JP7325363B2 - Method for treating mixtures containing selenium and tellurium - Google Patents

Method for treating mixtures containing selenium and tellurium Download PDF

Info

Publication number
JP7325363B2
JP7325363B2 JP2020043523A JP2020043523A JP7325363B2 JP 7325363 B2 JP7325363 B2 JP 7325363B2 JP 2020043523 A JP2020043523 A JP 2020043523A JP 2020043523 A JP2020043523 A JP 2020043523A JP 7325363 B2 JP7325363 B2 JP 7325363B2
Authority
JP
Japan
Prior art keywords
tellurium
selenium
solution
added
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020043523A
Other languages
Japanese (ja)
Other versions
JP2021143402A (en
Inventor
学 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020043523A priority Critical patent/JP7325363B2/en
Publication of JP2021143402A publication Critical patent/JP2021143402A/en
Application granted granted Critical
Publication of JP7325363B2 publication Critical patent/JP7325363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、セレン及びテルルを含む混合物の処理方法に関する。特に銅製錬の電解殿物処理工程において発生するセレンとテルルの製錬中間物に適用すると好適である。 The present invention relates to a method of treating mixtures containing selenium and tellurium. In particular, it is suitable for application to smelting intermediates of selenium and tellurium generated in the electrolytic sediment treatment process of copper smelting.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In copper pyrometallurgical refining, copper concentrate is melted, converted into 99% or higher blister copper in a converter and a refining furnace, and then refined copper with a purity of 99.99% or higher is produced in an electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic components have been put into converters as recycled raw materials, and valuables other than copper precipitate as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離-回収される。このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムから塩酸-過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。 This slime is enriched with precious metals, rare metals, and selenium and tellurium contained in copper concentrates at the same time. These elements are separately separated and recovered as copper smelting by-products. Hydrometallurgical methods are often applied to treat this slime. For example, Patent Document 1 discloses a method of recovering silver from slime with hydrochloric acid-hydrogen peroxide, recovering dissolved gold by solvent extraction, and then successively reducing and recovering other valuables with sulfur dioxide.

二酸化硫黄を用いて有価物を回収する方法では溶解後に順次有価物を還元して回収する。初めに白金、パラジウムが沈殿する。原料が銅電解スライムであればセレンが大量に含まれているためにセレンとの混合物として回収される。次にセレンが還元を受け、最後にテルルが還元される。 In the method of recovering valuables using sulfur dioxide, the valuables are reduced and recovered sequentially after dissolution. Platinum and palladium precipitate first. If the raw material is copper electrolytic slime, it is recovered as a mixture with selenium because it contains a large amount of selenium. Selenium is then reduced, and finally tellurium is reduced.

セレンの還元回収に当たってはテルルの混入を防ぐためにセレン濃度が3g/L程度に達したところで反応を停止する。そのためこの後工程で還元され、沈殿物として回収されるテルルにはセレンが大量に混入する。この混合沈殿物からテルルとセレンを分離する。 In reducing and recovering selenium, the reaction is stopped when the selenium concentration reaches about 3 g/L in order to prevent contamination with tellurium. Therefore, a large amount of selenium is mixed in the tellurium that is reduced in the post-process and recovered as a precipitate. Tellurium and selenium are separated from this mixed precipitate.

この両元素の分離には一般的に強アルカリで溶解後に中和してテルルを二酸化テルルとして分離する方法が知られる(特許文献2)。二酸化テルル分離後液からにはセレンが含まれており、このセレンを回収するには還元剤で単体セレンとして沈殿を回収する。 For the separation of these two elements, a method is generally known in which tellurium is dissolved in a strong alkali and then neutralized to separate tellurium as tellurium dioxide (Patent Document 2). The liquid after separation of tellurium dioxide contains selenium, and in order to recover this selenium, the precipitate is recovered as simple selenium using a reducing agent.

特開2001-316735号公報JP-A-2001-316735 特開平5-311264号公報JP-A-5-311264

二酸化テルルを沈殿分離後の液には、依然としてテルルが10~500mg/L程度含まれる。この液から粗セレンを還元回収する時に、テルルが混入する。この粗セレンはさらに蒸留して純度を高めることができるが、テルルが混入している粗セレンを蒸留すると、蒸留釜にテルルが持ち込まれることになる。 The liquid after precipitation and separation of tellurium dioxide still contains about 10 to 500 mg/L of tellurium. When crude selenium is reduced and recovered from this liquid, tellurium is mixed. This crude selenium can be further distilled to increase its purity, but if crude selenium containing tellurium is distilled, tellurium will be brought into the still.

蒸留窯に持ち込まれたテルルは揮散せずに残留するため、蒸留窯の定期的な清掃によりテルルを除くことが必要になる。清掃の時はセレンの生産も停止するため、その頻度は少ないほうが良く、持ち込まれるテルル量を下げること、また、現実的には粗セレン中のテルル品位を下げることが必要である。 Since the tellurium brought into the distillation kiln remains without volatilization, it is necessary to remove the tellurium by regular cleaning of the kiln. Since the production of selenium also stops during the cleaning, it is better that the cleaning frequency is low. It is necessary to reduce the amount of tellurium brought in, and in reality, to lower the grade of tellurium in the crude selenium.

しかしながら、粗セレンへ混入するテルルは、アルカリ溶解もしくは酸化溶解と中和により、二酸化テルルとして沈殿させる反応を繰り返して分離することが一般的であり、安価で効率よくこれを分離する方法は知られていない。 However, the tellurium mixed in the crude selenium is generally separated by repeating the reaction of precipitating tellurium dioxide by alkali dissolution or oxidative dissolution and neutralization, and an inexpensive and efficient method for separating this is known. not

本発明の実施形態は、セレン及びテルルを含む混合物から、安価で効率よくテルルを単離する方法を提供することを課題とする。 An object of the present invention is to provide a method for efficiently isolating tellurium from a mixture containing selenium and tellurium at low cost.

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、セレンとテルルの混合物をアルカリで溶解後に中和して二酸化テルルを分離し、溶液を再度pH11以上に調整した後、還元糖類によりテルルを還元して除くことで、上記課題を解決し得ることを見出した。本発明の実施形態は、以下のように特定される。
(1)セレン及びテルルを含む混合物に対して、アルカリ溶液を注ぎ、空気を供給しながら70℃以上で加熱してセレン及びテルルの溶解液を調整する溶解工程、
セレン及びテルルの溶解液に酸を添加してpHを5未満に調整して生じた沈殿を固液分離して、二酸化テルルを分離する二酸化テルル回収工程、及び、
二酸化テルル分離後液にアルカリを添加して、再度pHを11以上に調整し、還元糖類を添加して60℃以上に加熱して、溶液中のテルルを沈殿させて除去するテルル除去工程、
を含むセレン及びテルルを含む混合物の処理方法。
(2)前記還元糖類の添加量は、テルルに対して2質量倍以上である(1)に記載のセレン及びテルルを含む混合物の処理方法。
(3)前記還元糖類は、フルクトース及びグルコースのいずれか又は混合物である(1)又は(2)に記載のセレン及びテルルを含む混合物の処理方法。
(4)前記還元糖類は、フルクトースであり、前記テルル除去工程において、前記フルクトースを添加してテルルを沈殿させる時、pHを12~13に調整して還元する(1)~(3)のいずれかに記載のセレン及びテルルを含む混合物の処理方法。
(5)前記テルル除去工程でテルルを沈殿させて除去した後の液に、酸を添加してpHを3以下に調整し、70℃以上に加熱して二酸化硫黄を吹き込んでセレンを沈殿させて回収する(1)~(4)のいずれかに記載のセレン及びテルルを含む混合物の処理方法。
As a result of intensive research to solve the above problems, the present inventors dissolved a mixture of selenium and tellurium with an alkali, neutralized it to separate tellurium dioxide, adjusted the solution to pH 11 or higher again, and added a reducing sugar. We have found that the above problems can be solved by reducing and removing tellurium. Embodiments of the invention are specified as follows.
(1) A dissolution step of pouring an alkaline solution into a mixture containing selenium and tellurium and heating at 70° C. or higher while supplying air to prepare a solution of selenium and tellurium;
A tellurium dioxide recovery step of separating tellurium dioxide by solid-liquid separation of a precipitate formed by adding an acid to a solution of selenium and tellurium to adjust the pH to less than 5, and
A tellurium removal step of adding alkali to the solution after tellurium dioxide separation, adjusting the pH to 11 or higher again, adding reducing sugars and heating to 60° C. or higher to precipitate and remove tellurium in the solution;
A method of treating a mixture containing selenium and tellurium containing
(2) The method for treating a mixture containing selenium and tellurium according to (1), wherein the amount of the reducing sugar added is at least 2 times the mass of tellurium.
(3) The method for treating a mixture containing selenium and tellurium according to (1) or (2), wherein the reducing sugar is fructose or glucose or a mixture thereof.
(4) The reducing sugar is fructose, and in the tellurium removal step, when the fructose is added to precipitate tellurium, the pH is adjusted to 12 to 13 for reduction according to any of (1) to (3). A method for treating a mixture containing selenium and tellurium according to claim 1.
(5) Acid is added to the liquid from which tellurium has been precipitated and removed in the tellurium removal step to adjust the pH to 3 or less, and the liquid is heated to 70°C or higher and sulfur dioxide is blown in to precipitate selenium. A method for treating a mixture containing selenium and tellurium according to any one of (1) to (4) to be recovered.

本発明の実施形態によれば、セレン及びテルルを含む混合物から、安価で効率よくテルルを単離する方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a method for inexpensively and efficiently isolating tellurium from a mixture containing selenium and tellurium.

本発明の実施例3に係るセレンの濃度の経時変化である。FIG. 10 is a time-dependent change in the concentration of selenium according to Example 3 of the present invention; FIG.

<セレン及びテルルを含む混合物>
非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解スライムには、白金族元素とカルコゲン元素が濃縮される。白金族元素ならびにカルコゲン元素は、単独で製錬されることはなく、他金属の副産物として回収されるか、廃触媒等のリサイクル原料を元にして回収される。従って、本発明の実施形態に係るセレン及びテルルを含む混合物の処理方法は、廃棄物からのリサイクルにも適用できる。
<Mixture containing selenium and tellurium>
Platinum group elements and chalcogen elements are concentrated in electrolytic slime produced in the electrorefining process of non-ferrous metal smelting, especially copper smelting. Platinum group elements and chalcogen elements are not smelted independently, but are recovered as by-products of other metals or recovered from recycled raw materials such as waste catalysts. Therefore, the method of treating mixtures containing selenium and tellurium according to embodiments of the present invention can also be applied to recycling from waste.

銅製錬の電解精製工程では、塩酸と過酸化水素を添加して電解スライムを溶解するが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には白金族元素、希少金属元素、セレン、テルルが分配する。 In the electrolytic refining process of copper smelting, hydrochloric acid and hydrogen peroxide are added to dissolve electrolytic slime, but silver forms chloride ions and insoluble silver chloride precipitates immediately after dissolution. A solution containing an oxidizing agent and chlorine, such as aqua regia or chlorine water, dissolves precious metals and separates silver as silver chloride. Since it is a chloride bath, platinum group elements, rare metal elements, selenium, and tellurium are distributed in the pregnant leach liquor (PLS).

浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。然る後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 Precious leach liquor (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into the organic phase by solvent extraction. A widely used extractant for gold is dibutyl carbitol (DBC).

金を抽出した後のPLSを還元すれば有価物は沈殿-回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決まっている。初めに金、白金、パラジウム、次にセレンやテルルといったカルコゲン、さらに不活性貴金属類が沈殿する。 Valuables can be precipitated and recovered by reducing PLS after extracting gold, but the order of precipitation is naturally determined because the oxidation-reduction potential differs depending on the element. Gold, platinum and palladium are precipitated first, then chalcogens such as selenium and tellurium, and then inert precious metals.

還元剤は還元性硫黄が価格と効率の面から利用され、なかでも二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。 Reducing sulfur is used as a reducing agent from the viewpoint of cost and efficiency. Among them, sulfur dioxide is most suitable because it can be supplied in large quantities and at low cost by roasting of converter gas or sulfide ore.

二酸化硫黄によりセレン回収後、引き続き同様に二酸化硫黄を吹き込んでテルルを回収するがこの時に未回収のセレンが相当量混入する。このセレンの混入したテルルが対象として好適である。 After recovering selenium with sulfur dioxide, tellurium is recovered by blowing sulfur dioxide in the same manner, but at this time, a considerable amount of unrecovered selenium is mixed. This selenium-contaminated tellurium is suitable as a target.

本発明の実施形態に係るセレン及びテルルを含む混合物の処理方法における処理対象の混合物は、セレンとテルルとの混合物であればよい。テルルが二酸化テルルとして混入しているとなお効果が高い。 The mixture to be treated in the method for treating a mixture containing selenium and tellurium according to the embodiment of the present invention may be a mixture of selenium and tellurium. When tellurium is mixed as tellurium dioxide, the effect is even higher.

<セレン及びテルルを含む混合物の処理方法>
本発明の実施形態に係るセレン及びテルルを含む混合物の処理方法は、セレン及びテルルを含む混合物に対して、アルカリ溶液を注ぎ、空気を供給しながら70℃以上で加熱してセレン及びテルルの溶解液を調整する溶解工程、セレン及びテルルの溶解液に酸を添加してpHを5未満に調整して生じた沈殿を固液分離して、二酸化テルルを分離する二酸化テルル回収工程、及び、二酸化テルル分離後液にアルカリを添加して、再度pHを11以上に調整し、還元糖類を添加して60℃以上に加熱して、溶液中のテルルを沈殿させて除去するテルル除去工程を含む。
<Method for treating mixture containing selenium and tellurium>
In the method for treating a mixture containing selenium and tellurium according to an embodiment of the present invention, an alkaline solution is poured into the mixture containing selenium and tellurium, and heated at 70 ° C. or higher while supplying air to dissolve selenium and tellurium. A dissolution step of adjusting the liquid, a tellurium dioxide recovery step of separating tellurium dioxide by solid-liquid separation of the precipitate formed by adding acid to the solution of selenium and tellurium to adjust the pH to less than 5, and dioxide A tellurium removal step is included in which alkali is added to the tellurium-separated liquid to adjust the pH to 11 or higher again, reducing sugars are added, and the solution is heated to 60°C or higher to precipitate and remove tellurium in the solution.

溶解工程では、セレン及びテルルを含む混合物に対して、アルカリ溶液を注ぎ、空気を供給しながら70℃以上で加熱して溶解する。アルカリ溶液に用いることができるアルカリとしては、溶解性の観点から、水酸化ナトリウムまたは水酸化カリウムなどが好ましく、濃度は1N以上が好ましく、1.5N以上がより好ましく、2N以上が更により好ましい。また、このときの加熱温度は、反応性の観点から、70~80℃が好ましい。 In the dissolution step, an alkaline solution is poured into the mixture containing selenium and tellurium, and the mixture is dissolved by heating at 70° C. or higher while supplying air. From the viewpoint of solubility, the alkali that can be used in the alkaline solution is preferably sodium hydroxide or potassium hydroxide, and the concentration is preferably 1N or higher, more preferably 1.5N or higher, and even more preferably 2N or higher. Moreover, the heating temperature at this time is preferably 70 to 80° C. from the viewpoint of reactivity.

溶解工程において、加熱の際に酸化剤として空気を供給することで、反応効率が向上する。混合物中のセレンは亜セレン酸として、テルルは亜テルル酸として溶解する。このようにして、セレン及びテルルの溶解液を調整することができる。 In the dissolution process, the reaction efficiency is improved by supplying air as an oxidant during heating. The selenium in the mixture dissolves as selenous acid and the tellurium as telluric acid. Thus, a solution of selenium and tellurium can be prepared.

二酸化テルル回収工程では、セレン及びテルルの溶解液に酸を添加してpHを5未満に調整して生じた沈殿を固液分離して、二酸化テルルを分離する。セレン及びテルルの溶解液に添加する酸としては、塩酸または硫酸などが挙げられる。酸を添加して調整するpHは、1~4であるのがより好ましく、このような範囲にpHを調整することで、白色の二酸化テルルが沈殿する。 In the tellurium dioxide recovery step, an acid is added to the solution of selenium and tellurium to adjust the pH to less than 5, and the resulting precipitate is subjected to solid-liquid separation to separate tellurium dioxide. Acids added to the solution of selenium and tellurium include hydrochloric acid and sulfuric acid. The pH adjusted by adding an acid is more preferably 1 to 4. By adjusting the pH to such a range, white tellurium dioxide precipitates.

pHを5未満に調整して生じた沈殿を固液分離すると、テルルを二酸化テルルとして回収することができる。 Tellurium can be recovered as tellurium dioxide by solid-liquid separation of the precipitate formed by adjusting the pH to less than 5.

テルル除去工程では、二酸化テルル分離後液にアルカリを添加して、再度pHを11以上に調整し、還元糖類を添加して60℃以上に加熱して、溶液中のテルルを沈殿させて除去する。固液分離後の溶液には、幾らかのテルルが残るため、再度、当該液をアルカリ性に調整し、還元糖類でテルルを選択的に還元する。 In the tellurium removal step, an alkali is added to the tellurium dioxide separated liquid to adjust the pH to 11 or more again, and a reducing sugar is added and heated to 60° C. or more to precipitate and remove tellurium in the solution. . Since a certain amount of tellurium remains in the solution after solid-liquid separation, the solution is again adjusted to alkalinity, and tellurium is selectively reduced with reducing sugars.

添加するアルカリとしては、溶解性の観点から、水酸化ナトリウムまたは水酸化カリウムなどが好ましく、濃度は1N以上が好ましく、1.5N以上がより好ましく、2N以上が更により好ましい。また、このときの加熱温度は、反応性の観点から、60~80℃が好ましい。 From the viewpoint of solubility, the alkali to be added is preferably sodium hydroxide or potassium hydroxide, and the concentration is preferably 1N or more, more preferably 1.5N or more, and even more preferably 2N or more. Moreover, the heating temperature at this time is preferably 60 to 80° C. from the viewpoint of reactivity.

アルカリ条件下で還元作用を示すものとしては糖類、低級アルデヒド等が知られる。酸性条件下でもスズ(II)塩や銅、卑金属はテルルを還元するが新たにセレンの不純物として混入する恐れがある。このため、本発明の実施形態では、還元糖類でテルルを選択的に還元している。 Saccharides, lower aldehydes and the like are known to exhibit a reducing action under alkaline conditions. Tin (II) salts, copper, and base metals reduce tellurium even under acidic conditions, but there is a risk of contamination with selenium as impurities. Therefore, in embodiments of the present invention, tellurium is selectively reduced with reducing sugars.

糖類で還元性を示す糖は、本発明の還元糖類としていずれも使用できる。特に、環構造の開環平衡の関係から平衡定数の大きいケトースが好ましい。糖類は環状構造をしているが、これが加水分解して直線状になる。この直線と環の形は互いに平衡状態にあり、これを開環平衡と呼ぶ。 Any reducing saccharide can be used as the reducing saccharide of the present invention. In particular, a ketose having a large equilibrium constant is preferred in view of the ring-opening equilibrium of the ring structure. Saccharides have a cyclic structure, which is hydrolyzed into a linear structure. The linear and ring shapes are in equilibrium with each other, and this is called open ring equilibrium.

還元糖類としては、コストの面では汎用性のあるフルクトース、グルコースのいずれか又は混合物であることが好ましい。フルクトースはケトースであることから最も好適である。 The reducing sugar is preferably fructose or glucose, or a mixture thereof, which is versatile in terms of cost. Fructose is most preferred as it is a ketose.

還元糖類の添加量は、テルルに対して2質量倍以上であるのが好ましい。還元糖類の添加量が、テルルに対して2質量倍以上であると、より良好にテルルを除去することができる。また、添加する還元糖類が多すぎるとコストの増加や溶液のCOD(Chemical Oxygen Demand:化学的酸素要求量)の上昇を引き起こす。またセレンをも還元してしまう。このような観点から、還元糖類の添加量は、テルルに対して2質量倍以上10質量倍以下であるのがより好ましい。 The amount of reducing sugar added is preferably at least 2 times the mass of tellurium. Tellurium can be removed more satisfactorily when the amount of reducing sugar added is 2 times or more by mass that of tellurium. Moreover, if too much reducing sugar is added, it causes an increase in cost and an increase in COD (Chemical Oxygen Demand) of the solution. It also reduces selenium. From this point of view, the amount of reducing sugar added is more preferably 2-10 times the mass of tellurium.

還元糖類による還元温度は60℃以上に制御する。温度が低いと反応が遅い、もしくは沈殿したテルル粒子が微細になり固液分離が困難になるという問題がある。そこで、還元糖類による還元温度は70℃以上であるのが好ましい。還元糖類を添加する前に、二酸化テルル除去後液をアルカリ域のpHに調整しておく。糖類にはカルボニル部に開環平衡があるため当該pHは11以上に調整する。また、アルカリ性が強くなると糖の環が開いて還元性のアルデヒドが生じる。ここで、当該pHが13を超えると極めて高いアルカリになる。この時、一旦沈殿したテルルは、時間の経過と主に再溶解するおそれがある。このため、還元糖類としてフルクトースを添加してテルルを沈殿させる時、pHを12~13に調整して還元するのが好ましい。 The reduction temperature by reducing sugars is controlled at 60° C. or higher. If the temperature is low, there is a problem that the reaction is slow, or the precipitated tellurium particles become fine and solid-liquid separation becomes difficult. Therefore, it is preferable that the reduction temperature by the reducing saccharide is 70° C. or higher. Before adding the reducing sugar, the solution after removing tellurium dioxide is adjusted to pH in the alkaline range. Since saccharides have ring-opening equilibrium in the carbonyl portion, the pH is adjusted to 11 or higher. In addition, when the alkalinity becomes strong, the sugar ring opens and a reducing aldehyde is generated. Here, when the pH exceeds 13, it becomes extremely highly alkaline. At this time, the once precipitated tellurium is likely to re-dissolve over time. Therefore, when fructose is added as a reducing sugar to precipitate tellurium, it is preferable to adjust the pH to 12-13 for reduction.

還元により沈殿したテルルは適当な方法で固液分離して回収される。テルル分を除いた溶液は酸を添加して液性を酸性に調整し、さらに二酸化硫黄等の還元剤を添加してセレンを確実に回収することも可能である。 Tellurium precipitated by reduction is recovered by solid-liquid separation by an appropriate method. It is also possible to add an acid to the solution from which the tellurium content has been removed to adjust the liquid property to be acidic, and to further add a reducing agent such as sulfur dioxide to reliably recover the selenium.

テルル除去工程でテルルを沈殿させて除去した後の液に、酸を添加してpHを3以下に調整し、70℃以上に加熱して二酸化硫黄を吹き込んでセレンを沈殿させて回収することができる。添加する酸としては、塩酸または硫酸などが挙げられる。酸を添加して調整するpHを3以下に調整することで、セレンをより良好に沈殿させることができる。 Acid is added to the liquid after precipitating and removing tellurium in the tellurium removal step to adjust the pH to 3 or less, and the liquid is heated to 70° C. or higher and sulfur dioxide is blown in to precipitate and recover selenium. can. Examples of the acid to be added include hydrochloric acid and sulfuric acid. Selenium can be more favorably precipitated by adjusting the pH adjusted by adding an acid to 3 or less.

酸を添加してpHを3以下に調整した後、70℃以上に加熱して二酸化硫黄を吹き込むことで、反応性が良好となり、セレンを良好に沈殿させることができる。加熱温度は80℃以上がより好ましい。 After adjusting the pH to 3 or less by adding an acid, by heating to 70° C. or more and blowing in sulfur dioxide, the reactivity becomes good and selenium can be well precipitated. A heating temperature of 80° C. or higher is more preferable.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention are described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(実施例1)
銅製錬から回収された電解スライムに対し、硫酸で処理することで銅を除いた後、濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLSを得た。次に、PLSを6℃まで冷却して卑金属分を沈殿除去した。
(Example 1)
Electrolytic slime recovered from copper smelting was treated with sulfuric acid to remove copper, then concentrated hydrochloric acid and 60% hydrogen peroxide solution were added to dissolve the slime, followed by solid-liquid separation to obtain PLS. The PLS was then cooled to 6° C. to precipitate and remove base metals.

次に、当該PLSとDBC(ジブチルカルビトール)とを混合して金を抽出し抽出後のPLSに70℃で二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5~20%)を吹き込んで貴金属とセレンを順次還元して生じた沈殿を固液分離した。 Next, the PLS and DBC (dibutyl carbitol) are mixed to extract gold, and a mixed gas of sulfur dioxide and air (sulfur dioxide concentration: 5 to 20%) is blown into the extracted PLS at 70° C. to extract precious metals. Solid-liquid separation was performed on the precipitates formed by the sequential reduction of selenium.

次に、固液分離後液を再度80℃~85℃に加温して二酸化硫黄と空気の混合ガスを吹き込んだ。テルル濃度が30mg/L以下になった時に反応を停止して固液分離した。沈殿に1mol/L(1N)の水酸化ナトリウム液を注いでエアレーションしながら80℃に加熱した。12時間加熱後にろ過して、濾液を実験対象液とした。 Next, the liquid after solid-liquid separation was heated again to 80° C. to 85° C., and a mixed gas of sulfur dioxide and air was blown thereinto. When the tellurium concentration became 30 mg/L or less, the reaction was stopped and solid-liquid separation was performed. A 1 mol/L (1N) sodium hydroxide solution was poured into the precipitate and heated to 80° C. while aeration. After heating for 12 hours, the mixture was filtered, and the filtrate was used as an experimental liquid.

実験対象液に硫酸を注いでpHを3~4に調整した。二酸化テルルの白色沈殿生じたのでこれを濾別した。濾液200mlを測り取り、表1に示す添加剤及び条件にて、液中のテルルの分離を試みた。生じた沈殿を濾別した後に、pHが1以下に達するまで硫酸を添加し、65~70℃に加熱して二酸化硫黄と空気の混合気を90分間吹き込みセレンの沈殿を回収した。 Sulfuric acid was poured into the liquid to be tested to adjust the pH to 3-4. A white precipitate of tellurium dioxide was formed and was filtered off. 200 ml of the filtrate was weighed out, and an attempt was made to separate tellurium from the liquid using the additives and conditions shown in Table 1. After the resulting precipitate was separated by filtration, sulfuric acid was added until the pH reached 1 or less, the mixture was heated to 65-70°C, and a mixture of sulfur dioxide and air was blown in for 90 minutes to recover the precipitate of selenium.

テルル分離時とセレン分離後液(セレン沈殿後液)中のセレンとテルルの濃度を定量した。サンプル液を濾過後2ml採取し、塩酸を添加した。沈殿が生じたため、25%過酸化水素を2ml添加してこれを溶解した。次に、50mlに規正してICP-OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。なお、原料液のTe濃度は23mg/L、Se濃度は17.6g/Lであった。試験結果を表1に示す。 The concentrations of selenium and tellurium in the liquid after separating tellurium and after separating selenium (liquid after selenium precipitation) were quantified. After filtration, 2 ml of the sample liquid was collected, and hydrochloric acid was added. A precipitate formed and was dissolved by adding 2 ml of 25% hydrogen peroxide. Next, each concentration of Se and Te was quantified by ICP-OES (SPS3100 manufactured by Seiko) after adjusting to 50 ml. The raw material liquid had a Te concentration of 23 mg/L and a Se concentration of 17.6 g/L. Table 1 shows the test results.

Figure 0007325363000001
Figure 0007325363000001

表1より、糖類がテルルの還元に効果的であることがわかる。典型的な還元剤である硫酸スズや銅粉でもテルルを沈殿することは可能であるが、回収テルルに重金属類が混入する恐れがあり好ましくない。 Table 1 shows that saccharides are effective in reducing tellurium. Tin sulfate and copper powder, which are typical reducing agents, can also be used to precipitate tellurium, but this is not preferable because the recovered tellurium may be contaminated with heavy metals.

(実施例2)
固体セレンに1N硫酸を添加して徐々に過酸化水素(35%)を添加した。攪拌した後溶け残ったセレンを濾別した。濾液に水酸化ナトリウム(10g/L)溶液を添加して中和した。さらに二酸化テルルを1N水酸化ナトリウム液に溶かして添加した。よく混合して上澄みを実験溶液とした。
(Example 2)
1N sulfuric acid was added to solid selenium and hydrogen peroxide (35%) was slowly added. After stirring, selenium remaining undissolved was filtered off. The filtrate was neutralized by adding sodium hydroxide (10 g/L) solution. Further, tellurium dioxide dissolved in 1N sodium hydroxide solution was added. After mixing well, the supernatant was used as an experimental solution.

実験溶液を200ml分取した。水酸化ナトリウムをpH12以上になるまで加えた。70℃に加温し、表2に示す糖類を添加した。30分攪拌して生じた沈殿を濾別した。濾液に硫酸を加えてpHを1以下に調整して65~70℃に加熱し、二酸化硫黄と空気の混合気を吹き込んだ。60分後に反応を停止した。還元糖投入後と反応停止時に定量溶液サンプルを採取した。定量分析操作は実施例1に準ずる。 200 ml of test solution was taken. Sodium hydroxide was added until the pH was above 12. It was heated to 70° C. and the sugars shown in Table 2 were added. The precipitate formed after stirring for 30 minutes was filtered off. Sulfuric acid was added to the filtrate to adjust the pH to 1 or less, the mixture was heated to 65-70° C., and a mixture of sulfur dioxide and air was blown thereinto. The reaction was stopped after 60 minutes. Quantitative solution samples were taken after the addition of reducing sugar and when the reaction was stopped. The quantitative analysis operation conforms to Example 1.

Figure 0007325363000002
Figure 0007325363000002

表2によれば、還元糖類の添加でテルルのみを選択的に還元したことがわかる。また、還元糖類はテルルの2質量倍程度(フルクトース0.2g添加)から効果を示し、5質量倍(各0.5g添加)以上添加すれば効果が高いことがわかる。 According to Table 2, it can be seen that only tellurium was selectively reduced by the addition of reducing sugars. In addition, it can be seen that reducing sugars show an effect from about 2 times the mass of tellurium (addition of 0.2 g of fructose), and the effect is high when adding at least 5 times the mass of tellurium (addition of 0.5 g of each).

(実施例3)
実施例2と同じ実験溶液200mlを分取した。水酸化ナトリウムでpHを12.5もしくは13.2に調整し、液温を70℃まで加熱した。フルクトースを0.5gもしくは1g添加して攪拌した。所定の時間ごとにサンプルを取り濾別後液中のセレンとテルルの濃度を定量した。定量方法は実施例1に準じる。実施例3の評価結果を図1に示す。図1において、実線はテルル濃度、破線はセレン濃度を示す。
(Example 3)
200 ml of the same experimental solution as in Example 2 was taken. The pH was adjusted to 12.5 or 13.2 with sodium hydroxide, and the liquid temperature was heated to 70°C. 0.5 g or 1 g of fructose was added and stirred. Samples were taken at predetermined time intervals, and the concentrations of selenium and tellurium in the filtered solution were quantified. The quantification method conforms to Example 1. The evaluation results of Example 3 are shown in FIG. In FIG. 1, the solid line indicates the tellurium concentration and the dashed line indicates the selenium concentration.

いずれの実験例においても、フルクトース添加直後からテルル濃度は低下するが一定時間を経過すると上昇に転じた。これは一度沈殿したテルルがフルクトースの消失後に再溶解したと考えられる。再溶解を防ぐには糖類との反応速度を落とすことは有効である。フルクトースの場合は80℃未満が好ましい。温度が低すぎると反応が生じないため、60℃以上が好ましい。 In all experimental examples, the tellurium concentration decreased immediately after the addition of fructose, but turned to increase after a certain period of time. It is considered that the once precipitated tellurium dissolved again after the fructose disappeared. To prevent redissolution, it is effective to reduce the reaction rate with sugars. For fructose, less than 80°C is preferred. If the temperature is too low, the reaction will not occur, so 60° C. or higher is preferable.

pHが高すぎるとフルクトースの平衡が還元型に偏り、亜セレン酸も還元することがわかる。これはフルクトースの添加量を1gとした時も同じであった。添加量とpHの増加はテルル還元選択性を低下させる。 It can be seen that if the pH is too high, the balance of fructose is biased toward the reduced form, and selenite is also reduced. This was the same when the amount of fructose added was 1 g. Increasing the amount added and pH decreases the tellurium reduction selectivity.

フルクトースを還元糖類として使用する場合はpH12~13、添加量はテルルの5質量倍が好適である。還元糖類によりこの最適条件は変化する。 When fructose is used as a reducing sugar, the pH is preferably 12 to 13, and the amount to be added is preferably 5 times the mass of tellurium. Reducing sugars change this optimum.

これらの現象はフルクトース以外の糖を使用しても同様であると推測され、やむを得ず長時間の反応になる場合、pHが高くなる場合は反応速度の遅いグルコースを混合して添加すれば一度沈殿したテルルの再溶解は防ぐことが可能であろう。 These phenomena are presumed to be the same even when sugars other than fructose are used, and if the reaction is unavoidably prolonged, or if the pH is high, the precipitation can be precipitated once by adding glucose, which has a slow reaction rate. Redissolution of tellurium could be prevented.

Claims (5)

セレン及びテルルを含む混合物に対して、アルカリ溶液を注ぎ、空気を供給しながら70℃以上で加熱してセレン及びテルルの溶解液を調整する溶解工程、
セレン及びテルルの溶解液に酸を添加してpHを5未満に調整して生じた沈殿を固液分離して、二酸化テルルを分離する二酸化テルル回収工程、及び、
二酸化テルル分離後液にアルカリを添加して、再度pHを11以上に調整し、還元糖類を添加して60℃以上に加熱して、溶液中のテルルを沈殿させて除去するテルル除去工程、
を含むセレン及びテルルを含む混合物の処理方法。
A dissolution step of pouring an alkaline solution into a mixture containing selenium and tellurium and heating at 70° C. or higher while supplying air to prepare a solution of selenium and tellurium;
A tellurium dioxide recovery step of separating tellurium dioxide by solid-liquid separation of a precipitate formed by adding an acid to a solution of selenium and tellurium to adjust the pH to less than 5, and
A tellurium removal step of adding alkali to the solution after tellurium dioxide separation, adjusting the pH to 11 or higher again, adding reducing sugars and heating to 60° C. or higher to precipitate and remove tellurium in the solution;
A method of treating a mixture containing selenium and tellurium containing
前記還元糖類の添加量は、テルルに対して2質量倍以上である請求項1に記載のセレン及びテルルを含む混合物の処理方法。 2. The method for treating a mixture containing selenium and tellurium according to claim 1, wherein the amount of the reducing sugar added is two times or more by mass that of tellurium. 前記還元糖類は、フルクトース及びグルコースのいずれか又は混合物である請求項1又は2に記載のセレン及びテルルを含む混合物の処理方法。 3. The method for treating a mixture containing selenium and tellurium according to claim 1 or 2, wherein the reducing sugar is fructose or glucose or a mixture thereof. 前記還元糖類は、フルクトースであり、前記テルル除去工程において、前記フルクトースを添加してテルルを沈殿させる時、pHを12~13に調整して還元する請求項1~3のいずれか一項に記載のセレン及びテルルを含む混合物の処理方法。 4. The reducing sugar is fructose, and in the tellurium removal step, when the fructose is added to precipitate tellurium, the pH is adjusted to 12 to 13 for reduction according to any one of claims 1 to 3. of a mixture containing selenium and tellurium. 前記テルル除去工程でテルルを沈殿させて除去した後の液に、酸を添加してpHを3以下に調整し、70℃以上に加熱して二酸化硫黄を吹き込んでセレンを沈殿させて回収する請求項1~4のいずれか一項に記載のセレン及びテルルを含む混合物の処理方法。 An acid is added to the liquid from which tellurium has been precipitated and removed in the tellurium removal step to adjust the pH to 3 or less, the liquid is heated to 70°C or higher, and sulfur dioxide is blown in to precipitate and recover selenium. Item 5. A method for treating a mixture containing selenium and tellurium according to any one of Items 1 to 4.
JP2020043523A 2020-03-12 2020-03-12 Method for treating mixtures containing selenium and tellurium Active JP7325363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020043523A JP7325363B2 (en) 2020-03-12 2020-03-12 Method for treating mixtures containing selenium and tellurium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020043523A JP7325363B2 (en) 2020-03-12 2020-03-12 Method for treating mixtures containing selenium and tellurium

Publications (2)

Publication Number Publication Date
JP2021143402A JP2021143402A (en) 2021-09-24
JP7325363B2 true JP7325363B2 (en) 2023-08-14

Family

ID=77766053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020043523A Active JP7325363B2 (en) 2020-03-12 2020-03-12 Method for treating mixtures containing selenium and tellurium

Country Status (1)

Country Link
JP (1) JP7325363B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316735A (en) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2005001906A (en) 2003-06-10 2005-01-06 Nippon Mining & Metals Co Ltd Vacuum distillation method of selenium and device for the same
JP2009209422A (en) 2008-03-05 2009-09-17 Sumitomo Metal Mining Co Ltd Method for leaching lead anode-slime with chlorine
US20100326840A1 (en) 2009-06-29 2010-12-30 Robert John Hisshion Process for the recovery of tellurium from minerals and/or acidic solutions
JP2011214092A (en) 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Method for treating reducing slag containing selenium and tellurium
JP2019157200A (en) 2018-03-13 2019-09-19 住友金属鉱山株式会社 Method for removing lead compound, and method for recovering selenium or tellurium having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684428A (en) * 1979-12-10 1981-07-09 Nippon Shinkinzoku Kk Method of recovering tellurium and copper from tellurium-containing copper slime
JPH05311264A (en) * 1992-03-16 1993-11-22 Nikko Kinzoku Kk Method for recovering valuable matter by wet process treatment of copper electrolyzing slime

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316735A (en) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2005001906A (en) 2003-06-10 2005-01-06 Nippon Mining & Metals Co Ltd Vacuum distillation method of selenium and device for the same
JP2009209422A (en) 2008-03-05 2009-09-17 Sumitomo Metal Mining Co Ltd Method for leaching lead anode-slime with chlorine
US20100326840A1 (en) 2009-06-29 2010-12-30 Robert John Hisshion Process for the recovery of tellurium from minerals and/or acidic solutions
JP2011214092A (en) 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Method for treating reducing slag containing selenium and tellurium
JP2019157200A (en) 2018-03-13 2019-09-19 住友金属鉱山株式会社 Method for removing lead compound, and method for recovering selenium or tellurium having the same

Also Published As

Publication number Publication date
JP2021143402A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US8052774B2 (en) Method for concentration of gold in copper sulfide minerals
JP3474526B2 (en) How to recover silver
JP6376349B2 (en) Method for separating selenium, tellurium and platinum group elements
EP3149214A1 (en) Hydrometallurgical treatment of anode sludge
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP6994983B2 (en) How to recover ruthenium
JP7206142B2 (en) Method for separating and recovering valuable metals
FI116684B (en) Procedure for treating anode slurry
CN113528850B (en) Method for purifying gold by controlling potential
US4662938A (en) Recovery of silver and gold
JP7337209B2 (en) Iridium recovery method
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP2021023851A (en) Method of treating solution containing seleno sulfate
JP7423467B2 (en) Ruthenium recovery method
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP7247049B2 (en) Method for treating selenosulfuric acid solution
US5939042A (en) Tellurium extraction from copper electrorefining slimes
AU2003264661A1 (en) Method for the recovery of metals using chloride leaching and extraction
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6994984B2 (en) How to recover ruthenium
JP6835577B2 (en) How to collect valuables
JP6882095B2 (en) Method for recovering precipitates containing platinum group elements
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP7498137B2 (en) Method for separating ruthenium and iridium
JP7498138B2 (en) How to Collect Iridium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230801

R151 Written notification of patent or utility model registration

Ref document number: 7325363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151