
Authority
JP
Japan
Prior art keywords
selenosulfuric
tellurium
acid solution
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019141760A
Other languages
Japanese (ja)
Other versions
JP2021025070A (en
Inventor
学 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019141760A priority Critical patent/JP7247050B2/en
Publication of JP2021025070A publication Critical patent/JP2021025070A/en
Application granted granted Critical
Publication of JP7247050B2 publication Critical patent/JP7247050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、セレノ硫酸溶液の処理方法に関する。 The present invention relates to a method for treating a selenosulfuric acid solution.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In copper pyrometallurgical refining, copper concentrate is melted, converted into 99% or higher blister copper in a converter and a refining furnace, and then refined copper with a purity of 99.99% or higher is produced in an electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic components have been put into converters as recycled raw materials, and valuables other than copper precipitate as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離-回収される。このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸-過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。 This slime is enriched with precious metals, rare metals, and selenium and tellurium contained in copper concentrates at the same time. These elements are separately separated and recovered as copper smelting by-products. Hydrometallurgical methods are often applied to treat this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime by hydrochloric acid-hydrogen peroxide, dissolved gold is recovered by solvent extraction, and then other valuable substances are successively reduced and recovered with sulfur dioxide.

特開2001-316735号公報JP-A-2001-316735

二酸化硫黄を用いて有価物を回収する方法では溶解後に順次有価物を還元して回収する。初めに白金、パラジウムが沈殿する。原料が銅電解スライムであればセレンが大量に含まれているためにセレンとの混合物として回収される。次にセレンが還元を受ける。イリジウム、ルテニウム、ロジウムは酸化還元電位が比較的低く還元を受け難い。白金、パラジウム、セレンを回収した後の液をさらに還元してカルコゲン類との混合物として回収する。 In the method of recovering valuables using sulfur dioxide, valuables are reduced and recovered sequentially after dissolution. Platinum and palladium precipitate first. If the raw material is copper electrolytic slime, it is recovered as a mixture with selenium because it contains a large amount of selenium. Selenium then undergoes reduction. Iridium, ruthenium, and rhodium have relatively low oxidation-reduction potentials and are difficult to be reduced. The solution after recovering platinum, palladium and selenium is further reduced and recovered as a mixture with chalcogens.

白金族もしくは酸化還元電位が比較的低い元素群においてはさらにセレンとの分離が必要である。セレンとの分離には再度酸化溶解後に溶媒抽出する方法が一般的である。 Further separation from selenium is necessary for the platinum group or the group of elements with relatively low oxidation-reduction potentials. For separation from selenium, a method of solvent extraction after oxidizing and dissolving again is generally used.

本願発明者はセレンの分離には亜硫酸や亜硫酸塩を添加してセレノ硫酸としてセレンを分離することが可能であることを見出した。セレノ硫酸は溶液の酸濃度を酸性に調整すればセレンを沈殿し、単体セレンを容易に回収することができる。具体的には、セレノ硫酸液は亜硫酸塩水溶液、もしくはアルカリ液に二酸化硫黄を吸収させた液に単体セレンを接触させて40℃以上に加熱することにより得られることを見出した。当該方法では、アルカリ液と接触させることになり、対象の有価物群が二酸化テルルを含む場合は、セレノ硫酸液は不純物としてテルルオキソニウムイオンを含む。 The inventors of the present application have found that selenium can be separated as selenosulfuric acid by adding sulfurous acid or a sulfite. Selenosulfuric acid precipitates selenium by adjusting the acid concentration of the solution to be acidic, and simple selenium can be easily recovered. Specifically, it was found that the selenosulfuric acid solution can be obtained by bringing elemental selenium into contact with an aqueous sulfite solution or a solution obtained by absorbing sulfur dioxide in an alkaline solution and heating the solution to 40° C. or higher. In this method, the selenosulfuric acid solution contains tellurium oxonium ions as an impurity when the target group of valuable substances contains tellurium dioxide.

テルルの混入を防止するには、セレノ硫酸として回収する前に強アルカリ液で二酸化テルルを溶出することが考えられる。しかしながら、このような方法では、完全にテルルを除くには数回の溶出操作と洗浄が必要である。 In order to prevent contamination with tellurium, it is conceivable to elute tellurium dioxide with a strong alkaline solution before recovering it as selenosulfuric acid. However, such a method requires several elution operations and washings to completely remove tellurium.

また、テルルオキソニウムイオンを含んだセレノ硫酸溶液に酸を添加するとテルル分も二酸化テルルもしくは単体テルルとして沈殿する。セレノ硫酸溶液を処理する際、セレンの回収も念頭に置いた場合は単体セレンへのテルルの混入が問題となる。 In addition, when an acid is added to a selenosulfuric acid solution containing tellurium oxonium ions, tellurium also precipitates as tellurium dioxide or simple tellurium. When the selenosulfuric acid solution is treated, if recovery of selenium is also taken into consideration, contamination of tellurium into elemental selenium becomes a problem.

そこで、本発明の実施形態は、セレノ硫酸溶液中のテルルオキソニウムイオンを選択的に還元することで、セレノ硫酸溶液からテルルを分離することができるセレノ硫酸溶液の処理方法を提供することを課題とする。 Accordingly, an object of an embodiment of the present invention is to provide a method for treating a selenosulfuric acid solution capable of separating tellurium from the selenosulfuric acid solution by selectively reducing tellurium oxonium ions in the selenosulfuric acid solution. and

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、セレノ硫酸溶液中のテルルオキソニウムイオンはシュウ酸類により選択的に還元されて沈殿することを見出した。本発明はかかる知見により完成されたものである。本発明の実施形態は、以下のように特定される。
(1)pH10以上に調整した、テルルオキソニウムイオンを含むセレノ硫酸溶液に、シュウ酸類を添加してテルルを沈殿させる工程を有することを特徴とするセレノ硫酸溶液の処理方法。
(2)前記シュウ酸類は水溶性であり、シュウ酸、シュウ酸二水和物、及び、シュウ酸ナトリウムからなる群から選択される一種または二種以上を含むことを特徴とする(1)のセレノ硫酸溶液の処理方法。
(3)前記シュウ酸類を、テルルに対して2モル倍以上になるように前記セレノ硫酸溶液に添加することを特徴とする(1)又は(2)のセレノ硫酸溶液の処理方法。
(4)前記セレノ硫酸溶液は、セレン及びテルルを酸溶解した液を還元して生じた沈殿物に亜硫酸塩を添加して調製された液であることを特徴とする(1)~(3)のいずれかのセレノ硫酸溶液の処理方法。
(5)前記セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であることを特徴とする(1)~(4)のいずれかのセレノ硫酸溶液の処理方法。
(6)単体セレン及び二酸化テルルの含有物をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時にシュウ酸類を添加して85℃以下に加温する工程を有することを特徴とするセレノ硫酸溶液の処理方法。
As a result of intensive studies aimed at solving the above problems, the inventors of the present invention have found that tellurium oxonium ions in a selenosulfuric acid solution are selectively reduced by oxalic acids and precipitated. The present invention has been completed based on such findings. Embodiments of the invention are specified as follows.
(1) A method for treating a selenosulfuric acid solution, comprising a step of adding oxalic acid to a selenosulfuric acid solution containing tellurium oxonium ions adjusted to pH 10 or higher to precipitate tellurium.
(2) The oxalic acid is water-soluble and contains one or more selected from the group consisting of oxalic acid, oxalic acid dihydrate, and sodium oxalate. A method for treating a selenosulfuric acid solution.
(3) The method of treating a selenosulfuric acid solution according to (1) or (2), wherein the oxalic acid is added to the selenosulfuric acid solution in an amount of 2 mol or more with respect to tellurium.
(4) The selenosulfuric acid solution is a solution prepared by adding a sulfite to a precipitate formed by reducing a solution in which selenium and tellurium are dissolved in an acid (1) to (3). A method for treating a selenosulfuric acid solution according to any one of
(5) Any one of (1) to (4), wherein the selenosulfuric acid solution is a solution obtained by adding sodium sulfite to a selenium-containing solution in an electrolytic slime treatment process during a copper smelting process. A method of treating a selenosulfuric acid solution.
(6) A step of contacting a substance containing elemental selenium and tellurium dioxide with an alkaline sulfite ion-containing solution to dissolve selenium as selenosulfuric acid, adding oxalic acid and heating to 85°C or less. A method for treating a selenosulfuric acid solution.

本発明の実施形態によれば、セレノ硫酸溶液中のテルルオキソニウムイオンを選択的に還元することで、セレノ硫酸溶液からテルルを分離することができるセレノ硫酸溶液の処理方法を提供することができる。 According to an embodiment of the present invention, it is possible to provide a method for treating a selenosulfuric acid solution capable of separating tellurium from the selenosulfuric acid solution by selectively reducing tellurium oxonium ions in the selenosulfuric acid solution. .

[セレノ硫酸溶液]
非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解スライムは白金族元素とカルコゲン元素が濃縮される。白金族元素ならびにカルコゲン元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料を元にして回収される。よって本方法は廃棄物からのリサイクルにも適用できる。
[Selenosulfuric acid solution]
Electrolytic slime generated in the electrorefining process of non-ferrous metal smelting, especially copper smelting, is enriched with platinum group elements and chalcogen elements. Platinum group elements and chalcogen elements are not smelted independently, but are recovered as by-products of other metals or recovered from recycled raw materials such as waste catalysts. Therefore, the method can also be applied to recycling from waste.

塩酸と過酸化水素を添加して電解スライムを溶解するが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には白金族元素、希少金属元素、セレン、テルルが分配する。 Hydrochloric acid and hydrogen peroxide are added to dissolve the electrolytic slime, but the silver forms chloride ions and an insoluble silver chloride precipitate immediately after dissolution. A solution containing an oxidizing agent and chlorine, such as aqua regia or chlorine water, dissolves precious metals and separates silver as silver chloride. Since it is a chloride bath, platinum group elements, rare metal elements, selenium, and tellurium are distributed in the pregnant leach liquor (PLS).

浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。然る後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 Precious leach liquor (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into the organic phase by solvent extraction. A widely used extractant for gold is dibutyl carbitol (DBC).

金を抽出した後のPLSを還元すれば有価物は沈殿-回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決まっている。初めに金、白金、パラジウム、次にセレンやテルルといったカルコゲン、さらに不活性貴金属類が沈殿する。 Valuables can be precipitated and recovered by reducing PLS after extracting gold, but the order of precipitation is naturally determined because the oxidation-reduction potential differs depending on the element. Gold, platinum and palladium are precipitated first, then chalcogens such as selenium and tellurium, and then inert precious metals.

還元剤は還元性硫黄が価格と効率の面から利用され、なかでも二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。 Reducing sulfur is used as a reducing agent from the viewpoint of cost and efficiency. Among them, sulfur dioxide is most suitable because it can be supplied in large quantities and at low cost by roasting of converter gas or sulfide ore.

二酸化硫黄は白金とパラジウムを還元する際にセレンも一部還元する。液中にパラジウムと白金がほぼ存在しなくなるまで還元を行うがセレンの混入も多くなり40~70質量%となる。 Sulfur dioxide partially reduces selenium as it reduces platinum and palladium. The reduction is carried out until almost no palladium and platinum are present in the liquid, but selenium is also mixed in and becomes 40 to 70% by mass.

回収した白金とパラジウム、セレンの混合物は再度過酸化水素-塩酸で溶出するがセレンが溶解時に消費する過酸化水素は多い。予め選択的にセレンを除くために亜硫酸塩もしくは亜硫酸水を添加して溶出する。セレンは単体として含まれるので亜硫酸イオンと反応してセレノ硫酸イオンとなる(式1)。
Se+SO3 2-→SSeO3 2- (式1)
The recovered mixture of platinum, palladium and selenium is eluted again with hydrogen peroxide-hydrochloric acid, but a large amount of hydrogen peroxide is consumed when selenium is dissolved. In order to selectively remove selenium in advance, sulfite or sulfite water is added for elution. Since selenium is contained as an element, it reacts with sulfite ions to form selenosulfate ions (Formula 1).
Se+SO 3 2- →SSeO 3 2- (Formula 1)

また下工程では二酸化硫黄によりセレン回収後、引き続き同様に二酸化硫黄を吹き込んでテルルを回収するがこの時に未回収のセレンが混入する。この混入したセレンの選択的除去には上述の式1を利用できる。 In the lower process, after recovering selenium with sulfur dioxide, tellurium is recovered by blowing sulfur dioxide in the same manner, but unrecovered selenium is mixed in at this time. Equation 1 above can be used for the selective removal of this mixed selenium.

ところが回収したテルルの80%以上は二酸化テルルとして回収されるのでアルカリ液には溶解する。式1の反応に必要な亜硫酸塩の水溶液はアルカリ性を示す。さらにセレノ硫酸イオンはアルカリ性でのみ安定であるので溶液はアルカリ性である必要がある。そのためセレノ硫酸溶液には二酸化テルル由来のテルルの混入は必然となる。 However, since 80% or more of the recovered tellurium is recovered as tellurium dioxide, it dissolves in an alkaline solution. The aqueous solutions of sulfites required for the reaction of Equation 1 are alkaline. In addition, the solution should be alkaline since selenosulfate ions are stable only in alkalinity. Therefore, the selenosulfuric acid solution inevitably contains tellurium derived from tellurium dioxide.

セレノ硫酸溶液調製前に二酸化テルルを苛性ソーダ液等の強アルカリ液で予め溶出すればよい。しかし白金・パラジウム混合物に適用した場合には含有テルル量は僅かであり、アルカリ溶出は費用対効果が低い。反対にテルル回収沈殿物ではテルルの含有量が大きく完全に除去するのは困難であり微量の混入は避けられない。 Before preparing the selenosulfuric acid solution, tellurium dioxide may be preliminarily eluted with a strong alkaline solution such as caustic soda solution. However, when applied to platinum/palladium mixtures, the amount of tellurium contained is very low and alkaline elution is not cost effective. On the other hand, the tellurium recovered sediment contains a large amount of tellurium, and it is difficult to completely remove it.

[セレノ硫酸溶液の処理方法]
回収したセレノ硫酸溶液にはテルルがオキソニウムイオンとして混入する。これを除くには還元剤を添加して沈殿させるとよい。一般に使用される還元剤は金属類とその塩、例えば塩化スズ(II)や鉄粉、硫酸鉄(II)等であるがこれらは未反応分が不純物として残留する、または水酸化物沈殿を生じて不純物となる。これに対して有機還元剤は分解後にガスとして除去する事が容易である。アルカリ条件下で還元作用を示すものとしては糖類、シュウ酸類、ギ酸類、フェノール類、低級アルデヒド等が知られる。セレノ硫酸溶液中において、シュウ酸類はテルルオキソニウムを選択的に還元できる。シュウ酸類は水溶性であり、シュウ酸、シュウ酸二水和物、及び、シュウ酸ナトリウムからなる群から選択される一種または二種以上を含んでもよい。
[Method for treating selenosulfuric acid solution]
The recovered selenosulfuric acid solution is contaminated with tellurium as oxonium ions. To remove this, it is advisable to add a reducing agent to cause precipitation. Generally used reducing agents are metals and their salts, such as tin (II) chloride, iron powder, iron (II) sulfate, etc., but these unreacted components remain as impurities or cause hydroxide precipitation. become impurities. On the other hand, the organic reducing agent can be easily removed as a gas after decomposition. Sugars, oxalic acids, formic acids, phenols, lower aldehydes and the like are known to exhibit a reducing action under alkaline conditions. In a selenosulfuric acid solution, oxalic acids can selectively reduce telluroxonium. Oxalic acids are water-soluble and may contain one or more selected from the group consisting of oxalic acid, oxalic acid dihydrate, and sodium oxalate.

セレノ硫酸溶液にテルルに対してシュウ酸として2モル倍以上のシュウ酸類を添加して加温する。さらに好ましくは4.5モル倍以上である。これは添加するシュウ酸類が多すぎるコストの増加や溶液のCOD(Chemical Oxygen Demand:化学的酸素要求量)の上昇を引き起こす。少なすぎると自己分解による逸損やテルルオキソニウム以外のルイス酸を還元する反応が協奏的となり還元効率が低下する。そのため十分にテルルを除去できない。 The selenosulfuric acid solution is added with oxalic acid in an amount of 2 mol or more of oxalic acid relative to tellurium, and heated. More preferably, it is at least 4.5 mol times. This causes an increase in cost and an increase in COD (Chemical Oxygen Demand) of the solution due to too much oxalic acid to be added. If the amount is too small, loss due to autolysis and reactions for reducing Lewis acids other than telluroxonium become concerted, resulting in a decrease in reduction efficiency. Therefore, tellurium cannot be sufficiently removed.

還元温度は10℃以上90℃未満であることが好ましい。温度が低いと反応が遅い、もしくは沈殿したテルル粒子が微細になり固液分離が困難になるという問題がある。またシュウ酸は反応性が高く、液温が高すぎると自己分解を起こしてしまう。pHはセレノ硫酸が分解しないアルカリ域にあればよく、pH10以上が好ましい。 The reduction temperature is preferably 10°C or higher and lower than 90°C. If the temperature is low, there is a problem that the reaction is slow, or the precipitated tellurium particles become fine and solid-liquid separation becomes difficult. Also, oxalic acid is highly reactive and self-decomposes when the liquid temperature is too high. The pH may be in an alkaline range where selenosulfuric acid does not decompose, and is preferably pH 10 or higher.

沈殿したテルルは適当な方法で固液分離して回収される。テルル分を除いたセレノ硫酸溶液は酸を添加して液性を酸性に調整することによりセレンを生じる。酸によりセレンを回収後にさらに二酸化硫黄等の還元剤を添加してセレンを確実に回収することも可能である。 The precipitated tellurium is recovered by solid-liquid separation by an appropriate method. Selenium is produced by adding an acid to the selenosulfuric acid solution from which the tellurium content has been removed to adjust the liquid to be acidic. After recovering selenium with an acid, it is also possible to add a reducing agent such as sulfur dioxide to recover selenium reliably.

単体セレンと二酸化テルルの含有物(有価物沈殿)をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時に、当該溶解液にシュウ酸類を添加しておいてもよい。一旦溶解した二酸化テルルは還元を受けて沈殿する。この時のセレン溶解条件を85℃以下の温度で行うことで、テルル含有量の低いセレノ硫酸液が得られる。 When selenium elemental selenium and tellurium dioxide content (valuable substance precipitate) is brought into contact with an alkaline sulfite ion-containing liquid to dissolve selenium as selenosulfuric acid, oxalic acids may be added to the solution. Once dissolved, tellurium dioxide undergoes reduction and precipitates. A selenosulfuric acid solution with a low tellurium content can be obtained by setting the selenium dissolution condition at this time to a temperature of 85° C. or lower.

本発明の実施形態は特に銅製錬における電解精製工程で発生するスライム処理工程で生じるセレン含有物から得たセレノ硫酸溶液に好適である。すなわち、セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であってもよい。 Embodiments of the present invention are particularly suitable for selenosulfuric acid solutions obtained from selenium-containing materials generated in slime treatment processes generated in electrorefining processes in copper smelting. That is, the selenosulfuric acid solution may be a solution obtained by adding sodium sulfite to a selenium-containing solution in the electrolytic slime treatment process during the copper smelting process.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention are described below, but the examples are for illustrative purposes and are not intended to limit the invention.

銅製錬から回収された電解スライムに対し、硫酸で処理することで銅を除いた後、濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLSを得た。次に、PLSを6℃まで冷却して卑金属分を沈殿除去した。 Electrolytic slime recovered from copper smelting was treated with sulfuric acid to remove copper, then concentrated hydrochloric acid and 60% hydrogen peroxide solution were added to dissolve the slime, followed by solid-liquid separation to obtain PLS. The PLS was then cooled to 6° C. to precipitate and remove base metals.

次に、当該PLSとDBC(ジブチルカルビトール)とを混合して金を抽出した。次に、金抽出後のPLSを70℃に加温し、二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5~20%)を吹き込んで貴金属を還元し固液分離した。ここで得られた沈殿物を貴金属含有沈殿と称す。 Next, gold was extracted by mixing the PLS and DBC (dibutyl carbitol). Next, the PLS after the gold extraction was heated to 70° C., and a mixed gas of sulfur dioxide and air (sulfur dioxide concentration: 5-20%) was blown into the PLS to reduce the noble metals and separate solid and liquid. The precipitate obtained here is called precious metal-containing precipitate.

次に、固液分離後液をさらに70℃に加温し、二酸化硫黄と空気の混合ガスをセレンが3g/Lになるまで吹き込んだ。次に、再度固液分離し、分離後液を80℃~85℃に加温して二酸化硫黄と空気の混合ガスを吹き込んだ。テルル濃度が30mg/L以下になった時に反応を停止して固液分離した。ここで得られた固体はテルル沈殿と称す。 Next, the liquid after solid-liquid separation was further heated to 70° C., and a mixed gas of sulfur dioxide and air was blown in until selenium reached 3 g/L. Next, solid-liquid separation was carried out again, the separated liquid was heated to 80° C. to 85° C., and a mixed gas of sulfur dioxide and air was blown thereinto. When the tellurium concentration became 30 mg/L or less, the reaction was stopped and solid-liquid separation was performed. The solid obtained here is called tellurium precipitate.

(実験例1)
貴金属含有沈殿とテルル沈殿をそれぞれ40g量り採った。これに二倍重量の亜硫酸ナトリウムを添加し、さらに水酸化ナトリウム1g/L液を1.5L添加して70℃に加温した。1時間後、固液分離しセレノ硫酸液を得た。当該セレノ硫酸液のpHは10.3であった。
(Experimental example 1)
40 g each of the precious metal-containing precipitate and the tellurium precipitate were weighed out. Double weight of sodium sulfite was added thereto, and 1.5 L of 1 g/L sodium hydroxide solution was added and heated to 70°C. After 1 hour, solid-liquid separation was performed to obtain a selenosulfuric acid solution. The pH of the selenosulfuric acid solution was 10.3.

得られたセレノ硫酸液を120ml分取し、D-(-)フルクトースもしくはシュウ酸2水和物を0.6g添加した。いずれも和光純薬工業社製の特級試薬を使用した。一分間に1℃上昇する程度に加温し、10℃温度が上昇するごとにサンプル液を5ml採取した。このとき、蒸発分を補うため、ときどき純水を2~5ml添加した。サンプル液を濾過後2ml採取し、塩酸を添加した。沈殿が生じたため、25%過酸化水素を2ml添加してこれを溶解した。次に、50mlに規正してICP-OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表1に示す。 120 ml of the obtained selenosulfuric acid solution was taken, and 0.6 g of D-(-) fructose or oxalic acid dihydrate was added. All used special grade reagents manufactured by Wako Pure Chemical Industries, Ltd. The temperature was increased by 1°C per minute, and 5 ml of the sample liquid was sampled every time the temperature increased by 10°C. At this time, 2 to 5 ml of pure water was sometimes added in order to compensate for evaporation. After filtration, 2 ml of the sample liquid was collected, and hydrochloric acid was added. A precipitate formed and was dissolved by adding 2 ml of 25% hydrogen peroxide. Next, each concentration of Se and Te was quantified by ICP-OES (SPS3100 manufactured by Seiko) after adjusting to 50 ml. Table 1 shows the results.

Figure 0007247050000001
Figure 0007247050000001

表1より、シュウ酸は低温でもテルルの還元効果を示したことがわかる。しかしながら、20℃未満では濾過の際に時間を要した。生成したテルル粒子がろ紙に目詰まりしたためであり、取り扱いを考慮すると20℃以上で還元することが好ましい。セレンの濃度が低下していないのでセレノ硫酸はシュウ酸による還元を受けなかったこともわかる。これに対してフルクトースでは60℃より高い温度でのみテルルが還元を受けていることがわかる。糖類による還元では加温が必須である。 From Table 1, it can be seen that oxalic acid exhibited a tellurium reducing effect even at low temperatures. However, when the temperature was less than 20°C, it took a long time to filter. This is because the produced tellurium particles clog the filter paper, and it is preferable to reduce at 20° C. or higher in consideration of handling. It can also be seen that selenosulfuric acid was not reduced by oxalic acid because the concentration of selenium did not decrease. On the other hand, in fructose, tellurium is reduced only at temperatures higher than 60°C. Heating is essential for the reduction with sugars.

(実験例2)
実験例1と同じ溶液を100ml採取し、35~40℃に加温して、表2に示す量のシュウ酸二水和物を添加して撹拌した。所定の時間毎にサンプル液を5ml採取した。サンプル液を濾過後2ml採取し、塩酸を添加した。この後の定量分析操作は実験例1に準ずる。
(Experimental example 2)
100 ml of the same solution as in Experimental Example 1 was sampled, heated to 35 to 40° C., and the amount of oxalic acid dihydrate shown in Table 2 was added and stirred. A sample of 5 ml was collected at predetermined time intervals. After filtration, 2 ml of the sample liquid was collected, and hydrochloric acid was added. The subsequent quantitative analysis operation conforms to Experimental Example 1.

60分後に反応を停止し、濾過により固液分離した。固体分は水、アルコールの順で洗浄した後、50℃で一晩乾燥して重量を測定した。また、回収残渣を適当量採取し、王水で溶解した。次に、100mlに規正してICP-OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表2に示す。 After 60 minutes, the reaction was stopped and solid-liquid separation was performed by filtration. The solid content was washed with water and alcohol in that order, dried at 50° C. overnight, and weighed. Also, an appropriate amount of the collected residue was collected and dissolved in aqua regia. Next, each concentration of Se and Te was quantified by ICP-OES (SPS3100 manufactured by Seiko) after adjusting to 100 ml. Table 2 shows the results.

Figure 0007247050000002
Figure 0007247050000002

原液のテルル濃度は320mg/Lなので実施例4のようにテルルの1.6モル倍添加しただけでも効果が確認された。 Since the tellurium concentration of the undiluted solution is 320 mg/L, the addition of 1.6 mol of tellurium as in Example 4 was effective.

亜テルル酸は4電子受け取って単体テルルとして沈殿する。シュウ酸二水和物はテルルに対して2重量倍以上、すなわちテルルの濃度はモル換算して2.5mmol/Lなので2モル倍以上添加すれば効果が高い。さらに好ましくはテルルに対して4重量倍以上、4.5モル倍以上である。シュウ酸は理論的には2電子供与する。 Tellurite accepts 4 electrons and precipitates as simple tellurium. Since the concentration of oxalic acid dihydrate is 2 times by weight or more relative to tellurium, that is, the concentration of tellurium is 2.5 mmol/L in terms of moles, adding 2 times by mole or more is effective. More preferably, it is 4 times by weight or more and 4.5 times by mole or more that of tellurium. Oxalic acid theoretically donates two electrons.

本実験ではシュウ酸2水和物を使ったがシュウ酸、シュウ酸ナトリウム等の水溶性シュウ酸類では同じ反応を示す。 Although oxalic acid dihydrate was used in this experiment, water-soluble oxalic acids such as oxalic acid and sodium oxalate show the same reaction.

(実験例3)
貴金属含有沈殿を10g量り採り、NaOH1g/Lを100ml添加した。次に、温度は50℃と70℃で試行した。亜硫酸ナトリウム15gとシュウ酸2水和物0.5gを添加して撹拌した。比較のため、亜硫酸ナトリウムだけで浸出した場合も試行した。15分間浸出を行った後に濾別し、固体分は再度同じ条件で15分間浸出した。固液分離後に溶液を2ml採取し、塩酸で中和した。中和した時に沈殿が生じたため、過酸化水素水(25%)を2ml添加してこれを溶解した。次に、50mlに規正してYを内部標準としてICP-OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表3に示す。
(Experimental example 3)
10 g of precious metal-containing precipitate was weighed and 100 ml of NaOH 1 g/L was added. Next, the temperature was tried at 50°C and 70°C. 15 g of sodium sulfite and 0.5 g of oxalic acid dihydrate were added and stirred. For comparison, leaching with sodium sulfite alone was also tried. After leaching for 15 minutes, it was filtered off and the solid content was again leached for 15 minutes under the same conditions. After solid-liquid separation, 2 ml of the solution was sampled and neutralized with hydrochloric acid. Since a precipitate was formed during neutralization, 2 ml of hydrogen peroxide solution (25%) was added to dissolve the precipitate. Next, each concentration of Se and Te was quantified by ICP-OES (SPS3100 manufactured by Seiko) with Y as an internal standard, adjusted to 50 ml. Table 3 shows the results.

Figure 0007247050000003
Figure 0007247050000003

表3より、一回目浸出と二回目浸出の合計ではシュウ酸を添加した場合はテルルの溶出が少ないことがわかる。ただし、高温ではセレンの濃度が幾分低下しておりシュウ酸の還元能力でセレンが沈殿する場合もある。実施例1に見るように温度が低くてもシュウ酸は効果を示すため、シュウ酸を添加する時のセレノ硫酸調整は高温にしない方が良い。具体的には、シュウ酸が還元能を強く発揮する85℃より高い温度ではセレン浸出を行わないのが好ましい。 From Table 3, it can be seen that less tellurium is eluted when oxalic acid is added to the sum of the first leaching and the second leaching. However, at high temperatures, the concentration of selenium decreases somewhat, and selenium may precipitate due to the reducing ability of oxalic acid. As seen in Example 1, oxalic acid exhibits its effect even at low temperatures, so it is better not to use a high temperature for adjusting selenosulfuric acid when adding oxalic acid. Specifically, it is preferable not to perform selenium leaching at a temperature higher than 85° C. where oxalic acid exerts a strong reducing ability.

Claims (6)

pH10以上に調整した、テルルオキソニウムイオンを含むセレノ硫酸溶液に、シュウ酸類を添加してテルルを沈殿させる工程を有することを特徴とするセレノ硫酸溶液の処理方法。 A method for treating a selenosulfuric acid solution, comprising a step of adding oxalic acid to a selenosulfuric acid solution containing tellurium oxonium ions adjusted to pH 10 or higher to precipitate tellurium. 前記シュウ酸類は水溶性であり、シュウ酸、シュウ酸二水和物、及び、シュウ酸ナトリウムからなる群から選択される一種または二種以上を含むことを特徴とする請求項1に記載のセレノ硫酸溶液の処理方法。 The seleno according to claim 1, wherein the oxalic acids are water-soluble and contain one or more selected from the group consisting of oxalic acid, oxalic acid dihydrate, and sodium oxalate. Method for treating sulfuric acid solution. 前記シュウ酸類を、テルルに対して2モル倍以上になるように前記セレノ硫酸溶液に添加することを特徴とする請求項1又は2に記載のセレノ硫酸溶液の処理方法。 3. The method for treating a selenosulfuric acid solution according to claim 1, wherein said oxalic acid is added to said selenosulfuric acid solution so as to have a molar amount of 2 times or more that of tellurium. 前記セレノ硫酸溶液は、セレン及びテルルを酸溶解した液を還元して生じた沈殿物に亜硫酸塩を添加して調製された液であることを特徴とする請求項1~3のいずれか一項に記載のセレノ硫酸溶液の処理方法。 4. The selenosulfuric acid solution is a solution prepared by adding a sulfite salt to a precipitate produced by reducing a solution in which selenium and tellurium are dissolved in an acid. The method for treating the selenosulfuric acid solution described in 1. 前記セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であることを特徴とする請求項1~4のいずれか一項に記載のセレノ硫酸溶液の処理方法。 5. The selenosulfuric acid solution according to any one of claims 1 to 4, wherein the selenosulfuric acid solution is a solution obtained by adding sodium sulfite to a selenium-containing solution in an electrolytic slime treatment step in a copper smelting step. of the selenosulfuric acid solution. 単体セレン及び二酸化テルルの含有物をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時にシュウ酸類を添加して85℃以下に加温する工程を有することを特徴とするセレノ硫酸溶液の処理方法。 A selenosulfuric acid solution characterized by comprising a step of adding oxalic acid and heating to 85° C. or lower when a content containing elemental selenium and tellurium dioxide is brought into contact with an alkaline sulfite ion-containing liquid to dissolve selenium as selenosulfuric acid. How to handle.
JP2019141760A 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution Active JP7247050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141760A JP7247050B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141760A JP7247050B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Publications (2)

Publication Number Publication Date
JP2021025070A JP2021025070A (en) 2021-02-22
JP7247050B2 true JP7247050B2 (en) 2023-03-28

Family

ID=74662821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141760A Active JP7247050B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Country Status (1)

Country Link
JP (1) JP7247050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247049B2 (en) * 2019-07-31 2023-03-28 Jx金属株式会社 Method for treating selenosulfuric acid solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316735A (en) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2012211028A (en) 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2019073768A (en) 2017-10-16 2019-05-16 Jx金属株式会社 Method of recovering tellurium
JP2020105588A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of mixture containing noble metal, selenium and tellurium
JP2020105587A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2020158855A (en) 2019-03-27 2020-10-01 Jx金属株式会社 Method for separating and recovering valuable metal
JP2021023851A (en) 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
JP2021025069A (en) 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975954A (en) * 1995-09-19 1997-03-25 Mitsui Mining & Smelting Co Ltd Method of removing seleno sulfate ion in selenium-containing waste solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316735A (en) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2012211028A (en) 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2019073768A (en) 2017-10-16 2019-05-16 Jx金属株式会社 Method of recovering tellurium
JP2020105588A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of mixture containing noble metal, selenium and tellurium
JP2020105587A (en) 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2020158855A (en) 2019-03-27 2020-10-01 Jx金属株式会社 Method for separating and recovering valuable metal
JP2021023851A (en) 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
JP2021025069A (en) 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution

Also Published As

Publication number Publication date
JP2021025070A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
US7479262B2 (en) Method for separating platinum group element
EP3149214A1 (en) Hydrometallurgical treatment of anode sludge
JP7206142B2 (en) Method for separating and recovering valuable metals
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
ZA200501592B (en) Method for the recovery of metals using chloride leaching and extraction
US4662938A (en) Recovery of silver and gold
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP7198172B2 (en) Method for treating solution containing selenosulfuric acid
JP7247049B2 (en) Method for treating selenosulfuric acid solution
EP1577408B2 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP2017145434A (en) Processing method of metal-containing acidic aqueous solution
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6835577B2 (en) How to collect valuables
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP7337209B2 (en) Iridium recovery method
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP7423467B2 (en) Ruthenium recovery method
JP7423479B2 (en) Ruthenium recovery method
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6994984B2 (en) How to recover ruthenium
JP6882110B2 (en) Method for recovering precipitates containing platinum group elements
JP2019147718A (en) Method for recovering tellurium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R151 Written notification of patent or utility model registration

Ref document number: 7247050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151