JP7198172B2 - Method for treating solution containing selenosulfuric acid - Google Patents
Method for treating solution containing selenosulfuric acid Download PDFInfo
- Publication number
- JP7198172B2 JP7198172B2 JP2019141756A JP2019141756A JP7198172B2 JP 7198172 B2 JP7198172 B2 JP 7198172B2 JP 2019141756 A JP2019141756 A JP 2019141756A JP 2019141756 A JP2019141756 A JP 2019141756A JP 7198172 B2 JP7198172 B2 JP 7198172B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- selenosulfuric
- selenium
- solution containing
- treating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、セレノ硫酸を含有する溶液の処理方法に関する。 The present invention relates to a method for treating solutions containing selenosulfuric acid.
セレンは銅製錬の副産物としてそのほとんどが生産されている。銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において純度99.99%以上の電気銅を生産する。セレンは電解精製時にスライムとして沈殿する。 Selenium is mostly produced as a by-product of copper smelting. In copper pyrometallurgical refining, copper concentrate is melted, converted into 99% or higher blister copper in a converter and a refining furnace, and then refined copper with a purity of 99.99% or higher is produced in an electrolytic refining process. Selenium precipitates as slime during electrorefining.
このスライムには貴金族類、希少金属も同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離-回収される。湿式製錬法では、一度酸に溶解して、まず金と銀を分離する。その後に、セレンは適当な還元剤を用いて単体セレンとして沈殿物として回収する(特許文献1)。 Noble metals and rare metals are also concentrated in this slime at the same time. These elements are separately separated and recovered as copper smelting by-products. In the hydrometallurgical process, gold and silver are first separated by dissolving them in acid. Thereafter, selenium is recovered as a precipitate as elemental selenium using a suitable reducing agent (Patent Document 1).
単体セレンは亜硫酸と反応し、セレノ硫酸として溶解することが知られている(非特許文献1)。上記回収沈殿に含まれる単体セレンを除けば、白金族元素やテルルの含有率が上がり、精製工程の負荷が減る。しかしながら、除いたセレノ硫酸の工業的な処理方法は確立されていない。 It is known that elemental selenium reacts with sulfurous acid and dissolves as selenosulfuric acid (Non-Patent Document 1). By removing the elemental selenium contained in the recovered precipitate, the contents of platinum group elements and tellurium are increased, and the load of the refining process is reduced. However, an industrial treatment method for the removed selenosulfuric acid has not been established.
セレノ硫酸溶液は、単体セレンに分解後に固液分離することで処理している。特許文献2には排水中のセレンをpH1.2以下に調整し、加温してエアレーションする方法が示されている。また、非特許文献2にはpH調整とバリウム塩による沈殿除去法が示されている。当該方法は、熱分解と平衡反応を利用する方法で、セレノ硫酸の濃度が0.3g/L以下の溶液を対象としている。そのため、セレノ硫酸濃度が高くなったとき、たとえば10g/L以上の液を対象とする時には平衡反応で排出基準以下までセレン濃度を下げることは困難である。 The selenosulfuric acid solution is treated by solid-liquid separation after decomposition into elemental selenium. Patent Literature 2 discloses a method of adjusting selenium in wastewater to pH 1.2 or less and heating and aerating the wastewater. In addition, Non-Patent Document 2 discloses a precipitation removal method using pH adjustment and barium salt. This method utilizes thermal decomposition and equilibrium reaction, and is intended for solutions with a concentration of selenosulfuric acid of 0.3 g/L or less. Therefore, when the concentration of selenosulfuric acid becomes high, for example, when a liquid having a concentration of 10 g/L or more is used, it is difficult to reduce the concentration of selenium to below the discharge standard by an equilibrium reaction.
非特許文献2に示されているバリウム塩による亜硫酸イオン沈殿も平衡反応であり、平衡定数は小さくなるため効果は高いが、基準濃度以下までセレン濃度を低減するのは困難である。また、高濃度のセレノ硫酸溶液を対象とした時には、バリウムイオンの費用が大きくなる。さらには硫酸イオンや炭酸イオンが混在している系ではバリウムイオンが沈殿してしまうため、膨大な量の塩化バリウムが必要となる。 The sulfite ion precipitation by barium salt shown in Non-Patent Document 2 is also an equilibrium reaction, and the effect is high because the equilibrium constant is small, but it is difficult to reduce the selenium concentration to below the reference concentration. Also, when a high-concentration selenosulfuric acid solution is targeted, the cost of barium ions increases. Furthermore, in a system in which sulfate ions and carbonate ions are mixed, barium ions precipitate, so a huge amount of barium chloride is required.
セレノ硫酸はその詳細な性質が知られておらず、その適切な処理には開発の余地がある。 The detailed properties of selenosulfuric acid are not known, and there is room for development in its proper treatment.
そこで、本発明の実施形態は、低コストでセレノ硫酸を含有する溶液から単体セレンを沈殿分離することができるセレノ硫酸を含有する溶液の処理方法を提供することを課題とする。 Accordingly, an object of the present invention is to provide a method for treating a solution containing selenosulfuric acid, which is capable of precipitating and separating elemental selenium from a solution containing selenosulfuric acid at low cost.
本発明の実施形態は、以下のように特定される。
(1)セレノ硫酸を含有する溶液に酸を添加してセレンを析出させ、さらに還元剤を添加してセレンを沈殿させる工程を有することを特徴とするセレノ硫酸を含有する溶液の処理方法。
(2)前記セレンを析出させる時の酸添加量が、前記セレン沈殿後の最終液のpHが0.5以下となる量であることを特徴とする(1)のセレノ硫酸を含有する溶液の処理方法。
(3)前記セレノ硫酸を含有する溶液に添加する酸が、塩酸又は硫酸であり、酸投入後の前記溶液の酸濃度を1N以上に調整することを特徴とする(1)又は(2)のセレノ硫酸を含有する溶液の処理方法。
(4)前記セレノ硫酸を含有する溶液を70℃以上に加温した状態で、前記酸の添加及び前記還元剤の添加を行うことで、セレンを黒色セレンとして沈殿させることを特徴とする(1)~(3)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(5)前記セレノ硫酸を含有する溶液を50℃以下に調整した状態で、前記酸の添加及び前記還元剤の添加を行うことで、セレンを赤色セレンとして沈殿させることを特徴とする(1)~(3)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(6)前記還元剤が、二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、鉄(II)塩、チオ尿素、アセトン及び卑金属からなる群から選択される少なくとも一種を含むことを特徴とする(1)~(5)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(7)前記セレノ硫酸を含有する溶液は、セレンを0.1g/L以上含むことを特徴とする(1)~(6)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(8)前記還元剤を添加する前に、前記セレノ硫酸を含有する溶液は、前記酸の添加により銀/塩化銀を参照電極とした酸化還元電位が200mV以上に調整されていることを特徴とする(1)~(7)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(9)セレノ硫酸を含有する溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であることを特徴とする(1)~(8)のいずれかのセレノ硫酸を含有する溶液の処理方法。
(10)前記セレノ硫酸を含有する溶液を、銅製錬工程中の電解スライム処理工程における亜セレン酸含有液から、セレンを還元回収する槽へ投入して、前記酸の添加及び前記還元剤の添加を行うことを特徴とする(1)~(9)のいずれかのセレノ硫酸を含有する溶液の処理方法。
Embodiments of the invention are specified as follows.
(1) A method for treating a solution containing selenosulfuric acid, comprising the steps of adding an acid to a solution containing selenosulfuric acid to precipitate selenium, and further adding a reducing agent to precipitate selenium.
(2) The solution containing selenosulfuric acid according to (1), wherein the amount of acid added when precipitating the selenium is such that the pH of the final solution after the precipitation of selenium is 0.5 or less. Processing method.
(3) The method of (1) or (2), wherein the acid added to the solution containing selenosulfuric acid is hydrochloric acid or sulfuric acid, and the acid concentration of the solution after adding the acid is adjusted to 1 N or more. A method for treating a solution containing selenosulfuric acid.
(4) Selenium is precipitated as black selenium by adding the acid and the reducing agent while the solution containing selenosulfuric acid is heated to 70° C. or higher (1 A method for treating a solution containing selenosulfuric acid according to any one of ) to (3).
(5) Selenium is precipitated as red selenium by adding the acid and the reducing agent while the solution containing selenosulfuric acid is adjusted to 50° C. or lower (1) A method for treating a solution containing selenosulfuric acid according to any one of (3).
(6) The reducing agent contains at least one selected from the group consisting of sulfur dioxide, sodium sulfite, sodium hydrogen sulfite, iron (II) salt, thiourea, acetone and base metals (1)- A method for treating a solution containing selenosulfuric acid according to any one of (5).
(7) The method for treating a solution containing selenosulfuric acid according to any one of (1) to (6), wherein the solution containing selenosulfuric acid contains 0.1 g/L or more of selenium.
(8) Before adding the reducing agent, the selenosulfuric acid-containing solution is adjusted to have an oxidation-reduction potential of 200 mV or more with silver/silver chloride as a reference electrode by adding the acid. A method for treating a solution containing selenosulfuric acid according to any one of (1) to (7).
(9) The solution containing selenosulfuric acid is a solution obtained by adding sodium sulfite to the solution containing selenium in the electrolytic slime treatment process in the copper smelting process (1) to (8) A method for treating a solution containing selenosulfuric acid according to any one of
(10) The solution containing selenosulfuric acid is put into a tank for reducing and recovering selenium from the selenous acid-containing liquid in the electrolytic slime treatment process in the copper smelting process, and the acid is added and the reducing agent is added. The method for treating a solution containing selenosulfuric acid according to any one of (1) to (9), characterized in that
本発明の実施形態によれば、低コストでセレノ硫酸を含有する溶液から単体セレンを沈殿分離することができるセレノ硫酸を含有する溶液の処理方法を提供することができる。 According to an embodiment of the present invention, it is possible to provide a method for treating a solution containing selenosulfuric acid, which is capable of precipitating and separating elemental selenium from a solution containing selenosulfuric acid at low cost.
[セレノ硫酸を含有する溶液]
非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解スライムはセレンを5~15wt%程度含有する。電解スライム中のセレンの一部は単体セレンであるが、ほとんどは金属と化合物を形成している。塩酸と過酸化水素を添加してこの電解スライムを溶解するが、浸出貴液(PLS)には貴金属元素、希少金属元素、セレン、テルルが分配する。
[Solution containing selenosulfuric acid]
Electrolytic slime generated in the electrorefining process of non-ferrous metal smelting, especially copper smelting, contains about 5 to 15 wt % of selenium. Some of the selenium in the electrolytic slime is elemental selenium, but most of it forms compounds with metals. Hydrochloric acid and hydrogen peroxide are added to dissolve this electrolytic slime, and precious metal elements, rare metal elements, selenium, and tellurium are distributed in the pregnant leach liquor (PLS).
浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。然る後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 Precious leach liquor (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into the organic phase by solvent extraction. A widely used extractant for gold is dibutyl carbitol (DBC).
金を抽出した後のPLSを還元すれば有価物は沈殿-回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決定されている。すなわち、初めに白金属類、次にセレンやテルルといったカルコゲン、さらに不活性貴金属類が沈殿する。 Valuables can be precipitated and recovered by reducing PLS after extracting gold, but the order of precipitation is naturally determined because the oxidation-reduction potential differs depending on the element. That is, first platinum metals, then chalcogens such as selenium and tellurium, and then inert noble metals are precipitated.
還元剤は亜硫酸、亜硫酸塩、二酸化硫黄等の水溶性硫黄酸化物が価格と効率の面から利用され、とりわけ、二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。 Water-soluble sulfur oxides such as sulfurous acid, sulfites, and sulfur dioxide are used as reducing agents because of their cost and efficiency. In particular, sulfur dioxide can be supplied in large quantities and at low cost through converter gas and roasting of sulfide ore. optimal.
二酸化硫黄で金抽出後液を還元した時、まず白金族類が沈殿するがセレンが大量に混入する。含有量にもよるが重量として白金族の0.8~2倍程度のセレンが混入する。セレンの混入を抑制するために二酸化硫黄供給量を減らすと白金族類の回収量が低下するジレンマがある。程度の差があるが他の還元剤を使用してもセレンの混入は避けられない。 When the solution after gold extraction is reduced with sulfur dioxide, platinum group compounds are first precipitated, but a large amount of selenium is mixed. Depending on the content, about 0.8 to 2 times the weight of selenium of the platinum group is mixed. There is a dilemma in that if the amount of sulfur dioxide supplied is reduced in order to suppress the contamination of selenium, the recovery amount of platinum group compounds will decrease. Selenium contamination is unavoidable even when other reducing agents are used to varying degrees.
白金族分離後、二酸化硫黄によりセレンを単体セレンとして還元沈殿する。このとき、セレンのみを選択的に回収するためにセレンの回収率を犠牲にして、セレン3~5g/Lに達すると還元を停止する。回収した単体セレンは蒸留してさらに高純度セレンまで精製される。 After separation of the platinum group, selenium is reduced and precipitated as elemental selenium by sulfur dioxide. At this time, the reduction is stopped when 3 to 5 g/L of selenium is reached at the expense of the selenium recovery rate in order to selectively recover only selenium. The collected elemental selenium is distilled and refined to high-purity selenium.
残液に再度二酸化硫黄を供給して残セレンとテルル、その他希少金属類を回収する。ここで回収される沈殿物中のセレンはテルルの重量の0.5~3倍と高い。 Sulfur dioxide is supplied again to the residual liquid to recover residual selenium, tellurium and other rare metals. The selenium in the precipitate recovered here is as high as 0.5 to 3 times the weight of tellurium.
白金族類ならびにテルルと単体セレンを分離する方法として、亜硫酸イオンとセレンを反応させてセレノ硫酸として分離する方法がある。テルル、白金族は亜硫酸イオンとほとんど反応しないので残滓として溶け残る。テルルが二酸化テルルとして含まれる場合は亜硫酸イオンと接触させる前にアルカリ液で溶出すればテルルのみを回収できる。 As a method for separating platinum group metals, tellurium, and elemental selenium, there is a method for separating selenosulfuric acid by reacting sulfite ions with selenium. Since tellurium and platinum group metals hardly react with sulfite ions, they remain dissolved as residues. When tellurium is contained as tellurium dioxide, only tellurium can be recovered by elution with an alkaline solution before contact with sulfite ions.
残滓として濃縮された白金族やテルルは酸溶解してさらに精製される。予め単体セレンを分離しておくとこの酸溶解に使用する試薬量が大幅に減る。また溶解液に含まれる白金族やテルルの濃度が高くなるので工程の負荷が小さくなる。 Platinum group metals and tellurium concentrated as residues are further purified by acid dissolution. Preliminary separation of elemental selenium greatly reduces the amount of reagents used for this acid dissolution. In addition, since the concentration of platinum group metals and tellurium contained in the solution is increased, the process load is reduced.
[セレノ硫酸を含有する溶液の処理方法]
上述のようにして分離したセレノ硫酸を含有する溶液は、0.1g/L以上のセレン、典型的には数g/L~数十g/Lのセレンを含む。このセレノ硫酸はセレンを高濃度、高純度で含む液であり、処理してセレンを回収する。排出するにしても排出基準以下までセレン濃度を低下させることが求められる。
[Method for treating solution containing selenosulfuric acid]
The selenosulfuric acid-containing solution separated as described above contains 0.1 g/L or more of selenium, typically several g/L to several tens of g/L of selenium. This selenosulfuric acid is a liquid containing selenium at high concentration and high purity, and is treated to recover selenium. Even if it is discharged, it is required to reduce the selenium concentration to below the discharge standard.
セレノ硫酸を含有する溶液はpH8.5以上のアルカリ性を示す。アルカリ性ではセレノ硫酸は安定に存在する。これは下記式1に示す平衡により説明される。 A solution containing selenosulfuric acid exhibits an alkaline pH of 8.5 or higher. Selenosulfuric acid is stable in alkalinity. This is explained by the equilibrium shown in Equation 1 below.
SeSO3 2-+2H+ ⇔ H2SO3+Se ⇔ H2O+SO2+Se (式1) SeSO 3 2- +2H + <-> H2SO3 +Se <-> H2O + SO2 + Se (Formula 1)
まずはこの平衡を右に進行させるために酸を添加する。酸化性の酸は生成したセレンを亜セレン酸に酸化して溶解してしまう。そのため硫酸もしくは塩酸が好ましい。酸の添加量は特許文献2ではpH1.2以下に達するまでとされているが、セレンを析出させる時の酸添加量が、セレン沈殿後の最終液のpHが0.5以下となる量であるのが好ましく、さらには酸濃度1N以上に達するまで添加することが好ましい。このように、本発明のセレノ硫酸を含有する溶液の処理方法では、まず、酸濃度を上げてセレノ硫酸を分解して単体セレンと亜セレン酸に変える。次に、亜セレン酸を、還元剤を用いて反応させる。当該反応では、前段の亜セレン酸の分解での酸濃度が重要であり、前述のように酸濃度が最終的にpH0.5以下になっていればセレンが良好に沈殿する。 First, acid is added to push this equilibrium to the right. The oxidizing acid oxidizes the generated selenium to selenous acid and dissolves it. Sulfuric acid or hydrochloric acid is therefore preferred. Patent Document 2 states that the amount of acid added is until the pH reaches 1.2 or less. More preferably, the acid is added until the acid concentration reaches 1N or higher. Thus, in the method of treating a solution containing selenosulfuric acid according to the present invention, first, the acid concentration is increased to decompose selenosulfuric acid into elemental selenium and selenous acid. The selenous acid is then reacted with a reducing agent. In this reaction, the acid concentration in the decomposition of selenous acid in the first stage is important, and as described above, selenium is well precipitated if the acid concentration is finally pH 0.5 or less.
溶液の温度は高い方が良い。特許文献2でも60℃以上との記述がある。上記式1からわかるように、平衡を右に進めるには温度を上げて二酸化硫黄の溶解度を低下させるとよい。二酸化硫黄の溶解度の低下の割合は60℃を超えると大きな変化が無くなるので60℃以上とすることが好ましい。 The higher the temperature of the solution, the better. Patent Document 2 also has a description of 60° C. or higher. As can be seen from Eq. 1 above, increasing the temperature to decrease the solubility of sulfur dioxide will help push the equilibrium to the right. If the rate of decrease in the solubility of sulfur dioxide exceeds 60°C, there is no significant change, so it is preferable to set the solubility to 60°C or higher.
エアレーションにより液中に溶け込んでいる二酸化硫黄を揮散させると単体セレンの沈殿効率が上がる。またエアレーションにより亜硫酸が酸化される効果もある。特に空気の供給速度は指定されない。 Volatilizing the sulfur dioxide dissolved in the liquid by aeration increases the precipitation efficiency of elemental selenium. Aeration also has the effect of oxidizing sulfurous acid. No particular air supply speed is specified.
セレノ硫酸は酸分解のみでセレンの排出基準濃度以下まで下げる事は困難である。上記式1の平衡があるため過剰に酸を添加しなければならず、その過剰な酸の処理が必要であることと、もう一つにはセレノ硫酸分解の副反応として亜セレン酸が生じるためである。 It is difficult to lower the concentration of selenosulfuric acid to below the emission standards for selenium only by acid decomposition. An excess of acid must be added due to the equilibrium of formula 1 above, and the excess acid must be treated. Second, selenite is produced as a side reaction of selenosulfuric acid decomposition is.
セレノ硫酸はH2SeSO3と化学式で示され、Seは(-II)価でSは(VI)価とされるが分光学的証拠は示されていない。見方を変えるとSeとH2OがとSO2の硫黄原子上に配位結合していると見ることも出来る。 Selenosulfuric acid is represented by the chemical formula H 2 SeSO 3 , where Se is (-II) valence and S is (VI) valence, but no spectroscopic evidence is given. From a different point of view, it can be seen that Se and H 2 O are coordinated on the sulfur atom of SO 2 .
SO2分子では硫黄元素は部分的に正電荷を帯びており、酸性条件下ではセレン原子から電子を引き抜く。さらにこのセレン原子が加水分解を受ければ亜セレン酸まで酸化されることは可能である。一部のセレノ硫酸がこの副反応を起こせばセレノ硫酸の最終分解形態は単体セレンと亜セレン酸になる。 In the SO2 molecule, the sulfur element is partially positively charged and under acidic conditions pulls electrons from the selenium atom. Furthermore, if this selenium atom undergoes hydrolysis, it is possible to be oxidized to selenous acid. If a part of selenosulfuric acid undergoes this side reaction, the final decomposition form of selenosulfuric acid becomes elemental selenium and selenous acid.
亜セレン酸を単体セレンまで還元するには上述の酸性条件下で還元剤を添加する。還元剤は二酸化硫黄、亜硫酸とその塩、ケトン、卑金属、鉄(II)塩、硫化水素、チオ尿素、チオシアン等が挙げられる。価格面では二酸化硫黄、亜硫酸とその塩(亜硫酸ナトリウム、亜硫酸水素ナトリウムなど)、アセトン、硫酸鉄(II)7水和物が好ましい。 To reduce selenous acid to elemental selenium, a reducing agent is added under the acidic conditions described above. Reducing agents include sulfur dioxide, sulfurous acid and its salts, ketones, base metals, iron (II) salts, hydrogen sulfide, thiourea, thiocyanate, and the like. Sulfur dioxide, sulfurous acid and its salts (sodium sulfite, sodium hydrogen sulfite, etc.), acetone, and iron (II) sulfate heptahydrate are preferred in terms of price.
上記式1に従うとセレノ硫酸酸分解時に二酸化硫黄を生じる。この一部は亜セレン酸を還元して単体セレンを生じる。使用する還元剤の量を抑制するには還元剤の投入は酸分解後に行うことが好ましい。加えて早期に亜硫酸系の還元剤を投入すると、上記式1の平衡があるので二酸化硫黄の濃度が増え反応効率が落ちる恐れがある。 According to the above formula 1, sulfur dioxide is produced during selenosulfate acid decomposition. A portion of this reduces selenite to yield elemental selenium. In order to suppress the amount of the reducing agent to be used, it is preferable to add the reducing agent after the acid decomposition. In addition, if the sulfite-based reducing agent is added early, there is a possibility that the concentration of sulfur dioxide will increase and the reaction efficiency will decrease due to the equilibrium of the above equation (1).
セレノ硫酸の処理は60℃以上が好ましいことは上述した。しかしながら60℃では生成したセレンが不定形セレンとなり反応槽や撹拌機に固着する恐れがある。そのため70℃以上に加温した状態で酸分解、ならびに還元剤添加を行うことが好ましい。このとき、セレンを黒色セレンとして単体セレンを回収できる。 As described above, the selenosulfuric acid treatment is preferably performed at 60° C. or higher. However, at 60° C., the selenium produced becomes amorphous selenium and may adhere to the reaction vessel or stirrer. Therefore, it is preferable to carry out the acid decomposition and the addition of the reducing agent while heating to 70° C. or higher. At this time, elemental selenium can be recovered by converting selenium into black selenium.
50℃以下で酸分解、ならびに還元剤添加を行うと赤色セレンとして単体セレンを回収できる。 Single selenium can be recovered as red selenium by acid decomposition and addition of a reducing agent at 50°C or less.
セレノ硫酸の酸分解はORP(酸化還元電位、参照電極Ag/AgCl)で終点を定めることができる。セレノ硫酸を含有する溶液は、酸の添加によりAg/AgClを参照電極とした酸化還元電極電位が200mV以上に調整されているのが好ましい。440mV以上を示した時、亜セレン酸が支配種になるので酸の投入はほとんど効果が無くなる。この時に還元剤を投入すれば効果的に単体セレンを沈殿できる。亜セレン酸を還元する試薬は各種金属類、亜硫酸とその塩、二酸化硫黄、硫化水素、鉄(II)塩、チオ尿素等が知られている。 The acid decomposition of selenosulfuric acid can be terminated by ORP (oxidation-reduction potential, reference electrode Ag/AgCl). The solution containing selenosulfuric acid is preferably adjusted to have a redox electrode potential of 200 mV or more with Ag/AgCl as a reference electrode by addition of acid. When it shows 440 mV or more, selenous acid becomes the dominant species and the addition of acid becomes almost ineffective. If a reducing agent is added at this time, simple selenium can be effectively precipitated. Various metals, sulfurous acid and its salts, sulfur dioxide, hydrogen sulfide, iron (II) salts, thiourea, etc. are known as reagents for reducing selenous acid.
還元剤の添加でもセレンの除去が不完全な時は公知の亜セレン酸沈殿方法をセレン除去方法として使用できる。具体的には鉄共沈法や金属セメンテーション、樹脂吸着法が挙げられる。 When selenium is incompletely removed even with the addition of a reducing agent, a known selenite precipitation method can be used as a selenium removal method. Specific examples include iron coprecipitation, metal cementation, and resin adsorption.
本発明の実施形態は特に銅製錬における電解精製工程で発生するスライム処理工程で生じるセレン含有物から得たセレノ硫酸を含有する溶液に好適である。すなわち、セレノ硫酸を含有する溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であってもよい。また、セレノ硫酸を含有する溶液を、銅製錬工程中の電解スライム処理工程における亜セレン酸含有液から、セレンを還元回収する槽へ投入して、酸の添加及び還元剤の添加を行うことができる。 Embodiments of the present invention are particularly suitable for solutions containing selenosulfuric acid obtained from selenium-containing material generated in the slime treatment process generated in the electrorefining process in copper smelting. That is, the selenosulfuric acid-containing solution may be a solution obtained by adding sodium sulfite to a selenium-containing solution in the electrolytic slime treatment process during the copper smelting process. Alternatively, a solution containing selenosulfuric acid may be introduced into a tank for reducing and recovering selenium from a selenous acid-containing liquid in the electrolytic slime treatment process in the copper smelting process, and the acid and the reducing agent may be added. can.
以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention are described below, but the examples are for illustrative purposes and are not intended to limit the invention.
銅製錬から回収された電解スライムに濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLSを得た。次に、PLSを6℃まで冷却して卑金属分を沈殿除去した。次に、DBC(ジブチルカルビトール)とPLSを混合して金を抽出した。 Concentrated hydrochloric acid and 60% hydrogen peroxide solution were added to the electrolytic slime recovered from copper smelting to dissolve it, followed by solid-liquid separation to obtain PLS. The PLS was then cooled to 6° C. to precipitate and remove base metals. Next, gold was extracted by mixing DBC (dibutyl carbitol) and PLS.
金抽出後のPLSを70℃に加温し、銅製錬転炉排ガスを吹き込んで貴金属を還元し、固液分離して貴金属含有滓を得た。貴金属分離後液に、さらに二酸化硫黄と空気の混合ガス(5~20vol%)を1.2L/分程度で吹き込んで、セレンを沈殿させ、固液分離した。セレン分離後液に、さらに二酸化硫黄と空気の混合ガスを吹き込んでテルル含有残滓を得た。
貴金属含有滓に等重量の亜硫酸ナトリウムを添加し、1g/LのNaOH溶液200mlを注ぎ、50℃で30分加熱した。次に、5Cのろ紙で濾過して貴金属含有滓由来セレノ硫酸含有水溶液を得た。
次に、テルル含有残滓10gにつき10g/LのNaOH溶液100mlを注ぎ20℃で30分撹拌した。濾別後に固体分を分離し、量り取ったテルル含有残滓に等重量の亜硫酸ナトリウムを添加し、1g/LのNaOH溶液200mlを注ぎ、50℃で30分加熱した。次に、5Cのろ紙で濾過してテルル含有滓由来セレノ硫酸含有水溶液を得た。
The PLS after the gold extraction was heated to 70° C., and copper smelting converter exhaust gas was blown into the PLS to reduce the noble metals. A mixed gas of sulfur dioxide and air (5 to 20 vol %) was further blown into the liquid after noble metal separation at about 1.2 L/min to precipitate selenium and perform solid-liquid separation. A mixed gas of sulfur dioxide and air was further blown into the liquid after selenium separation to obtain a tellurium-containing residue.
An equal weight of sodium sulfite was added to the noble metal-containing slag, 200 ml of 1 g/L NaOH solution was poured and heated at 50° C. for 30 minutes. Next, it was filtered through a 5C filter paper to obtain an aqueous solution containing selenosulfuric acid derived from the slag containing precious metals.
Next, 100 ml of a 10 g/L NaOH solution was poured into 10 g of the tellurium-containing residue and stirred at 20° C. for 30 minutes. After filtering, the solid content was separated, an equal weight of sodium sulfite was added to the weighed tellurium-containing residue, 200 ml of 1 g/L NaOH solution was poured, and the mixture was heated at 50° C. for 30 minutes. Next, it was filtered through a 5C filter paper to obtain an aqueous solution containing selenosulfuric acid derived from the tellurium-containing slag.
(実験例1)
上述のテルル含有滓由来セレノ硫酸含有水溶液(Se濃度24.8g/L、Te濃度6.2g/L)を300ml量分取した。ただし、一部の実験は表1のように分取量を変えた。
次に、濃硫酸を15ml添加し、さらに表1に示す添加物を所定量添加し、表1の条件を設定した。
(Experimental example 1)
An amount of 300 ml of the selenosulfuric acid-containing aqueous solution (Se concentration: 24.8 g/L, Te concentration: 6.2 g/L) derived from the tellurium-containing slag was collected. However, in some experiments, fractional amounts were changed as shown in Table 1.
Next, 15 ml of concentrated sulfuric acid was added, and a predetermined amount of the additive shown in Table 1 was added, and the conditions shown in Table 1 were set.
次に、テルル含有滓由来セレノ硫酸含有水溶液を表1に示す温度に調製し、サンプルを15分毎に取った。表1に記載のエアレーションは熱帯魚飼育用ポンプで行った。1時間後に反応を停止し、pHを測定後、濾過した。ろ紙上は水で洗浄し、さらにアセトンで洗浄した。次に、アセトンを風乾後に50℃で一晩乾燥し、重量を測定した。
採取サンプルは濾過後に2ml分取した。予め過酸化水素2mlと硝酸1mlを添加した50mlメスフラスコに入れて規正し、ICP-OESで濃度を決定した。結果を表2に示す。
Next, the tellurium-containing slag-derived selenosulfuric acid-containing aqueous solution was prepared at the temperature shown in Table 1, and samples were taken every 15 minutes. Aeration described in Table 1 was performed with a pump for breeding tropical fish. After 1 hour, the reaction was stopped, and the pH was measured and filtered. The filter paper was washed with water and further washed with acetone. The acetone was then air-dried and then dried overnight at 50° C. and weighed.
A 2 ml sample was taken after filtration. It was placed in a 50 ml volumetric flask previously added with 2 ml of hydrogen peroxide and 1 ml of nitric acid, calibrated, and the concentration was determined by ICP-OES. Table 2 shows the results.
表2では、硫酸添加後に所定の温度に達した時を0分とした。すなわち矢印の始点が硫酸添加後の濃度であり、矢印の終点が反応終了時の濃度である。いずれも酸分解によりセレノ硫酸が分解したことが判る。pHは低い方がよく、最終的に0.5以下になるように酸を添加し、好ましくは0.4以下になるように酸を添加する。 In Table 2, the time when the predetermined temperature was reached after the addition of sulfuric acid was defined as 0 minutes. That is, the starting point of the arrow is the concentration after addition of sulfuric acid, and the end point of the arrow is the concentration at the end of the reaction. In both cases, it can be seen that selenosulfuric acid was decomposed by acid decomposition. The lower the pH, the better, and the acid is added so that the final pH becomes 0.5 or less, preferably 0.4 or less.
条件1と条件6を比較するとエアレーションは効果があることが判る。また条件2と条件3の結果から亜セレン酸が一部還元されていることが推察される。亜セレン酸を還元するものは亜硫酸の他なく、上記式1の平衡反応に従った結果であろう。貴金属分離後液には35g/L程度のセレンが亜セレン酸として含まれている。 A comparison of conditions 1 and 6 shows that aeration is effective. Also, from the results of conditions 2 and 3, it is inferred that selenous acid is partially reduced. The only thing that reduces selenite is sulfite, which would be the result of following the equilibrium reaction of Equation 1 above. The liquid after noble metal separation contains about 35 g/L of selenium as selenous acid.
(実験例2)
貴金属含有滓由来セレノ硫酸含有水溶液(Se濃度15.5g/L、pH8.9、ORP-183mV)を100ml量分取した。当該セレノ硫酸含有水溶液を表3に記載の温度に調整し、表3に記載の量の硫酸を添加した。硫酸を10ml以上添加する時は表3に記載の温度に達する前に硫酸を添加し撹拌した。添加後0分でサンプルを取りさらに15分と30分にサンプルをとった。30分後に反応を終了しpHとORPを測定した。pHが0.1を下回る場合は水酸化ナトリウム液で滴定して酸濃度を決めた。サンプルは濾過後に希釈してICP-OESでセレン濃度を測定した。
(Experimental example 2)
A 100 ml portion of an aqueous solution containing selenosulfuric acid (Se concentration: 15.5 g/L, pH: 8.9, ORP: 183 mV) derived from slag containing precious metals was taken. The selenosulfuric acid-containing aqueous solution was adjusted to the temperature shown in Table 3, and the amount of sulfuric acid shown in Table 3 was added. When adding 10 ml or more of sulfuric acid, the sulfuric acid was added and stirred before reaching the temperature shown in Table 3. A sample was taken at 0 minutes after addition and further samples were taken at 15 and 30 minutes. After 30 minutes, the reaction was terminated and pH and ORP were measured. Acid concentrations were determined by titration with sodium hydroxide solution when the pH was below 0.1. After filtration, the sample was diluted and measured for selenium concentration by ICP-OES.
表2の結果を踏まえると、酸の濃度が1.6Nに達するとほとんどのセレノ硫酸が分解されて単体セレンを生じると予想されるが、表3の結果ではセレンが多量に残留した。この違いは液中に含まれる亜テルル酸濃度の差であり、テルル滓由来液では亜テルル酸を含んでいるものの、貴金属由来液では亜テルル酸は勿論、その他の電子受容体が存在しない。明確な反応機構は不明であるが、ルイス酸の存在量の多寡が影響を与えることが推察される。 Based on the results in Table 2, it is expected that most of the selenosulfuric acid will be decomposed to produce elemental selenium when the acid concentration reaches 1.6 N, but the results in Table 3 show that a large amount of selenium remained. This difference is due to the difference in the concentration of tellurite contained in the liquid, and while the liquid derived from tellurium slag contains tellurite, the liquid derived from noble metals does not have tellurite or other electron acceptors. Although the definite reaction mechanism is unknown, it is presumed that the amount of Lewis acid present has an effect.
加えて硫酸を5ml以上添加した系ではORPが440mV以上と高い。ORPが440mV以上を示した分解後液にチオ尿素を添加したところ赤色セレンを生じた。これは亜セレン酸特有の反応であり、セレノ硫酸は酸分解により亜セレン酸を生じたことが判る。 In addition, in the system to which 5 ml or more of sulfuric acid was added, the ORP was as high as 440 mV or more. When thiourea was added to the post-decomposition liquid with an ORP of 440 mV or more, red selenium was produced. This is a reaction peculiar to selenous acid, and it can be seen that selenosulfuric acid produced selenous acid by acid decomposition.
(実験例3)
貴金属含有滓由来セレノ硫酸含有水溶液(Se濃度20.5g/L、pH8.9、ORP-183mV)を200ml量分取した。当該セレノ硫酸含有水溶液に表4に示す量の酸を添加し70℃に調整した。30分後にサンプルをとった。さらに表4に示す還元剤を添加し、60分撹拌した。還元ガスは亜硫酸水に亜硫酸塩と硫酸を混合し、エアレーションで生じる二酸化硫黄と空気の混合気体のことである。終了後にサンプルは濾過し、pHとORPを測定した。希塩酸で希釈してICP-OESでセレン濃度を測定した。
(Experimental example 3)
A 200 ml portion of an aqueous solution containing selenosulfuric acid (Se concentration 20.5 g/L, pH 8.9, ORP-183 mV) derived from slag containing precious metals was collected. The amount of acid shown in Table 4 was added to the selenosulfuric acid-containing aqueous solution, and the temperature was adjusted to 70°C. A sample was taken after 30 minutes. Further, a reducing agent shown in Table 4 was added and stirred for 60 minutes. The reducing gas is a mixed gas of sulfur dioxide and air produced by mixing sulfite and sulfuric acid with sulfite water and aeration. After completion, samples were filtered and pH and ORP were measured. After diluting with dilute hydrochloric acid, the selenium concentration was measured by ICP-OES.
実験条件20~23では効果的なセレンの除去が認められた。酸濃度を調製し、加熱することでセレノ硫酸のセレンは沈殿回収できるがさらに還元剤を添加することでセレン濃度を大きく減らすことが可能となる。 Effective selenium removal was observed in experimental conditions 20-23. By adjusting the acid concentration and heating, the selenium of selenosulfuric acid can be precipitated and recovered, but by adding a reducing agent, the selenium concentration can be greatly reduced.
硫酸で酸の添加が不十分な場合においても還元剤を添加すると効果がある。しかしながら、最終的な酸濃度をpH0.5以下に調整することが効果を増進させる。 Even when sulfuric acid is insufficiently added, the addition of a reducing agent is effective. However, adjusting the final acid concentration to pH 0.5 or less enhances the effect.
ORPで見た時、亜セレン酸の静止電位は480mVである。酸性領域で系内の支配種がセレノ硫酸イオンである時のORPは実験条件18に見られるように200mV程度である。よって還元剤を効率的に使用するにはORPは200mV以上になるまで酸を添加しておく。さらに好ましくは480mV以上にした後に還元剤を添加する。 The resting potential of selenite is 480 mV as viewed by ORP. The ORP is about 200 mV as seen in Experimental Condition 18 when the predominant species in the system is selenosulfate ion in the acidic region. Therefore, in order to use the reducing agent efficiently, the acid is added until the ORP reaches 200 mV or more. More preferably, the reducing agent is added after reaching 480 mV or higher.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019141756A JP7198172B2 (en) | 2019-07-31 | 2019-07-31 | Method for treating solution containing selenosulfuric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019141756A JP7198172B2 (en) | 2019-07-31 | 2019-07-31 | Method for treating solution containing selenosulfuric acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021023851A JP2021023851A (en) | 2021-02-22 |
JP7198172B2 true JP7198172B2 (en) | 2022-12-28 |
Family
ID=74663388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019141756A Active JP7198172B2 (en) | 2019-07-31 | 2019-07-31 | Method for treating solution containing selenosulfuric acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7198172B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7247049B2 (en) * | 2019-07-31 | 2023-03-28 | Jx金属株式会社 | Method for treating selenosulfuric acid solution |
JP7247050B2 (en) * | 2019-07-31 | 2023-03-28 | Jx金属株式会社 | Method for treating selenosulfuric acid solution |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169116A (en) | 1998-12-08 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Selectively leaching recovery process of selenium |
CN103723692A (en) | 2013-12-13 | 2014-04-16 | 金川集团股份有限公司 | Method for separating and extracting selenium from copper smelting wet process dust collection acid mud |
JP2015113267A (en) | 2013-12-13 | 2015-06-22 | 三菱マテリアル株式会社 | Separation/recovery method of tellurium |
JP2017145434A (en) | 2016-02-15 | 2017-08-24 | Jx金属株式会社 | Processing method of metal-containing acidic aqueous solution |
JP2017148728A (en) | 2016-02-24 | 2017-08-31 | 三菱重工メカトロシステムズ株式会社 | Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation facility comprising same |
JP2017218613A (en) | 2016-06-03 | 2017-12-14 | Jx金属株式会社 | Method of treating metal-containing acidic aqueous solution |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3786293B2 (en) * | 1995-08-21 | 2006-06-14 | ミヨシ油脂株式会社 | Method for recovering selenium from a solution containing selenium |
JPH0975954A (en) * | 1995-09-19 | 1997-03-25 | Mitsui Mining & Smelting Co Ltd | Method of removing seleno sulfate ion in selenium-containing waste solution |
JPH09279382A (en) * | 1996-04-17 | 1997-10-28 | Mitsui Mining & Smelting Co Ltd | Removing method of selenium from waste liquid containing selenium |
JPH10218611A (en) * | 1997-02-05 | 1998-08-18 | Sumitomo Metal Mining Co Ltd | Treatment of solution containing selenium |
-
2019
- 2019-07-31 JP JP2019141756A patent/JP7198172B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169116A (en) | 1998-12-08 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Selectively leaching recovery process of selenium |
CN103723692A (en) | 2013-12-13 | 2014-04-16 | 金川集团股份有限公司 | Method for separating and extracting selenium from copper smelting wet process dust collection acid mud |
JP2015113267A (en) | 2013-12-13 | 2015-06-22 | 三菱マテリアル株式会社 | Separation/recovery method of tellurium |
JP2017145434A (en) | 2016-02-15 | 2017-08-24 | Jx金属株式会社 | Processing method of metal-containing acidic aqueous solution |
JP2017148728A (en) | 2016-02-24 | 2017-08-31 | 三菱重工メカトロシステムズ株式会社 | Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation facility comprising same |
JP2017218613A (en) | 2016-06-03 | 2017-12-14 | Jx金属株式会社 | Method of treating metal-containing acidic aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
JP2021023851A (en) | 2021-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2636122C (en) | Process of leaching gold | |
JP4207959B2 (en) | Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same | |
JP7198079B2 (en) | Method for treating acidic liquids containing precious metals, selenium and tellurium | |
JP7198172B2 (en) | Method for treating solution containing selenosulfuric acid | |
JP7206142B2 (en) | Method for separating and recovering valuable metals | |
JP7337209B2 (en) | Iridium recovery method | |
JP2020105588A (en) | Treatment method of mixture containing noble metal, selenium and tellurium | |
JP7247050B2 (en) | Method for treating selenosulfuric acid solution | |
JP7423467B2 (en) | Ruthenium recovery method | |
JP7247049B2 (en) | Method for treating selenosulfuric acid solution | |
JP6882095B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP7005384B2 (en) | How to collect tellurium | |
JP3407600B2 (en) | Silver extraction and recovery method | |
JP2018044200A (en) | Method of treating metal-containing hydrochloric acidic liquid | |
JP2018044201A (en) | Method of treating metal-containing hydrochloric acidic liquid | |
JP6835577B2 (en) | How to collect valuables | |
JP6882110B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP6400047B2 (en) | Method for treating metal-containing acidic aqueous solution | |
JP2024031675A (en) | Method of recovering ruthenium and iridium | |
JP7498137B2 (en) | Method for separating ruthenium and iridium | |
JP7423479B2 (en) | Ruthenium recovery method | |
JP7198036B2 (en) | Selenium production method | |
JP6882081B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP2021143401A (en) | Recovery method of rhodium | |
JP2024031673A (en) | Method of recovering ruthenium and iridium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220916 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220916 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220927 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20221004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7198172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |