JP3474526B2 - How to recover silver - Google Patents

How to recover silver

Info

Publication number
JP3474526B2
JP3474526B2 JP2000212634A JP2000212634A JP3474526B2 JP 3474526 B2 JP3474526 B2 JP 3474526B2 JP 2000212634 A JP2000212634 A JP 2000212634A JP 2000212634 A JP2000212634 A JP 2000212634A JP 3474526 B2 JP3474526 B2 JP 3474526B2
Authority
JP
Japan
Prior art keywords
silver
lead
gold
copper
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000212634A
Other languages
Japanese (ja)
Other versions
JP2001316736A (en
Inventor
吉史 安部
一彰 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000212634A priority Critical patent/JP3474526B2/en
Publication of JP2001316736A publication Critical patent/JP2001316736A/en
Application granted granted Critical
Publication of JP3474526B2 publication Critical patent/JP3474526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、銀及び鉛を少なく
とも含む銅電解殿物や産業廃棄物からの銀回収方法に関
するものであり、特には湿式法と乾式法とを組み合わせ
ることにより高純度銀を効率よく回収する方法に関する
ものである。 【0002】 【従来の技術】銀を含めての貴金属や鉛、銅その他の多
種類の元素を含む原料から銀、金、白金族等を回収する
ことが多くの分野で所望される。例えば、銅精錬におけ
る銅電解殿物や金、銀等の配線や電極、銅箔回路及び半
田部や半田膜を含む、貴金属を含む電子機器スクラップ
がそうした回収源の例である。以下、銅電解殿物を例に
とって説明する。銅の電解精製においては、転炉からの
粗銅を精製炉において99.5%程度に精製し、鋳造し
た陽極(アノード)と陰極としての種板を電解槽に交互
に数十枚一組で吊し、電解精製が実施される。種板上に
電着した銅は電気銅と呼ばれ、周知の態様で爾後処理さ
れる。電解槽の底には陽極に含まれる不純物が泥状で沈
積し、これは銅電解殿物(アノードスライム)と呼ばれ
ている。銅電解殿物には、銅に加えて、金、銀を始め、
原料中の貴金属が濃縮しており、貴金属回収の主要原料
である。この他、セレン及びテルルも含まれている。鉛
もまた含まれている。銅電解殿物の分析例を以下の表1
に示す: 【0003】 【表1】 【0004】この銅電解殿物から貴金属を回収する方法
については、乾式法、湿式法のいずれの処理法も実用化
されている。電解殿物を湿式で処理する方法としては、
次の方法が報告されている。例えば、銅電解殿物を電解
液等でリパルプし、殿物中に残留している銅、テルル、
砒素その他の溶解可能な不純物を溶解し、金、銀、白金
族を含む貴金属、セレン等を主体とする不溶解物と固液
分離し、貴金属の濃縮精製を行う。不溶解物の主要な成
分は、銀、セレン、金、白金族、テルル、鉛等である。
この残滓を塩酸を含む溶液で酸化溶解し、金、白金族、
セレン等を溶解する。塩素と塩化物を形成し、未溶解生
成物を形成する銀、鉛等は固液分離され、銀が濃縮され
た銀中間原料となる。銀は、塩化物であるので、脱鉛処
理、脱不純物後、再度塩化銀とし、還元して銀製品とす
る。塩化銀の固液分離後の液中には金、白金族、セレン
等の有価物が含まれているため、金は溶媒抽出により、
またセレンは蒸留精製によりそして白金族は溶媒抽出に
よる白金精製工程により精製分離され、製品となる。 【0005】 【発明が解決しようとする課題】図2は、従来法によ
る、銅電解殿物から銀を回収する処理プロセスフローシ
ートを示す。従来の湿式処理方式においては、殿物湿式
処理工程で得られた銀塩化物を更に湿式精製し、高純度
銀を製造するものである。この方法では、銀を精製する
場合に、以下の課題があった: 湿式精錬において、塩酸等を用いた反応の場合、銅殿
物のように鉛を含む原料を処理する場合には、銀と共に
鉛も塩化物となり、塩化銀に塩化鉛が混入する。液温管
理等を厳密に行い、塩化鉛の析出を極力抑制し、塩化銀
の品位を高くすることが必要である。それでも、銀精製
の前処理として、鉛の事前分離が必要である。そのた
め、炭酸ナトリウム溶液を用いて、鉛を炭酸鉛に変換す
る。次いで、硝酸により鉛を浸出し、鉛含有液と銀残滓
とに分離する。このように、塩化銀から鉛を分離する工
程が余分に必要となる。 固液分離された銀残滓(塩化銀)は、その純度を上げ
るために、アンモニア浸出を行い、塩化銀以外の不純物
と分離する。この浸出液を加熱分解し、アンモニアを回
収し、銀は高純度塩化銀となる。この塩化銀を苛性ソー
ダにより酸化銀に変換した後、糖類を添加して還元し、
銀粉を得る。アンモニアの使用が必要とされた。 以上のように、工程が複雑であるばかりでなく、多種
の薬品を回収するため、薬品回収工程を含め、建設費、
薬品等操業コストが高くなる。またアンモニア等を使用
するため、爆発性の窒化銀の生成防止に注意しなければ
ならず、操業面での困難をも伴う。 【0006】本発明の課題は、上記問題点を完全に解決
し、銅電解殿物やスクラップからの銀回収の効率的なプ
ロセスを開発することである。 【0007】 【課題を解決するための手段】本発明者は、銀を含む貴
金属と鉛とを少なくとも含む塩化銀精製工程における問
題の根元は塩化鉛の還元銀との共沈にあり、塩化銀精製
工程の操業を容易にするには塩化鉛の還元銀との共沈を
問題としない工程とすることが必要であり、そのために
は銀精製工程で得られる塩化銀の処理に乾式酸化工程を
導入することが有利であると判断した。また、還元剤と
しては、鉄の使用が有益であることも判明した。これは
鉄による直接脱塩反応に加えて、鉄と酸性溶液の反応に
より発生する水素も有効に利用でき、また乾式酸化工程
でスラグを形成するには鉄が有用であるからである。 【0008】かくして、本発明は、銀、金及び白金族を
含む貴金属と、銅と、鉛とを少なくとも含む原料から銀
を回収するにあたり、 (1)該原料から銅を硫酸溶液で浸出して銀、金、白金
及び鉛を含む脱銅殿物を形成させ、 (2)該脱銅殿物を塩酸でリパルプして形成されたスラ
リーを塩化浸出して金及び白金族を含む塩化浸出液と銀
及び鉛の塩化物を含む殿物を固液分離し回収し、 (3)工程(2)で回収された塩化浸出液から金をDB
C(ジブチルカルビトール)溶媒を用いて金のみを溶媒
抽出して回収し、 (4)工程(2)で回収された銀及び鉛の塩化物を含む
殿物を洗浄して該殿物に随伴する金及び白金族を除去
し、 (5)工程(4)で洗浄された銀及び鉛の塩化物を含む
殿物を水でリパルプして形成されたスラリーに鉄粉を添
加することにより該殿物を還元させて金属状態の銀及び
鉛を含む混合物を回収し、 (6)工程(5)の銀及び鉛を含む混合物を乾式炉で高
温酸化させて粗銀と酸化鉛を含むスラグとを形成させ、
次いで (7)該粗銀を該スラグから分離させ、分離された粗銀
を銀電解して高純度銀を生成させる工程を含む銀の回収
方法を提供する。 【0009】好ましい態様において、原料が金及び白金
族を含む場合、段階(1)の固液分離した殿物への金及
び白金族の随伴を最小限とするよう殿物を充分に洗浄す
る。塩化浸出及び固液分離後の塩化浸出液からの金抽出
工程においてDBC(ジブチルカルビトール)溶媒を用
いて金のみを溶媒に抽出する。原料が銅を含む場合に
は、塩化浸出前に、原料中に含まれる銅を硫酸溶液で浸
出除去する脱銅段階を含む。 【0010】 【発明の実施の形態】本発明は、銅精錬における銅電解
殿物や金、銀等の配線や電極、銅箔回路及び半田部や半
田膜を含む、貴金属を含む電子機器スクラップを対象と
する。 【0011】ここでは、銅電解殿物を例にとって説明す
る。銅電解殿物には、先に表1において示したように、
銅に加えて、金を始め、原料中の貴金属が濃縮してお
り、貴金属回収の主要原料である。この他、セレン及び
テルルも含まれている。問題は、鉛もまた含まれている
ことである。先ず、銅電解殿物を銅電解工程液を用いて
溶解し、銅、テルル、砒素等の不純物を浸出する。浸出
残滓は、塩酸溶液と酸化剤を用いて溶解した後、銀等を
塩化物として固液分離する。分離後の後液から金を溶媒
抽出により分離する。 【0012】本発明に従えば、湿式法と乾式法とを組み
合わせ、原料としての銅電解殿物の塩化浸出前に脱銅、
脱テルル段階を含める予備処理を必要に応じ実施した
後、(1)原料としての銅電解殿物を塩化浸出して銀及
び鉛の塩化物殿物を形成し、固液分離し、銀及び鉛の塩
化物殿物を回収する段階と、(2)銀及び鉛の塩化物殿
物を水でリパルプして、鉄粉を添加して還元し、メタリ
ックの銀及び鉛混合物を回収する段階と、(3)前記銀
及び鉛混合物を乾式炉で高温酸化させて、粗銀と、酸化
鉛を含むスラグとを形成する段階と、(4)前記粗銀を
分離しそして銀電解して高純度銀を生成する段階とを順
次実施することにより銀が回収される。塩化浸出及び固
液分離後の溶液、酸化鉛を含むスラグ、銀電解殿物は別
途金回収工程に供される。図1は、本発明において銅電
解殿物を処理する場合のプロセスのフローシートを示
す。 【0013】(1)脱銅、脱テルル予備処理工程 脱銅工程は、殿物中に約25%含まれる銅を銅電解工程
の硫酸溶液で浸出除去し、1%以下とする工程である。
脱テルル工程は、銅を浸出した溶液にはテルルも浸出さ
れており、これを直接銅電解工程に戻すと、電気銅の品
質を汚染するため、あらかじめ浸出液中のテルルを銅置
換により除去するための工程である。電解工程から送ら
れてきた殿物は例えば銅電解浄液工程出のNi除去後の
電解戻し液でリパルプする。これを殿物中に含まれる離
型剤を湿式篩で除去し、脱銅浸出槽に送る。脱銅浸出
は、常圧、空気吹き込み下、70〜85℃、特には80
℃で行い、18〜24時間で、殿物中の銅品位は約25
%から約0.5%まで低下する。また、殿物中のTe、
Asはそれぞれ50%、85%溶出する。反応式を以下
に示す: Cu+1/2O2+H2SO4→CuSO4+H2O Cu2Se+O2+2H2SO4→2CuSO4+Se+2
2O 【0014】浸出液中には約1g/lのFeが含まれて
おり、次の反応も脱銅浸出に寄与する: 4FeSO4+O2+2H2SO4→2Fe2(SO43
2H2O Cu2Se+2Fe2(SO43→2CuSO4+Se+
4FeSO4 【0015】脱銅後は、フィルタープレスで固液分離す
る。浸出後液は、脱テルル槽で銅板及び銅粉によりテル
ルをテルル化銅として析出させる。硫酸濃度は230〜
450g/l、温度は70〜90℃そして反応時間は16
〜24時間である。反応終点は後液中のTe濃度を分析
により確認する。反応式は次の通りである: H2TeO3+4Cu+2H2SO4→Cu2Te+2Cu
SO4+3H2O 【0016】析出したテルル化銅は、フィルタープレス
で固液分離後、テルル回収工程に送る。後液は銅電解浄
液工程に戻す。脱銅、脱テルル後の殿物は、金及び白金
族の随伴を最小限とするよう充分に洗浄され(白金族の
総量を銀の1/100以下の量に制限する)、その後リ
パルプ槽において塩酸によるリパルプ後塩化浸出槽へ送
る。 【0017】(2)塩化浸出工程 塩化浸出工程は、脱銅後の殿物から主として銀等を塩化
物として分離する工程である。塩化浸出槽では、基本的
に、塩酸でリパルプした脱銅殿物スラリーを塩化浸出す
る。過酸化水素を併用することが好ましい。溶解反応
は、以下に示すように、塩酸と過酸化水素とを消費する
反応、塩酸のみを消費する反応、過酸化水素のみを消費
する反応が関与する。 (イ)塩酸と過酸化水素とを消費する反応: Au:2Au+3H22+8HCl→2HAuCl4
6H2O Ag:Ag2Se+3H22+2HCl→2AgCl+
2SeO3+3H2O Pt:Pt+2H22+6HCl→H2PtCl6+4H
2O Pd:Pd+H22+4HCl→H2PdCl4+2H2
O Cu:Cu+H22+2HCl→CuCl2+2H2O (ロ)塩酸のみを消費する反応: Pb:PbSO4+2HCl→PbCl2+H2SO4 Bi:BiAsO4+3HCl→BiCl3+H3AsO4 (ハ)過酸化水素のみを消費する反応 Se:Se+2H22→H2SeO3+H2O Te:Te+2H22→H2TeO3+H2O Sb:H3SbO3+H22→H3SbO4+H2O 【0018】塩化浸出反応は、過酸化水素を徐々に添加
して行うことが好ましい。過酸化水素の不均化反応によ
る分解を抑えるため反応温度は適正に制御する必要があ
る。塩化/酸化反応によって塩化物及び酸化物は、それ
ぞれの溶解度によって溶解ないし沈殿する。塩化銀は塩
酸溶液中の溶解度が小さいため沈殿し、他の貴金属と分
離される。塩化鉛も大部分が沈殿する。また、アンチモ
ン化合物及びテルル化合物も大部分沈殿する。 【0019】塩化浸出後、フィルタープレスによって固
液分離し、塩化銀主体の固体は水によるリパルプ後銀還
元・精製工程に送りそして溶液は冷却手段を備えた酸濃
度調整槽に送る。本発明の主題である銀精製工程は塩化
銀から銀を還元し、酸化炉、銀電解により精製し、製品
化する湿式+乾式工程である。 (3)鉄還元工程 本発明に従えば、銀還元槽において、塩化銀主体の固体
のスラリーに鉄粉を添加して銀を還元する。反応は、酸
性溶液中で促進されるが、塩化浸出残査には付着塩酸分
があるため、水によるリパルプによりスラリーは酸性と
なる。反応機構は、次の通り、鉄粉による直接還元反応
と、鉄粉の塩酸溶解により生成した発生期の水素による
還元反応が考慮しうる: 2AgCl+Fe→2Ag+FeCl2 2AgCl+2H→2Ag+2HCl 【0020】反応は常温で開始するが、反応熱により沸
点近くまで上昇する。塩化浸出残査中の塩化鉛も金属鉛
となり、還元銀中の塩素は0.5%程度となる。鉄粉使
用量は当量(Ag/Fe=2/1として)の1.5〜2
倍を添加する。鉄は残留しても、次の乾式精製でスラグ
に入るから問題とならない。液温は80℃以上で、残留
する塩酸で鉄が溶解するときに発熱する。塩酸濃度は
0.1〜2モルであり、0.2モル程度が好ましい。反
応時間は4時間程度で十分であるが、実際には鉄の溶解
熱での沸騰を抑制するため10時間程度を要する。還元
後、フィルタープレスにより固液分離し、後液はヒドラ
ジンによる還元後廃液となる。 【0021】(4)酸化工程 乾式酸化炉で鉛等の不純物を効率よく酸化除去し、塩化
銀に付随している鉛、錫、アンチモン、還元剤の未反応
鉄をスラグとして分離し、付随している貴金属は銀中へ
濃縮し、粗銀とする。 【0022】(5)銀電解工程 粗銀を原銀板として鋳造し、銀電解精製を行う。電着銀
は洗浄溶解後電気銀に鋳造する。発生する金、白金族等
を含む貴金属殿物は別途処理する。従来通りの工程を実
施するので、説明は省略する。 【0023】本発明と直接関係しないが、塩化浸出後液
からの金抽出・還元工程について参考までに説明を加え
ておく。金抽出・還元工程 塩化浸出後、溶液は、冷却手段を備えた酸濃度調整槽に
送る。酸濃度調整槽では、金抽出工程での溶解度による
不純物沈殿を防止するために、5℃まで冷却する。ま
た、金抽出条件に塩酸濃度を調整する。調整後、フィル
タープレスによる固液分離後、溶液は金抽出工程に送
る。塩化鉛を主体とする析出沈殿物は製錬工程に戻す。 【0024】金抽出工程は、塩化浸出液から金のみを溶
媒に抽出する工程である。金溶媒抽出後、金製品化工程
において、金を抽出した溶媒から金を還元析出させ、製
品化される。金抽出のための溶媒は、公知のものが使用
できるが、DBC(ジブチルカルビトール;(C49
242O)の使用が好ましい。DBCは金(HAu
Cl4ないしはAuCl3)と化合物を作りやすいため、
水溶液から金を抽出することができる。DBCは金に対
する選択性が極めて高く、また金の分配係数は1000
程度と高い。金抽出は、反応が速いため、ミキサーセト
ラーを用いて連続操作で行う。抽出後のDBC中には水
溶液や沈殿物が極微量存在し、最終的に製品金の品質の
悪化やバラツキの原因となるため、遠心分離機によって
これをDBCから除去する。遠心分離後のDBCは、弱
塩酸溶液を用いてミキサーセトラーによる連続操作でス
クラビングを行う。スクラビングによって、DBCに微
量抽出されたFe等の不純物を除去する。スクラビング
後のDBCは、遠心分離機により不純物の除去後金還元
槽に送る。スクラビング後液は、塩化浸出工程の洗浄
水、希釈水として使用する。金抽出後液には、DBCが
水相への溶解度である約3g/l溶存しているため、蒸留
槽で約20%の水分と共に蒸留除去する。DBCを除去
した金抽出後液は、亜硫酸ガスを使用する還元工程に送
る。蒸留分離したDBCは金抽出工程へ繰り返す。 【0025】金還元槽では、シュウ酸水溶液とDBCと
を混合することによりDBC中の金を直接還元する。反
応式は次の通りである: 2HAuCl4+3(COOH)2→2Au+6CO2
8HCl 【0026】還元反応は80〜90℃において撹拌時間
2時間で行う。還元後は、DBCは水溶液沈降分離し、
金抽出工程へ戻し、循環利用する。還元金と水溶液は真
空濾過し、還元金は洗浄、乾燥を経て溶解、鋳造により
金インゴット又は金ショットとして製品化する。濾過後
液には、微量の金及び未反応のシュウ酸が含まれている
ため、ヒドラジン還元及び脱シュウ酸処理を行い、廃液
とする。脱シュウ酸残査は製錬工程に繰り返し、後液は
廃液となる。脱シュウ酸処理は、次の反応により水酸化
カルシウムによりシュウ酸をシュウ酸カルシウムとして
固定する方法である: (COOH)2+Ca(OH)2→Ca(COO)2+2
2O 【0027】 【実施例】表1に示した分析値を有する銅電解殿物を脱
銅工程において銅電解工程の硫酸溶液を用いて浸出処理
した。脱銅浸出は常圧、空気吹き込み下、80℃におい
て行い、18〜20時間で殿物中の銅品位は約0.5%
まで低下した。脱銅浸出率は、Cu:98.5%、T
e:50%、Sb:3%、Bi:2%、As:85%で
あり、殿物に含まれたAu、Ag、Pt、Pd、Se、
Pbはいずれも浸出されず、浸出率0%であった。 【0028】脱銅浸出後液を、脱テルル槽において、銅
板及び銅粉を用いて硫酸濃度:250g/l、温度:80
℃、反応時間:約18時間の条件で処理し、テルル化銅
を析出させた。 【0029】脱銅後の殿物を塩酸によりリパルプし、塩
化浸出槽に送った。塩化浸出反応は、過酸化水素を徐々
に添加して行った。反応温度が60〜70℃となるよう
に冷却を行った。塩化浸出後、フィルタープレスにより
固液分離し、塩化銀主体の固体は水によるリパルプ後銀
還元工程にそして溶液は冷却手段を備えた酸濃度調整槽
に送り、金抽出工程に供した。塩化浸出率は次の通りで
あった:Au:97.5%、Ag:1%、Pt:99
%、Pd:98%、Se:93%、Te:70%、P
b:5%、Sb:30%、Bi:69%。 【0030】水でリバルプした銀及び鉛を含む塩化物を
鉄粉で還元した。鉄粉使用量は当量(Ag/Fe=2/
1として)の1.5〜2倍を添加した。液温は90℃以
上で、残留する塩酸で鉄が溶解するときに発熱した。塩
酸濃度は0.2モル程度とした。反応時間は4時間程度
で十分であるが、実際には鉄の溶解熱での沸騰を抑制す
るため10時間程度を要した。97%を超える還元率が
得られた。 【0031】得られた還元銀を乾式酸化炉で鉛等の不純
物を効率よく酸化除去し、塩化銀に付随していた鉛、還
元剤の未反応鉄をスラグとして分離し、付随している貴
金属は銀中へ濃縮し、粗銀とし、電解精製した。99.
99%を超える高純度の銀製品、即ち型銀を得た。 【0032】各工程の中間組成(%)並びに製品銀組成
(ppm)を示す。 【0033】 【表2】 【0034】 【発明の効果】湿式法と乾式法との組み合わせにより銀
回収の効率的なプロセスの確立に成功した。 塩化銀と塩化鉛との共沈を問題としない工程としたた
め、塩化銀精製工程の操業を容易とする。高純度の銀を
湿式精錬で得ようとする場合、鉛等に不純物の混入を極
力避けねばならない。そのためには、塩化銀生成工程の
温度管理等厳密な操業管理を必要とし、設備も複雑とな
るが、本発明の銀回収工程では鉛の共沈を問題としない
ため、操業方法が大幅に簡素化できた。 脱塩素剤として、鉄粉を使用することにより、銀、鉛
を同時に還元する。これは、銀精製工程で得られる塩化
銀の処理に乾式酸化工程を導入することにより、鉛と銀
との混合原料でも容易に処理できる点に着目したことに
よる。還元剤として鉄に着目したのは、鉄による直接脱
塩反応に加えて、鉄と酸性溶液の反応により発生する水
素も有効に反応に寄与すると考えたからである。従来の
工程では、脱塩素工程を鉛、銀の2段階に分けて実施し
ていたが、本発明はすべての脱塩素を一段で実施でき、
工程が著しく簡素化でき、設備費の低減のみ成らず、運
転コストの大幅な低減が可能となった。 乾式酸化炉で鉛等の不純物を効率よく酸化除去し、塩
化銀に付随している鉛、還元剤の未反応鉄をスラグとし
て分離し、付随している貴金属は銀中へ濃縮し、粗銀と
し、電解精製する。この方法により、高純度銀のみなら
ず、他の貴金属も濃縮分離回収できる。また、電解精製
において不純物となる白金族が極めて少ないので、銀品
質も安定する。 銀の生成に従来のようにアンモニアを使用しないた
め、窒化銀の生成、排水処理工程での錯イオン等の問題
は全くなく、安全面や環境面での効果は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering silver from copper electrolytic deposits and industrial wastes containing at least silver and lead, and more particularly to a method for recovering silver from a wet method. The present invention relates to a method for efficiently recovering high-purity silver by combining with a dry method. 2. Description of the Related Art In many fields, it is desired to recover silver, gold, platinum group and the like from raw materials containing noble metals including silver, lead, copper and other various elements. For example, electronic equipment scraps containing noble metals, including copper electrolytic deposits in copper refining, wirings and electrodes of gold, silver, etc., copper foil circuits and solder portions and solder films are examples of such collection sources. Hereinafter, description will be made by taking a copper electrolytic deposit as an example. In electrolytic refining of copper, crude copper from a converter is refined to about 99.5% in a refining furnace, and a cast anode (anode) and a seed plate as a cathode are alternately suspended in a dozen sheets in an electrolytic cell. Then, electrolytic refining is performed. The copper electrodeposited on the seed plate is called electrolytic copper and is subsequently processed in a known manner. At the bottom of the electrolytic cell, impurities contained in the anode are deposited in a muddy state, and this is called a copper electrolytic deposit (anode slime). Copper electrolytic artifacts include gold, silver, in addition to copper,
The precious metals in the raw materials are concentrated and are the main raw materials for precious metal recovery. In addition, selenium and tellurium are also included. Lead is also included. Table 1 shows an example of the analysis of copper electrolytic deposits.
Shown in: [0003] As a method of recovering a noble metal from the copper electrolytic deposit, both a dry method and a wet method have been put to practical use. As a method of treating the electrolytic deposit by a wet method,
The following methods have been reported: For example, copper electrolytic deposits are repulped with an electrolytic solution or the like, and copper, tellurium,
It dissolves arsenic and other soluble impurities, and performs solid-liquid separation from insolubles mainly composed of noble metals including gold, silver and platinum group, selenium, etc., and performs concentration and purification of noble metals. The main components of the insolubles are silver, selenium, gold, platinum group, tellurium, lead and the like.
The residue is oxidized and dissolved with a solution containing hydrochloric acid, and the gold, platinum group,
Dissolve selenium etc. Silver, lead, and the like, which form chloride and chloride and form undissolved products, are subjected to solid-liquid separation and become a silver intermediate material in which silver is concentrated. Since silver is chloride, it is converted into silver chloride again after de-leading treatment and de-impurity treatment, and then reduced to a silver product. Since the liquid after the solid-liquid separation of silver chloride contains valuable substances such as gold, platinum group, and selenium, gold is extracted by solvent extraction.
Further, selenium is purified and separated by distillation purification, and the platinum group is purified and separated by a platinum purification step by solvent extraction to obtain a product. FIG. 2 shows a process flow sheet for recovering silver from a copper electrolytic deposit according to a conventional method. In the conventional wet processing method, silver chloride obtained in the precipitating wet processing step is further subjected to wet purification to produce high-purity silver. This method has the following problems when refining silver: In the case of a reaction using hydrochloric acid or the like in a wet refining, when processing a raw material containing lead such as a copper deposit, the method involves the addition of silver. Lead also becomes chloride, and lead chloride is mixed with silver chloride. It is necessary to strictly control the liquid temperature, suppress the precipitation of lead chloride as much as possible, and raise the quality of silver chloride. Nevertheless, pre-separation of lead is required as a pre-treatment for silver refining. Therefore, lead is converted to lead carbonate using a sodium carbonate solution. Next, lead is leached with nitric acid to separate into a lead-containing liquid and silver residue. Thus, an extra step of separating lead from silver chloride is required. The silver residue (silver chloride) subjected to solid-liquid separation is subjected to ammonia leaching to separate it from impurities other than silver chloride in order to increase its purity. This leachate is thermally decomposed to recover ammonia, and silver becomes high-purity silver chloride. After converting this silver chloride to silver oxide with caustic soda, saccharides are added and reduced,
Obtain silver powder. The use of ammonia was required. As described above, not only is the process complicated, but also various chemicals are collected.
Operation costs for chemicals etc. increase. In addition, since ammonia and the like are used, care must be taken to prevent the formation of explosive silver nitride, which involves operational difficulties. It is an object of the present invention to completely solve the above problems and to develop an efficient process for recovering silver from copper electrolytic deposits and scrap. The present inventors have found that the root of the problem in the silver chloride refining step containing at least lead and a noble metal containing silver is co-precipitation of lead chloride with reduced silver. In order to facilitate the operation of the refining process, it is necessary to adopt a process that does not cause co-precipitation of lead chloride with reduced silver. For that purpose, a dry oxidation process is used for the treatment of silver chloride obtained in the silver refining process. It was determined that it would be advantageous to introduce them. It has also been found that the use of iron as a reducing agent is beneficial. This is because, in addition to the direct desalination reaction with iron, hydrogen generated by the reaction between iron and an acidic solution can be effectively used, and iron is useful for forming slag in the dry oxidation step. Thus, the present invention provides a method for recovering silver from a raw material containing at least a noble metal containing silver, gold, and a platinum group, copper, and lead: (1) leaching copper from the raw material with a sulfuric acid solution; Silver, gold, platinum
To form a copper removal buttocks comprising a family and lead, (2) dehydration copper buttocks was exudate and silver and lead chloride containing leach to gold and platinum group chloride slurry formed by repulping with hydrochloric acid chloride (3) Gold is extracted from the chlorinated leachate collected in step (2) by DB.
Only gold is solvent-extracted and recovered using a C (dibutyl carbitol) solvent, and (4) the deposit containing silver and lead chlorides recovered in step (2) is washed and accompanied by the deposit. And (5) adding iron powder to a slurry formed by repulping silver and lead chloride-containing deposits washed in step (4) with water. The mixture containing silver and lead in a metallic state is recovered by reducing the product, and (6) the mixture containing silver and lead in step (5) is oxidized at high temperature in a dry furnace to remove slag containing coarse silver and lead oxide. Let it form
Then, (7) a method of recovering silver including a step of separating the coarse silver from the slag and subjecting the separated coarse silver to silver electrolysis to produce high-purity silver is provided. In a preferred embodiment, when the raw material contains gold and platinum group, the residue is sufficiently washed so as to minimize the entrainment of the gold and platinum group to the solid-liquid separated residue in step (1). In the step of extracting gold from the chlorinated leachate after the chlorination leaching and solid-liquid separation, only gold is extracted into the solvent using a DBC (dibutyl carbitol) solvent. In the case where the raw material contains copper, a decoppering step of leaching out copper contained in the raw material with a sulfuric acid solution before chlorination leaching is included. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic equipment scrap containing a noble metal, including a copper electrolytic deposit, wiring and electrodes of gold and silver, a copper foil circuit, a solder portion and a solder film in copper refining. set to target. Here, a copper electrolytic deposit will be described as an example. As shown in Table 1 above, the copper electrolytic
In addition to copper, gold and other precious metals in the raw materials are concentrated and are the main raw materials for precious metal recovery. In addition, selenium and tellurium are also included. The problem is that lead is also included. First, a copper electrolytic deposit is dissolved using a copper electrolytic process solution, and impurities such as copper, tellurium, and arsenic are leached. The leaching residue is dissolved using a hydrochloric acid solution and an oxidizing agent, and then subjected to solid-liquid separation using silver or the like as chloride. Gold is separated from the post-separation solution by solvent extraction. According to the present invention, the wet method and the dry method are combined to remove copper prior to chloride leaching of the copper electrolytic deposit as a raw material.
After carrying out pretreatment including the tellurium removal step as required, (1) chloride and leach copper oxide deposits as a raw material to form silver and lead chloride deposits, solid-liquid separation, silver and lead (2) repulping the silver and lead chloride deposits with water, adding iron powder and reducing to recover a metallic silver and lead mixture, (3) high-temperature oxidation of the silver and lead mixture in a dry furnace to form coarse silver and slag containing lead oxide; and (4) separating the coarse silver and subjecting it to silver electrolysis to obtain high-purity silver. The silver is recovered by sequentially performing the steps of: The solution after chloride leaching and solid-liquid separation, the slag containing lead oxide, and the silver electrolytic deposit are separately subjected to a gold recovery step. FIG. 1 shows a process flow sheet for treating a copper electrolytic deposit in the present invention. (1) Copper removal and tellurium removal pretreatment step The copper removal step is a step of leaching and removing about 25% of copper contained in the residue with a sulfuric acid solution in a copper electrolysis step to make it 1% or less.
In the tellurium removal process, tellurium is also leached in the copper leached solution, and if this is directly returned to the copper electrolysis process, the quality of electrolytic copper is contaminated, so that tellurium in the leaching solution is removed in advance by copper replacement. It is a process of. The deposit sent from the electrolysis step is repulped with, for example, an electrolytic return solution after removing Ni from the copper electrolytic cleaning step. The mold release agent contained in the residue is removed by a wet sieve and sent to a copper removal and leaching tank. Copper removal leaching is performed at 70 to 85 ° C., especially at 80 ° C. under normal pressure and air blowing.
At 18 ° C for 18-24 hours, the copper quality in the artifacts is about 25
% To about 0.5%. Also, Te in the treasure,
As elutes 50% and 85%, respectively. The reaction formula is shown below: Cu + 1 / 2O 2 + H 2 SO 4 → CuSO 4 + H 2 O Cu 2 Se + O 2 + 2H 2 SO 4 → 2CuSO 4 + Se + 2
H 2 O The leach liquor contains about 1 g / l Fe and the following reaction also contributes to the decopper leaching: 4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 +
2H 2 O Cu 2 Se + 2Fe 2 (SO 4 ) 3 → 2CuSO 4 + Se +
4FeSO 4 [0015] copper removal after the solid-liquid separated through a filter press. After the leaching, tellurium is precipitated as copper telluride by a copper plate and copper powder in a tellurium removal tank. Sulfuric acid concentration is 230 ~
450 g / l, temperature 70-90 ° C and reaction time 16
~ 24 hours. The end point of the reaction is confirmed by analyzing the Te concentration in the post solution. The reaction formula is as follows: H 2 TeO 3 + 4Cu + 2H 2 SO 4 → Cu 2 Te + 2Cu
SO 4 + 3H 2 O The precipitated copper telluride is sent to a tellurium recovery step after solid-liquid separation by a filter press. The post-solution is returned to the copper electrolytic cleaning process. After removing copper and tellurium, the residue is sufficiently washed to minimize the entrainment of gold and platinum group (restrict the total amount of platinum group to 1/100 or less of silver), and then in a repulp tank. After repulp with hydrochloric acid, it is sent to the chloride leaching tank. (2) Chloride leaching step The chlorination leaching step is a step of mainly separating silver and the like as chlorides from the deposit after copper removal. In the chlorination leaching tank, chlorination leaching is basically performed on the decoppered product slurry repulped with hydrochloric acid. It is preferable to use hydrogen peroxide in combination. As described below, the dissolution reaction involves a reaction consuming hydrochloric acid and hydrogen peroxide, a reaction consuming only hydrochloric acid, and a reaction consuming only hydrogen peroxide. (B) the reaction consumes the hydrochloric acid and hydrogen peroxide: Au: 2Au + 3H 2 O 2 + 8HCl → 2HAuCl 4 +
6H 2 O Ag: Ag 2 Se + 3H 2 O 2 + 2HCl → 2AgCl +
H 2 SeO 3 + 3H 2 O Pt: Pt + 2H 2 O 2 + 6HCl → H 2 PtCl 6 + 4H
2 O Pd: Pd + H 2 O 2 + 4HCl → H 2 PdCl 4 + 2H 2
O Cu: Cu + H 2 O 2 + 2HCl → CuCl 2 + 2H 2 O (b) Reaction consuming only hydrochloric acid: Pb: PbSO 4 + 2HCl → PbCl 2 + H 2 SO 4 Bi: BiAsO 4 + 3HCl → BiCl 3 + H 3 AsO 4 (c) ) reaction Se consumes only hydrogen peroxide: Se + 2H 2 O 2 → H 2 SeO 3 + H 2 O Te: Te + 2H 2 O 2 → H 2 TeO 3 + H 2 O Sb: H 3 SbO 3 + H 2 O 2 → H 3 SbO 4 + H 2 O The chlorination leaching reaction is preferably carried out by gradually adding hydrogen peroxide. The reaction temperature must be appropriately controlled in order to suppress the decomposition of hydrogen peroxide due to the disproportionation reaction. Chloride and oxides dissolve or precipitate due to their respective solubilities due to the chloride / oxidation reaction. Since silver chloride has low solubility in a hydrochloric acid solution, it precipitates and is separated from other noble metals. Most of the lead chloride also precipitates. Most of the antimony compound and tellurium compound also precipitate. After the chloride leaching, the solid is separated into solid and liquid by a filter press, the solid mainly composed of silver chloride is sent to a silver reduction / purification step after repulping with water, and the solution is sent to an acid concentration adjusting tank equipped with a cooling means. The silver refining process which is the subject of the present invention is a wet + dry process in which silver is reduced from silver chloride, purified by an oxidation furnace and silver electrolysis, and commercialized. (3) Iron Reduction Step According to the present invention, silver is reduced by adding iron powder to a silver slurry-based solid slurry in a silver reduction tank. Although the reaction is promoted in an acidic solution, the slurry becomes acidic due to repulp with water because of the presence of attached hydrochloric acid in the chloride leaching residue. The reaction mechanism can consider a direct reduction reaction with iron powder and a reduction reaction with nascent hydrogen generated by dissolving iron powder in hydrochloric acid as follows: 2AgCl + Fe → 2Ag + FeCl 2 2AgCl + 2H → 2Ag + 2HCl It starts but rises to near the boiling point due to the heat of reaction. Lead chloride in the chloride leaching residue also becomes metallic lead, and the chlorine in the reduced silver is about 0.5%. The amount of iron powder used is 1.5 to 2 equivalents (assuming Ag / Fe = 2/1).
Add 1 times. Even if iron remains, there is no problem because it enters slag in the next dry refining. The liquid temperature is 80 ° C. or higher, and heat is generated when the remaining hydrochloric acid dissolves iron. The hydrochloric acid concentration is 0.1 to 2 mol, and preferably about 0.2 mol. A reaction time of about 4 hours is sufficient, but in practice, about 10 hours is required to suppress boiling due to heat of dissolution of iron. After the reduction, solid-liquid separation is performed by a filter press, and the post-liquid becomes a waste liquid after reduction with hydrazine. (4) Oxidation Step Impurities such as lead are efficiently oxidized and removed in a dry oxidation furnace, and lead, tin, antimony, and unreacted iron of a reducing agent, which are attached to silver chloride, are separated as slag. The noble metal used is concentrated into silver to obtain coarse silver. (5) Silver Electrolysis Step Crude silver is cast as an original silver plate and silver electrorefining is performed. Electrodeposited silver is cast into electric silver after washing and melting. Precious metal artifacts including gold, platinum group, etc. generated are treated separately. Since the conventional process is performed, the description is omitted. Although not directly related to the present invention, the step of extracting and reducing gold from the solution after leaching with chloride will be explained for reference. Gold extraction / reduction step After chlorination and leaching, the solution is sent to an acid concentration adjusting tank equipped with a cooling means. In the acid concentration adjusting tank, the temperature is cooled to 5 ° C. in order to prevent precipitation of impurities due to solubility in the gold extraction step. Also adjust the hydrochloric acid concentration to the gold extraction conditions. After the adjustment, the solution is sent to a gold extraction step after solid-liquid separation by a filter press. The precipitate mainly composed of lead chloride is returned to the smelting process. The gold extraction step is a step of extracting only gold from a chlorination leachate into a solvent. After the gold solvent extraction, in a gold product production step, gold is reduced and precipitated from the solvent from which the gold has been extracted to produce a product. As a solvent for gold extraction, a known solvent can be used, but DBC (dibutyl carbitol; (C 4 H 9 O
The use of C 2 H 4 ) 2 O) is preferred. DBC is gold (HAu
Cl 4 or AuCl 3 )
Gold can be extracted from aqueous solutions. DBC has a very high selectivity for gold, and the distribution coefficient of gold is 1000
Degree and high. Gold extraction is performed in a continuous operation using a mixer settler because of the rapid reaction. Since an extremely small amount of an aqueous solution or a precipitate is present in the extracted DBC, which eventually causes the quality of the product gold to deteriorate or vary, the DBC is removed from the DBC by a centrifuge. The DBC after the centrifugation is scrubbed by a continuous operation by a mixer settler using a weak hydrochloric acid solution. By scrubbing, impurities such as Fe extracted in trace amounts into DBC are removed. The DBC after scrubbing is sent to a gold reduction tank after removing impurities by a centrifuge. The solution after scrubbing is used as washing water and dilution water in the chloride leaching step. Since about 3 g / l of DBC is dissolved in the aqueous phase after the gold extraction, the DBC is distilled off together with about 20% of water in a distillation tank. The gold-extracted liquid from which DBC has been removed is sent to a reduction step using sulfurous acid gas. The DBC separated by distillation is repeated to the gold extraction step. In the gold reduction tank, gold in DBC is directly reduced by mixing an oxalic acid aqueous solution and DBC. The reaction formula is as follows: 2HAuCl 4 +3 (COOH) 2 → 2Au + 6CO 2 +
8HCl The reduction reaction is carried out at 80 to 90 ° C. for 2 hours with stirring time. After reduction, DBC is separated by sedimentation of the aqueous solution,
Return to the gold extraction process and recycle. The reduced gold and the aqueous solution are vacuum filtered, and the reduced gold is washed, dried, dissolved and cast to produce a gold ingot or a gold shot. Since the filtrate after filtration contains trace amounts of gold and unreacted oxalic acid, it is subjected to hydrazine reduction and oxalic acid removal treatment to be a waste liquid. The residual oxalic acid residue is repeated in the smelting process, and the after-liquid becomes waste liquid. Deoxalic acid treatment is a method of fixing oxalic acid as calcium oxalate with calcium hydroxide by the following reaction: (COOH) 2 + Ca (OH) 2 → Ca (COO) 2 +2
EXAMPLE 2 Copper electrolytic deposits having the analytical values shown in Table 1 were leached in a copper removing step using a sulfuric acid solution from the copper electrolytic step. Copper removal and leaching are carried out at 80 ° C. under normal pressure and air blowing, and the copper quality in the residue is about 0.5% in 18 to 20 hours.
Down to Copper removal leaching rate: Cu: 98.5%, T
e: 50%, Sb: 3%, Bi: 2%, As: 85%, and contained Au, Ag, Pt, Pd, Se,
No Pb was leached, and the leaching rate was 0%. The leached solution after decopperization is immersed in a tellurium-removing tank using a copper plate and copper powder, sulfuric acid concentration: 250 g / l, temperature: 80
C., reaction time: about 18 hours, to precipitate copper telluride. The copper-deposited residue was repulped with hydrochloric acid and sent to a chloride leaching tank. The chlorination leaching reaction was carried out by gradually adding hydrogen peroxide. Cooling was performed so that the reaction temperature was 60 to 70 ° C. After the leaching with chloride, the solid was separated into solid and liquid by a filter press. The solid mainly composed of silver chloride was repulped with water and then sent to a silver reduction step, and the solution was sent to an acid concentration adjusting tank equipped with a cooling means to be subjected to a gold extraction step. The chloride leaching rates were as follows: Au: 97.5%, Ag: 1%, Pt: 99
%, Pd: 98%, Se: 93%, Te: 70%, P
b: 5%, Sb: 30%, Bi: 69%. The chloride containing silver and lead, re-valved with water, was reduced with iron powder. The amount of iron powder used is equivalent (Ag / Fe = 2 /
1.5 to 2 times of (as 1). The liquid temperature was 90 ° C. or higher, and heat was generated when iron was dissolved by the remaining hydrochloric acid. The hydrochloric acid concentration was about 0.2 mol. A reaction time of about 4 hours is sufficient, but in practice, about 10 hours was required to suppress boiling due to heat of dissolution of iron. A reduction of more than 97% was obtained. The obtained reduced silver is efficiently oxidized and removed of impurities such as lead in a dry oxidation furnace, and the lead and unreacted iron of the reducing agent, which are attached to silver chloride, are separated as slag, and the attached noble metal is separated. Was concentrated in silver to obtain coarse silver, which was electrolytically purified. 99.
High-purity silver products exceeding 99%, that is, mold silver, were obtained. The intermediate composition (%) and the product silver composition (ppm) of each step are shown. [Table 2] The present invention has succeeded in establishing an efficient silver recovery process by combining the wet method and the dry method. Since the process does not cause a problem of coprecipitation of silver chloride and lead chloride, the operation of the silver chloride refining process is facilitated. When high-purity silver is to be obtained by wet refining, contamination of lead and the like with impurities must be avoided as much as possible. For this purpose, strict operation control such as temperature control in the silver chloride production process is required, and the equipment becomes complicated.However, since the silver recovery process of the present invention does not pose a problem of coprecipitation of lead, the operation method is greatly simplified. Could be transformed. Silver and lead are reduced at the same time by using iron powder as a dechlorinating agent. This is due to the fact that by introducing a dry oxidation step into the processing of silver chloride obtained in the silver refining step, a mixed raw material of lead and silver can be easily processed. We focused on iron as a reducing agent because, in addition to the direct desalination reaction with iron, we thought that hydrogen generated by the reaction between iron and the acidic solution also effectively contributed to the reaction. In the conventional process, the dechlorination process was performed in two stages of lead and silver, but the present invention can perform all the dechlorination in one stage,
The process was significantly simplified, and not only the equipment cost was reduced, but also the operating cost was significantly reduced. The dry oxidation furnace efficiently oxidizes and removes impurities such as lead, separates the lead accompanying silver chloride and the unreacted iron of the reducing agent as slag, and concentrates the accompanying noble metal into silver, and removes the coarse silver. And electrolytically refining. By this method, not only high-purity silver but also other noble metals can be concentrated and separated and recovered. Further, since the amount of platinum group which is an impurity in the electrolytic refining is extremely small, silver quality is stabilized. Since ammonia is not used for the production of silver as in the prior art, there is no problem such as the production of silver nitride and complex ions in the wastewater treatment process, and the effect on safety and environment is great.

【図面の簡単な説明】 【図1】本発明の銅電解殿物を例にとってのプロセスフ
ローシートを示す。 【図2】従来法のプロセスフローシートを示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a process flow sheet using the copper electrolytic deposit of the present invention as an example. FIG. 2 shows a process flow sheet of a conventional method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22B 7/00 C22B 11/02 C25C 1/20 7/02 B09B 3/00 ZAB 304J 11/02 C22B 3/00 U 13/00 J 15/00 13/04 C25C 1/20 15/12 (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 B09B 3/00 C25C 1/20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22B 7/00 C22B 11/02 C25C 1/20 7/02 B09B 3/00 ZAB 304J 11/02 C22B 3/00 U 13/00 J 15/00 13/04 C25C 1/20 15/12 (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00 B09B 3/00 C25C 1/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 銀、金及び白金族を含む貴金属と、銅
と、鉛とを少なくとも含む原料から銀を回収するにあた
り、 (1)該原料から銅を硫酸溶液で浸出して銀、金、白金
及び鉛を含む脱銅殿物を形成させ、 (2)該脱銅殿物を塩酸でリパルプして形成されたスラ
リーを塩化浸出して金及び白金族を含む塩化浸出液と銀
及び鉛の塩化物を含む殿物を固液分離し回収し、 (3)工程(2)で回収された塩化浸出液から金をDB
C(ジブチルカルビトール)溶媒を用いて金のみを溶媒
抽出して回収し、 (4)工程(2)で回収された銀及び鉛の塩化物を含む
殿物を洗浄して該殿物に随伴する金及び白金族を除去
し、 (5)工程(4)で洗浄された銀及び鉛の塩化物を含む
殿物を水でリパルプして形成されたスラリーに鉄粉を添
加することにより該殿物を還元させて金属状態の銀及び
鉛を含む混合物を回収し、 (6)工程(5)の銀及び鉛を含む混合物を乾式炉で高
温酸化させて粗銀と酸化鉛を含むスラグとを形成させ、
次いで (7)該粗銀を該スラグから分離させ、分離された粗銀
を銀電解して高純度銀を生成させる工程を含む銀の回収
方法。
(57) [Claims 1] In recovering silver from a raw material containing at least a noble metal containing silver, gold and a platinum group, copper and lead, (1) sulfuric acid is converted from the raw material to sulfuric acid Leach with solution, silver, gold, platinum
To form a copper removal buttocks comprising a family and lead, (2) dehydration copper buttocks was exudate and silver and lead chloride containing leach to gold and platinum group chloride slurry formed by repulping with hydrochloric acid chloride (3) Gold is extracted from the chlorinated leachate collected in step (2) by DB.
Only gold is solvent-extracted and recovered using a C (dibutyl carbitol) solvent, and (4) the deposit containing silver and lead chlorides recovered in step (2) is washed and accompanied by the deposit. And (5) adding iron powder to a slurry formed by repulping silver and lead chloride-containing deposits washed in step (4) with water. The mixture containing silver and lead in a metallic state is recovered by reducing the product, and (6) the mixture containing silver and lead in step (5) is oxidized at high temperature in a dry furnace to remove slag containing coarse silver and lead oxide. Let it form
Next, (7) a method for recovering silver, comprising the step of separating the coarse silver from the slag and subjecting the separated coarse silver to silver electrolysis to produce high-purity silver.
JP2000212634A 2000-03-03 2000-07-13 How to recover silver Expired - Lifetime JP3474526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212634A JP3474526B2 (en) 2000-03-03 2000-07-13 How to recover silver

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000058490 2000-03-03
JP2000-58490 2000-03-03
JP2000212634A JP3474526B2 (en) 2000-03-03 2000-07-13 How to recover silver

Publications (2)

Publication Number Publication Date
JP2001316736A JP2001316736A (en) 2001-11-16
JP3474526B2 true JP3474526B2 (en) 2003-12-08

Family

ID=26586706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212634A Expired - Lifetime JP3474526B2 (en) 2000-03-03 2000-07-13 How to recover silver

Country Status (1)

Country Link
JP (1) JP3474526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794374A (en) * 2017-12-14 2018-03-13 山东金创金银冶炼有限公司 A kind of method that wet method carries silver in mud from silver cyanide

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100360419C (en) 2003-09-02 2008-01-09 住友金属矿山株式会社 Method of separation/purification for high-purity silver chloride and process for producing high-purity silver by the same
JP5031998B2 (en) * 2005-04-28 2012-09-26 相田化学工業株式会社 Precious metal recovery method
JP5104211B2 (en) * 2007-10-26 2012-12-19 住友金属鉱山株式会社 Silver powder manufacturing method
JP5376558B2 (en) * 2008-04-18 2013-12-25 一般財団法人生産技術研究奨励会 Precious metal recovery method
JP4723629B2 (en) 2008-11-13 2011-07-13 Jx日鉱日石金属株式会社 Silver recovery method using anion exchange resin
JP5154486B2 (en) * 2009-03-26 2013-02-27 Jx日鉱日石金属株式会社 Method for recovering platinum group elements
JP5351747B2 (en) * 2009-12-22 2013-11-27 田中貴金属工業株式会社 Gold reduction recovery method
WO2011156861A1 (en) * 2010-06-15 2011-12-22 The University Of Queensland Method of recovering a metal
JP5686470B2 (en) * 2011-02-15 2015-03-18 太平洋セメント株式会社 Silver and lead recovery methods
CN102312097B (en) * 2011-09-30 2013-03-06 广州有色金属研究院 Method for preparing babbitt alloy from residue containing silver of copper anode slime
CN102534225B (en) * 2012-02-27 2017-06-20 牛辉 A kind of processing method of the earth of positive pole
JP5497219B1 (en) * 2013-03-08 2014-05-21 太平洋セメント株式会社 Method for recovering valuable metals in waste
CN103397191B (en) * 2013-08-05 2014-10-22 昆明冶金研究院 Method for comprehensively efficiently processing lead anode slime by using top-blown converter
CN103451435B (en) * 2013-09-02 2016-02-10 浙江触捷光电科技有限公司 A kind of from wire mark silver slurry process the method for Footwall drift silver in waste
JP6394503B2 (en) * 2015-05-29 2018-09-26 住友金属鉱山株式会社 Gold solvent extraction method
JP6713706B2 (en) * 2016-05-13 2020-06-24 一般財団法人電力中央研究所 Recovery method of selenium and tellurium from molten chloride
CN106086432B (en) * 2016-06-16 2020-07-03 北京科技大学 Method for recovering lead and silver from lead sulfate slag
CN106119554B (en) * 2016-08-18 2018-01-16 紫金矿业集团股份有限公司 High Purity Gold and the method for being enriched with silver, platinum and palladium are prepared from silver anode slime
CN107574300A (en) * 2017-08-29 2018-01-12 山东恒邦冶炼股份有限公司 A kind of mixed processing technique of copper, lead anode slurry
JP6945930B2 (en) * 2017-10-19 2021-10-06 一般財団法人電力中央研究所 Method for separating selenium and tellurium dissolved in molten chloride
JP2020132957A (en) * 2019-02-20 2020-08-31 三菱マテリアル株式会社 Silver recovery method
CN110607447A (en) * 2019-08-09 2019-12-24 济源豫光有色冶金设计研究院有限公司 Combined treatment method of lead anode slime and copper anode slime
KR102289961B1 (en) 2019-10-14 2021-08-12 단국대학교 천안캠퍼스 산학협력단 Method of manufacturing transparent electrode film having improved conductivity through alkaline solution spraying process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794374A (en) * 2017-12-14 2018-03-13 山东金创金银冶炼有限公司 A kind of method that wet method carries silver in mud from silver cyanide

Also Published As

Publication number Publication date
JP2001316736A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3474526B2 (en) How to recover silver
JP3616314B2 (en) Method for treating copper electrolytic deposits
JP3879126B2 (en) Precious metal smelting method
CA1155084A (en) Process for the recovery of metal values from anode slimes
KR100956050B1 (en) Method for separating platinum group element
EP0049169A2 (en) Hydrometallurgical processing of precious metal-containing materials
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
US4666514A (en) Hydrometallurgical process for recovering silver from copper-electrolysis anode sludge
JP2012246198A (en) Method for purifying selenium by wet process
JP6233478B2 (en) Purification method of bismuth
WO2018138917A1 (en) Bismuth purification method
KR100415448B1 (en) Method of recovering silver
EP1577408B2 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP2012246197A (en) Method for purifying selenium by wet process
JP6475403B2 (en) How to recover tellurium
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JPH05247552A (en) Decopperizing method of lead electrolysis anode slime by wet process treatment
JP2007231397A (en) Method for refining silver chloride
JPH0781172B2 (en) Silver refining ore mud purification method
JP2001279344A (en) Method for recovering tin
JP7006332B2 (en) How to make gold powder
KR100423350B1 (en) Method for processing anode slime of copper electrolysis
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

R150 Certificate of patent or registration of utility model

Ref document number: 3474526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term