JP2024031675A - Method of recovering ruthenium and iridium - Google Patents
Method of recovering ruthenium and iridium Download PDFInfo
- Publication number
- JP2024031675A JP2024031675A JP2022135367A JP2022135367A JP2024031675A JP 2024031675 A JP2024031675 A JP 2024031675A JP 2022135367 A JP2022135367 A JP 2022135367A JP 2022135367 A JP2022135367 A JP 2022135367A JP 2024031675 A JP2024031675 A JP 2024031675A
- Authority
- JP
- Japan
- Prior art keywords
- ruthenium
- iridium
- arsenic
- sodium
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052707 ruthenium Inorganic materials 0.000 title claims abstract description 95
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 229910052741 iridium Inorganic materials 0.000 title claims abstract description 84
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000007788 liquid Substances 0.000 claims abstract description 92
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 49
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000000926 separation method Methods 0.000 claims abstract description 38
- 239000000243 solution Substances 0.000 claims abstract description 33
- 239000003929 acidic solution Substances 0.000 claims abstract description 20
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 15
- 150000002497 iodine compounds Chemical class 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 15
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims abstract description 15
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 claims abstract description 13
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 11
- 239000000706 filtrate Substances 0.000 claims abstract description 9
- 238000007664 blowing Methods 0.000 claims abstract description 7
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229940006280 thiosulfate ion Drugs 0.000 claims abstract description 6
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 5
- 230000001376 precipitating effect Effects 0.000 claims abstract description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract 2
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 63
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 229910052802 copper Inorganic materials 0.000 claims description 42
- 239000010949 copper Substances 0.000 claims description 42
- 239000002244 precipitate Substances 0.000 claims description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 34
- 230000002378 acidificating effect Effects 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 21
- -1 thiosulfate ions Chemical class 0.000 claims description 21
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000011084 recovery Methods 0.000 claims description 11
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 10
- 239000011630 iodine Substances 0.000 claims description 10
- 229910052740 iodine Inorganic materials 0.000 claims description 10
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 claims description 8
- NALMPLUMOWIVJC-UHFFFAOYSA-N n,n,4-trimethylbenzeneamine oxide Chemical compound CC1=CC=C([N+](C)(C)[O-])C=C1 NALMPLUMOWIVJC-UHFFFAOYSA-N 0.000 claims description 5
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 claims description 5
- 239000001230 potassium iodate Substances 0.000 claims description 5
- 235000006666 potassium iodate Nutrition 0.000 claims description 5
- 229940093930 potassium iodate Drugs 0.000 claims description 5
- 229960004839 potassium iodide Drugs 0.000 claims description 5
- 235000007715 potassium iodide Nutrition 0.000 claims description 5
- 239000011697 sodium iodate Substances 0.000 claims description 5
- 235000015281 sodium iodate Nutrition 0.000 claims description 5
- 229940032753 sodium iodate Drugs 0.000 claims description 5
- 235000009518 sodium iodide Nutrition 0.000 claims description 5
- 229940083599 sodium iodide Drugs 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 3
- 235000019345 sodium thiosulphate Nutrition 0.000 abstract description 5
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 13
- 239000011669 selenium Substances 0.000 description 11
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 229910052711 selenium Inorganic materials 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 150000001299 aldehydes Chemical class 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000003723 Smelting Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000005987 sulfurization reaction Methods 0.000 description 7
- 229910052714 tellurium Inorganic materials 0.000 description 7
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 6
- 239000010953 base metal Substances 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 238000000638 solvent extraction Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000005486 sulfidation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 3
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical class [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 2
- 229940006461 iodide ion Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 229910001927 ruthenium tetroxide Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- LZYIDMKXGSDQMT-UHFFFAOYSA-N arsenic dioxide Inorganic materials [O][As]=O LZYIDMKXGSDQMT-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- CABDFQZZWFMZOD-UHFFFAOYSA-N hydrogen peroxide;hydrochloride Chemical compound Cl.OO CABDFQZZWFMZOD-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IHYNKGRWCDKNEG-UHFFFAOYSA-N n-(4-bromophenyl)-2,6-dihydroxybenzamide Chemical compound OC1=CC=CC(O)=C1C(=O)NC1=CC=C(Br)C=C1 IHYNKGRWCDKNEG-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- CRWJEUDFKNYSBX-UHFFFAOYSA-N sodium;hypobromite Chemical compound [Na+].Br[O-] CRWJEUDFKNYSBX-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明はルテニウム及びイリジウムの回収方法に関する。 The present invention relates to a method for recovering ruthenium and iridium.
銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において例えば純度99.99%以上の電気銅を生産する。銅以外の有価物は電解精製時に殿物として沈殿する。 In copper pyrometallurgy, copper concentrate is melted and converted into blister copper with a purity of 99% or more in a converter or refining furnace, and then electrolytic copper with a purity of 99.99% or more is produced in an electrolytic refining process. Valuables other than copper precipitate as precipitates during electrolytic refining.
この殿物には貴金族類、希少金属、銅精鉱に含まれているセレンやテルル、ヒ素も同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。 Precious metals, rare metals, and selenium, tellurium, and arsenic contained in copper concentrate are also concentrated in this deposit. These elements are separately separated and recovered as copper smelting by-products.
この殿物の処理には湿式製錬法が適用される場合が多い。例えば特許文献1においては殿物から塩酸-過酸化水素により銀を回収し、溶解した金を溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留し、除去して貴金属類を濃縮する方法が開示されている。 A hydrometallurgical method is often applied to treat this precipitate. For example, Patent Document 1 discloses a method in which silver is recovered from a precipitate using hydrochloric acid-hydrogen peroxide, dissolved gold is recovered by solvent extraction, and other valuables are successively reduced and recovered using sulfur dioxide. Patent Document 2 discloses a method in which gold and silver are recovered in a similar manner, then valuable materials are reduced and precipitated with sulfur dioxide, and only selenium is distilled and removed to concentrate precious metals.
貴金属を回収した後の溶液には希少金属イオン、テルル、セレンが含まれており、さらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られている。 The solution after recovering the precious metals contains rare metal ions, tellurium, and selenium, and it is necessary to further recover these valuables. As a recovery method, there are known methods such as recovering the precipitate generated by the reducing agent, and mixing the whole solution with copper concentrate, drying it with a dryer, and repeating it in the smelting furnace.
とりわけ特許文献1に示されている、二酸化硫黄により生じた沈殿を回収する方法は、コストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。 In particular, the method shown in Patent Document 1 for recovering the precipitate caused by sulfur dioxide has many advantages in terms of cost and production scale. In addition, since each element is precipitated in sequence, it is effective for separation and purification.
二酸化硫黄を用いて有価物を回収する方法では、溶解後に順次有価物を還元して回収することができる。初めに白金、パラジウムが沈殿する。次にセレンが還元を受ける。イリジウム、ルテニウムは酸化還元電位(ORP)が比較的低いので還元を受け難く、最後まで溶液に残留する。イリジウムについては、特許文献3に記載されているように、溶媒抽出により分離、濃縮後に焼成して回収する方法が広く知られる。また、特許文献4には、イリジウムを含む有機溶媒にマグネシウム、アルミニウム、亜鉛、鉄、錫及び鉛から選ばれた卑金属及び鉱酸を添加し貴金属を還元させて沈殿させる方法が開示されている。 In the method of recovering valuable substances using sulfur dioxide, the valuable substances can be sequentially reduced and recovered after dissolution. First, platinum and palladium precipitate. Next, selenium undergoes reduction. Iridium and ruthenium have a relatively low oxidation-reduction potential (ORP), so they are difficult to undergo reduction and remain in the solution until the end. Regarding iridium, as described in Patent Document 3, a widely known method is to recover iridium by separating it by solvent extraction, concentrating it, and then baking it. Further, Patent Document 4 discloses a method in which a base metal selected from magnesium, aluminum, zinc, iron, tin, and lead and a mineral acid are added to an organic solvent containing iridium to reduce and precipitate the noble metal.
銅電解殿物を溶解した液中のイリジウム濃度は1~100mg/L程度である。イリジウムは高価な金属であるがこの程度の低濃度では溶媒抽出による製錬はコストに見合わない。さらに他の金属との分離効率、吸着や溶媒抽出を適用した時のストリップ効率も高くない。 The iridium concentration in the solution containing the copper electrolytic precipitate is about 1 to 100 mg/L. Iridium is an expensive metal, but at such low concentrations, smelting by solvent extraction is not cost effective. Furthermore, the separation efficiency from other metals and the stripping efficiency when applying adsorption or solvent extraction are also not high.
一方、ルテニウムを蒸留回収するにはNaBrO3等の強力な酸化剤を使用する。酸化剤の試薬コストも高く、銅電解殿物溶解液のような、ルテニウム濃度が50~200mg/L程度の希薄でかつ不純物の多い溶液からルテニウムを回収するには不向きな方法である。また蒸留の留分である四酸化ルテニウムは毒性が強く、蒸留で回収するには安全性の面で問題がある。 On the other hand, to recover ruthenium by distillation, a strong oxidizing agent such as NaBrO 3 is used. The reagent cost of the oxidizing agent is high, and this method is not suitable for recovering ruthenium from a dilute solution with a ruthenium concentration of about 50 to 200 mg/L and many impurities, such as a copper electrolyte solution. Furthermore, ruthenium tetroxide, which is a distillation fraction, is highly toxic and there are safety issues in recovering it by distillation.
亜鉛等の卑金属でセメンテーションする方法はイリジウムとルテニウムいずれにも有効な方法である。しかしながら、銅電解殿物由来の溶液に対しては卑金属によるセメンテーションでは共存するヒ素が猛毒のヒ化水素まで還元されて問題である。さらに溶液中の銅もセメンテーションを受けて混入してしまい、銅との分離工程が追加で必要になる。 Cementation with base metals such as zinc is effective for both iridium and ruthenium. However, for solutions derived from copper electrolytic precipitates, cementation with base metals is problematic because coexisting arsenic is reduced to highly toxic hydrogen arsenide. Furthermore, copper in the solution also undergoes cementation and gets mixed in, necessitating an additional separation step from the copper.
卑金属によるセメンテーションでは、回収率を上げるために多量の金属を使用することになる。強酸条件下では水素が短時間に集中的に発生して吹きこぼれる、もしくは静電気等により発生した水素が爆発する問題がある。また、他にセメンテーションを受ける元素も混在するため反応効率が低い。 Cementation with base metals requires the use of large amounts of metal to increase the recovery rate. Under strong acid conditions, there is a problem that hydrogen is generated intensively in a short period of time and boils over, or hydrogen generated due to static electricity, etc., explodes. In addition, the reaction efficiency is low because other elements that undergo cementation are also present.
イリジウムやルテニウムはその水酸化物が沈殿することが知られている。しかしながら、一般的な問題として強酸を中和するのであれば、アルカリ試薬のコストが大きい。また、ナトリウムイオンやアルカリ土類金属イオンは酸性条件下でも水に難溶性の硫酸塩を沈殿する。過量のアルカリで中和した時にはこの難溶性硫酸塩が製造設備の配管内に沈着して閉塞を起こすことが予想される。 It is known that the hydroxides of iridium and ruthenium precipitate. However, as a general problem, if strong acids are to be neutralized, the cost of alkaline reagents is high. Furthermore, sodium ions and alkaline earth metal ions precipitate sulfates that are sparingly soluble in water even under acidic conditions. When neutralized with an excessive amount of alkali, it is expected that this poorly soluble sulfate will deposit in the piping of the manufacturing equipment and cause blockage.
また、強酸性溶液から安価に効率よく低濃度のイリジウムとルテニウムを回収する方法は知られていない。 Furthermore, there is no known method for recovering low-concentration iridium and ruthenium from a strongly acidic solution at low cost and efficiently.
本発明はこのような従来の事情を鑑み、ルテニウム及びイリジウムを含む酸性液からルテニウム及びイリジウムを効率的に回収する方法を提供する。特に不純物としてヒ素が溶解しているルテニウム及びイリジウムを含む酸性液は、本発明のルテニウム及びイリジウムを含む酸性液として好対象である。 In view of such conventional circumstances, the present invention provides a method for efficiently recovering ruthenium and iridium from an acidic liquid containing ruthenium and iridium. In particular, an acidic liquid containing ruthenium and iridium in which arsenic is dissolved as an impurity is suitable as the acidic liquid containing ruthenium and iridium of the present invention.
上記課題は以下に特定される発明によって解決することができる。
すなわち本発明は以下の発明を包含する。
[1]ルテニウム及びイリジウムと、ヒ素と、を含む酸性液に、水溶性の無機ヨウ素化合物もしくは単体ヨウ素を添加し、更に二酸化硫黄または硫化水素を吹き込んで、或いは、アルデヒド類の還元剤を添加して、ヒ素を三価まで還元するヒ素還元工程と、
前記ヒ素還元工程で得られた酸性液を70℃以下に調整し、硫化水素もしくは水硫化ソーダをORP(酸化還元電極電位、参照電極Ag/AgCl)が150mV以下に達するまで添加して沈殿した硫化物を固液分離する不純物除去工程と、
前記不純物除去工程の後、濾液の液温を40℃以上に調整し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してルテニウム及びイリジウムを沈殿させるルテニウム及びイリジウム回収工程と、
を含む、ルテニウム及びイリジウムの回収方法。
[2]前記不純物除去工程において、前記ヒ素還元工程で沈殿物が生じた場合、固液分離した後、70℃以下に調整し、前記硫化水素もしくは水硫化ソーダをORPが150mV以下に達するまで添加する、[1]に記載のルテニウム及びイリジウムの回収方法。
[3]前記不純物除去工程と前記ルテニウム及びイリジウム回収工程との間に、更に、前記不純物除去工程で得られた濾液の液温を70℃以下に調整して金属鉄を0.5~5g/Lになるよう添加して、ルテニウムを選択的に沈殿させる工程を含む、[1]または[2]に記載のルテニウム及びイリジウムの回収方法。
[4]前記無機ヨウ素化合物は、ヨウ素、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ素酸カリウム及びヨウ素酸ナトリウムのいずれか一種以上であり、且つ、ヨウ化カリウムに換算したときに0.05g/L以上添加する、[1]~[3]のいずれかに記載のルテニウム及びイリジウムの回収方法。
[5]前記無機ヨウ素化合物は、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ素酸カリウム及びヨウ素酸ナトリウムのいずれか一種以上であり、且つ、前記酸性液に銅が溶解している場合、ヨウ化カリウムに換算したときに銅の0.05~4質量倍添加する、[1]~[4]のいずれかに記載のルテニウム及びイリジウムの回収方法。
[6]前記ヒ素還元工程において、前記ルテニウム及びイリジウムと、ヒ素と、を含む酸性液は、金属電解殿物を溶解後の酸性液である、[1]~[5]のいずれかに記載のルテニウム及びイリジウムの回収方法。
[7]前記ヒ素還元工程における前記酸性液中のイリジウム濃度が100mg/L以下であり、前記ルテニウム及びイリジウム回収工程では前記チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して5g/L以上になるように添加する、[1]~[6]のいずれかに記載のルテニウム及びイリジウムの回収方法。
The above problem can be solved by the invention specified below.
That is, the present invention includes the following inventions.
[1] A water-soluble inorganic iodine compound or elemental iodine is added to an acidic liquid containing ruthenium, iridium, and arsenic, and sulfur dioxide or hydrogen sulfide is further blown into the acidic liquid, or an aldehyde reducing agent is added. an arsenic reduction process to reduce arsenic to trivalent,
The acidic solution obtained in the arsenic reduction step was adjusted to 70°C or lower, and hydrogen sulfide or sodium hydrogen sulfide was added until ORP (redox electrode potential, reference electrode Ag/AgCl) reached 150 mV or lower to precipitate sulfide. an impurity removal process that separates substances from solid to liquid;
After the impurity removal step, a ruthenium and iridium recovery step of adjusting the liquid temperature of the filtrate to 40° C. or higher and adding a sodium thiosulfate salt or a solution containing thiosulfate ions to precipitate ruthenium and iridium;
A method for recovering ruthenium and iridium, including
[2] In the impurity removal step, if a precipitate is generated in the arsenic reduction step, after solid-liquid separation, the temperature is adjusted to 70 ° C. or lower, and the hydrogen sulfide or sodium hydrogen sulfide is added until ORP reaches 150 mV or lower. The method for recovering ruthenium and iridium according to [1].
[3] Between the impurity removal step and the ruthenium and iridium recovery step, the temperature of the filtrate obtained in the impurity removal step is further adjusted to 70°C or less to add 0.5 to 5 g/g of metallic iron. The method for recovering ruthenium and iridium according to [1] or [2], which includes the step of selectively precipitating ruthenium by adding L such that ruthenium becomes L.
[4] The inorganic iodine compound is one or more of iodine, potassium iodide, sodium iodide, potassium iodate, and sodium iodate, and has a content of 0.05 g/L or more when converted to potassium iodide. The method for recovering ruthenium and iridium according to any one of [1] to [3].
[5] The inorganic iodine compound is one or more of potassium iodide, sodium iodide, potassium iodate, and sodium iodate, and when copper is dissolved in the acidic liquid, potassium iodide The method for recovering ruthenium and iridium according to any one of [1] to [4], wherein ruthenium and iridium are added in an amount of 0.05 to 4 times the mass of copper when converted.
[6] In the arsenic reduction step, the acidic liquid containing ruthenium and iridium and arsenic is an acidic liquid after dissolving a metal electrolytic precipitate, according to any one of [1] to [5]. Method for recovering ruthenium and iridium.
[7] The iridium concentration in the acidic solution in the arsenic reduction step is 100 mg/L or less, and in the ruthenium and iridium recovery step, the sodium thiosulfate salt or thiosulfate ion-containing solution is converted into sodium thiosulfate pentahydrate. The method for recovering ruthenium and iridium according to any one of [1] to [6], wherein the ruthenium and iridium are added in an amount of 5 g/L or more.
本発明によれば、ルテニウム及びイリジウムを含む酸性液からルテニウム及びイリジウムを効率的に回収する方法を提供することができる。 According to the present invention, it is possible to provide a method for efficiently recovering ruthenium and iridium from an acidic liquid containing ruthenium and iridium.
次に本発明を実施するための形態を詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, a mode for carrying out the present invention will be described in detail. It is understood that the present invention is not limited to the following embodiments, and that design changes, improvements, etc. may be made as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. Should.
図1に、本発明の一実施形態を概略的に示すフロー図を示す。図1のフロー図は各工程について具体例を挙げており、本発明が当該フロー図のみに限定されるものではない。本発明の実施形態に係るルテニウム及びイリジウムの回収方法は、ルテニウム及びイリジウムと、ヒ素と、を含む酸性液に、水溶性の無機ヨウ素化合物もしくは単体ヨウ素を添加し、更に二酸化硫黄または硫化水素を吹き込んで、或いは、アルデヒド類の還元剤を添加して、ヒ素を三価まで還元するヒ素還元工程と、ヒ素還元工程で得られた酸性液を70℃以下に調整し、硫化水素もしくは水硫化ソーダをORP(酸化還元電極電位、参照電極Ag/AgCl)が150mV以下に達するまで添加して沈殿した硫化物を固液分離する不純物除去工程と、不純物除去工程の後、濾液の液温を40℃以上に調整し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してルテニウム及びイリジウムを沈殿させるルテニウム及びイリジウム回収工程と、を含む。 FIG. 1 shows a flow diagram schematically illustrating one embodiment of the invention. The flowchart in FIG. 1 gives specific examples for each step, and the present invention is not limited to the flowchart. A method for recovering ruthenium and iridium according to an embodiment of the present invention includes adding a water-soluble inorganic iodine compound or elemental iodine to an acidic liquid containing ruthenium and iridium and arsenic, and then blowing sulfur dioxide or hydrogen sulfide into the acidic liquid. Alternatively, an arsenic reduction step in which arsenic is reduced to trivalent by adding an aldehyde reducing agent, and the acidic liquid obtained in the arsenic reduction step is adjusted to 70°C or less, and hydrogen sulfide or sodium hydrogen sulfide is added. After the impurity removal step of solid-liquid separation of precipitated sulfide by adding until ORP (oxidation-reduction electrode potential, reference electrode Ag/AgCl) reaches 150 mV or less, and after the impurity removal step, the temperature of the filtrate is increased to 40°C or higher. and a ruthenium and iridium recovery step in which ruthenium and iridium are precipitated by adjusting the thiosulfate salt and adding a sodium thiosulfate salt or a thiosulfate ion-containing solution.
本発明の実施形態に係るルテニウム及びイリジウムの回収方法において、処理対象となる酸性液は、ヒ素、銅、鉛を不純物として含む時に有効であり、特に、銅製錬における電解精製工程で発生する電解殿物を酸化溶解して得られた酸性液は好対象である。本発明の実施形態に係るルテニウム及びイリジウムの回収方法は、廃棄物からのリサイクルにも適用することができる。すなわち、当該廃棄物の処理工程で生じた、ルテニウム及びイリジウムを含む酸性液をも対象とすることができる。 In the method for recovering ruthenium and iridium according to the embodiment of the present invention, the acidic liquid to be treated is effective when it contains arsenic, copper, and lead as impurities, and is particularly effective when the acidic liquid to be treated contains arsenic, copper, and lead as impurities. Acidic liquids obtained by oxidizing and dissolving substances are good targets. The method for recovering ruthenium and iridium according to the embodiment of the present invention can also be applied to recycling from waste. That is, the acidic liquid containing ruthenium and iridium generated in the waste treatment process can also be targeted.
本発明の実施形態に係るルテニウム及びイリジウムの回収方法において、処理対象となる酸性液は、所定の工程を経て得られた塩酸酸性液である場合、ルテニウム(Ru)及びイリジウム(Ir)以外に種々の金属元素を含んでいる。 In the method for recovering ruthenium and iridium according to the embodiment of the present invention, when the acidic liquid to be treated is a hydrochloric acid acidic liquid obtained through a predetermined process, various materials other than ruthenium (Ru) and iridium (Ir) can be used. Contains metallic elements.
ルテニウム及びイリジウムを還元もしくはチオ硫酸類添加により分離する時、セレン(Se)、白金(Pt)、パラジウム(Pd)、金(Au)、銀(Ag)等は、ルテニウムより優先的に反応する。詳しくは後述するが、事前にこれら元素の濃度を下げておく必要がある。 When ruthenium and iridium are separated by reduction or addition of thiosulfates, selenium (Se), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), etc. react preferentially than ruthenium. As will be described in detail later, it is necessary to reduce the concentration of these elements in advance.
一例として、銅製錬の銅電解精製工程由来の金属電解殿物からの、ルテニウム及びイリジウムを含む塩酸酸性液の作製方法を示す。まず、銅製錬の銅電解精製工程由来の金属電解殿物から硫酸により銅を溶解して除く。次に、濃塩酸と過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得る。塩化物浴である浸出貴液(PLS)には白金族元素、希少金属元素、カルコゲン元素、ヒ素、アンチモン等が分配する。 As an example, a method for producing a hydrochloric acid acidic solution containing ruthenium and iridium from a metal electrolytic precipitate derived from a copper electrolytic refining process of copper smelting is shown. First, copper is dissolved and removed using sulfuric acid from metal electrolytic precipitates derived from the copper electrolytic refining process of copper smelting. Next, concentrated hydrochloric acid and hydrogen peroxide solution are added and dissolved, and solid-liquid separation is performed to obtain PLS (leaching liquid). Platinum group elements, rare metal elements, chalcogen elements, arsenic, antimony, etc. are distributed in the leaching solution (PLS), which is a chloride bath.
浸出貴液(PLS)を一度冷却し、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。その後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。抽出液には、二酸化硫黄を吹き込むことで、白金やパラジウム等の貴金属とセレン、テルルを還元除去し、続いて固液分離することで、ルテニウム及びイリジウムを含む塩酸酸性液を作製することができる。 The leach liquid (PLS) is once cooled and chlorides of base metals such as lead and antimony are separated by precipitation. The gold is then separated into an organic phase by solvent extraction. Dibutylcarbitol (DBC) is widely used as a gold extractant. By blowing sulfur dioxide into the extract, precious metals such as platinum and palladium, selenium, and tellurium are reduced and removed, followed by solid-liquid separation to create a hydrochloric acid acidic solution containing ruthenium and iridium. .
本発明の実施形態に係るルテニウム及びイリジウムの回収方法では、ルテニウム及びイリジウムを含む酸性液に対して、二酸化硫黄または硫化水素を吹き込んで、或いは、アルデヒド類の還元剤を添加して、白金、金、パラジウム及びセレンといった夾雑元素濃度を10mg/L以下に調整することが好ましい。当該アルデヒド類としては、ホルムアルデヒド、メチルグリオキサール等が挙げられる。なお、処理対象の酸性液が、当該白金、金、パラジウム及びセレンといった夾雑元素濃度が10mg/L以下である場合は、当該還元剤を吹き込むまたは添加する処理は不要である。 In the method for recovering ruthenium and iridium according to an embodiment of the present invention, sulfur dioxide or hydrogen sulfide is blown into an acidic liquid containing ruthenium and iridium, or an aldehyde reducing agent is added to recover platinum and gold. It is preferable to adjust the concentration of impurity elements such as , palladium and selenium to 10 mg/L or less. Examples of the aldehydes include formaldehyde, methylglyoxal, and the like. Note that if the acidic liquid to be treated has a concentration of contaminant elements such as platinum, gold, palladium, and selenium of 10 mg/L or less, there is no need to blow or add the reducing agent.
二酸化硫黄または硫化水素を吹き込んで、或いは、アルデヒド類の還元剤を添加して夾雑元素を沈殿する時に、無機ヨウ素化合物もしくは単体ヨウ素を添加しておく。酸性液中で還元を受けた無機ヨウ素化合物はヨウ化物イオンを生じる。このヨウ化物イオンはテルルを効果的に還元し、さらには酸性液中のヒ素を三価に還元できる(化学式1)。その結果、生じる単体ヨウ素は直ちに二酸化硫黄もしくはアルデヒドに還元されてヨウ化物イオンが再生される(化学式2)。このため、上述のように夾雑元素を沈殿する時に添加する物質は、無機ヨウ素化合物であってもよく、単体ヨウ素であってもよい。
(化学式1):As(V)+2I- → As(III)+I2
(化学式2):I2+SO2+2H2O → H2SO4+2I-+2H+
When contaminant elements are precipitated by blowing in sulfur dioxide or hydrogen sulfide or by adding a reducing agent such as an aldehyde, an inorganic iodine compound or elemental iodine is added. Inorganic iodine compounds that undergo reduction in acidic solutions produce iodide ions. This iodide ion can effectively reduce tellurium and further reduce arsenic in the acidic liquid to trivalent (chemical formula 1). As a result, the resulting elemental iodine is immediately reduced to sulfur dioxide or aldehyde, and iodide ions are regenerated (chemical formula 2). Therefore, the substance added when precipitating the impurity elements as described above may be an inorganic iodine compound or simple iodine.
(Chemical formula 1): As(V)+2I - → As(III)+I 2
(Chemical formula 2): I 2 +SO 2 +2H 2 O → H 2 SO 4 +2I - +2H +
無機ヨウ素化合物は還元剤が共存する水溶液中でヨウ化物イオンを生じる化合物であり、具体的には、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ素酸カリウム、ヨウ素酸ナトリウム、過ヨウ素酸カリウム、過ヨウ素酸ナトリウムが挙げられる。 Inorganic iodine compounds are compounds that generate iodide ions in an aqueous solution in the presence of a reducing agent, and specifically include potassium iodide, sodium iodide, potassium iodate, sodium iodate, potassium periodate, and periodic acid. Examples include sodium.
ヨウ化物イオンは触媒的に働くため、無機ヨウ素化合物もしくは単体ヨウ素は、ヨウ化カリウムに換算したときに0.05g/L以上添加すればよい。また、無機ヨウ素化合物の添加量はヨウ化カリウムに換算したときに0.1~0.5g/L添加することが好ましい。ただしヨウ化物沈殿を生じる銅等のイオンを含む場合、酸性液は1mol/L以上の酸性を維持しておく必要がある。 Since iodide ions act catalytically, an inorganic iodine compound or elemental iodine may be added in an amount of 0.05 g/L or more when converted to potassium iodide. Further, the amount of the inorganic iodine compound added is preferably 0.1 to 0.5 g/L when converted to potassium iodide. However, when containing ions such as copper that cause iodide precipitation, the acidic solution must maintain an acidity of 1 mol/L or more.
また、ヨウ化物イオンは触媒的に働くため、無機ヨウ素化合物もしくは単体ヨウ素は、酸性液に銅が溶解している場合、ヨウ化カリウムに換算したときに銅の0.05~4質量倍添加することが好ましい。ただしヨウ化物沈殿を生じる銅等のイオンを含む場合、酸性液は1mol/L以上の酸性を維持しておく必要がある。 In addition, since iodide ions act catalytically, inorganic iodine compounds or elemental iodine should be added in an amount of 0.05 to 4 times the mass of copper when converted to potassium iodide when copper is dissolved in an acidic solution. It is preferable. However, when containing ions such as copper that cause iodide precipitation, the acidic solution must maintain an acidity of 1 mol/L or more.
二酸化硫黄または硫化水素を吹き込む、或いは、アルデヒド類の還元剤を添加することで、夾雑物であるセレン、テルル、白金、パラジウムは沈殿する。これらの有価物を含む沈殿は固液分離され、さらに分離精製される工程へ投入される。固液分離後液にはヒ素、銅、アンチモン、イリジウム、ルテニウムが含まれる。 Impurities such as selenium, tellurium, platinum, and palladium are precipitated by blowing in sulfur dioxide or hydrogen sulfide, or by adding an aldehyde reducing agent. The precipitate containing these valuable substances is separated into solid and liquid, and then input into a process for further separation and purification. The liquid after solid-liquid separation contains arsenic, copper, antimony, iridium, and ruthenium.
固液分離後液に硫化剤を添加してヒ素と銅を硫化沈殿させる。硫化剤としては硫化水素、硫化ソーダもしくは水硫化ソーダが使用される。液温が高いと硫化効率が低下するため、酸性液を70℃以下に調整して硫化を行う。硫化の際の酸性液の液温は、50℃以下であるのがより好ましい。なお、上述の二酸化硫黄または硫化水素を吹き込む、或いは、アルデヒド類の還元剤を添加することで沈殿物が生じない場合は、固液分離は不要であり、この場合は酸性液をそのまま上述のように70℃以下に調整して硫化を行う。 After solid-liquid separation, a sulfurizing agent is added to the liquid to sulfurize and precipitate arsenic and copper. Hydrogen sulfide, sodium sulfide or sodium bisulfide is used as the sulfiding agent. If the liquid temperature is high, the sulfurization efficiency decreases, so the acidic liquid is adjusted to 70° C. or lower for sulfurization. The temperature of the acidic liquid during sulfurization is more preferably 50°C or lower. In addition, if no precipitate is produced by blowing in sulfur dioxide or hydrogen sulfide as described above, or by adding an aldehyde reducing agent, solid-liquid separation is not necessary, and in this case, the acidic liquid can be directly used as described above. Sulfurization is carried out by adjusting the temperature to below 70°C.
水硫化ソーダもしくは硫化ソーダを適用する時は予め水に溶解しておき、水溶液として添加すると反応効率が高くなる。水硫化ソーダもしくは硫化ソーダの濃度は特に限定されない。 When applying sodium hydrosulfide or sodium sulfide, it is dissolved in water in advance and added as an aqueous solution to increase the reaction efficiency. The concentration of sodium hydrosulfide or sodium sulfide is not particularly limited.
硫化剤の添加量はヒ素濃度と銅濃度によって変化するが、ORP(参照電極Ag/AgCl)で150mV以下に達するまで添加する。ただし、過量の硫化剤の添加により一部のルテニウムは沈殿する。さらに過量の硫化剤は金属セメンテーションで生じるルテニウムやイリジウムを回収する時に負の効果を示す。そのため0mV以下に達しない程度に添加することが好ましい。 The amount of sulfurizing agent added varies depending on the arsenic concentration and copper concentration, but it is added until the ORP (reference electrode Ag/AgCl) reaches 150 mV or less. However, some ruthenium precipitates due to the addition of an excessive amount of sulfiding agent. Furthermore, excessive amounts of sulfiding agents have a negative effect when recovering ruthenium and iridium produced in metal cementation. Therefore, it is preferable to add it to an extent that does not reach 0 mV or less.
硫化剤の添加により、ヒ素の酸化形態が三価ならば定量的に沈殿するが、五価では不完全である。このため、化学式1に従って十分に五価のヒ素を三価に還元しておくことが好ましい。 By adding a sulfiding agent, if the oxidized form of arsenic is trivalent, it will precipitate quantitatively, but if the oxidized form of arsenic is pentavalent, it will precipitate incompletely. For this reason, it is preferable to sufficiently reduce pentavalent arsenic to trivalent arsenic according to Chemical Formula 1.
硫化後に沈殿した硫化物を固液分離する。固液分離した硫化物は銅やアンチモンといった有価物も含むため、乾燥後、製錬炉に繰り返して有価物原料として利用することができる。固液分離後液(濾液)にはイリジウムとルテニウムが残留する。 The sulfide precipitated after sulfurization is separated into solid and liquid. The solid-liquid separated sulfide also contains valuable materials such as copper and antimony, so after drying, it can be repeatedly sent to the smelting furnace and used as a raw material for valuable materials. Iridium and ruthenium remain in the liquid (filtrate) after solid-liquid separation.
固液分離後液(濾液)の液温を40℃以上、好ましくは60℃以上に調整して、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加することで、ルテニウム及びイリジウムを沈殿させて回収することができる。 After solid-liquid separation, adjust the temperature of the liquid (filtrate) to 40°C or higher, preferably 60°C or higher, and add sodium thiosulfate salt or a solution containing thiosulfate ions to precipitate and recover ruthenium and iridium. can do.
チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加する前に、固液分離後液(濾液)の液温を70℃以下に調整して金属鉄を0.5~5g/Lになるよう添加して、ルテニウムを選択的にセメンテーションにより沈殿させてもよい。金属鉄は鉄粉であるのが好ましい。金属鉄の添加量が0.5g/L未満であると、ルテニウムが十分にセメンテーションを受けないおそれがある。金属鉄の添加量が5g/L超であると、水素ガスが多量に発生するおそれがある。このとき、硫化処理によりヒ素が低減するためヒ化水素の発生は懸念されない。このようにルテニウムが選択的にセメンテーションを受けるため、セメンテーション後に固液分離してもよい。 Before adding sodium thiosulfate salt or a solution containing thiosulfate ions, adjust the temperature of the liquid (filtrate) after solid-liquid separation to 70°C or less, and add metallic iron to a concentration of 0.5 to 5 g/L. Then, ruthenium may be selectively precipitated by cementation. Preferably, the metallic iron is iron powder. If the amount of metallic iron added is less than 0.5 g/L, there is a possibility that ruthenium will not undergo sufficient cementation. If the amount of metal iron added exceeds 5 g/L, there is a risk that a large amount of hydrogen gas will be generated. At this time, since arsenic is reduced by the sulfurization treatment, there is no concern that hydrogen arsenide will be generated. Since ruthenium is selectively cemented in this way, solid-liquid separation may be performed after cementation.
ルテニウムはチオ硫酸ナトリウム類よりも金属セメンテーションの方が効果的に沈殿回収できる。しかしながら液中にヒ素を含む場合、五価のヒ素であっても発生期の水素によりヒ化水素が生じる可能性がゼロではない。そのため前述のようにヒ素を三価に還元し、硫化処理して濃度を下げておくことが重要である。 Ruthenium can be precipitated and recovered more effectively by metal cementation than by sodium thiosulfates. However, if the liquid contains arsenic, even if it is pentavalent arsenic, there is a non-zero possibility that hydrogen arsenide will be generated due to the nascent hydrogen. Therefore, as mentioned above, it is important to reduce arsenic to its trivalent form and perform sulfidation treatment to lower its concentration.
チオ硫酸ナトリウム類は固体で添加してもよいし、チオ硫酸イオン含有溶液で添加してもよい。チオ硫酸イオンはこれら以外にも、亜硫酸と元素硫黄をアルカリ溶液中で加熱すれば得ることができるが、コストや取り扱い安さの面から、特に固体塩で供給することが有利である。特に、チオ硫酸ナトリウム5水和物は毒性も低く、チオ硫酸塩として最も好適である。 Sodium thiosulfates may be added in solid form or in the form of a solution containing thiosulfate ions. Thiosulfate ions can also be obtained by heating sulfurous acid and elemental sulfur in an alkaline solution, but from the viewpoint of cost and ease of handling, it is especially advantageous to supply them as solid salts. In particular, sodium thiosulfate pentahydrate has low toxicity and is most suitable as a thiosulfate.
チオ硫酸ナトリウムも銀や銅といった一部遷移金属に対しては硫化剤として作用するが、その能力は弱い。また酸性溶液中でも分解速度は速くない。硫化物イオンと異なりチオ硫酸イオンは配位能を持ち、一度ルテニウムイオンやイリジウムイオンに配位することで、これらの金属を沈殿させることが可能である。 Sodium thiosulfate also acts as a sulfurizing agent for some transition metals such as silver and copper, but its ability is weak. Also, the decomposition rate is not fast even in acidic solutions. Unlike sulfide ions, thiosulfate ions have coordination ability, and once they coordinate with ruthenium ions and iridium ions, it is possible to precipitate these metals.
ヒ素還元工程における酸性液中のイリジウム濃度が高いときは、KClまたはNH4Clで沈殿させて回収するほうが効率的であるが、イリジウム濃度が100mg/L以下と希薄であるときは、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液の添加により沈殿させて回収することが好ましい。チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液の添加量は少なすぎると回収が不十分になり多すぎるとコストが上昇する。このため、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して5g/L以上になるように添加するのが好ましい。また、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して5~20g/L以上になるように添加してもよい。生じた沈殿は固液分離する。 When the iridium concentration in the acidic solution in the arsenic reduction process is high, it is more efficient to recover it by precipitation with KCl or NH 4 Cl, but when the iridium concentration is dilute at 100 mg/L or less, sodium thiosulfate is used. It is preferable to precipitate and recover by adding a salt or a solution containing thiosulfate ions. If the amount of the sodium thiosulfate salt or thiosulfate ion-containing solution added is too small, recovery will be insufficient, and if it is too large, the cost will increase. For this reason, it is preferable to add the sodium thiosulfate salt or thiosulfate ion-containing solution in an amount of 5 g/L or more in terms of sodium thiosulfate pentahydrate. Further, a sodium thiosulfate salt or a solution containing thiosulfate ions may be added in an amount of 5 to 20 g/L or more in terms of sodium thiosulfate pentahydrate. The resulting precipitate is separated into solid and liquid.
固液分離した沈殿は、公知の方法でルテニウム及びイリジウムに個別精製される。例えば、ルテニウムは再度酸化溶解後に臭素酸ナトリウムを添加して四酸化ルテニウムを蒸留し、分離回収することができる。イリジウムは溶媒抽出後にアンモニア塩として晶析させて回収することができる。 The solid-liquid separated precipitate is purified separately into ruthenium and iridium by a known method. For example, ruthenium can be oxidized and dissolved again, and then sodium bromate can be added to distill ruthenium tetroxide to separate and recover it. Iridium can be recovered by crystallizing it as an ammonia salt after solvent extraction.
以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。 EXAMPLES Hereinafter, examples will be illustrated to better understand the present invention and its advantages, but the present invention is not limited to the examples.
(実験例1)
銅製錬の銅電解精製工程由来の電解殿物から硫酸により銅を溶解して除いた。濃塩酸と60%過酸化水素水とを添加して溶解し、固液分離してPLS(浸出貴液)を得た。PLSを6℃まで冷却して卑金属分を沈殿除去した。酸濃度を1mol/L以上に調整しDBC(ジブチルカルビトール)とPLSを混合して金を抽出した。金抽出後のPLSを70℃に加温し、二酸化硫黄を吹き込んで貴金属とセレンを還元除去した。これを固液分離し、実験対象の塩酸酸性液を得た。この塩酸酸性液のイリジウム濃度は24mg/L、ルテニウム濃度は120mg/Lであった。その他の元素としてヒ素を1.82g/L、銅を1.11g/L、アンチモンを300mg/L含有していた。
(Experiment example 1)
Copper was dissolved and removed using sulfuric acid from electrolytic precipitates derived from the copper electrolytic refining process of copper smelting. Concentrated hydrochloric acid and 60% hydrogen peroxide solution were added and dissolved, and solid-liquid separation was performed to obtain PLS (leaching liquid). The PLS was cooled to 6° C. to precipitate and remove base metals. The acid concentration was adjusted to 1 mol/L or more, and DBC (dibutyl carbitol) and PLS were mixed to extract gold. After gold extraction, the PLS was heated to 70° C., and sulfur dioxide was blown into the PLS to reduce and remove noble metals and selenium. This was subjected to solid-liquid separation to obtain a hydrochloric acid acidic solution to be tested. The iridium concentration of this hydrochloric acid acidic solution was 24 mg/L, and the ruthenium concentration was 120 mg/L. As other elements, it contained 1.82 g/L of arsenic, 1.11 g/L of copper, and 300 mg/L of antimony.
実験対象の塩酸酸性液を200mL分取し、70℃に加熱した。有機物の影響を除くために過酸化水素水(30体積%)を2mL添加して1時間攪拌した。ヨウ化カリウム0.1gを添加して二酸化硫黄と空気の混合気(5~20体積%)を吹き込んだ。30分後に反応を停止し固液分離した。比較例としてヨウ化カリウムを添加しない実験も行った。
固液分離後液は40℃に調製した後、水硫化ソーダを2g添加した。30分攪拌後に硫化物沈殿を固液分離した。
固液分離後液は70℃に加熱してチオ硫酸ナトリウム5水和物を2g添加した。続いて1時間攪拌後、固液分離した(実施例1)。また別に硫化物沈殿分離後液を60℃に加熱し鉄粉を0.4g添加した。45分間攪拌して再度固液分離した後、70℃に加熱してチオ硫酸ナトリウム5水和物を2g添加した(実施例2)。
試薬はすべて和光純薬工業社製の特級グレードを使用した。固液分離した時に、都度、分析用サンプルを採取した。溶液中の元素濃度の定量は溶液2mLを分取して50mLに規正後、ICP-OES(セイコーインスツルメンツ株式会社製SPS3100)により濃度を定量した。沈殿物の溶解液は100mLに規正してその濃度を決定した。結果を表1に示す。表1の「ND」は当該元素が検出されなかったことを示す。溶液の蒸発により濃度が上昇しているが水は補充しなかった。
200 mL of the hydrochloric acid acidic solution to be tested was taken and heated to 70°C. In order to eliminate the influence of organic matter, 2 mL of hydrogen peroxide solution (30% by volume) was added and stirred for 1 hour. 0.1 g of potassium iodide was added and a mixture of sulfur dioxide and air (5-20% by volume) was blown into it. After 30 minutes, the reaction was stopped and solid-liquid separation was performed. As a comparative example, an experiment was also conducted in which potassium iodide was not added.
After the solid-liquid separation liquid was adjusted to 40°C, 2g of sodium hydrogen sulfide was added. After stirring for 30 minutes, the sulfide precipitate was separated into solid and liquid.
After solid-liquid separation, the liquid was heated to 70°C and 2g of sodium thiosulfate pentahydrate was added. Subsequently, after stirring for 1 hour, solid-liquid separation was performed (Example 1). Separately, the solution after sulfide precipitation was heated to 60° C., and 0.4 g of iron powder was added. After stirring for 45 minutes and solid-liquid separation again, the mixture was heated to 70° C. and 2 g of sodium thiosulfate pentahydrate was added (Example 2).
All reagents used were special grade manufactured by Wako Pure Chemical Industries, Ltd. Samples for analysis were collected each time solid-liquid separation was performed. The element concentration in the solution was determined by taking 2 mL of the solution, adjusting the volume to 50 mL, and then quantifying the concentration using ICP-OES (SPS3100, manufactured by Seiko Instruments Inc.). The concentration of the precipitate solution was determined by adjusting the volume to 100 mL. The results are shown in Table 1. "ND" in Table 1 indicates that the element was not detected. Although the concentration increased due to evaporation of the solution, water was not replenished.
ヨウ化カリウムの添加により硫化工程でヒ素の濃度が大きく低下していることが分かる。また硫化では銅とアンチモンも大半が沈殿した。不純物を除いた後に鉄粉を添加して鉄置換を行い、また、チオ硫酸イオンと反応させることでルテニウム及びイリジウムを回収できた。 It can be seen that the addition of potassium iodide significantly reduces the arsenic concentration in the sulfurization process. Most of the copper and antimony were also precipitated during sulfidation. After removing impurities, iron powder was added to perform iron substitution, and ruthenium and iridium were recovered by reacting with thiosulfate ions.
ヨウ化カリウムを添加しない場合は硫化でヒ素を除けない。この場合は、残留ヒ素は鉄置換やチオ硫酸イオンと反応して沈殿し、ルテニウムやイリジウムとの混合物となる。ヒ化水素の発生は確認されなかった。 If potassium iodide is not added, arsenic cannot be removed by sulfidation. In this case, residual arsenic reacts with iron substitution and thiosulfate ions and precipitates, forming a mixture with ruthenium and iridium. No generation of hydrogen arsenide was confirmed.
なお、鉄置換後の固液分離操作は必須ではなく、不純物が少ないのであれば酸処理で未反応の鉄を除いた後にルテニウム及びイリジウムの精製工程に投入することも可能である。実施例2に見られるように鉄置換を行うことでルテニウムの回収効率が向上する。 Note that the solid-liquid separation operation after iron substitution is not essential, and if there are few impurities, it is also possible to remove unreacted iron by acid treatment and then introduce it into the ruthenium and iridium purification process. As seen in Example 2, the iron substitution improves the ruthenium recovery efficiency.
(実験例2)
実験例1と同じ実験対象の塩酸酸性液を200mL分取し、70℃に加熱した。有機物の影響を除くために過酸化水素水(30vol%)を2ml添加して1時間攪拌した。ヨウ化カリウム0.02gもしくは0.1gを添加して二酸化硫黄と空気の混合気(5~20体積%)を吹き込んだ。30分後に反応を停止し固液分離した。
固液分離後液は40℃に調整した後、水硫化ソーダ2gを水に溶解して添加した。30分攪拌後に硫化物沈殿を固液分離した。固液分離した時に分析用サンプルを採取した。
分析操作は実験例1に準じる。結果を表2に示す。表2の「ND」は当該元素が検出されなかったことを示す。
(Experiment example 2)
200 mL of the same experimental target hydrochloric acid solution as in Experimental Example 1 was collected and heated to 70°C. In order to eliminate the influence of organic matter, 2 ml of hydrogen peroxide solution (30 vol%) was added and stirred for 1 hour. 0.02 g or 0.1 g of potassium iodide was added and a mixture of sulfur dioxide and air (5 to 20% by volume) was blown into the solution. After 30 minutes, the reaction was stopped and solid-liquid separation was performed.
After the solid-liquid separation liquid was adjusted to 40°C, 2 g of sodium hydrogen sulfide was dissolved in water and added thereto. After stirring for 30 minutes, the sulfide precipitate was separated into solid and liquid. Samples for analysis were taken at the time of solid-liquid separation.
Analytical operations were conducted in accordance with Experimental Example 1. The results are shown in Table 2. "ND" in Table 2 indicates that the element was not detected.
表2の結果からヨウ化カリウムの添加量は0.02g、すなわち0.1g/Lでも上記化学式1と化学式2に示すように触媒サイクルが機能していることを示す。添加量0.02gと0.1gでは硫化後のヒ素濃度は後者の方が大きい結果となっている。しかしながら、これは二酸化硫黄供給量の影響である。ヨウ素の触媒効果は二酸化硫黄存在下でテルルの沈殿にも効果を示す。そのためテルル濃度が二酸化硫黄供給後に大きく低下した場合は、十分な二酸化硫黄供給があったことを示し、化学式2の反応が迅速に反応し、ヨウ素の触媒のターンオーバーが向上することが理由である。 The results in Table 2 show that even when the amount of potassium iodide added is 0.02 g, that is, 0.1 g/L, the catalytic cycle is functioning as shown in Chemical Formulas 1 and 2 above. When the amount of addition was 0.02g and 0.1g, the arsenic concentration after sulfidation was higher in the latter. However, this is an effect of the sulfur dioxide feed rate. The catalytic effect of iodine is also effective in the precipitation of tellurium in the presence of sulfur dioxide. Therefore, if the tellurium concentration decreases significantly after supplying sulfur dioxide, it indicates that there was sufficient supply of sulfur dioxide, and this is because the reaction of chemical formula 2 occurs quickly and the turnover of iodine in the catalyst is improved. .
しかしながら、ヨウ化物イオンは一部銅と反応してヨウ化銅(I)を沈殿する。そのためヨウ化物イオンはヨウ化カリウムに換算して銅濃度の5質量%以上とすることが好ましい。 However, iodide ions partially react with copper to precipitate copper(I) iodide. Therefore, it is preferable that the iodide ion is 5% by mass or more of the copper concentration in terms of potassium iodide.
(実験例3)
実験例1と同じ実験対象の塩酸酸性液を200mL分取した。有機物の影響を除くために過酸化水素水(30体積%)を2mL添加して1時間攪拌した。ヨウ化カリウム0.1gを添加して二酸化硫黄と空気の混合気(5~20体積%)を吹き込んだ。30分後に反応を停止し固液分離した。
固液分離後液を40℃に加熱し水硫化ソーダ水溶液(80g/L)を徐々に添加した。適当量添加したところでORPを計測した。同時に定量分析用のサンプルも採取した。定量方法は実験例1に準じる。ORP値と銅とヒ素濃度の関係を図2に示す。また、ORP値とルテニウム濃度の関係を図3に示す。
(Experiment example 3)
200 mL of the same experimental target hydrochloric acid solution as in Experimental Example 1 was collected. In order to eliminate the influence of organic matter, 2 mL of hydrogen peroxide solution (30% by volume) was added and stirred for 1 hour. 0.1 g of potassium iodide was added and a mixture of sulfur dioxide and air (5-20% by volume) was blown into it. After 30 minutes, the reaction was stopped and solid-liquid separation was performed.
After solid-liquid separation, the liquid was heated to 40°C, and an aqueous sodium hydrogen sulfide solution (80 g/L) was gradually added. ORP was measured after adding an appropriate amount. At the same time, samples for quantitative analysis were also collected. The quantitative method is based on Experimental Example 1. Figure 2 shows the relationship between the ORP value and the copper and arsenic concentrations. Furthermore, the relationship between the ORP value and the ruthenium concentration is shown in FIG.
水硫化ソーダの添加により、まず銅が硫化沈殿を生じ、続いてヒ素が沈殿したことが分かる。ORPが150mV以下に達すると両元素はほとんど沈殿した。 It can be seen that by adding sodium hydrogen sulfide, copper first formed a sulfide precipitate, followed by arsenic precipitate. When ORP reached 150 mV or less, most of both elements precipitated.
なお、ルテニウムの濃度はORP136mVになった時で110mg/Lであった。原液のルテニウム濃度は120mg/Lであったため、逸損はわずかであった。 Note that the concentration of ruthenium was 110 mg/L when the ORP reached 136 mV. Since the ruthenium concentration of the stock solution was 120 mg/L, the loss was small.
(実験例4)
実験例1と同じ実験対象の塩酸酸性液を200mL分取し、70℃に加熱した。有機物の影響を除くために過酸化水素水(30体積%)を2mL添加して1時間攪拌した。ヨウ化カリウム0.1gを添加して二酸化硫黄と空気の混合気(5~20体積%)を吹き込んだ。30分後に反応を停止し固液分離した。
固液分離後液を40℃に調整した後、水硫化ソーダを2g添加した。30分攪拌後に硫化物沈殿を固液分離した。
硫化物沈殿の固液分離後液は60℃に加熱し、鉄粉を0.4gもしくは1g添加した。45分間攪拌して再度固液分離した。分離後液は70℃に加熱してチオ硫酸ナトリウム5水和物を2g添加した。1時間攪拌後固液分離した。
各固液分離操作時に分析用サンプルを採取した。分析操作は実験例1に準じる。結果を表3に示す。
(Experiment example 4)
200 mL of the same experimental target hydrochloric acid solution as in Experimental Example 1 was collected and heated to 70°C. In order to eliminate the influence of organic matter, 2 mL of hydrogen peroxide solution (30% by volume) was added and stirred for 1 hour. 0.1 g of potassium iodide was added and a mixture of sulfur dioxide and air (5-20% by volume) was blown into it. After 30 minutes, the reaction was stopped and solid-liquid separation was performed.
After the solid-liquid separation liquid was adjusted to 40°C, 2g of sodium hydrogen sulfide was added. After stirring for 30 minutes, the sulfide precipitate was separated into solid and liquid.
The liquid after solid-liquid separation of the sulfide precipitate was heated to 60° C., and 0.4 g or 1 g of iron powder was added. The mixture was stirred for 45 minutes and solid-liquid separation was performed again. The separated solution was heated to 70° C. and 2 g of sodium thiosulfate pentahydrate was added thereto. After stirring for 1 hour, the mixture was separated into solid and liquid.
Samples for analysis were taken during each solid-liquid separation operation. Analytical operations were conducted in accordance with Experimental Example 1. The results are shown in Table 3.
鉄粉の添加によりルテニウム及びイリジウムの回収総量は改善した。鉄粉の添加量は1gでも0.4gでも大きな差は見られなかったが、鉄粉添加量が増えると置換を受ける量がいくらか上がった。ルテニウム及びイリジウムの分別回収を行うのであれば鉄粉の添加量は少なくして一度固液分離すると良い。セメンテーションに使用する鉄粉の添加量は0.5~5g/Lが好ましい。ルテニウム及びイリジウムを分別回収するのであれば、鉄粉の添加量を2g/L未満として固液分離して先にルテニウムを回収する。 The total amount of ruthenium and iridium recovered was improved by adding iron powder. There was no significant difference whether the amount of iron powder added was 1 g or 0.4 g, but as the amount of iron powder added increased, the amount of substitution increased somewhat. If ruthenium and iridium are to be recovered separately, it is better to add a small amount of iron powder and perform solid-liquid separation once. The amount of iron powder used for cementation is preferably 0.5 to 5 g/L. If ruthenium and iridium are to be recovered separately, the amount of iron powder added is less than 2 g/L and solid-liquid separation is performed to recover ruthenium first.
Claims (7)
前記ヒ素還元工程で得られた酸性液を70℃以下に調整し、硫化水素もしくは水硫化ソーダをORP(参照電極Ag/AgCl)が150mV以下に達するまで添加して沈殿した硫化物を固液分離する不純物除去工程と、
前記不純物除去工程の後、濾液の液温を40℃以上に調整し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してルテニウム及びイリジウムを沈殿させるルテニウム及びイリジウム回収工程と、
を含む、ルテニウム及びイリジウムの回収方法。 Arsenic is removed by adding a water-soluble inorganic iodine compound or elemental iodine to an acidic liquid containing ruthenium, iridium, and arsenic, and then blowing in sulfur dioxide or hydrogen sulfide, or adding an aldehyde reducing agent. an arsenic reduction process that reduces the arsenic to trivalent,
The acidic liquid obtained in the arsenic reduction step is adjusted to 70°C or lower, hydrogen sulfide or sodium hydrogen sulfide is added until ORP (reference electrode Ag/AgCl) reaches 150 mV or lower, and the precipitated sulfide is solid-liquid separated. an impurity removal process,
After the impurity removal step, a ruthenium and iridium recovery step of adjusting the liquid temperature of the filtrate to 40° C. or higher and adding a sodium thiosulfate salt or a solution containing thiosulfate ions to precipitate ruthenium and iridium;
A method for recovering ruthenium and iridium, including
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022135367A JP2024031675A (en) | 2022-08-26 | 2022-08-26 | Method of recovering ruthenium and iridium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022135367A JP2024031675A (en) | 2022-08-26 | 2022-08-26 | Method of recovering ruthenium and iridium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024031675A true JP2024031675A (en) | 2024-03-07 |
Family
ID=90106175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022135367A Pending JP2024031675A (en) | 2022-08-26 | 2022-08-26 | Method of recovering ruthenium and iridium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024031675A (en) |
-
2022
- 2022-08-26 JP JP2022135367A patent/JP2024031675A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7479262B2 (en) | Method for separating platinum group element | |
JP4207959B2 (en) | Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same | |
JP7198079B2 (en) | Method for treating acidic liquids containing precious metals, selenium and tellurium | |
JP7198172B2 (en) | Method for treating solution containing selenosulfuric acid | |
JP6636819B2 (en) | Treatment method of metal-containing acidic aqueous solution | |
JP7337209B2 (en) | Iridium recovery method | |
EP1577408B1 (en) | Method for separating platinum group elements from selenum/tellurium bearing materials | |
JP2020105588A (en) | Treatment method of mixture containing noble metal, selenium and tellurium | |
JP7247050B2 (en) | Method for treating selenosulfuric acid solution | |
JP2024031675A (en) | Method of recovering ruthenium and iridium | |
JP7247049B2 (en) | Method for treating selenosulfuric acid solution | |
JP6882095B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP6994984B2 (en) | How to recover ruthenium | |
JP2018044200A (en) | Method of treating metal-containing hydrochloric acidic liquid | |
JP6835577B2 (en) | How to collect valuables | |
JP5573763B2 (en) | High purity silver production waste liquid treatment method | |
JP6967937B2 (en) | How to collect selenium | |
JP6400047B2 (en) | Method for treating metal-containing acidic aqueous solution | |
JP7498137B2 (en) | Method for separating ruthenium and iridium | |
JP2019147718A (en) | Method for recovering tellurium | |
JP7423479B2 (en) | Ruthenium recovery method | |
JP2024031673A (en) | Method of recovering ruthenium and iridium | |
JP6882110B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP6882081B2 (en) | Method for recovering precipitates containing platinum group elements | |
JP2021143401A (en) | Recovery method of rhodium |