JP7423467B2 - Ruthenium recovery method - Google Patents

Ruthenium recovery method Download PDF

Info

Publication number
JP7423467B2
JP7423467B2 JP2020124649A JP2020124649A JP7423467B2 JP 7423467 B2 JP7423467 B2 JP 7423467B2 JP 2020124649 A JP2020124649 A JP 2020124649A JP 2020124649 A JP2020124649 A JP 2020124649A JP 7423467 B2 JP7423467 B2 JP 7423467B2
Authority
JP
Japan
Prior art keywords
copper
ruthenium
iron
acidic solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020124649A
Other languages
Japanese (ja)
Other versions
JP2022021190A (en
Inventor
学 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020124649A priority Critical patent/JP7423467B2/en
Publication of JP2022021190A publication Critical patent/JP2022021190A/en
Application granted granted Critical
Publication of JP7423467B2 publication Critical patent/JP7423467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ルテニウム及びヒ素を含む酸性溶液からルテニウムを回収する方法に関する。特に銅製錬の電解精製工程で発生するスライム処理工程に用いると好適である。 The present invention relates to a method for recovering ruthenium from an acidic solution containing ruthenium and arsenic. It is particularly suitable for use in the slime treatment process generated in the electrolytic refining process of copper smelting.

銅乾式製錬では、銅精鉱を熔解し、転炉、精製炉で純度99%以上の粗銅とした後に、電解精製工程において、例えば純度99.99%以上の電気銅を生産する。近年では、転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In copper pyrometallurgy, copper concentrate is melted to produce blister copper with a purity of 99% or more in a converter or refining furnace, and then electrolytic copper with a purity of 99.99% or more is produced in an electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic components have been input into converters as recycled raw materials, and valuables other than copper are precipitated as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。 This slime also concentrates precious metals, rare metals, and selenium and tellurium contained in copper concentrate. These elements are separately separated and recovered as copper smelting by-products.

このスライムの処理には、湿式製錬法が適用される場合が多い。例えば、特許文献1においては、塩酸-過酸化水素によりスライムから銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留して除去して貴金属類を濃縮する方法が開示されている。 A hydrometallurgical method is often applied to process this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime using hydrochloric acid-hydrogen peroxide, dissolved gold is recovered by solvent extraction, and other valuable materials are successively reduced and recovered using sulfur dioxide. . Patent Document 2 discloses a method in which gold and silver are recovered in a similar manner, then valuable materials are reduced and precipitated with sulfur dioxide, and only selenium is removed by distillation to concentrate precious metals.

貴金属を回収した後の溶液には、希少金属イオン、テルル、セレンが含まれており、さらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られている。 The solution after recovering the precious metals contains rare metal ions, tellurium, and selenium, and it is necessary to further recover these valuables. As a recovery method, there are known methods such as recovering the precipitate generated by the reducing agent, and mixing the whole solution with copper concentrate, drying it with a dryer, and repeating it in the smelting furnace.

特開第2001-316735号公報Japanese Patent Application Publication No. 2001-316735 特開第2016-160479号公報Japanese Patent Application Publication No. 2016-160479 特開第2019-147990号公報Japanese Patent Application Publication No. 2019-147990

特許文献1に示されている、二酸化硫黄により生じた沈殿を回収する方法はコストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。 The method shown in Patent Document 1 for recovering the precipitate produced by sulfur dioxide has many advantages in terms of cost and production scale. In addition, since each element is precipitated in sequence, it is effective for separation and purification.

二酸化硫黄を用いて有価物を回収する方法では溶解後に順次有価物を還元して回収することができる。初めに白金、パラジウムが沈殿する。次にセレンが還元を受ける。イリジウム、ルテニウム、ロジウムは酸化還元電位が比較的低く還元を受け難く、最後まで溶液に残留する。溶液中のルテニウムは臭素酸等の強力な酸化剤により酸化後に蒸留して二酸化ルテニウムとして回収する方法が一般的である。 In the method of recovering valuable substances using sulfur dioxide, the valuable substances can be sequentially reduced and recovered after dissolution. First, platinum and palladium precipitate. Next, selenium undergoes reduction. Iridium, ruthenium, and rhodium have relatively low redox potentials and are difficult to undergo reduction, so they remain in the solution until the end. Generally, ruthenium in a solution is oxidized with a strong oxidizing agent such as bromic acid, and then distilled to recover ruthenium dioxide.

特許文献3には、最後まで溶液に残ったルテニウムは金属銅によってセメンテーションする方法が開示されている。セメンテーションに用いる金属に銅を使用することにより、共存しているヒ素がアルシンガスとして発生することを回避することができる。 Patent Document 3 discloses a method in which ruthenium remaining in the solution is cemented with metallic copper. By using copper as the metal used for cementation, it is possible to avoid coexisting arsenic from being generated as arsine gas.

ルテニウムを蒸留する方法では蒸留時に使用する酸化剤として、例えば臭素酸が考えられるが、その価格は高い。また、製錬澱物工程由来の溶液に含まれるルテニウムは通常100~300mg/L程度であり、他の共存物質と酸化剤が反応してしまうことで酸化効率は低い。 In the method of distilling ruthenium, bromic acid, for example, can be used as an oxidizing agent during distillation, but it is expensive. Further, the ruthenium contained in the solution derived from the smelting precipitate process is usually about 100 to 300 mg/L, and the oxidation efficiency is low because the oxidizing agent reacts with other coexisting substances.

また、蒸留される酸化ルテニウムは有毒な化合物であることが知られる。毒物を高濃度で扱うこととなり安全上問題があるので多段蒸留は好ましくない。さらに、蒸留時に不純物が混入すると再度精製操作が必要となるが蒸留は共沸留分が不純物として混入しやすい。そのため、蒸留に供するには原料のルテニウム(粗ルテニウム)の純度を高めておく必要がある。 Additionally, the ruthenium oxide that is distilled is known to be a toxic compound. Multistage distillation is not preferred because it involves handling toxic substances at high concentrations and poses a safety problem. Furthermore, if impurities are mixed in during distillation, a repurification operation is required, but in distillation, azeotropic fractions are likely to be mixed in as impurities. Therefore, it is necessary to increase the purity of the raw material ruthenium (crude ruthenium) before it can be used for distillation.

粗ルテニウムの純度を高めるには一度ルテニウム類を無害な形で粗分離し濃縮することが必要になる。濃縮操作において溶液中の有価物を還元して沈殿物としてルテニウムとその他元素を回収する。その他元素としてはセレン、テルル、ロジウムが一般的である。 In order to increase the purity of crude ruthenium, it is necessary to roughly separate and concentrate ruthenium in a harmless form. In the concentration operation, valuable substances in the solution are reduced and ruthenium and other elements are recovered as a precipitate. Other common elements include selenium, tellurium, and rhodium.

特許文献3に開示してあるように銅によるセメンテーションでルテニウムは回収できる。しかしながら、回収したルテニウム含有沈殿物から銅を除去する必要があり、硫酸で溶解しなければならない。銅は硫酸に溶解するには加熱することが必要であり、未反応の銅はその表面がセメンテーションにより析出したセレンやテルル等の物質に被覆されるため、酸溶解反応は効率的であるとは言えない。 As disclosed in Patent Document 3, ruthenium can be recovered by cementation with copper. However, it is necessary to remove the copper from the recovered ruthenium-containing precipitate and it must be dissolved with sulfuric acid. Copper needs to be heated to dissolve in sulfuric acid, and the surface of unreacted copper is coated with substances such as selenium and tellurium precipitated by cementation, so the acid dissolution reaction is said to be efficient. I can't say that.

さらに、銅は比較的価格の高い金属である。セメンテーションに使用する場合はコストが無視できない。とはいえ代表的な卑金属である鉄や亜鉛、アルミニウムは酸性条件下では共存するヒ素と反応してアルシンガスを発生する恐れがある。 Furthermore, copper is a relatively expensive metal. When used for cementation, the cost cannot be ignored. However, typical base metals such as iron, zinc, and aluminum may react with coexisting arsenic under acidic conditions and generate arsine gas.

本発明はこのような従来の事情を鑑み、ルテニウム及びヒ素を含む酸性溶液からルテニウムを選択的に回収する方法を提供する。特に銅製錬における電解精製工程で発生する電解澱物を溶解した液に好適である。 In view of such conventional circumstances, the present invention provides a method for selectively recovering ruthenium from an acidic solution containing ruthenium and arsenic. It is particularly suitable for a solution containing electrolytic precipitates generated in the electrolytic refining process in copper smelting.

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、ルテニウム及びヒ素を含む酸性溶液を鉄でセメンテーションしてルテニウムを回収可能とする方法を見出した。本発明の実施形態は、以下のように特定される。
(1)ルテニウム及びヒ素を含む酸性溶液からルテニウムを回収する方法であって、
前記酸性溶液の銅濃度を0.06g/L以上に調整し、液温20℃以上で鉄を接触させて、セメンテーションによってルテニウムを回収することを特徴とするルテニウムの回収方法。
(2)前記鉄はルテニウムに対して5質量倍以上であることを特徴とする(1)に記載のルテニウムの回収方法。
(3)銅の水溶性塩、または、銅電解液を添加することで、前記酸性溶液の銅濃度を調整し、
前記セメンテーション終了時まで、前記酸性溶液の液温を75℃以下かつ前記酸性溶液の銅濃度を0.03g/L以上に維持することを特徴とする(1)または(2)に記載のルテニウムの回収方法。
(4)前記酸性溶液に鉄を添加する前に、銅濃度を1.5g/L以上に調整しておくことを特徴とする(1)~(3)のいずれかに記載のルテニウムの回収方法。
(5)前記鉄の平均粒径が1mm以下であり、前記鉄の添加量は前記酸性溶液に含まれるルテニウムの30~300質量倍として前記酸性溶液に添加し、銅の濃度を前記鉄の1.2質量倍以下に調整することを特徴とする(1)~(4)のいずれかに記載のルテニウムの回収方法。
(6)前記鉄は鉄粉であり、前記酸性溶液中の銅に対して銅/鉄の質量比が0.5~2になるよう添加することを特徴とする(1)~(5)のいずれかに記載のルテニウムの回収方法。
(7)前記酸性溶液に鉄を添加する前に、前記酸性溶液に二酸化硫黄、亜硫酸または亜硫酸塩を添加して、金、白金、パラジウム、セレン及びテルルの濃度の合計を300mg/L以下に調整しておくことを特徴とする(1)~(6)のいずれかに記載のルテニウムの回収方法。
(8)前記酸性溶液が、更に、銅及びテルルを含み、
前記酸性溶液に液温20℃以上60℃未満で前記鉄を接触させて前記鉄の表面に銅を析出させた後に70℃以上に加温してルテニウムとテルルを析出させることを特徴とする(1)~(7)のいずれかに記載のルテニウムの回収方法。
(9)前記酸性溶液の銅濃度を0.3g/L以上に調整して前記セメンテーションを開始し、前記セメンテーション終了時まで前記酸性溶液の銅濃度を0.3g/L以上に維持することを特徴とする(8)に記載のルテニウムの回収方法。
As a result of extensive research to solve the above-mentioned problems, the inventors of the present invention have discovered a method for recovering ruthenium by cementing an acidic solution containing ruthenium and arsenic with iron. Embodiments of the invention are specified as follows.
(1) A method for recovering ruthenium from an acidic solution containing ruthenium and arsenic, comprising:
A method for recovering ruthenium, comprising adjusting the copper concentration of the acidic solution to 0.06 g/L or higher, bringing iron into contact with the solution at a temperature of 20° C. or higher, and recovering ruthenium by cementation.
(2) The method for recovering ruthenium according to (1), wherein the iron is 5 times or more by mass as much as the ruthenium.
(3) adjusting the copper concentration of the acidic solution by adding a water-soluble copper salt or a copper electrolyte;
Ruthenium according to (1) or (2), characterized in that the temperature of the acidic solution is maintained at 75° C. or lower and the copper concentration of the acidic solution is maintained at 0.03 g/L or higher until the end of the cementation. collection method.
(4) The method for recovering ruthenium according to any one of (1) to (3), characterized in that the copper concentration is adjusted to 1.5 g/L or more before adding iron to the acidic solution. .
(5) The average particle size of the iron is 1 mm or less, the amount of iron added is 30 to 300 times the mass of ruthenium contained in the acidic solution, and the concentration of copper is 1 mm or less than the amount of ruthenium contained in the acidic solution. The method for recovering ruthenium according to any one of (1) to (4), characterized in that the amount is adjusted to 2 times the mass or less.
(6) The iron is iron powder, and is added so that the mass ratio of copper/iron to the copper in the acidic solution is 0.5 to 2. The method for recovering ruthenium according to any one of the above.
(7) Before adding iron to the acidic solution, add sulfur dioxide, sulfite, or sulfite to the acidic solution to adjust the total concentration of gold, platinum, palladium, selenium, and tellurium to 300 mg/L or less. The method for recovering ruthenium according to any one of (1) to (6), characterized in that the method comprises:
(8) the acidic solution further contains copper and tellurium,
The iron is brought into contact with the acidic solution at a liquid temperature of 20° C. or higher and lower than 60° C. to precipitate copper on the surface of the iron, and then heated to 70° C. or higher to precipitate ruthenium and tellurium ( The method for recovering ruthenium according to any one of 1) to (7).
(9) Starting the cementation by adjusting the copper concentration of the acidic solution to 0.3 g/L or more, and maintaining the copper concentration of the acidic solution at 0.3 g/L or more until the end of the cementation. The method for recovering ruthenium according to (8), characterized in that:

本発明の実施形態によれば、ルテニウム及びヒ素を含む酸性溶液からルテニウムを選択的に回収する方法を提供することができる。 According to embodiments of the present invention, a method for selectively recovering ruthenium from an acidic solution containing ruthenium and arsenic can be provided.

実験例に係る、液中の銅と鉄の質量比と沈殿したルテニウム量の関係を示すグラフである。It is a graph showing the relationship between the mass ratio of copper and iron in the liquid and the amount of precipitated ruthenium, according to an experimental example. 実験例に係る、液中の銅と鉄の質量比と沈殿したヒ素量の関係を示すグラフである。It is a graph showing the relationship between the mass ratio of copper and iron in a liquid and the amount of arsenic precipitated, according to an experimental example.

本発明の実施形態に係るルテニウムの回収方法は、ルテニウム及びヒ素を含む酸性溶液からルテニウムを回収する方法であって、酸性溶液の銅濃度を0.06g/L以上に調整し、液温20℃以上で鉄を接触させて、セメンテーションによってルテニウムを回収する。 A method for recovering ruthenium according to an embodiment of the present invention is a method for recovering ruthenium from an acidic solution containing ruthenium and arsenic, in which the copper concentration of the acidic solution is adjusted to 0.06 g/L or more, and the liquid temperature is 20 ° C. The iron is brought into contact with the above, and ruthenium is recovered by cementation.

非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解澱物は白金族元素と重金属、有毒元素が濃縮される。白金族元素ならびに有毒元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料から分離される。したがって、本方法は廃棄物からのリサイクルにも適用できる。 Electrolytic precipitates produced in the electrolytic refining process of nonferrous metal smelting, especially copper smelting, are enriched with platinum group elements, heavy metals, and toxic elements. Platinum group elements and toxic elements are not smelted alone, but are recovered as by-products of other metals or separated from recycled raw materials such as spent catalysts. Therefore, this method can also be applied to recycling from waste.

塩酸と過酸化水素を添加して電解澱物を溶解することができるが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には白金族元素、希少金属元素、カルコゲン元素、ヒ素、アンチモン等が分配する。 Hydrochloric acid and hydrogen peroxide can be added to dissolve the electrolytic precipitate, but the silver forms an insoluble silver chloride precipitate with chloride ions immediately after dissolution. A solution containing an oxidizing agent and chlorine, such as aqua regia or chlorinated water, can dissolve precious metals and separate silver as silver chloride. Since it is a chloride bath, platinum group elements, rare metal elements, chalcogen elements, arsenic, antimony, etc. are distributed in the leach liquid (PLS).

浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。その後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 The leach liquid (PLS) is once cooled, and chlorides of base metals such as lead and antimony are precipitated and separated. The gold is then separated into an organic phase by solvent extraction. Dibutylcarbitol (DBC) is widely used as a gold extractant.

金を抽出した後のPLSを還元すれば有価物は沈殿・回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決まっている。初めに金、白金、パラジウム、次にセレンやテルルといったカルコゲン、さらにルテニウムやイリジウムといった不活性貴金属類が沈殿する。 Valuables can be precipitated and recovered by reducing PLS after gold has been extracted, but since the redox potential differs depending on the element, the order of precipitation is naturally determined. First, gold, platinum, and palladium are precipitated, followed by chalcogens such as selenium and tellurium, and then inert precious metals such as ruthenium and iridium.

還元剤は還元性硫黄が価格と効率の面から利用され、なかでも二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。不活性貴金属類は二酸化硫黄や亜硫酸塩では還元速度が極めて遅い。そもそも含有量も多くはなく、例えば銅電解澱物溶解液中のルテニウムは150~300mg/L程度である。現状の二酸化硫黄によるルテニウム回収率は6~8時間の反応時間で30~50%程度であるが、完全に沈殿せしめるならば10時間以上必要であると予想される。これはあまりに長く現実的な反応時間ではない。 Reducing sulfur is used as the reducing agent in terms of cost and efficiency, and among these, sulfur dioxide is most suitable because it can be supplied in large quantities and at low cost by converter gas or roasting of sulfide ore. Inert noble metals have extremely slow reduction rates with sulfur dioxide and sulfites. The content of ruthenium in the copper electrolyte precipitate solution is not large in the first place, for example, about 150 to 300 mg/L. The current recovery rate of ruthenium using sulfur dioxide is about 30 to 50% in a reaction time of 6 to 8 hours, but it is expected that more than 10 hours will be required to achieve complete precipitation. This is too long to be a realistic reaction time.

そこで、ルテニウムをより効率的に回収するには金属によるセメンテーションが最も効率が良い。ルテニウムは亜鉛、マグネシウム、アルミニウムなど鉱酸で水素を発生する金属により金属ルテニウムまで還元されることは知られている。 Therefore, metal cementation is the most efficient way to recover ruthenium. It is known that ruthenium can be reduced to metallic ruthenium by metals that generate hydrogen with mineral acids, such as zinc, magnesium, and aluminum.

ところがヒ素を含む酸性溶液では上記の金属とヒ素が反応してアルシンガスが発生する恐れがある。そのため、卑金属によるセメンテーションは現実的ではない。しかしながら鉄によるセメンテーションは反応速度が速くないのでアルシンの発生量を極少量に抑えることが可能である。本発明の実施形態では、酸性溶液の液温を20℃以上として鉄を接触させて、セメンテーションによってルテニウムを回収する。酸性溶液の液温が20℃以上であると、セメンテーションが良好となる。また、セメンテーション終了時まで、当該酸性溶液の液温を75℃以下に維持するとアルシンの発生量を抑えることができる。さらに好ましくは60℃以下である。 However, in an acidic solution containing arsenic, there is a risk that the above metal and arsenic will react and generate arsine gas. Therefore, cementation with base metals is not realistic. However, since cementation with iron does not have a fast reaction rate, it is possible to suppress the amount of arsine generated to a minimum. In an embodiment of the present invention, iron is brought into contact with the acidic solution at a temperature of 20° C. or higher, and ruthenium is recovered by cementation. When the temperature of the acidic solution is 20° C. or higher, cementation becomes good. Furthermore, the amount of arsine generated can be suppressed by maintaining the temperature of the acidic solution at 75° C. or lower until the end of cementation. More preferably, the temperature is 60°C or lower.

鉄の添加量はルテニウムの5質量倍以上が好ましい。少なすぎるとルテニウムの回収が不十分となる。セメンテーションに鉄粉を用いる場合では添加量が多すぎるとアルシンの発生量が増えるのでルテニウムの1000質量倍以下が好ましい。鉄の添加量はルテニウムの300~1000質量倍がより好ましく、500~800質量倍が更により好ましい。 The amount of iron added is preferably 5 times or more the mass of ruthenium. If it is too small, ruthenium recovery will be insufficient. When using iron powder for cementation, if the amount added is too large, the amount of arsine generated will increase, so it is preferably 1000 times the mass of ruthenium or less. The amount of iron added is more preferably 300 to 1000 times the mass of ruthenium, and even more preferably 500 to 800 times the mass of ruthenium.

それでも幾らかのアルシンが発生するので、酸性溶液に鉄を添加する前に、予め処理対象の酸性溶液に銅イオンが少しでも存在する状態であれば、本発明の効果は得られるが、具体的な濃度として0.06g/L以上であればよい。アルシンが発生しても銅イオンと反応してヒ化銅としてトラップできる。酸性溶液に鉄を添加する前の、さらに好ましい酸性溶液の銅濃度は1.5g/L以上である。 However, since some arsine is still generated, the effect of the present invention can be obtained as long as even a small amount of copper ions are present in the acidic solution to be treated before adding iron to the acidic solution. The concentration may be 0.06 g/L or more. Even if arsine is generated, it can react with copper ions and be trapped as copper arsenide. A more preferable copper concentration of the acidic solution before adding iron to the acidic solution is 1.5 g/L or more.

セメンテーション終了時まで、酸性溶液中の銅イオンが少しでも維持されていればよく、具体的な銅濃度としては0.03g/L以上であればよい。このような構成によれば、過剰の水素の発生を抑制することができる。発生期の水素は還元力が強く、多量の水素が溶液と接触するとアルシンが発生する可能性を排除できなくなる。 It is sufficient that the copper ions in the acidic solution are maintained even slightly until the end of cementation, and the specific copper concentration may be 0.03 g/L or more. According to such a configuration, generation of excessive hydrogen can be suppressed. Hydrogen in the nascent stage has a strong reducing power, and if a large amount of hydrogen comes into contact with the solution, the possibility of arsine generation cannot be excluded.

酸性溶液の銅濃度は硫酸銅(II)、塩化銅(II)等の銅の水溶性塩で調整することができる。または、銅電解液を添加することで調整してもよい。一部、鉄と反応して銅が析出するが、酸性溶液の液温が75℃以下であればその影響は少ない。 The copper concentration in the acidic solution can be adjusted with water-soluble copper salts such as copper(II) sulfate and copper(II) chloride. Alternatively, it may be adjusted by adding a copper electrolyte. Copper partially reacts with iron and precipitates, but this effect is small if the temperature of the acidic solution is 75° C. or lower.

鉄を添加した時、最初に銅イオンと反応して鉄の表面は銅で覆われる。銅イオンと競争してルテニウムもセメンテーションされる。鉄表面に析出した銅は徐々に溶解し、再度銅、ルテニウムと反応する。温度によってはヒ素とも反応する。そのためセメンテーションの効率は銅濃度と添加する鉄の比により影響を受ける。酸性溶液中の銅に対して銅/鉄の質量比が0.5~2になるよう添加するのが好ましく、0.5~1.5になるよう添加するのがより好ましい。 When iron is added, it first reacts with copper ions and the surface of the iron is covered with copper. Ruthenium is also cemented in competition with copper ions. Copper deposited on the iron surface gradually dissolves and reacts with copper and ruthenium again. Depending on the temperature, it can also react with arsenic. Therefore, the efficiency of cementation is affected by the copper concentration and the ratio of added iron. It is preferable to add so that the mass ratio of copper/iron to copper in the acidic solution is 0.5 to 2, more preferably 0.5 to 1.5.

回収されるルテニウムは金属ルテニウムであり既存のルテニウム精製工程で処理することができる。一般にセメンテーションでは過剰に置換金属を添加するが、未反応の鉄は酸性条件下では加熱すれば溶解する。もしくは磁力により分別することも可能である。 The recovered ruthenium is metallic ruthenium and can be processed using existing ruthenium purification processes. Generally, in cementation, an excess of substituent metal is added, but unreacted iron is dissolved by heating under acidic conditions. Alternatively, it is also possible to separate by magnetic force.

セメンテーションに際しては予め還元剤により鉄と反応するイオン化傾向が高い金属類やセレンやテルルを除いておくと鉄使用量が抑制できる。具体的には、セメンテーションに際しては酸性溶液に鉄を添加する前に、酸性溶液中の金、白金、パラジウム、セレン及びテルルの濃度の合計を300mg/L以下に調整しておくことが好ましい。この時の還元剤としては安価な二酸化硫黄が好ましい。また、亜硫酸または亜硫酸塩を用いてもよい。 During cementation, the amount of iron used can be suppressed by removing metals with a high ionization tendency that react with iron, such as selenium and tellurium, using a reducing agent in advance. Specifically, during cementation, it is preferable to adjust the total concentration of gold, platinum, palladium, selenium, and tellurium in the acidic solution to 300 mg/L or less before adding iron to the acidic solution. The reducing agent at this time is preferably sulfur dioxide, which is inexpensive. Additionally, sulfurous acid or sulfite salts may be used.

セメンテーションで投入する鉄の形状は、板状、棒状、ショットや鉄粉でもよい。タンク式反応槽ではなく、充填塔や循環槽に鉄を装入して処理対象液を通液させてもよい。接触方式は回収物中銅含有量の許容量や反応効率、設備上の制約により決定される。セメンテーションに使用される鉄の品位は高い方が好ましいが鉄屑等の比較的純度の低い鉄も利用される。もちろん鉄粉等の比表面積の大きい鉄がより好ましい。鉄の平均粒径が1mm以下であってもよい。 The shape of the iron introduced in cementation may be plate-like, rod-like, shot, or iron powder. Instead of a tank-type reaction tank, iron may be charged into a packed tower or a circulation tank and the liquid to be treated may be passed therethrough. The contact method is determined by the allowable copper content in the recovered material, reaction efficiency, and equipment constraints. The higher the grade of iron used for cementation, the better, but iron with relatively low purity, such as iron scrap, is also used. Of course, iron having a large specific surface area, such as iron powder, is more preferable. The average particle size of iron may be 1 mm or less.

タンク式反応槽に鉄を投入する場合は、鉄粉を投入することが好ましい。鉄粉とはここでは平均粒径P80が0.2mm以下の鉄粒子を指す。ここで、「P80」とは、篩にかけた時に80%が通過する粒度を示す。溶液中にカルコゲン類が共存する場合はより多くの鉄粉を投入することが好ましい。 When introducing iron into a tank-type reaction vessel, it is preferable to introduce iron powder. Iron powder herein refers to iron particles having an average particle size P80 of 0.2 mm or less. Here, "P80" indicates the particle size at which 80% passes through a sieve. When chalcogens coexist in the solution, it is preferable to add more iron powder.

鉄粉の添加量は、酸性溶液に含まれるルテニウムの30~300質量倍として酸性溶液に添加し、銅の濃度を鉄粉の1.2質量倍以下に調整することが好ましい。このような構成によれば、過剰な鉄粉の添加が不要となる。過剰に鉄粉を添加すると水素の過発生、コストの上昇、目的外元素の混入等の問題が生じる。 It is preferable to add the iron powder to the acidic solution in an amount of 30 to 300 times the mass of ruthenium contained in the acidic solution, and adjust the copper concentration to 1.2 times the mass of the iron powder or less. According to such a configuration, it is not necessary to add excessive iron powder. Adding too much iron powder causes problems such as excessive generation of hydrogen, increased cost, and contamination of unintended elements.

本発明の実施形態に係るルテニウムの回収方法は、酸性溶液が、更に、銅及びテルルを含み、酸性溶液に液温20℃以上60℃未満で鉄を接触させて鉄の表面に銅を析出させた後に70℃以上に加温してルテニウムとテルルを析出させてもよい。鉄によるセメンテーションでは、酸性溶液に銅イオンを共存させ、温度を60℃未満に調整すると、アルシンの発生量を抑えることができる。さらに好ましくは50℃以下である。 In the method for recovering ruthenium according to an embodiment of the present invention, the acidic solution further contains copper and tellurium, and the iron is brought into contact with the acidic solution at a liquid temperature of 20°C or higher and lower than 60°C to precipitate copper on the surface of the iron. After that, ruthenium and tellurium may be precipitated by heating to 70° C. or higher. In cementation with iron, the amount of arsine generated can be suppressed by coexisting copper ions in the acidic solution and adjusting the temperature to below 60°C. More preferably, the temperature is 50°C or lower.

ルテニウムと銅、ヒ素が鉄によりセメンテーションを受けるのは投入直後である。ルテニウムの方が反応しやすいが銅濃度が高いので鉄表面は銅に覆われたように赤銅色を示す。この時の温度を制御することでヒ素の還元を抑制している。表面を覆った銅やルテニウムはヒ素と反応しない。 Ruthenium, copper, and arsenic undergo cementation with iron immediately after they are added. Ruthenium reacts more easily, but because it has a high copper concentration, the iron surface exhibits a coppery color, as if covered with copper. By controlling the temperature at this time, reduction of arsenic is suppressed. Copper and ruthenium that cover the surface do not react with arsenic.

表面を覆った銅は徐々に加熱すれば徐々に溶解する。50℃では非常に反応が遅く70℃以上に加熱することが好ましい。銅が溶解して鉄表面が現れるとルテニウムのセメンテーションや再度銅の析出が生じる。銅の溶解には酸化性物質が必要であるが、コストやほかの元素との反応性から硫酸イオンが液中に含まれていることが好ましい。 If the copper that covers the surface is heated gradually, it will gradually dissolve. At 50°C, the reaction is very slow, so heating to 70°C or higher is preferable. When copper dissolves and an iron surface appears, ruthenium cementation and copper precipitation occur again. Although an oxidizing substance is required to dissolve copper, it is preferable that sulfate ions be included in the solution due to cost and reactivity with other elements.

この液温70℃以上では一部のヒ素がアルシンとなるので予め溶液の銅濃度を0.3g/L以上に調整しておく。アルシンが発生しても銅イオンと反応してヒ化銅としてトラップできる。さらに好ましい銅濃度は1g/L以上である。また、セメンテーション終了時まで酸性溶液の銅濃度を0.3g/L以上に維持することが好ましい。 When the liquid temperature is 70° C. or higher, some arsenic becomes arsine, so the copper concentration of the solution is adjusted in advance to 0.3 g/L or higher. Even if arsine is generated, it can react with copper ions and be trapped as copper arsenide. A more preferable copper concentration is 1 g/L or more. Further, it is preferable to maintain the copper concentration of the acidic solution at 0.3 g/L or more until the end of cementation.

液温が高いと鉄表面に析出した銅が直接ルテニウムをセメンテーションすることもできる。ルテニウムの銅によるセメンテーションは液温を70℃以上とすることが必要である。よって鉄添加時の温度を50℃以下とし、鉄表面に銅が析出したことを確認後に温度を70℃以上に加熱すればよい。 When the liquid temperature is high, copper deposited on the iron surface can directly cement ruthenium. Cementation of ruthenium with copper requires a liquid temperature of 70° C. or higher. Therefore, the temperature at the time of iron addition may be set to 50° C. or lower, and the temperature may be heated to 70° C. or higher after confirming that copper has precipitated on the iron surface.

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these.

(実験例1)
銅製錬の銅電解精製工程から回収された電解澱物に硫酸を添加して銅を除いた。次に、濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得た。PLSを6℃まで冷却して卑金属分を沈殿除去した。続いて、酸濃度を2N以上に調整しDBC(ジブチルカルビトール)とPLSを混合して金を抽出した。金抽出後のPLSを70℃に加温し、二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5~20%)を吹き込んで貴金属とセレンを還元し固液分離した。セレン分離後液のセレン濃度は110mg/L、テルル濃度85mg/L、ルテニウム濃度は82mg/L、銅濃度は2.3g/L、ヒ素濃度は1.4g/Lであった。
(Experiment example 1)
Sulfuric acid was added to the electrolytic precipitate recovered from the copper electrolytic refining process of copper smelting to remove copper. Next, concentrated hydrochloric acid and 60% hydrogen peroxide solution were added and dissolved, and solid-liquid separation was performed to obtain PLS (leaching liquid). The PLS was cooled to 6° C. to precipitate and remove base metals. Subsequently, the acid concentration was adjusted to 2N or higher, and DBC (dibutyl carbitol) and PLS were mixed to extract gold. After the gold extraction, the PLS was heated to 70°C, and a mixed gas of sulfur dioxide and air (sulfur dioxide concentration 5 to 20%) was blown into the PLS to reduce the precious metal and selenium and separate the solid and liquid. The selenium concentration of the liquid after selenium separation was 110 mg/L, the tellurium concentration was 85 mg/L, the ruthenium concentration was 82 mg/L, the copper concentration was 2.3 g/L, and the arsenic concentration was 1.4 g/L.

セレン分離後液(ルテニウムの回収対象となるルテニウム及びヒ素を含む酸性溶液)を200mL量り取り、硫酸銅5水和物を3g添加した。加温して平均粒径P80が150μmである鉄粉を1g添加した。当該加温は、表1に示す温度とし、20~25℃で実施したサンプル、40~45℃で実施したサンプル、50~55℃で実施したサンプル、60~65℃で実施したサンプル、70~75℃で実施したサンプルの、合計5サンプルとした。これらのサンプルについて、それぞれ30分後と60分後に分析用サンプルを採取した。また、120分間で反応を終了した。反応終了後は濾別し残渣は水洗してエチルアルコールでリンスした。50℃で乾燥して質量を測定した。 200 mL of the selenium separation solution (an acidic solution containing ruthenium and arsenic from which ruthenium is to be recovered) was weighed out, and 3 g of copper sulfate pentahydrate was added thereto. After heating, 1 g of iron powder having an average particle size P80 of 150 μm was added. The heating was carried out at the temperatures shown in Table 1, with samples carried out at 20 to 25 °C, samples carried out at 40 to 45 °C, samples carried out at 50 to 55 °C, samples carried out at 60 to 65 °C, and samples carried out at 70 to 65 °C. A total of 5 samples were prepared at 75°C. For these samples, samples for analysis were taken after 30 and 60 minutes, respectively. Further, the reaction was completed in 120 minutes. After the reaction was completed, the mixture was filtered and the residue was washed with water and rinsed with ethyl alcohol. It was dried at 50°C and its mass was measured.

試験サンプルは2mLを分取して希塩酸で50mLに規正した。ICP-OES(セイコー社製SPS3100)により溶液中のルテニウム、ヒ素及び銅それぞれの濃度を定量した。残渣の分析は0.1g程度を測り取り王水に溶解後、ICP-OESで濃度を測定してヒ素含有率を算出した。結果を表1に示す。 2 mL of the test sample was taken and adjusted to 50 mL with dilute hydrochloric acid. The concentrations of ruthenium, arsenic, and copper in the solution were determined using ICP-OES (SPS3100 manufactured by Seiko). For analysis of the residue, approximately 0.1 g was weighed, dissolved in aqua regia, and the concentration was measured using ICP-OES to calculate the arsenic content. The results are shown in Table 1.

Figure 0007423467000001
Figure 0007423467000001

鉄セメンテーションによりルテニウムが沈殿したことがわかる。さらにヒ素の濃度は60℃未満ではほとんど変化しておらずアルシンの発生が抑制されたことを示す。さらに60℃未満ではヒ素は沈殿物中の含有量も低く、鉄と反応せず液中に留まったことがわかる。 It can be seen that ruthenium was precipitated by iron cementation. Further, the arsenic concentration hardly changed below 60°C, indicating that the generation of arsine was suppressed. Further, at temperatures below 60°C, the content of arsenic in the precipitate was low, indicating that it did not react with iron and remained in the liquid.

鉄を添加すると液中は銅褐色のスラリーが生成したことが目視で確認された。これは鉄の表面に銅が析出したことを示す。銅の析出により鉄の表面が保護され、その結果酸やヒ素との反応が抑制されたと考えられる。ルテニウムは鉄と直接もしくは鉄表面に析出した銅によりセメンテーションを受けた。 When iron was added, it was visually confirmed that a copper-brown slurry was formed in the liquid. This indicates that copper was deposited on the iron surface. It is thought that the copper precipitation protected the iron surface, and as a result, the reaction with acids and arsenic was suppressed. Ruthenium was cemented directly with iron or by copper deposited on the iron surface.

鉄セメンテーション沈殿物のその他組成は、銅、セレン、テルルであった。セレン分離後液にこれらの元素が含まれると鉄の表面に析出して反応を阻害する恐れがある。銅はルテニウムイオンとさらに反応するので大きな支障はないがセレンとテルルは合計濃度が300mg/L以下に調整しておくことが好ましい。さらに好ましくは200mg/L以下である。 Other compositions of the iron cementation precipitate were copper, selenium, and tellurium. If these elements are contained in the solution after selenium separation, they may precipitate on the surface of iron and inhibit the reaction. Since copper further reacts with ruthenium ions, there is no major problem, but it is preferable to adjust the total concentration of selenium and tellurium to 300 mg/L or less. More preferably, it is 200 mg/L or less.

(実験例2)
実験例1と同じセレン分離後液を200mL分取した。50℃に加温し表2に示す量の硫酸銅5水和物と鉄粉を添加して攪拌した。セレン分離後液には銅が2.3g/L程度含まれていたので表2中の「硫酸銅」の項で「低下」の実験例では初期銅濃度の低下のためにチオ硫酸ナトリウム5水和物を4g添加して銅を硫化銅として沈殿させた後、濾別することなく鉄粉を添加した。0.5g×2回では鉄粉を0.5gずつ反応開始時と60分後のサンプル採取後に添加した。30分後と60分後に分析用サンプルを採取した。120分間で反応を終了した。
試験サンプルの分析は実験例1に準ずる。結果を表2に示す。
(Experiment example 2)
200 mL of the same selenium-separated solution as in Experimental Example 1 was collected. The mixture was heated to 50°C, and copper sulfate pentahydrate and iron powder in the amounts shown in Table 2 were added and stirred. Since the solution after selenium separation contained about 2.3 g/L of copper, in the experimental example of "decrease" in the column of "copper sulfate" in Table 2, sodium thiosulfate 5 water was used to reduce the initial copper concentration. After adding 4 g of copper sulfide to precipitate copper as copper sulfide, iron powder was added without filtration. In the case of 0.5 g twice, 0.5 g of iron powder was added at the start of the reaction and after sample collection 60 minutes later. Samples for analysis were taken after 30 and 60 minutes. The reaction was completed in 120 minutes.
The analysis of the test sample was conducted in accordance with Experimental Example 1. The results are shown in Table 2.

Figure 0007423467000002
Figure 0007423467000002

銅濃度が高い場合はルテニウムのセメンテーションの効率が低い。これは銅が鉄表面に析出して被覆することで反応活性面が失われることが原因であると考えられる。よって銅濃度は鉄を鉄粉とした時では表2における6g/L以下が好ましい。鉄が金属塊や金属板となったときはこの濃度比の限りではない。 Ruthenium cementation efficiency is low when copper concentration is high. This is thought to be due to the fact that copper precipitates and coats the iron surface, resulting in loss of reactive surface. Therefore, when iron is used as iron powder, the copper concentration is preferably 6 g/L or less as shown in Table 2. When iron becomes a metal lump or metal plate, this concentration ratio does not apply.

また銅濃度が低い場合はヒ素濃度の低下もみられ、ヒ素は沈殿物に混入する。ヒ素の初期濃度は1.4g/L程度であるので200ml中には280mg程度のヒ素が含まれている。表2においてもっともヒ素が沈殿した「低下」の場合では最終ヒ素濃度から液中にヒ素は40mg、沈殿には210mg分配しており猛毒のアルシンガスとして系外にはほとんど漏出していない。よって銅濃度は0.06g/L以上必要である。また表2の結果からは大部分のヒ素を液中に残すためには銅濃度が1.5g/L以上であることが必要である。 Furthermore, when the copper concentration is low, the arsenic concentration also decreases, and arsenic is mixed into the precipitate. Since the initial concentration of arsenic is about 1.4 g/L, about 280 mg of arsenic is contained in 200 ml. In Table 2, in the case of "reduction" where the most arsenic was precipitated, 40 mg of arsenic was distributed in the liquid and 210 mg was distributed in the precipitate based on the final arsenic concentration, and almost no arsenic gas leaked out of the system as highly toxic arsine gas. Therefore, the copper concentration needs to be 0.06 g/L or more. Furthermore, from the results in Table 2, it is necessary that the copper concentration be 1.5 g/L or more in order to leave most of the arsenic in the liquid.

銅の濃度にもよるが、鉄の添加量は鉄粉を添加する場合はルテニウムの30~300質量倍添加すればよい。原液のルテニウム濃度は8mg/Lであったので効果は0.5g添加でもみられ、1g以上の鉄粉で顕著であった。 Although it depends on the concentration of copper, when iron powder is added, the amount of iron to be added may be 30 to 300 times the mass of ruthenium. Since the concentration of ruthenium in the stock solution was 8 mg/L, the effect was seen even when 0.5 g was added, and it was significant when the amount of iron powder was 1 g or more.

(実験例3)
実験例1と同じセレン分離後液を200mL分取した。50℃~70℃に加温し各種量の硫酸銅5水和物と鉄粉を添加して攪拌した。セレン分離後液には銅が2.3g/L程度含まれていたので一部の実験例では初期銅濃度の低下のためにチオ硫酸ナトリウム5水和物を添加して銅を硫化銅として沈殿させた後、濾別することなく鉄粉を添加した。120分間で反応を終了した。
試験サンプルの分析は実験例1に準ずる。液中の銅と添加鉄粉の質量比を横軸にして沈殿したルテニウム量とヒ素量を図1と図2に示す。
(Experiment example 3)
200 mL of the same selenium-separated solution as in Experimental Example 1 was collected. The mixture was heated to 50°C to 70°C, and various amounts of copper sulfate pentahydrate and iron powder were added and stirred. The solution after selenium separation contained about 2.3 g/L of copper, so in some experiments, sodium thiosulfate pentahydrate was added to lower the initial copper concentration to precipitate the copper as copper sulfide. After that, iron powder was added without filtration. The reaction was completed in 120 minutes.
The analysis of the test sample was conducted in accordance with Experimental Example 1. The amounts of ruthenium and arsenic precipitated are shown in FIGS. 1 and 2, with the mass ratio of copper in the liquid and added iron powder plotted on the horizontal axis.

図1によれば、ルテニウムを効果的に沈殿させるには液中の銅/鉄の質量比が2以下であることが好ましい。図2によれば、ヒ素の沈殿を抑えるには液中の銅/鉄の質量比が0.5以上であることが好ましい。 According to FIG. 1, in order to effectively precipitate ruthenium, it is preferable that the copper/iron mass ratio in the liquid is 2 or less. According to FIG. 2, in order to suppress precipitation of arsenic, it is preferable that the copper/iron mass ratio in the liquid is 0.5 or more.

(実験例4)
実験例1と同じセレン分離後液を200mL分取した。特に指定がない限りは50℃に加温し硫酸銅5水和物3gと鉄粉を添加して攪拌した。30分後と60分後に分析用サンプルを採取した。60分後にサンプルの分取後液温を70~75℃に加温した。120分間で反応を終了した。比較として実験例1の50~55℃、70~75℃の結果も示す。
試験サンプルは2mLを分取して、実験例1と同様の手順で50mLに規正した。ICP-OES(セイコー社製SPS3100)により溶液中のルテニウム、ヒ素及び銅それぞれの濃度を定量した。結果を表3に示す。
(Experiment example 4)
200 mL of the same selenium-separated solution as in Experimental Example 1 was collected. Unless otherwise specified, the mixture was heated to 50° C., 3 g of copper sulfate pentahydrate and iron powder were added, and stirred. Samples for analysis were taken after 30 and 60 minutes. After 60 minutes, the sample was collected and the liquid temperature was raised to 70 to 75°C. The reaction was completed in 120 minutes. For comparison, the results of Experimental Example 1 at 50 to 55°C and 70 to 75°C are also shown.
2 mL of the test sample was collected and adjusted to 50 mL using the same procedure as in Experimental Example 1. The concentrations of ruthenium, arsenic, and copper in the solution were determined using ICP-OES (SPS3100 manufactured by Seiko). The results are shown in Table 3.

Figure 0007423467000003
Figure 0007423467000003

反応温度を二段階調整することでルテニウムのセメンテーションが悪化することはなかった。必要とされる鉄添加量は二段階温度反応でも変わらなかった。 By adjusting the reaction temperature in two steps, cementation of ruthenium did not worsen. The required amount of iron addition remained unchanged in the two-step temperature reaction.

70℃で終始反応させたときと比べると最終ルテニウム濃度ならびにテルル濃度はいくらか高いが70℃での反応時間が違う。50℃と比べると効率的である。この二つの有価元素については50℃で反応させるより効率的であり、70℃で反応させるよりは効果が低くなった。 The final ruthenium and tellurium concentrations are somewhat higher than when the reaction is carried out at 70°C from beginning to end, but the reaction time at 70°C is different. This is more efficient compared to 50°C. Regarding these two valuable elements, it was more efficient than reacting at 50°C, but less effective than reacting at 70°C.

ヒ素についても二段階温度反応では問題にはならず傾向はルテニウムと同じであるが、ヒ素は沈殿させずに液中に残したい。そのため70℃で反応させるよりはヒ素分離がよく、50℃の反応よりは選択性が落ちる。温度二段階の反応では高温、中温両者の中間的な性質を持つため液のヒ素含有量やルテニウム含有量により反応時間を設定すればよい。 Arsenic is not a problem in the two-step temperature reaction, and the tendency is the same as that of ruthenium, but it is desirable to leave arsenic in the liquid without precipitating it. Therefore, arsenic separation is better than when the reaction is carried out at 70°C, but the selectivity is lower than when the reaction is carried out at 50°C. In a two-stage temperature reaction, the reaction time can be set depending on the arsenic content and ruthenium content of the liquid, since the reaction has properties intermediate between high temperature and medium temperature.

Claims (9)

ルテニウム及びヒ素を含む酸性溶液からルテニウムを回収する方法であって、
前記酸性溶液の銅濃度を0.06g/L以上に調整し、液温20℃以上で鉄を接触させて、セメンテーションによってルテニウムを回収することを特徴とするルテニウムの回収方法。
A method for recovering ruthenium from an acidic solution containing ruthenium and arsenic, the method comprising:
A method for recovering ruthenium, comprising adjusting the copper concentration of the acidic solution to 0.06 g/L or higher, bringing iron into contact with the solution at a temperature of 20° C. or higher, and recovering ruthenium by cementation.
前記鉄はルテニウムに対して5質量倍以上であることを特徴とする請求項1に記載のルテニウムの回収方法。 2. The method for recovering ruthenium according to claim 1, wherein the amount of iron is 5 times or more by mass as compared to ruthenium. 銅の水溶性塩、または、銅電解液を添加することで、前記酸性溶液の銅濃度を調整し、
前記セメンテーション終了時まで、前記酸性溶液の液温を75℃以下かつ前記酸性溶液の銅濃度を0.03g/L以上に維持することを特徴とする請求項1または2に記載のルテニウムの回収方法。
Adjusting the copper concentration of the acidic solution by adding a water-soluble copper salt or a copper electrolyte,
Ruthenium recovery according to claim 1 or 2, characterized in that the temperature of the acidic solution is maintained at 75° C. or lower and the copper concentration of the acidic solution is maintained at 0.03 g/L or higher until the end of the cementation. Method.
前記酸性溶液に鉄を添加する前に、銅濃度を1.5g/L以上に調整しておくことを特徴とする請求項1~3のいずれか一項に記載のルテニウムの回収方法。 The method for recovering ruthenium according to any one of claims 1 to 3, characterized in that before adding iron to the acidic solution, the copper concentration is adjusted to 1.5 g/L or more. 前記鉄の平均粒径が1mm以下であり、前記鉄の添加量は前記酸性溶液に含まれるルテニウムの30~300質量倍として前記酸性溶液に添加し、銅の濃度を前記鉄の1.2質量倍以下に調整することを特徴とする請求項1~4のいずれか一項に記載のルテニウムの回収方法。 The average particle size of the iron is 1 mm or less, the amount of iron added is 30 to 300 times the mass of ruthenium contained in the acidic solution, and the concentration of copper is 1.2 mass times that of ruthenium contained in the acidic solution. The method for recovering ruthenium according to any one of claims 1 to 4, characterized in that the amount is adjusted to be less than twice as much. 前記鉄は鉄粉であり、前記酸性溶液中の銅に対して銅/鉄の質量比が0.5~2になるよう添加することを特徴とする請求項1~5のいずれか一項に記載のルテニウムの回収方法。 According to any one of claims 1 to 5, the iron is iron powder, and is added so that the mass ratio of copper/iron to the copper in the acidic solution is 0.5 to 2. The described method for recovering ruthenium. 前記酸性溶液に鉄を添加する前に、前記酸性溶液に二酸化硫黄、亜硫酸または亜硫酸塩を添加して、金、白金、パラジウム、セレン及びテルルの濃度の合計を300mg/L以下に調整しておくことを特徴とする請求項1~6のいずれか一項に記載のルテニウムの回収方法。 Before adding iron to the acidic solution, add sulfur dioxide, sulfite, or sulfite to the acidic solution to adjust the total concentration of gold, platinum, palladium, selenium, and tellurium to 300 mg/L or less. The method for recovering ruthenium according to any one of claims 1 to 6. 前記酸性溶液が、更に、銅及びテルルを含み、
前記酸性溶液に液温20℃以上60℃未満で前記鉄を接触させて前記鉄の表面に銅を析出させた後に70℃以上に加温してルテニウムとテルルを析出させることを特徴とする請求項1~7のいずれか一項に記載のルテニウムの回収方法。
The acidic solution further contains copper and tellurium,
A claim characterized in that the iron is brought into contact with the acidic solution at a liquid temperature of 20° C. or higher and lower than 60° C. to precipitate copper on the surface of the iron, and then heated to 70° C. or higher to precipitate ruthenium and tellurium. The method for recovering ruthenium according to any one of Items 1 to 7.
前記酸性溶液の銅濃度を0.3g/L以上に調整して前記セメンテーションを開始し、前記セメンテーション終了時まで前記酸性溶液の銅濃度を0.3g/L以上に維持することを特徴とする請求項8に記載のルテニウムの回収方法。 The cementation is started by adjusting the copper concentration of the acidic solution to 0.3 g/L or more, and the copper concentration of the acidic solution is maintained at 0.3 g/L or more until the end of the cementation. The method for recovering ruthenium according to claim 8.
JP2020124649A 2020-07-21 2020-07-21 Ruthenium recovery method Active JP7423467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124649A JP7423467B2 (en) 2020-07-21 2020-07-21 Ruthenium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124649A JP7423467B2 (en) 2020-07-21 2020-07-21 Ruthenium recovery method

Publications (2)

Publication Number Publication Date
JP2022021190A JP2022021190A (en) 2022-02-02
JP7423467B2 true JP7423467B2 (en) 2024-01-29

Family

ID=80220212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124649A Active JP7423467B2 (en) 2020-07-21 2020-07-21 Ruthenium recovery method

Country Status (1)

Country Link
JP (1) JP7423467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498137B2 (en) 2021-03-30 2024-06-11 Jx金属株式会社 Method for separating ruthenium and iridium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131745A (en) 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd Method of separating and recovering platinum group element
JP2006274397A (en) 2005-03-30 2006-10-12 Nikko Kinzoku Kk Purification method of zinc concentrate decoction
JP2006334492A (en) 2005-06-01 2006-12-14 Dowa Holdings Co Ltd Method for treating selenium-containing water
JP2007270255A (en) 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using copper powder
JP2008115429A (en) 2006-11-06 2008-05-22 Sumitomo Metal Mining Co Ltd Method for recovering silver in hydrometallurgical copper refining process
JP2012188755A (en) 2011-02-24 2012-10-04 Mitsubishi Materials Corp Treating method for bromic acid aqueous solution containing platinum group element
JP2013177663A (en) 2012-02-29 2013-09-09 Hyogo Prefecture Method for recovering metal, composite material, and apparatus for recovering metal
JP2013204137A (en) 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Method for recovering ruthenium
JP2019147990A (en) 2018-02-27 2019-09-05 Jx金属株式会社 Method of recovering ruthenium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131745A (en) 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd Method of separating and recovering platinum group element
JP2006274397A (en) 2005-03-30 2006-10-12 Nikko Kinzoku Kk Purification method of zinc concentrate decoction
JP2006334492A (en) 2005-06-01 2006-12-14 Dowa Holdings Co Ltd Method for treating selenium-containing water
JP2007270255A (en) 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using copper powder
JP2008115429A (en) 2006-11-06 2008-05-22 Sumitomo Metal Mining Co Ltd Method for recovering silver in hydrometallurgical copper refining process
JP2012188755A (en) 2011-02-24 2012-10-04 Mitsubishi Materials Corp Treating method for bromic acid aqueous solution containing platinum group element
JP2013177663A (en) 2012-02-29 2013-09-09 Hyogo Prefecture Method for recovering metal, composite material, and apparatus for recovering metal
JP2013204137A (en) 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Method for recovering ruthenium
JP2019147990A (en) 2018-02-27 2019-09-05 Jx金属株式会社 Method of recovering ruthenium

Also Published As

Publication number Publication date
JP2022021190A (en) 2022-02-02

Similar Documents

Publication Publication Date Title
JP4642796B2 (en) Gold leaching method
JP6994983B2 (en) How to recover ruthenium
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7206142B2 (en) Method for separating and recovering valuable metals
US4662938A (en) Recovery of silver and gold
JP7423467B2 (en) Ruthenium recovery method
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
EP3575420A1 (en) Bismuth purification method
JP7198172B2 (en) Method for treating solution containing selenosulfuric acid
EP1577408B1 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP7337209B2 (en) Iridium recovery method
JP6994984B2 (en) How to recover ruthenium
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP2019073768A (en) Method of recovering tellurium
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP7423479B2 (en) Ruthenium recovery method
JP2022088124A (en) Copper-coated iron powder, copper-coated iron powder producing method and ruthenium recovering method
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6882095B2 (en) Method for recovering precipitates containing platinum group elements
JP6835577B2 (en) How to collect valuables
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP7498137B2 (en) Method for separating ruthenium and iridium
JP7198036B2 (en) Selenium production method
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP7498138B2 (en) How to Collect Iridium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R151 Written notification of patent or utility model registration

Ref document number: 7423467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151