JP6994983B2 - How to recover ruthenium - Google Patents

How to recover ruthenium Download PDF

Info

Publication number
JP6994983B2
JP6994983B2 JP2018033742A JP2018033742A JP6994983B2 JP 6994983 B2 JP6994983 B2 JP 6994983B2 JP 2018033742 A JP2018033742 A JP 2018033742A JP 2018033742 A JP2018033742 A JP 2018033742A JP 6994983 B2 JP6994983 B2 JP 6994983B2
Authority
JP
Japan
Prior art keywords
ruthenium
copper
hydrochloric acid
solution
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033742A
Other languages
Japanese (ja)
Other versions
JP2019147990A (en
Inventor
学 真鍋
正 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018033742A priority Critical patent/JP6994983B2/en
Publication of JP2019147990A publication Critical patent/JP2019147990A/en
Application granted granted Critical
Publication of JP6994983B2 publication Critical patent/JP6994983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明はルテニウムと、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性溶液から、ルテニウムを回収する方法に関する。特に銅製錬の電解精製工程で発生するスライム処理工程に適用する場合に効果が高い。 The present invention relates to a method for recovering ruthenium from an acidic hydrochloric acid solution containing ruthenium and at least one of arsenic or antimony. It is particularly effective when applied to the slime treatment process generated in the electrolytic refining process of copper smelting.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において例えば純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In the copper dry smelting, copper concentrate is melted to obtain 99% or more blister copper in a converter and a purification furnace, and then electrolytic copper having a purity of 99.99% or more is produced in an electrolytic refining step. In recent years, metal scraps containing precious metals derived from electronic parts have been introduced as recycling raw materials in converters, and valuable resources other than copper precipitate as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。 Precious metals, rare metals, and selenium and tellurium contained in copper concentrate are also concentrated in this slime at the same time. These elements are individually separated and recovered as copper smelting by-products.

このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸-過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留して除去して貴金属類を濃縮する方法が開示されている。 A wet smelting method is often applied to the treatment of this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime by hydrochloric acid-hydrogen peroxide, the dissolved gold is recovered by solvent extraction, and then other valuable resources are sequentially reduced and recovered by sulfur dioxide. Patent Document 2 discloses a method in which gold and silver are recovered by the same method, valuable resources are reduced and precipitated with sulfur dioxide, and only selenium is distilled and removed to concentrate precious metals.

貴金属を回収した後の溶液には希少金属イオン、テルル、セレンが含まれておりさらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られる。 The solution after recovering the noble metal contains rare metal ions, tellurium, and selenium, and it is necessary to recover these valuable resources. As a recovery method, a method of recovering the precipitate generated by the reducing agent and a method of mixing the solution with the copper concentrate, drying it with a dryer, and repeating it in a smelting furnace are known.

とりわけ特許文献1に示されている、二酸化硫黄により生じた沈殿を回収する方法はコストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。 In particular, the method of recovering the precipitate generated by sulfur dioxide, which is shown in Patent Document 1, has many advantages in terms of cost and production scale. In addition, since each element is sequentially precipitated, it is also effective for separation and purification.

二酸化硫黄を用いて有価物を回収する方法では溶解後に順次有価物を還元して回収することができる。初めに白金、パラジウムが沈殿する。次にセレンが還元を受ける。イリジウム、ルテニウム、ロジウムは酸化還元電位が比較的低く還元を受け難く、最後まで溶液に残留する。溶液中のルテニウムは臭素酸等の強力な酸化剤により酸化後に蒸留して二酸化ルテニウムとして回収する方法が一般的である。 In the method of recovering valuable resources using sulfur dioxide, the valuable resources can be sequentially reduced and recovered after dissolution. First, platinum and palladium precipitate. Selenium is then reduced. Iridium, ruthenium, and rhodium have relatively low redox potentials and are difficult to be reduced, and remain in the solution until the end. Generally, ruthenium in a solution is recovered as ruthenium dioxide by distillation after oxidation with a strong oxidizing agent such as bromic acid.

特開2001-316735号公報Japanese Unexamined Patent Publication No. 2001-316735 特開2004-190134号公報Japanese Unexamined Patent Publication No. 2004-190134

ルテニウムを蒸留する時に使用する酸化剤として、例えば臭素酸が考えられるが、その価格は高い。また、製錬澱物工程由来の溶液に含まれるルテニウムは通常100~300mg/L程度であり、他の共存物質と反応してしまうことで酸化効率は低い。 As an oxidizing agent used when distilling ruthenium, for example, bromic acid can be considered, but its price is high. Further, ruthenium contained in the solution derived from the smelting starch process is usually about 100 to 300 mg / L, and the oxidation efficiency is low because it reacts with other coexisting substances.

また、蒸留される酸化ルテニウムは有毒な化合物であることが知られる。毒物を高濃度で扱うこととなり安全上問題があるので多段蒸留は好ましくない。さらに、蒸留時に不純物が混入すると再度精製操作が必要となるが蒸留は共沸留分が混入しやすい。そのため、蒸留に供するには粗ルテニウムの純度を高めておく必要がある。 Ruthenium oxide that is distilled is also known to be a toxic compound. Multi-stage distillation is not preferable because it handles toxic substances at a high concentration and poses a safety problem. Further, if impurities are mixed during distillation, a purification operation is required again, but azeotropic fraction is likely to be mixed in distillation. Therefore, it is necessary to increase the purity of crude ruthenium for distillation.

粗ルテニウムの純度を高めるには一度ルテニウム類を無害な形で粗分離し濃縮することが必要になる。濃縮において溶液を還元して沈殿物としてルテニウムとその他元素を回収する。その他元素としてはセレン、テルル、ロジウムが一般的である。 In order to increase the purity of crude ruthenium, it is necessary to roughly separate and concentrate ruthenium in a harmless form. In the concentration, the solution is reduced to recover ruthenium and other elements as a precipitate. As other elements, selenium, tellurium, and rhodium are common.

そして、粗分離時に二酸化硫黄を還元剤として沈殿させる場合、ルテニウムの最終的な回収率は30~50%である。未回収のルテニウムはヒドラジン等の強力な還元剤で沈殿させて銅澱物処理工程に繰り返すことが可能である。あるいは、排水処理工程でスラッジ中に分配して廃棄される。これらの方法は、歩留まりは決して良好であるとは言えない。 When sulfur dioxide is used as a reducing agent during crude separation, the final recovery rate of ruthenium is 30 to 50%. Unrecovered ruthenium can be precipitated with a strong reducing agent such as hydrazine and repeated in the copper starch treatment step. Alternatively, it is distributed in the sludge and discarded in the wastewater treatment process. Yields of these methods are by no means good.

未沈殿ルテニウムを銅澱物処理工程に繰り返すと徐々にルテニウム濃度は上昇していく。また、ルテニウム濃度の上昇により白金、パラジウム回収工程、又はセレン回収工程において不純物として混入するルテニウムが増加するという問題が生じる。 When unprecipitated ruthenium is repeated in the copper starch treatment step, the ruthenium concentration gradually increases. Further, an increase in the ruthenium concentration causes a problem that ruthenium mixed as an impurity in the platinum or palladium recovery step or the selenium recovery step increases.

上記のように、ルテニウムの回収では一度各種元素の混合物として濃縮される。この濃縮物の中からカルコゲン分を溶出後の残渣がルテニウム原料となり、ルテニウム精製工程に投入される。しかしながら、塩酸酸性溶液からルテニウムを効率的に沈殿させて濃縮・回収する現実的な方法は知られていない。 As mentioned above, in the recovery of ruthenium, it is once concentrated as a mixture of various elements. The residue after elution of chalcogen from this concentrate becomes a ruthenium raw material and is put into the ruthenium purification step. However, a practical method for efficiently precipitating ruthenium from an acidic hydrochloric acid solution to concentrate and recover it is not known.

イリジウム溶液の不純物としてのルテニウムを銅によりセメンテーションする方法として、例えば特開2004-190058号公報に記載がある。しかしながら、ルテニウムの銅によるセメンテーションは理論上可能であるとされているのみであり、対象液に亜セレン酸や亜テルル酸が含まれる場合、セメンテーション時の被覆効果や反応性によりルテニウムの回収は定かではない。実際、ルテニウムは複数の酸化状態を取ることが知られ、価数により配位形態や酸化還元電位が異なりセメンテーションが進行する保証はない。 A method for cementing ruthenium as an impurity in an iridium solution with copper is described in, for example, Japanese Patent Application Laid-Open No. 2004-190058. However, copper cementation of ruthenium is only theoretically possible, and when the target liquid contains selenous acid or tellurous acid, ruthenium can be recovered due to the coating effect and reactivity during cementation. Is uncertain. In fact, ruthenium is known to have multiple oxidation states, and there is no guarantee that cementation will proceed because the coordination form and redox potential differ depending on the valence.

例えば、標準酸化還元電位を各種形態で比較すると、
[Ru(NH36]3++e → [Ru(NH36]2+ 0.20V
Ru3++e →Ru2+ 0.29V
Ru2++2e →Ru 0.46V
RuCl3+3e →Ru 0.68V
Ru4++e →Ru3+ 0.87V
[Ru(NH36]3++3e →Ru 0.89V (改訂3化学便覧 基礎編II 日本化学会編より引用)
であり、配位子の数や種類でも大きく酸化還元電位が変化することがわかる。また、電位は反応速度を決定するものではなく、実際に工業プロセスとしてのセメンテーションが可能か否かは条件によって異なる。
For example, when comparing standard redox potentials in various forms,
[Ru (NH 3 ) 6 ] 3+ + e → [Ru (NH 3 ) 6 ] 2+ 0.20V
Ru 3+ + e → Ru 2+ 0.29V
Ru 2+ + 2e → Ru 0.46V
RuCl 3 + 3e → Ru 0.68V
Ru 4+ + e → Ru 3+ 0.87V
[Ru (NH 3 ) 6 ] 3+ + 3e → Ru 0.89V (Revised 3 Chemistry Handbook Basic Edition II Quoted from the Chemical Society of Japan)
It can be seen that the redox potential changes significantly depending on the number and type of ligands. In addition, the potential does not determine the reaction rate, and whether or not cementation as an industrial process is actually possible depends on the conditions.

さらには、原料によっては不純物としてヒ素やアンチモンの有害物を含む場合もある。特に非鉄金属の電解澱物を浸出した液を対象とする時は各種の有毒物質を含むので単純に卑金属を投入する、又は電解採取するなどの手法では猛毒のアルシンガスやアンチモン化水素等の発生が懸念される。加えてルテニウム溶解液は強酸性である。卑金属が鉱酸により水素が発生する条件では爆発のおそれがあり好ましくない。 Furthermore, depending on the raw material, arsenic and antimony harmful substances may be contained as impurities. In particular, when targeting a liquid in which an electrolytic starch of a non-ferrous metal is leached, various toxic substances are contained, so a method such as simply adding a base metal or electrowinning may generate highly toxic arsin gas or antimonated hydrogen. I am concerned. In addition, the ruthenium solution is strongly acidic. Under the condition that hydrogen is generated by mineral acid as a base metal, there is a risk of explosion, which is not preferable.

また、ヒ素やアンチモンはルテニウムの精製工程に混入させることは好ましくない。これらの元素は価数の変化によりその化学的挙動が異なり、その分離は煩雑である。これらの元素は溶液に残したままルテニウムのみを沈殿させることが好ましい。 In addition, it is not preferable to mix arsenic and antimony in the ruthenium purification process. The chemical behavior of these elements differs depending on the change in valence, and their separation is complicated. It is preferable to precipitate only ruthenium while leaving these elements in the solution.

本発明はこのような従来の事情を鑑み、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性液からルテニウムを選択的に回収する方法を提供する。特に銅製錬における電解精製工程で発生する電解澱物を溶解した液は好対象である。 In view of such conventional circumstances, the present invention provides a method for selectively recovering ruthenium from an acidic hydrochloric acid solution containing at least one of arsenic or antimony. In particular, a liquid in which an electrolytic starch generated in an electrolytic refining process in copper smelting is dissolved is a good target.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性溶液を金属銅でセメンテーションしてルテニウムを回収できることを見出した。本発明はかかる知見により完成されたものである。 As a result of diligent research to solve the above problems, the present inventors have found that an acidic hydrochloric acid solution containing at least one of arsenic or antimony can be cemented with metallic copper to recover ruthenium. The present invention has been completed based on such findings.

すなわち本発明は以下の発明を包含する。
(1)ルテニウムと、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性液に金属銅を接触させてルテニウムを析出させるルテニウムの回収方法であって、前記塩酸酸性液に液温50~85℃の状態で前記金属銅を接触させることを特徴とするルテニウムの回収方法。
(2)前記塩酸酸性液に液温50~85℃の状態で前記金属銅を接触させてから、前記塩酸酸性液に液温60℃以上の状態で酸化剤を供給することを特徴とする(1)に記載のルテニウムの回収方法。
(3)前記塩酸酸性液に酸化剤を供給するにあたり、酸化剤として空気を吹き込みながら、前記塩酸酸性液を65℃以上に制御することを特徴とする(2)に記載のルテニウムの回収方法。
(4)前記塩酸酸性液に酸化剤を供給するにあたり、酸化剤としてFe(III)を添加し、前記塩酸酸性液を60℃~75℃に制御することを特徴とする(2)又は(3)に記載のルテニウムの回収方法。
(5)前記塩酸酸性液が銅電解澱物の溶解液であり、塩酸濃度が2mol/L以上であることを特徴とする(1)~(4)のいずれかに記載のルテニウムの回収方法。
(6)前記金属銅は平均粒径1mm以下の銅粉として前記塩酸酸性液に添加し、前記金属銅の添加量はルテニウムの10重量倍以上であることを特徴とする(1)~(5)のいずれかに記載のルテニウム回収方法。
That is, the present invention includes the following inventions.
(1) A method for recovering ruthenium in which metallic copper is brought into contact with an acidic hydrochloric acid solution containing ruthenium and at least one of arsenic or antimony to precipitate ruthenium, and the liquid temperature is 50 to 85 ° C. in the acidic hydrochloric acid solution. A method for recovering ruthenium, which comprises contacting the metallic copper with the metal.
(2) The metal copper is brought into contact with the hydrochloric acid acidic liquid at a liquid temperature of 50 to 85 ° C., and then an oxidizing agent is supplied to the hydrochloric acid acidic liquid at a liquid temperature of 60 ° C. or higher (. The method for recovering ruthenium according to 1).
(3) The method for recovering ruthenium according to (2), wherein the hydrochloric acid acidic solution is controlled to 65 ° C. or higher while blowing air as an oxidizing agent when supplying the oxidizing agent to the hydrochloric acid acidic solution.
(4) When supplying an oxidizing agent to the hydrochloric acid acidic solution, Fe (III) is added as an oxidizing agent to control the hydrochloric acid acidic solution to 60 ° C. to 75 ° C. (2) or (3). ) Is the method for recovering ruthenium.
(5) The method for recovering ruthenium according to any one of (1) to (4), wherein the hydrochloric acid acidic solution is a solution of copper electrolytic starch and the hydrochloric acid concentration is 2 mol / L or more.
(6) The metallic copper is added to the hydrochloric acid acidic solution as copper powder having an average particle size of 1 mm or less, and the amount of the metallic copper added is 10 times by weight or more that of ruthenium (1) to (5). ). The ruthenium recovery method according to any one of.

本発明によれば、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性液からルテニウムを選択的に回収することができる。 According to the present invention, ruthenium can be selectively recovered from an acidic hydrochloric acid solution containing at least one of arsenic or antimony.

ルテニウム濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of a ruthenium concentration. ヒ素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the arsenic concentration. アンチモン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the antimony concentration. 各液温におけるセメンテーション施行時のルテニウム濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the ruthenium concentration at the time of performing cementation at each liquid temperature. 各液温におけるセメンテーション施行時のヒ素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the arsenic concentration at the time of performing cementation at each liquid temperature. 各液温におけるセメンテーション施行時のアンチモン濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the antimony concentration at the time of performing cementation at each liquid temperature.

非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解澱物は白金族元素と重金属、有毒元素が濃縮される。白金族元素ならびに有毒元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料から分離される。したがって、本方法は廃棄物からのリサイクルにも適用できる。 Platinum group elements, heavy metals, and toxic elements are concentrated in the electrolytic starch produced in the electrolytic refining process of non-ferrous metal smelting, especially copper smelting. Platinum group elements and toxic elements are not smelted alone and are either recovered as by-products of other metals or separated from recycled materials such as waste catalysts. Therefore, this method can also be applied to recycling from waste.

塩酸と過酸化水素を添加して電解澱物を溶解することができるが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には白金族元素、希少金属元素、セレン、テルルが分配する。 Hydrochloric acid and hydrogen can be added to dissolve the electrolytic starch, but silver forms an insoluble silver chloride precipitate with chloride ions immediately after dissolution. If it is a solution containing an oxidizing agent and chlorine, for example, aqua regia or chlorine water, the precious metals can be dissolved and silver can be separated as silver chloride. Since it is a chloride bath, platinum group elements, rare metal elements, selenium, and tellurium are distributed in the leachate noble liquid (PLS).

浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。その後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 The leachate noble liquid (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into organic phases by solvent extraction. Dibutyl carbitol (DBC) is widely used as a gold extractant.

金を抽出した後のPLSを還元すれば有価物は沈殿・回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決まっている。初めに金、白金、パラジウム、次にセレンやテルルといったカルコゲン、さらにルテニウムやイリジウムといった不活性貴金属類が沈殿する。 Valuables can be precipitated and recovered by reducing PLS after extracting gold, but the order of precipitation is naturally determined because the redox potential differs depending on the element. First, gold, platinum, palladium, then chalcogens such as selenium and tellurium, and then inert noble metals such as ruthenium and iridium are precipitated.

還元剤は還元性硫黄が価格と効率の面から利用され、なかでも二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。不活性貴金属類は二酸化硫黄や亜硫酸塩では還元速度が極めて遅い。そもそも含有量も多くはなく、例えば銅電解澱物溶解液中のルテニウムは150~300mg/L程度である。現状の二酸化硫黄によるルテニウム回収率は6~8時間の反応時間で30~50%程度であるが、完全に沈殿せしめるならば10時間以上必要であると予想される。これはあまりに長く現実的な反応時間ではない。 Reducing sulfur is used as the reducing agent in terms of price and efficiency, and sulfur dioxide is most suitable because it can be supplied in large quantities and at low cost by roasting linz-Donaw gas or sulfide ore. The reduction rate of inert precious metals is extremely slow with sulfur dioxide and sulfites. In the first place, the content is not high, for example, ruthenium in the copper electrolytic starch solution is about 150 to 300 mg / L. At present, the recovery rate of ruthenium by sulfur dioxide is about 30 to 50% in a reaction time of 6 to 8 hours, but it is expected that 10 hours or more is required if the ruthenium is completely precipitated. This is too long and not a realistic reaction time.

そこで、ルテニウムをより効率的に回収するには金属によるセメンテーションが最も効率が良い。ルテニウムは亜鉛、マグネシウム、アルミニウムなど酸で水素を発生する金属により金属ルテニウムまで還元されることは知られている。 Therefore, metal cementation is the most efficient way to recover ruthenium more efficiently. It is known that ruthenium is reduced to metallic ruthenium by metals that generate hydrogen with acids such as zinc, magnesium, and aluminum.

前述のように、二価のルテニウムイオンの標準電極電位は0.46Vである。二価の銅イオンは0.34Vであり理論的にはもちろん金属銅によりルテニウムの還元は生じる。しかしながら塩酸酸性条件下ではルテニウムは代表的な還元剤である亜硫酸(標準電極電位0.17V)やギ酸(標準電極電位-0.20V)による還元を受けない、又は極めて反応速度が遅い。特に、塩酸濃度が2mol/L以上である場合この問題が顕著である。 As mentioned above, the standard electrode potential of the divalent ruthenium ion is 0.46V. The divalent copper ion is 0.34 V, and theoretically, of course, metallic copper causes the reduction of ruthenium. However, under acidic hydrochloric acid conditions, ruthenium is not reduced by the typical reducing agents sulfurous acid (standard electrode potential 0.17V) and formic acid (standard electrode potential -0.20V), or the reaction rate is extremely slow. In particular, this problem is remarkable when the hydrochloric acid concentration is 2 mol / L or more.

同様にイリジウムの塩化物錯体の6塩化物錯体は標準電極電位が0.86Vとはるかに高位であるにもかかわらず銅によるセメンテーションは受けない。すなわち、遷移金属元素は酸化還元電位のみでセメンテーションの可否が決まるわけではない。 Similarly, the hexachloride complex of the iridium chloride complex is not cemented by copper even though the standard electrode potential is much higher at 0.86V. That is, the possibility of cementation of a transition metal element is not determined only by the redox potential.

この理由は不明であるが、ルテニウムが錯イオンになった時、配位子へのバックドネーションにより強固な配位結合を生じることが考えられる。このため内圏機構での電子移動が困難となり、金属から直接電子が移動する外圏機構で還元する反応経路の方が有効に作用するのであろう。 The reason for this is unknown, but when ruthenium becomes a complex ion, it is possible that a strong coordinate bond is formed by backdonation to the ligand. For this reason, electron transfer in the inner category mechanism becomes difficult, and the reaction pathway that reduces by the outer category mechanism in which electrons move directly from the metal may work more effectively.

銅より卑な金属でもセメンテーションによりルテニウムを析出せしめることは可能である。しかしながら塩酸酸性であるため水素を発生させる反応が並行して生じ、セメンテーションに利用する金属使用量が増えたり、爆発の危険がある水素が発生する。銅ならば塩酸とは反応して水素を生じることはない。 It is possible to precipitate ruthenium by cementation even with a metal that is lower than copper. However, since it is acidic with hydrochloric acid, reactions that generate hydrogen occur in parallel, increasing the amount of metal used for cementation and generating hydrogen that has a risk of explosion. Copper does not react with hydrochloric acid to produce hydrogen.

そこで、塩酸酸性液に金属銅を接触させるにあたり、塩酸酸性液の液温を50~85℃に調整する。前述のように、塩酸酸性条件下ではルテニウムが金属銅に接触しても還元を受けない、又は極めて反応速度が遅いが、塩酸酸性液の液温を50℃以上とすれば反応速度が増加する。一方、塩酸酸性液の液温が85℃を超えると溶存酸素により金属銅の溶解反応が生じる。塩酸酸性液の液温は、60~85℃が好ましく、70~80℃がさらに好ましい。 Therefore, the temperature of the hydrochloric acid acidic solution is adjusted to 50 to 85 ° C. when the metallic copper is brought into contact with the hydrochloric acid acidic solution. As described above, under acidic hydrochloric acid conditions, ruthenium does not undergo reduction even when it comes into contact with metallic copper, or the reaction rate is extremely slow, but the reaction rate increases when the temperature of the acidic hydrochloric acid solution is 50 ° C or higher. .. On the other hand, when the temperature of the acidic hydrochloric acid solution exceeds 85 ° C., the dissolved oxygen causes a dissolution reaction of metallic copper. The temperature of the acidic hydrochloric acid solution is preferably 60 to 85 ° C, more preferably 70 to 80 ° C.

なお、硫酸イオンが存在する場合、塩酸酸性でも硫酸と同様に銅の溶解が懸念されるが、希硫酸であれば酸と銅の反応は遅い。温度を調製すれば金属銅の消費量は抑制することが可能である。 In addition, when sulfuric acid ion is present, there is a concern that copper may be dissolved even in hydrochloric acid acidity as in sulfuric acid, but in the case of dilute sulfuric acid, the reaction between acid and copper is slow. By adjusting the temperature, it is possible to suppress the consumption of metallic copper.

また、特に銅電解澱物はヒ素又はアンチモンを含む場合、それを塩酸と酸化剤で溶解した液塩酸酸性液もヒ素又はアンチモンを含む。溶解後の液は冷却によりアンチモンを回収するが一部は残ってしまう。酸溶解したヒ素とアンチモンはアルミニウムや鉄、亜鉛でセメンテーションするとそれぞれ有毒なアルシンガスとアンチモン化水素が発生する危険がある。金属銅ならばこの心配がない。 In particular, when the copper electrolytic starch contains arsenic or antimony, the liquid hydrochloric acid acidic solution obtained by dissolving it with hydrochloric acid and an oxidizing agent also contains arsenic or antimony. The liquid after dissolution recovers antimony by cooling, but a part of it remains. When acid-dissolved arsenic and antimony are cemented with aluminum, iron, and zinc, there is a risk of generating toxic arsin gas and antimony hydrogen, respectively. With metallic copper, you don't have to worry about this.

回収されるルテニウムは金属ルテニウムであり既存のルテニウム精製工程で処理できる。一般にセメンテーションでは過剰に置換金属を添加するが、未反応の銅は塩酸酸性条件下では酸化剤を添加して加熱すれば溶解する。 The recovered ruthenium is metallic ruthenium and can be processed in the existing ruthenium purification process. Generally, in cementation, an excessive amount of a substituted metal is added, but unreacted copper is dissolved by adding an oxidizing agent and heating under acidic hydrochloric acid conditions.

単体の金属銅を使用する場合、塩化浴ではヒ素やアンチモンが銅と反応してヒ化銅やアンチモン化銅が生じる。ルテニウム析出物中のルテニウムをさらに濃縮する観点から、ヒ化銅やアンチモン化銅を酸化処理により除くことが好ましい。 When elemental copper is used, arsenic and antimony react with copper in the chloride bath to produce copper arsenide and copper antimony. From the viewpoint of further concentrating ruthenium in the ruthenium precipitate, it is preferable to remove copper arsenide and copper antimony by an oxidation treatment.

酸化処理はセメンテーション後すぐに固液分離せずに、しばらく一定以上の温度を維持して析出物を再溶解させることで行うことができる。温度は60℃以上であれば再溶解する。この時エアレーション(空気を吹き込むこと)や鉄(III)塩添加を行うことができる。ヒ化銅やアンチモン化銅を固液分離後に除くのであれば再度酸性溶液中でエアレーション又は適当な酸化剤を添加してしばらく一定以上の温度を維持すればよい。エアレーションは、酸化剤として空気を吹き込みながら、塩酸酸性液を65℃以上に制御することで行う。エアレーションに代えて、又はエアレーションに加えて、酸化剤としてFe(III)を添加し、塩酸酸性液を60℃~75℃に制御することも可能である。Fe(III)添加量はヒ素とアンチモンの物質量の合計の5モル倍以下であることが好ましく、3モル倍以下であることがさらに好ましい。 Oxidation treatment can be performed by redissolving the precipitate by maintaining a temperature above a certain level for a while without solid-liquid separation immediately after cementation. If the temperature is 60 ° C. or higher, it will be redissolved. At this time, aeration (blowing air) and iron (III) salt addition can be performed. If copper arsenide and copper antimony are removed after solid-liquid separation, aeration or an appropriate oxidizing agent may be added again in an acidic solution to maintain the temperature above a certain level for a while. Aeration is performed by controlling the hydrochloric acid acidic solution to 65 ° C. or higher while blowing air as an oxidizing agent. It is also possible to control the hydrochloric acid acidic solution to 60 ° C. to 75 ° C. by adding Fe (III) as an oxidizing agent instead of or in addition to aeration. The amount of Fe (III) added is preferably 5 mol times or less, more preferably 3 mol times or less, which is 5 mol times or less of the total amount of substances of arsenic and antimony.

銅によるセメンテーションに際しては予め還元剤により銅と反応する金属類やセレンやテルルを除いておくと銅使用量が抑制できる。還元剤としては安価な二酸化硫黄が好ましい。 In the case of copper cementation, the amount of copper used can be suppressed by removing metals, selenium and tellurium that react with copper with a reducing agent in advance. Inexpensive sulfur dioxide is preferable as the reducing agent.

セメンテーションで投入する金属銅の形状は、板状、棒状、ショットや銅粉でもよい。タンク式反応槽ではなく、充填塔や循環槽に銅を装入して処理対象液を通液させてもよい。接触方式は回収物中銅含有量の許容量や反応効率、設備上の制約により決定される。セメンテーションに使用される金属銅の品位は高い方が好ましいが鉄や亜鉛との合金は避けるべきである。廃電線等の比較的純度の高い銅、外観不良電気銅、銅アノードの鋳返し等が利用される。もちろん銅粉等の比表面積の大きい銅がより好ましい。 The shape of the metallic copper charged in the cementation may be a plate shape, a rod shape, a shot or a copper powder. Instead of a tank-type reaction tank, copper may be charged into a packed bed or a circulation tank to allow the liquid to be treated to pass through. The contact method is determined by the allowable amount of copper content in the recovered material, reaction efficiency, and equipment restrictions. Higher grades of metallic copper used for cementation are preferred, but alloys with iron and zinc should be avoided. Relatively high-purity copper such as waste electric wires, poorly-appearing electrolytic copper, and recast copper anodes are used. Of course, copper having a large specific surface area such as copper powder is more preferable.

タンク式反応槽に銅を投入する場合は銅粉を投入することが好ましい。銅粉とは一般的に平均粒径1mm以下の銅粒子を指す。投入量はルテニウムに対して10重量倍以上投入することが好ましい。溶液中にカルコゲン類が共存する場合はさらに多くの銅粉を投入することが好ましい。 When copper is charged into the tank type reaction tank, it is preferable to charge copper powder. Copper powder generally refers to copper particles having an average particle size of 1 mm or less. The amount to be added is preferably 10 times by weight or more with respect to ruthenium. When chalcogens coexist in the solution, it is preferable to add more copper powder.

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited thereto.

(実験例1)
銅製錬の銅電解精製工程から回収された電解澱物を硫酸により銅を除いた。濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得た。PLSを6℃まで冷却して卑金属分を沈殿除去した。酸濃度を2N以上に調整しDBC(ジブチルカルビトール)とPLSを混合して金を抽出した。金抽出後のPLSを70℃に加温し、二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5~20%)を吹き込んで貴金属とセレンを還元し固液分離した。
セレン分離後液を300ml量り取り、80~85℃に加温して空気と二酸化硫黄の混合ガス吹き込みながら撹拌した。15分後に、空気と二酸化硫黄の混合ガス供給を停止した。銅粉(和光純薬工業社製、1級)を1.5g添加してエアレーションしながら撹拌した。120分間で反応を終了した。
比較としてエアレーションしない系(銅粉のみ)、エアレーションせず60分後に塩化鉄(III)6水和物を6g添加した系(塩化鉄)、銅粉を添加しないで空気と二酸化硫黄の混合ガスを吹き込む系(SO2ガスのみ)を試験した。
試験サンプルは20分毎に採取した。サンプル溶液2mlを分取して50mlに規正した。ICP-OES(セイコーインスツル社製SPS3100)により溶液中のルテニウム、ヒ素及びアンチモンそれぞれの濃度を定量した。減った水分量は純水で補充した。液量の低下を補正するトレーサーを付さなかった。すなわち現実の溶液濃度でありサンプリングで減った分必然的に濃度は下がっていく。結果を図1~図3に示す。
(Experimental Example 1)
Copper was removed from the electrolytic starch recovered from the copper electrolytic refining process of copper smelting with sulfuric acid. Concentrated hydrochloric acid and 60% hydrogen peroxide solution were added and dissolved, and solid-liquid separation was performed to obtain PLS (leached noble liquid). The PLS was cooled to 6 ° C. to remove the base metal by precipitation. The acid concentration was adjusted to 2N or more, and DBC (dibutylcarbitol) and PLS were mixed to extract gold. The PLS after gold extraction was heated to 70 ° C., and a mixed gas of sulfur dioxide and air (sulfur dioxide concentration 5 to 20%) was blown into the PLS to reduce the precious metal and selenium and separate them into solid and liquid.
After separating the selenium, 300 ml of the liquid was weighed, heated to 80 to 85 ° C., and stirred while blowing a mixed gas of air and sulfur dioxide. After 15 minutes, the supply of mixed gas of air and sulfur dioxide was stopped. 1.5 g of copper powder (1st grade manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred while aeration. The reaction was completed in 120 minutes.
For comparison, a system without aeration (copper powder only), a system with 6 g of iron (III) chloride hexahydrate added after 60 minutes without aeration (iron chloride), and a mixed gas of air and sulfur dioxide without adding copper powder. The blowing system (SO 2 gas only) was tested.
Test samples were taken every 20 minutes. 2 ml of the sample solution was separated and adjusted to 50 ml. The concentrations of ruthenium, arsenic and antimony in the solution were quantified by ICP-OES (SPS3100 manufactured by Seiko Instruments Inc.). The reduced water content was replenished with pure water. No tracer was attached to compensate for the decrease in liquid volume. That is, it is the actual solution concentration, and the concentration inevitably decreases as it decreases by sampling. The results are shown in FIGS. 1 to 3.

銅粉を添加すれば効率よく溶液中のルテニウムが減少することがわかる。同時にヒ素とアンチモンの濃度も低下したことは明らかである。しかしながら時間の経過と共にヒ素とアンチモンの濃度は上昇に転じ、再溶解していることがわかる。 It can be seen that the addition of copper powder efficiently reduces ruthenium in the solution. At the same time, it is clear that the concentrations of arsenic and antimony also decreased. However, it can be seen that the concentrations of arsenic and antimony started to increase with the passage of time and were redissolved.

エアレーションするとヒ素とアンチモンの再溶解が促進される。さらにFe(III)も添加されると迅速に再溶解が生じる。しかしながらいずれの酸化剤でもRuの一部が再溶解されている。特にFe(III)を添加した場合、ある時点を超えると急激にRuの液中の濃度が上昇しており、添加量はヒ素とアンチモンの量により決定して過剰に添加することには注意を要する。あるいは、溶液の温度を60℃~75℃に調整することで反応速度を制御する。 Aeration promotes the redissolution of arsenic and antimony. Further, when Fe (III) is also added, redissolution occurs rapidly. However, a part of Ru is redissolved in any of the oxidizing agents. In particular, when Fe (III) is added, the concentration of Ru in the liquid rises sharply after a certain point in time, and it should be noted that the amount of addition is determined by the amount of arsenic and antimony and is excessively added. It takes. Alternatively, the reaction rate is controlled by adjusting the temperature of the solution to 60 ° C to 75 ° C.

(実験例2)
実験例1と同じセレン分離後液を二酸化硫黄と空気の混合ガスを15分吹き込んでテルルの濃度を200mg/L以下に調整した。300ml量りとり各溶液を50~55℃、65~70℃、80~85℃に加熱した。次いで、銅粉1.5gを添加し撹拌した。80~85℃に加熱した系は2水準実施し、一方はエアレーションを実施した。
試験サンプルは20分毎に採取した。サンプル溶液2mlを分取して50mlに規正した。ICP-OES(セイコーインスツル社製SPS3100)によりルテニウムとヒ素の濃度を定量した。減った水分量は純水で補充した。トレーサーを用いた補正は行わなかった。0分は二酸化硫黄の吹き込みを開始した時とした。結果を図4~図6に示す。
(Experimental Example 2)
The same selenium separation solution as in Experimental Example 1 was blown with a mixed gas of sulfur dioxide and air for 15 minutes to adjust the tellurium concentration to 200 mg / L or less. Weighing 300 ml, each solution was heated to 50-55 ° C, 65-70 ° C, and 80-85 ° C. Then, 1.5 g of copper powder was added and stirred. Two levels of the system heated to 80-85 ° C. were carried out, and one was aerated.
Test samples were taken every 20 minutes. 2 ml of the sample solution was separated and adjusted to 50 ml. The concentrations of ruthenium and arsenic were quantified by ICP-OES (SPS3100 manufactured by Seiko Instruments Inc.). The reduced water content was replenished with pure water. No correction was made using the tracer. 0 minutes was the time when the blowing of sulfur dioxide was started. The results are shown in FIGS. 4 to 6.

ルテニウムの銅によるセメンテーションは50℃以上で可能であった。温度が高い方が反応は効率的であり、65℃以上では迅速に反応し、ルテニウム濃度は最終的に20mg/L以下まで低下した。 Copper cementation of ruthenium was possible above 50 ° C. The higher the temperature, the more efficient the reaction, and the reaction was rapid above 65 ° C., and the ruthenium concentration finally dropped to 20 mg / L or less.

ヒ素は銅粉1.5g添加した後、65℃以上で大きく濃度を下げた。ヒ化銅を形成したことが原因と推定される。50~55℃加熱の系ではほとんどヒ化銅を形成しない(濃度の低下はサンプリングの影響)と考えられる。 After adding 1.5 g of copper powder, the concentration of arsenic was greatly reduced at 65 ° C. or higher. It is presumed that the cause was the formation of copper arsenide. It is considered that copper arsenide is hardly formed in a system heated at 50 to 55 ° C. (decrease in concentration is due to sampling).

反応を継続するとヒ化銅が徐々に溶解してヒ素濃度が再度上昇した。ルテニウム析出後も70℃以上で加温を続けるとルテニウムへのヒ化銅の混入は抑制できる。空気を吹き込むと尚効率的である。 When the reaction was continued, copper arsenide was gradually dissolved and the arsenic concentration increased again. If the heating is continued at 70 ° C. or higher even after the ruthenium is deposited, the mixing of copper arsenide with ruthenium can be suppressed. It is still more efficient to blow in air.

アンチモンもヒ素と同様な挙動を示す。アンチモン化銅が生じた場合も65℃以上で加熱を続ければセメンテーションして沈殿したルテニウムへの混入を抑制できる。 Antimony behaves similarly to arsenic. Even when antimonyated copper is generated, if heating is continued at 65 ° C. or higher, it is possible to suppress the contamination of the precipitated ruthenium by cementation.

Claims (5)

ルテニウムと、ヒ素又はアンチモンの少なくとも一つを含む塩酸酸性液に金属銅を接触させてルテニウムを析出させるルテニウムの回収方法であって、前記塩酸酸性液に液温50~85℃の状態で前記金属銅を接触させてから、前記塩酸酸性液に液温60℃以上の状態で酸化剤を供給することを特徴とするルテニウムの回収方法。 A method for recovering ruthenium in which metallic copper is brought into contact with an acidic hydrochloric acid solution containing ruthenium and at least one of arsenic or antimony to precipitate ruthenium. The metal is prepared in the acidic hydrochloric acid solution at a liquid temperature of 50 to 85 ° C. A method for recovering ruthenium, which comprises contacting copper and then supplying an oxidizing agent to the hydrochloric acid acidic liquid at a liquid temperature of 60 ° C. or higher . 前記塩酸酸性液に酸化剤を供給するにあたり、酸化剤として空気を吹き込みながら、前記塩酸酸性液を65℃以上に制御することを特徴とする請求項に記載のルテニウムの回収方法。 The method for recovering ruthenium according to claim 1 , wherein when supplying the oxidizing agent to the hydrochloric acid acidic solution, the hydrochloric acid acidic solution is controlled to 65 ° C. or higher while blowing air as an oxidizing agent. 前記塩酸酸性液に酸化剤を供給するにあたり、酸化剤としてFe(III)を添加し、前記塩酸酸性液を60℃~75℃に制御することを特徴とする請求項又はに記載のルテニウムの回収方法。 The ruthenium according to claim 1 or 2 , wherein Fe (III) is added as an oxidizing agent to control the hydrochloric acid acidic solution to 60 ° C. to 75 ° C. when supplying the oxidizing agent to the hydrochloric acid acidic solution. How to collect. 前記塩酸酸性液が銅電解澱物の溶解液であり、塩酸濃度が2mol/L以上であることを特徴とする請求項1~のいずれかに記載のルテニウムの回収方法。 The method for recovering ruthenium according to any one of claims 1 to 3 , wherein the hydrochloric acid acidic solution is a solution of copper electrolytic starch and the hydrochloric acid concentration is 2 mol / L or more. 前記金属銅は平均粒径1mm以下の銅粉として前記塩酸酸性液に添加し、前記金属銅の添加量はルテニウムの10重量倍以上であることを特徴とする請求項1~のいずれかに記載のルテニウム回収方法。 The metal copper is added to the hydrochloric acid acidic solution as a copper powder having an average particle size of 1 mm or less, and the amount of the metallic copper added is 10 times by weight or more that of ruthenium, according to any one of claims 1 to 4 . The described method for recovering ruthenium.
JP2018033742A 2018-02-27 2018-02-27 How to recover ruthenium Active JP6994983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033742A JP6994983B2 (en) 2018-02-27 2018-02-27 How to recover ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033742A JP6994983B2 (en) 2018-02-27 2018-02-27 How to recover ruthenium

Publications (2)

Publication Number Publication Date
JP2019147990A JP2019147990A (en) 2019-09-05
JP6994983B2 true JP6994983B2 (en) 2022-01-14

Family

ID=67850240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033742A Active JP6994983B2 (en) 2018-02-27 2018-02-27 How to recover ruthenium

Country Status (1)

Country Link
JP (1) JP6994983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423467B2 (en) 2020-07-21 2024-01-29 Jx金属株式会社 Ruthenium recovery method
JP7423479B2 (en) 2020-09-01 2024-01-29 Jx金属株式会社 Ruthenium recovery method
JP7498137B2 (en) 2021-03-30 2024-06-11 Jx金属株式会社 Method for separating ruthenium and iridium
JP7498138B2 (en) 2021-03-31 2024-06-11 Jx金属株式会社 How to Collect Iridium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190058A (en) 2002-12-09 2004-07-08 Sumitomo Metal Mining Co Ltd Method of separating and refining iridium
JP2007270255A (en) 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using copper powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190058A (en) 2002-12-09 2004-07-08 Sumitomo Metal Mining Co Ltd Method of separating and refining iridium
JP2007270255A (en) 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using copper powder

Also Published As

Publication number Publication date
JP2019147990A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
CA2636122C (en) Process of leaching gold
Dutrizac The leaching of sulphide minerals in chloride media
JP6994983B2 (en) How to recover ruthenium
EP1434893B1 (en) Zinc recovery process
US4293332A (en) Hydrometallurgical process for recovering precious metals from anode slime
Lee et al. Metallurgical process for total recovery of all constituent metals from copper anode slimes: a review of established technologies and current progress
US20040144208A1 (en) Process for refining raw copper material containing copper sulfide mineral
Ye et al. Ferric chloride leaching of antimony from stibnite
JP7206142B2 (en) Method for separating and recovering valuable metals
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
US4662938A (en) Recovery of silver and gold
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
EP3575420A1 (en) Bismuth purification method
JP6994984B2 (en) How to recover ruthenium
JP7423467B2 (en) Ruthenium recovery method
JP2021023851A (en) Method of treating solution containing seleno sulfate
JP7337209B2 (en) Iridium recovery method
EP0061468B1 (en) Recovery of silver from ores and concentrates
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP2022088124A (en) Copper-coated iron powder, copper-coated iron powder producing method and ruthenium recovering method
JP2019073768A (en) Method of recovering tellurium
JP7423479B2 (en) Ruthenium recovery method
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6835577B2 (en) How to collect valuables
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R151 Written notification of patent or utility model registration

Ref document number: 6994983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151