JP2021025069A - Method of treating seleno sulfate solution - Google Patents

Method of treating seleno sulfate solution Download PDF

Info

Publication number
JP2021025069A
JP2021025069A JP2019141757A JP2019141757A JP2021025069A JP 2021025069 A JP2021025069 A JP 2021025069A JP 2019141757 A JP2019141757 A JP 2019141757A JP 2019141757 A JP2019141757 A JP 2019141757A JP 2021025069 A JP2021025069 A JP 2021025069A
Authority
JP
Japan
Prior art keywords
tellurium
solution
acid solution
selenium
selenosulfuric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019141757A
Other languages
Japanese (ja)
Other versions
JP7247049B2 (en
Inventor
学 真鍋
Manabu Manabe
学 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019141757A priority Critical patent/JP7247049B2/en
Publication of JP2021025069A publication Critical patent/JP2021025069A/en
Application granted granted Critical
Publication of JP7247049B2 publication Critical patent/JP7247049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method of treating a seleno sulfate solution that selectively reduces selenium oxonium ions in a seleno sulfate solution to separate tellurium from the seleno sulfate solution.SOLUTION: A method of treating a seleno sulfate solution includes the step of adding a reducing sugar to a seleno sulfate solution containing tellurium oxonium ions with its pH controlled to 10 or more, and heating it to 60°C or higher for precipitating tellurium.SELECTED DRAWING: None

Description

本発明は、セレノ硫酸溶液の処理方法に関する。 The present invention relates to a method for treating a selenosulfuric acid solution.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In the copper pyrometallurgy, copper concentrate is melted to obtain 99% or more blister copper in a converter and a refining furnace, and then electrolytic copper having a purity of 99.99% or more is produced in the electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic parts have been introduced as recycling raw materials in converters, and valuable resources other than copper are precipitated as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離−回収される。このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸−過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。 The slime is also enriched with precious metals, rare metals, and selenium and tellurium contained in copper concentrate. These elements are separated and recovered individually as copper smelting by-products. A hydrometallurgy method is often applied to the treatment of this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime with hydrochloric acid-hydrogen peroxide, the dissolved gold is recovered by solvent extraction, and then other valuable resources are sequentially reduced and recovered with sulfur dioxide.

特開2001−316735号公報Japanese Unexamined Patent Publication No. 2001-316735

二酸化硫黄を用いて有価物を回収する方法では溶解後に順次有価物を還元して回収する。初めに白金、パラジウムが沈殿する。原料が銅電解スライムであればセレンが大量に含まれているためにセレンとの混合物として回収される。次にセレンが還元を受ける。イリジウム、ルテニウム、ロジウムは酸化還元電位が比較的低く還元を受け難い。白金、パラジウム、セレンを回収した後の液をさらに還元してカルコゲン類との混合物として回収する。 In the method of recovering valuable resources using sulfur dioxide, the valuable resources are sequentially reduced and recovered after dissolution. First, platinum and palladium precipitate. If the raw material is copper electrolytic slime, it is recovered as a mixture with selenium because it contains a large amount of selenium. Selenium is then reduced. Iridium, ruthenium, and rhodium have relatively low redox potentials and are not easily reduced. The liquid after collecting platinum, palladium, and selenium is further reduced and recovered as a mixture with chalcogens.

白金族もしくは酸化還元電位が比較的低い元素群においてはさらにセレンとの分離が必要である。セレンとの分離には再度酸化溶解後に溶媒抽出する方法が一般的である。 Further separation from selenium is required in the platinum group or the element group having a relatively low redox potential. For separation from selenium, a method of oxidatively dissolving again and then extracting the solvent is common.

本願発明者はセレンの分離には亜硫酸や亜硫酸塩を添加してセレノ硫酸としてセレンを分離することが可能であることを見出した。セレノ硫酸は溶液の酸濃度を酸性に調整すればセレンを沈殿し、単体セレンを容易に回収することができる。具体的には、セレノ硫酸液は亜硫酸塩水溶液、もしくはアルカリ液に二酸化硫黄を吸収させた液に単体セレンを接触させて40℃以上に加熱することにより得られることを見出した。当該方法では、アルカリ液と接触させることになり、対象の有価物群が二酸化テルルを含む場合は、セレノ硫酸液は不純物としてテルルオキソニウムイオンを含む。 The inventor of the present application has found that it is possible to separate selenium as selenium sulfate by adding sulfite or sulfite to separate selenium. Selenium sulfate precipitates selenium by adjusting the acid concentration of the solution to be acidic, and simple selenium can be easily recovered. Specifically, it has been found that the selenosulfate solution can be obtained by bringing elemental selenium into contact with an aqueous sulfite solution or a solution obtained by absorbing sulfur dioxide in an alkaline solution and heating it to 40 ° C. or higher. In this method, the solution is brought into contact with an alkaline solution, and when the target valuable group contains tellurium dioxide, the selenosulfate solution contains tellurium oxonium ions as impurities.

テルルの混入を防止するには、セレノ硫酸として回収する前に強アルカリ液で二酸化テルルを溶出することが考えられる。しかしながら、このような方法では、完全にテルルを除くには数回の溶出操作と洗浄が必要である。 To prevent tellurium contamination, it is conceivable to elute tellurium dioxide with a strong alkaline solution before recovering it as selenosulfuric acid. However, such methods require several elution operations and washes to completely remove tellurium.

また、テルルオキソニウムイオンを含んだセレノ硫酸溶液に酸を添加するとテルル分も二酸化テルルもしくは単体テルルとして沈殿する。セレノ硫酸溶液を処理する際、セレンの回収も念頭に置いた場合は単体セレンへのテルルの混入が問題となる。 In addition, when an acid is added to a selenosulfuric acid solution containing tellurium oxonium ions, the tellurium content also precipitates as tellurium dioxide or elemental tellurium. When treating the selenium sulfuric acid solution, if the recovery of selenium is also taken into consideration, the mixing of tellurium into the simple substance selenium becomes a problem.

そこで、本発明の実施形態は、セレノ硫酸溶液中のセレンオキソニウムイオンを選択的に還元することで、セレノ硫酸溶液からテルルを分離することができるセレノ硫酸溶液の処理方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for treating a tellurium solution capable of separating tellurium from the selenosulfuric acid solution by selectively reducing selenium oxonium ions in the selenosulfuric acid solution. And.

本発明者は上記課題を解決すべく鋭意研究を重ねた結果、セレノ硫酸溶液中のセレンオキソニウムイオンは還元糖により選択的に還元されて沈殿することを見出した。本発明はかかる知見により完成されたものである。本発明の実施形態は、以下のように特定される。
(1)pH10以上に調整した、テルルオキソニウムイオンを含むセレノ硫酸溶液に、還元糖を添加して60℃以上の温度まで加熱してテルルを沈殿させる工程を有することを特徴とするセレノ硫酸溶液の処理方法。
(2)前記還元糖を、テルルに対して2モル倍以上になるように前記セレノ硫酸溶液に添加することを特徴とする(1)のセレノ硫酸溶液の処理方法。
(3)前記還元糖はフルクトース及びグルコースのいずれか又は混合物であることを特徴とする(1)又は(2)のセレノ硫酸溶液の処理方法。
(4)前記セレノ硫酸溶液は、セレン及びテルルを酸溶解した液を還元して生じた沈殿物に亜硫酸塩を添加して調製された液であることを特徴とする(1)〜(3)のいずれかのセレノ硫酸溶液の処理方法。
(5)前記還元糖を添加する前に、前記セレノ硫酸溶液にシュウ酸類を添加してテルルの微粒子を発生させることを特徴とする(1)〜(4)のいずれかのセレノ硫酸溶液の処理方法。
(6)前記セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であることを特徴とする(1)〜(5)のいずれかのセレノ硫酸溶液の処理方法。
(7)単体セレン及び二酸化テルルの含有物をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時に還元糖を添加して60℃以上に加温する工程を有することを特徴とするセレノ硫酸溶液の処理方法。
As a result of diligent research to solve the above problems, the present inventor has found that selenoxonium ions in a selenosulfate solution are selectively reduced by a reducing sugar and precipitated. The present invention has been completed based on such findings. Embodiments of the present invention are specified as follows.
(1) A selenosulfuric acid solution having a step of adding a reducing sugar to a selenosulfuric acid solution containing tellurium oxonium ions adjusted to pH 10 or higher and heating to a temperature of 60 ° C. or higher to precipitate tellurium. Processing method.
(2) The method for treating a selenosulfuric acid solution according to (1), wherein the reducing sugar is added to the selenosulfuric acid solution so as to be 2 mol times or more the amount of tellurium.
(3) The method for treating a selenosulfuric acid solution according to (1) or (2), wherein the reducing sugar is any or a mixture of fructose and glucose.
(4) The selenosulfuric acid solution is characterized in that it is a solution prepared by adding sulfite to a precipitate formed by reducing an acid-dissolved solution of selenium and tellurium (1) to (3). How to treat any of the selenosulfate solutions.
(5) Treatment of the selenosulfuric acid solution according to any one of (1) to (4), which comprises adding oxalic acids to the selenosulfuric acid solution to generate fine particles of tellurium before adding the reducing sugar. Method.
(6) Any of (1) to (5), wherein the selenosulfuric acid solution is a solution obtained by adding sodium sulfite to a solution containing selenium in an electrolytic slime treatment step in a copper smelting step. How to treat the selenosulfuric acid solution.
(7) It is characterized by having a step of adding a reducing sugar and heating to 60 ° C. or higher when the contents of simple selenium and tellurium dioxide are brought into contact with an alkaline sulfite ion-containing solution to dissolve selenium as selenium sulfuric acid. How to treat seleno sulfuric acid solution.

本発明の実施形態によれば、セレノ硫酸溶液中のセレンオキソニウムイオンを選択的に還元することで、セレノ硫酸溶液からテルルを分離することができるセレノ硫酸溶液の処理方法を提供することができる。 According to the embodiment of the present invention, it is possible to provide a method for treating a seleno-sulfuric acid solution capable of separating tellurium from the seleno-sulfuric acid solution by selectively reducing selenium oxonium ions in the seleno-sulfuric acid solution. ..

[セレノ硫酸溶液]
非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解スライムは白金族元素とカルコゲン元素が濃縮される。白金族元素ならびにカルコゲン元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料を元にして回収される。よって本方法は廃棄物からのリサイクルにも適用できる。
[Serenosulfuric acid solution]
Platinum group elements and chalcogen elements are concentrated in the electrolytic slime produced in the electrolytic refining process of non-ferrous metal smelting, especially copper smelting. Platinum group elements and chalcogen elements are not smelted independently, but are recovered as by-products of other metals or based on recycled raw materials such as waste catalysts. Therefore, this method can also be applied to recycling from waste.

塩酸と過酸化水素を添加して電解スライムを溶解するが、銀は溶解直後に塩化物イオンと不溶性の塩化銀沈殿を形成する。酸化剤と塩素を含む溶液、例えば王水や塩素水であれば貴金属類は溶解して銀を塩化銀として分離できる。塩化物浴であるため浸出貴液(PLS)には白金族元素、希少金属元素、セレン、テルルが分配する。 Hydrochloric acid and hydrogen peroxide are added to dissolve the electrolytic slime, but silver forms an insoluble silver chloride precipitate with chloride ions immediately after dissolution. If it is a solution containing an oxidizing agent and chlorine, for example, aqua regia or chlorine water, the precious metals can be dissolved and silver can be separated as silver chloride. Since it is a chloride bath, platinum group elements, rare metal elements, selenium, and tellurium are distributed in the leachate noble liquid (PLS).

浸出貴液(PLS)は一度冷却され、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。然る後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。 The leached noble liquid (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. After that, the gold is separated into an organic phase by solvent extraction. Dibutyl carbitol (DBC) is widely used as a gold extractant.

金を抽出した後のPLSを還元すれば有価物は沈殿−回収できるが、元素により酸化還元電位が異なるために自ずと沈殿の順序が決まっている。初めに金、白金、パラジウム、次にセレンやテルルといったカルコゲン、さらに不活性貴金属類が沈殿する。 Valuables can be precipitated-recovered by reducing PLS after extracting gold, but the order of precipitation is naturally determined because the redox potential differs depending on the element. First, gold, platinum, palladium, then chalcogens such as selenium and tellurium, and then the inert precious metals are precipitated.

還元剤は還元性硫黄が価格と効率の面から利用され、なかでも二酸化硫黄は転炉ガスや硫化鉱の焙焼により大量にしかも安価に供給できるため最適である。 Reducing sulfur is used as the reducing agent in terms of price and efficiency, and sulfur dioxide is most suitable because it can be supplied in large quantities and at low cost by roasting linz-Donaw gas or sulfide ore.

二酸化硫黄は白金とパラジウムを還元する際にセレンも一部還元する。液中にパラジウムと白金がほぼ存在しなくなるまで還元を行うがセレンの混入も多くなり40〜70質量%となる。 Sulfur dioxide also partially reduces selenium when reducing platinum and palladium. Reduction is carried out until palladium and platinum are almost absent in the liquid, but selenium is also mixed in and the amount is 40 to 70% by mass.

回収した白金とパラジウム、セレンの混合物は再度過酸化水素−塩酸で溶出するがセレンが溶解時に消費する過酸化水素は多い。予め選択的にセレンを除くために亜硫酸塩もしくは亜硫酸水を添加して溶出する。セレンは単体として含まれるので亜硫酸イオンと反応してセレノ硫酸イオンとなる(式1)。
Se+SO3 2-→SSeO3 2- (式1)
The recovered mixture of platinum, palladium, and selenium is eluted again with hydrogen peroxide-hydrochloric acid, but selenium consumes a large amount of hydrogen peroxide when it is dissolved. In order to selectively remove selenium, sulfite or sulfite water is added and eluted. Since selenium is contained as a simple substance, it reacts with sulfite ion to form selenosulfate ion (Equation 1).
Se + SO 3 2- → SSeO 3 2- (Equation 1)

また下工程では二酸化硫黄によりセレン回収後、引き続き同様に二酸化硫黄を吹き込んでテルルを回収するがこの時に未回収のセレンが混入する。この混入したセレンの選択的除去には上述の式1を利用できる。 In the lower process, after selenium is recovered by sulfur dioxide, sulfur dioxide is continuously blown to recover tellurium, but unrecovered selenium is mixed at this time. Equation 1 described above can be used for the selective removal of the mixed selenium.

ところが回収したテルルの80%以上は二酸化テルルとして回収されるのでアルカリ液には溶解する。式1の反応に必要な亜硫酸塩の水溶液はアルカリ性を示す。さらにセレノ硫酸イオンはアルカリ性でのみ安定であるので溶液はアルカリ性である必要がある。そのためセレノ硫酸溶液には二酸化テルル由来のテルルの混入は必然となる。 However, since 80% or more of the recovered tellurium is recovered as tellurium dioxide, it dissolves in an alkaline solution. The aqueous solution of sulfites required for the reaction of formula 1 is alkaline. Furthermore, the solution needs to be alkaline as selenosulfate is stable only in alkaline. Therefore, tellurium derived from tellurium dioxide is inevitably mixed in the selenosulfuric acid solution.

セレノ硫酸溶液調製前に二酸化テルルを苛性ソーダ液等の強アルカリ液で予め溶出すればよい。しかし白金・パラジウム混合物に適用した場合には含有テルル量は僅かであり、アルカリ溶出は費用対効果が低い。反対にテルル回収沈殿物ではテルルの含有量が大きく完全に除去するのは困難であり微量の混入は避けられない。 Tellurium dioxide may be eluted with a strong alkaline solution such as caustic soda solution before preparing the selenosulfuric acid solution. However, when applied to a platinum-palladium mixture, the amount of tellurium contained is small, and alkali elution is not cost-effective. On the contrary, the tellurium recovered precipitate has a large content of tellurium and is difficult to completely remove, and a small amount of contamination is unavoidable.

[セレノ硫酸溶液の処理方法]
回収したセレノ硫酸溶液にはテルルがオキソニウムイオンとして混入する。これを除くために、還元糖を添加して加熱する。一般に使用される還元剤は卑金属類とその塩、例えば塩化スズ(II)や鉄粉、硫酸鉄(II)等であるが、これらは未反応分が不純物として残留する、または水酸化物沈殿を生じて不純物となるという問題がある。これに対して還元糖は分解後に炭酸ガスとして除去することが容易である。
[Treatment method of selenosulfuric acid solution]
Tellurium is mixed as an oxonium ion in the recovered selenosulfuric acid solution. To remove this, reducing sugar is added and heated. Commonly used reducing agents are base metals and salts thereof, such as tin (II) chloride, iron powder, iron (II) sulfate, etc., but unreacted components remain as impurities or hydroxide precipitates. There is a problem that it is generated and becomes an impurity. On the other hand, reducing sugars can be easily removed as carbon dioxide after decomposition.

アルカリ条件下で還元作用を示すものとしては糖類、シュウ酸類、ギ酸類、フェノール類、低級アルデヒド等が知られる。セレノ硫酸溶液中において、テルルオキソニウムを選択的に還元できるものは糖類、シュウ酸類である。 Sugars, oxalic acids, formic acids, phenols, lower aldehydes and the like are known to exhibit a reducing action under alkaline conditions. In the selenosulfuric acid solution, those capable of selectively reducing tellurium oxonium are sugars and oxalic acids.

糖類で還元性を示す糖は、本発明の還元糖としていずれも使用できる。特に、環構造の開環平衡の関係から平衡定数の大きいケトースが好ましい。また、コストの面では汎用性のあるフルクトース、グルコースのいずれかもしくは混合物であることが好ましい。フルクトースはケトースであることから最も好適である。 Any sugar that exhibits reducing properties can be used as the reducing sugar of the present invention. In particular, ketose having a large equilibrium constant is preferable because of the ring-opening equilibrium of the ring structure. In terms of cost, it is preferably any or a mixture of fructose and glucose, which are versatile. Fructose is most suitable because it is ketose.

セレノ硫酸溶液にテルルに対して2モル倍の還元糖を添加して加温する。添加する還元糖が多すぎるとコストの増加や溶液のCOD(Chemical Oxygen Demand:化学的酸素要求量)の上昇を引き起こす。少なすぎると十分にテルルを除去できない。 To the selenosulfuric acid solution, add 2 mol times as much reducing sugar as tellurium and heat. If too much reducing sugar is added, the cost will increase and the COD (Chemical Oxygen Demand) of the solution will increase. If it is too small, tellurium cannot be removed sufficiently.

還元糖による還元温度は60℃以上に制御する。温度が低いと反応が遅い、もしくは沈殿したテルル粒子が微細になり固液分離が困難になるという問題がある。還元糖による還元温度は好ましくは70℃以上である。テルルオキソニウムイオンを含むセレノ硫酸溶液に、還元糖を添加する前に、セレノ硫酸溶液をアルカリ域のpHに調製しておく。当該pHはpH10以上が好ましい。糖類にはカルボニル部に開環平衡があるためさらに好ましくはpH11以上である。 The reduction temperature with the reducing sugar is controlled to 60 ° C. or higher. If the temperature is low, the reaction is slow, or the precipitated tellurium particles become fine and solid-liquid separation becomes difficult. The reduction temperature with the reducing sugar is preferably 70 ° C. or higher. Before adding the reducing sugar to the selenosulfuric acid solution containing the tellurium oxonium ion, the selenosulfuric acid solution is prepared to an alkaline pH. The pH is preferably pH 10 or higher. Since the saccharide has a ring-opening equilibrium in the carbonyl portion, the pH is more preferably 11 or more.

シュウ酸類でもセレノ硫酸中のテルルオキソニウムの還元は容易である。しかしながらシュウ酸は反応性が高く液温が高いと自己分解を起こしてしまう。テルル濃度が低い場合には自己分解と還元反応は協奏的となり還元効率が低下する。なお、還元糖を添加する前に、セレノ硫酸溶液にシュウ酸類を添加してテルルの微粒子を発生させると、テルルの析出が促されるため好ましい。 Even with oxalic acids, reduction of teluruoxonium in selenosulfate is easy. However, oxalic acid is highly reactive and autolyzes when the liquid temperature is high. When the tellurium concentration is low, the autolysis and the reduction reaction become concerted and the reduction efficiency decreases. It is preferable to add tellurium to the selenosulfuric acid solution to generate fine particles of tellurium before adding the reducing sugar, because the precipitation of tellurium is promoted.

沈殿したテルルは適当な方法で固液分離して回収される。テルル分を除いたセレノ硫酸溶液は酸を添加して液性を酸性に調整することによりセレンを生じる。酸によりセレンを回収後にさらに二酸化硫黄等の還元剤を添加してセレンを確実に回収することも可能である。 The precipitated tellurium is recovered by solid-liquid separation by an appropriate method. The selenium sulfuric acid solution from which tellurium has been removed produces selenium by adding an acid to adjust the liquid property to acidic. After recovering selenium with an acid, it is also possible to add a reducing agent such as sulfur dioxide to reliably recover selenium.

単体セレンと二酸化テルルの含有物(有価物沈殿)をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時に、当該溶解液に還元糖を添加しておいてもよい。一旦溶解した二酸化テルルは還元を受けて沈殿する。この時のセレン溶解条件を60℃以上の温度で、還元糖の添加量はテルルの2モル倍以上とすればテルル含有量の低いセレノ硫酸液が得られる。 When a substance containing elemental selenium and tellurium dioxide (precipitate of valuable resources) is brought into contact with an alkaline sulfite ion-containing solution to dissolve selenium as selenosulfate, a reducing sugar may be added to the solution. Tellurium dioxide once dissolved undergoes reduction and precipitates. If the selenium dissolution condition at this time is a temperature of 60 ° C. or higher and the amount of reducing sugar added is 2 mol times or more that of tellurium, a seleno sulfate solution having a low tellurium content can be obtained.

本発明の実施形態は特に銅製錬における電解精製工程で発生するスライム処理工程で生じるセレン含有物から得たセレノ硫酸溶液に好適である。すなわち、セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であってもよい。 The embodiment of the present invention is particularly suitable for a selenosulfuric acid solution obtained from a selenium-containing substance produced in a slime treatment step generated in an electrolytic refining step in copper refining. That is, the selenosulfuric acid solution may be a solution obtained by adding sodium sulfite to a solution containing selenium in the electrolytic slime treatment step in the copper smelting step.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention will be described below, but the examples are for illustrative purposes only and are not intended to limit the invention.

銅製錬から回収された電解スライムに対し、硫酸で処理することで銅を除いた後、濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLSを得た。次に、PLSを6℃まで冷却して卑金属分を沈殿除去した。 After removing copper by treating the electrolytic slime recovered from copper smelting with sulfuric acid, concentrated hydrochloric acid and 60% hydrogen peroxide solution were added and dissolved, and solid-liquid separation was obtained to obtain PLS. Next, the PLS was cooled to 6 ° C. to precipitate and remove the base metal component.

次に、当該PLSとDBC(ジブチルカルビトール)とを混合して金を抽出した。次に、金抽出後のPLSを70℃に加温し、二酸化硫黄と空気の混合ガス(二酸化硫黄濃度5〜20%)を吹き込んで貴金属を還元し固液分離した。ここで得られた沈殿物を貴金属含有沈殿と称す。 Next, the PLS and DBC (dibutyl carbitol) were mixed to extract gold. Next, the PLS after gold extraction was heated to 70 ° C., and a mixed gas of sulfur dioxide and air (sulfur dioxide concentration 5 to 20%) was blown to reduce the noble metal and separate it into solid and liquid. The precipitate obtained here is referred to as a precious metal-containing precipitate.

次に、固液分離後液をさらに70℃に加温し、二酸化硫黄と空気の混合ガスをセレンが3g/Lになるまで吹き込んだ。次に、再度固液分離し、分離後液を80℃〜85℃に加温して二酸化硫黄と空気の混合ガスを吹き込んだ。テルル濃度が30mg/L以下になった時に反応を停止して固液分離した。ここで得られた固体はテルル沈殿と称す。 Next, after the solid-liquid separation, the liquid was further heated to 70 ° C., and a mixed gas of sulfur dioxide and air was blown in until the selenium became 3 g / L. Next, solid-liquid separation was performed again, and after the separation, the liquid was heated to 80 ° C. to 85 ° C. and a mixed gas of sulfur dioxide and air was blown into it. When the tellurium concentration became 30 mg / L or less, the reaction was stopped and solid-liquid separation was performed. The solid obtained here is called tellurium precipitation.

(実験例1)
貴金属含有沈殿とテルル沈殿をそれぞれ40g量り採った。これに二倍重量の亜硫酸ナトリウムを添加し、さらに水酸化ナトリウム1g/L液を1.5L添加して70℃に加温した。1時間後、固液分離しセレノ硫酸液を得た。当該セレノ硫酸液のpHは10.3であった。
(Experimental Example 1)
40 g of each of the precious metal-containing precipitate and the tellurium precipitate were weighed. To this, twice the weight of sodium sulfite was added, and 1.5 L of sodium hydroxide 1 g / L solution was further added and heated to 70 ° C. After 1 hour, solid-liquid separation was performed to obtain a selenosulfate solution. The pH of the selenosulfate solution was 10.3.

得られたセレノ硫酸液を120ml分取し、D−(−)フルクトースもしくはシュウ酸2水和物を0.6g添加した。いずれも和光純薬工業社製の特級試薬を使用した。一分間に1℃上昇する程度に加温し、10℃温度が上昇するごとにサンプル液を5ml採取した。このとき、蒸発分を補うため、ときどき純水を2〜5ml添加した。サンプル液を濾過後2ml採取し、塩酸を添加した。沈殿が生じたため、25%過酸化水素を2ml添加してこれを溶解した。次に、50mlに規正してICP−OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表1に示す。 120 ml of the obtained selenosulfate solution was taken up, and 0.6 g of D- (-) fructose or oxalic acid dihydrate was added. In each case, a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd. was used. The temperature was increased to about 1 ° C. per minute, and 5 ml of a sample solution was collected every time the temperature increased by 10 ° C. At this time, 2 to 5 ml of pure water was occasionally added to compensate for the evaporation. After filtering the sample solution, 2 ml was collected and hydrochloric acid was added. Since precipitation occurred, 2 ml of 25% hydrogen peroxide was added to dissolve it. Next, the concentrations of Se and Te were quantified by ICP-OES (SPS3100 manufactured by Seiko Co., Ltd.) in an amount of 50 ml. The results are shown in Table 1.

Figure 2021025069
Figure 2021025069

表1より、フルクトースでは60℃以上の温度でテルルオキソニウムが還元を受けていることがわかる。特に65℃では目視で確認できるほどテルルの黒色沈殿が生じた。アルカリ濃度によって開環平衡が変化するのでこの還元が始まる温度は条件により変化することが予想されるが、概ね60℃以上とみて差し支えない。セレン濃度の低下が見られないのでセレノ硫酸は糖還元を受けなかったこともわかる。 From Table 1, it can be seen that tellurium oxonium is reduced in fructose at a temperature of 60 ° C. or higher. In particular, at 65 ° C., a black precipitate of tellurium was formed so that it could be visually confirmed. Since the ring-opening equilibrium changes depending on the alkali concentration, the temperature at which this reduction starts is expected to change depending on the conditions, but it can be considered to be approximately 60 ° C. or higher. Since no decrease in selenium concentration was observed, it can be seen that selenosulfate did not undergo sugar reduction.

また、シュウ酸も効果的にテルルオキソニウムを還元したことがわかる。しかしながら、シュウ酸は単位重量当たりの価格がフルクトースの2倍以上である。コスト面では糖類に及ばない。上述の様にテルルの黒色沈殿が生じると急速に反応は進む(フルクトースの60分経過後)ため、シュウ酸をテルル種晶発生試薬として利用するとフルクトースの反応時間を短縮できる可能性がある。 It can also be seen that oxalic acid also effectively reduced tellurium oxonium. However, oxalic acid costs more than twice the price of fructose per unit weight. In terms of cost, it is not as good as sugar. Since the reaction proceeds rapidly when a black precipitate of tellurium occurs as described above (after 60 minutes of fructose), it is possible that the reaction time of fructose can be shortened by using oxalic acid as a tellurium seed crystal generating reagent.

(実験例2)
実験例1と同じ溶液を100ml採取し、70℃に加温して、表2に示す還元剤を添加して撹拌した。所定の時間毎にサンプル液を5ml採取した。蒸発分を補うため、ときどき純水を2〜5ml添加した。次に、サンプル液を濾過後2ml採取し、塩酸を添加した。この後の定量分析操作は実験例1に準ずる。
(Experimental Example 2)
100 ml of the same solution as in Experimental Example 1 was collected, heated to 70 ° C., the reducing agent shown in Table 2 was added, and the mixture was stirred. 5 ml of the sample solution was collected at predetermined time intervals. From time to time, 2-5 ml of pure water was added to compensate for the evaporation. Next, 2 ml of the sample solution was collected after filtration, and hydrochloric acid was added. The subsequent quantitative analysis operation is the same as in Experimental Example 1.

60分後に反応を停止し、濾過により固液分離した。固体分は水、アルコールの順で洗浄した後、50℃で一晩乾燥して重量を測定した。また、回収残渣を適当量採取し、王水で溶解した。次に、100mlに規正してICP−OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表2に示す。 After 60 minutes, the reaction was stopped and solid-liquid separation was performed by filtration. The solid content was washed in the order of water and alcohol, then dried at 50 ° C. overnight and weighed. In addition, an appropriate amount of the recovered residue was collected and dissolved in aqua regia. Next, the concentrations of Se and Te were quantified by ICP-OES (SPS3100 manufactured by Seiko Co., Ltd.) in an amount of 100 ml. The results are shown in Table 2.

Figure 2021025069
Figure 2021025069

表2によれば、糖類が有効に作用することがわかる。糖類で比較するとグルコースはフルクトースより安価であるが反応効率が低い。条件2や条件5においては反応時間が延びればさらにテルル濃度は低くなる可能性はある。 According to Table 2, it can be seen that sugars act effectively. Compared with saccharides, glucose is cheaper than fructose but has lower reaction efficiency. Under conditions 2 and 5, the tellurium concentration may be further reduced if the reaction time is extended.

テルルオキソニウムイオンである亜テルル酸は4電子受け取って単体テルルとして沈殿する。フルクトースはテルルに対して3重量倍以上、すなわち2モル倍以上添加すればよい。フルクトースは理論的には最大12電子供与するがカルボニル部分のみの2電子しか反応には関与しないと考えられる。いずれの糖でもテルルを選択的かつ理論等量に近い値で沈殿除去できる。 Tellurous acid, which is a tellurium oxonium ion, receives 4 electrons and precipitates as a simple tellurium. Fructose may be added in an amount of 3 times by weight or more, that is, 2 mol times or more with respect to tellurium. Fructose theoretically donates up to 12 electrons, but it is thought that only 2 electrons of the carbonyl moiety are involved in the reaction. Tellurium can be selectively precipitated and removed with any sugar at a value close to the theoretical equivalent.

代表的なアルデヒドであるギ酸塩、ホルマリンではテルルオキソニウムを還元できなかった。糖類の還元作用はアルデヒド還元である。この反応性の違いは不明であるが、糖類に特異な反応であると考えられる。単糖類で実験しているが還元性を示す二糖類、加水分解を受けて還元性単糖類となる糖には同様にテルルを選択的に還元する作用があると拝察される。 Tellurium oxonium could not be reduced with formate and formalin, which are typical aldehydes. The reducing action of saccharides is aldehyde reduction. This difference in reactivity is unknown, but it is considered to be a saccharide-specific reaction. Although we are experimenting with monosaccharides, it is presumed that disaccharides that show reducing properties and sugars that are hydrolyzed to become reducing monosaccharides also have the effect of selectively reducing tellurium.

本実験でもテルルの沈殿を示す黒色粒子の析出が明瞭であった。表2で急激にテルル濃度の低下が生じる事がわかる。析出が始まると逐次反応するようである。前述のように反応が迅速なシュウ酸、単体テルル粉末を種晶や反応開始剤として糖類に加えて添加する方法も考えられる。 In this experiment as well, the precipitation of black particles indicating the precipitation of tellurium was clear. It can be seen in Table 2 that the tellurium concentration drops sharply. It seems that they react sequentially when precipitation starts. As described above, a method of adding oxalic acid and simple tellurium powder, which have a rapid reaction, to saccharides as seed crystals or reaction initiators is also conceivable.

(実験例3)
貴金属含有沈殿を10g量り採り、NaOH1g/Lを100ml添加した。次に、加熱して温度が70℃に達したら亜硫酸ナトリウム15gと表3に示す還元糖0.5gを添加して撹拌し、15分間浸出を行った。次に、浸出液を濾別し、固体分は再度同じ条件で15分間浸出した。固液分離後に溶液は2mlを採取し、塩酸で中和した。中和した時に沈殿が生じたため、過酸化水素水(25%)を2ml添加してこれを溶解した。次に、50mlに規正してYを内部標準としてICP−OES(セイコー社製SPS3100)によりSe及びTeの各濃度を定量した。結果を表3に示す。
(Experimental Example 3)
10 g of the noble metal-containing precipitate was weighed, and 100 ml of NaOH was added. Next, when the temperature reached 70 ° C. by heating, 15 g of sodium sulfite and 0.5 g of the reducing sugar shown in Table 3 were added and stirred, and leaching was performed for 15 minutes. Next, the leachate was filtered off and the solids were leached again under the same conditions for 15 minutes. After solid-liquid separation, 2 ml of the solution was collected and neutralized with hydrochloric acid. Precipitation occurred when neutralized, so 2 ml of hydrogen peroxide solution (25%) was added to dissolve it. Next, the concentrations of Se and Te were quantified by ICP-OES (SPS3100 manufactured by Seiko Co., Ltd.) with Y as the internal standard, adjusting to 50 ml. The results are shown in Table 3.

Figure 2021025069
Figure 2021025069

一回目浸出と二回目浸出の合計では糖類を添加した場合はテルルの溶出が少ないことがわかる。特に一回目浸出では糖類の効果が大きい。温度が高いと還元効果も高く70℃でフルクトースを添加するとテルルは溶出しなかった。グルコースでも70℃で効果は大きい。 The total of the first leaching and the second leaching shows that tellurium elution is small when sugar is added. Especially in the first leaching, the effect of sugar is large. When the temperature was high, the reducing effect was high, and when fructose was added at 70 ° C., tellurium did not elute. Even glucose has a great effect at 70 ° C.

セレンは亜硫酸ナトリウムによりセレノ硫酸として溶出されたこともわかる。いずれの還元糖もセレノ硫酸の生成を阻害することはなかった。 It can also be seen that selenium was eluted as selenosulfite by sodium sulfite. None of the reducing sugars inhibited the production of selenosulfate.

Claims (7)

pH10以上に調整した、テルルオキソニウムイオンを含むセレノ硫酸溶液に、還元糖を添加して60℃以上の温度まで加熱してテルルを沈殿させる工程を有することを特徴とするセレノ硫酸溶液の処理方法。 A method for treating a tellurium sulfuric acid solution, which comprises a step of adding a reducing sugar to a tellurium sulfate solution containing tellurium oxonium ions adjusted to pH 10 or higher and heating to a temperature of 60 ° C. or higher to precipitate tellurium. .. 前記還元糖を、テルルに対して2モル倍以上になるように前記セレノ硫酸溶液に添加することを特徴とする請求項1に記載のセレノ硫酸溶液の処理方法。 The method for treating a selenosulfuric acid solution according to claim 1, wherein the reducing sugar is added to the selenosulfuric acid solution so as to be 2 mol times or more the amount of tellurium. 前記還元糖はフルクトース及びグルコースのいずれか又は混合物であることを特徴とする請求項1又は2に記載のセレノ硫酸溶液の処理方法。 The method for treating a selenosulfuric acid solution according to claim 1 or 2, wherein the reducing sugar is any or a mixture of fructose and glucose. 前記セレノ硫酸溶液は、セレン及びテルルを酸溶解した液を還元して生じた沈殿物に亜硫酸塩を添加して調製された液であることを特徴とする請求項1〜3のいずれか一項に記載のセレノ硫酸溶液の処理方法。 Any one of claims 1 to 3, wherein the selenosulfuric acid solution is a solution prepared by adding sulfite to a precipitate formed by reducing an acid-dissolved solution of selenium and tellurium. The method for treating a selenosulfite solution according to. 前記還元糖を添加する前に、前記セレノ硫酸溶液にシュウ酸類を添加してテルルの微粒子を発生させることを特徴とする請求項1〜4のいずれか一項に記載のセレノ硫酸溶液の処理方法。 The method for treating a selenosulfuric acid solution according to any one of claims 1 to 4, wherein oxalic acids are added to the selenosulfuric acid solution to generate fine particles of tellurium before the reducing sugar is added. .. 前記セレノ硫酸溶液が、銅製錬工程中の電解スライム処理工程におけるセレンを含有する液に亜硫酸ナトリウムを添加して得られる液であることを特徴とする請求項1〜5のいずれか一項に記載のセレノ硫酸溶液の処理方法。 The invention according to any one of claims 1 to 5, wherein the selenosulfuric acid solution is a solution obtained by adding sodium sulfite to a solution containing selenium in the electrolytic slime treatment step in the copper smelting step. How to treat selenosulfuric acid solution. 単体セレン及び二酸化テルルの含有物をアルカリ性亜硫酸イオン含有液と接触させてセレノ硫酸としてセレンを溶解する時に還元糖を添加して60℃以上に加温する工程を有することを特徴とするセレノ硫酸溶液の処理方法。 A selenosulfuric acid solution characterized by having a step of adding a reducing sugar and heating to 60 ° C. or higher when dissolving elemental selenium and tellurium dioxide in contact with an alkaline sulfite ion-containing solution to dissolve selenium as selenosulfuric acid. Processing method.
JP2019141757A 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution Active JP7247049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141757A JP7247049B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141757A JP7247049B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Publications (2)

Publication Number Publication Date
JP2021025069A true JP2021025069A (en) 2021-02-22
JP7247049B2 JP7247049B2 (en) 2023-03-28

Family

ID=74662837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141757A Active JP7247049B2 (en) 2019-07-31 2019-07-31 Method for treating selenosulfuric acid solution

Country Status (1)

Country Link
JP (1) JP7247049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025070A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975954A (en) * 1995-09-19 1997-03-25 Mitsui Mining & Smelting Co Ltd Method of removing seleno sulfate ion in selenium-containing waste solution
JP2012211028A (en) * 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2019073768A (en) * 2017-10-16 2019-05-16 Jx金属株式会社 Method of recovering tellurium
JP2020105587A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2020105588A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of mixture containing noble metal, selenium and tellurium
JP2020158855A (en) * 2019-03-27 2020-10-01 Jx金属株式会社 Method for separating and recovering valuable metal
JP2021023851A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
JP2021025070A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975954A (en) * 1995-09-19 1997-03-25 Mitsui Mining & Smelting Co Ltd Method of removing seleno sulfate ion in selenium-containing waste solution
JP2012211028A (en) * 2011-03-30 2012-11-01 Pan Pacific Copper Co Ltd Method for recovering tellurium from alkali leaching residue containing tellurium
JP2019073768A (en) * 2017-10-16 2019-05-16 Jx金属株式会社 Method of recovering tellurium
JP2020105587A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2020105588A (en) * 2018-12-27 2020-07-09 Jx金属株式会社 Treatment method of mixture containing noble metal, selenium and tellurium
JP2020158855A (en) * 2019-03-27 2020-10-01 Jx金属株式会社 Method for separating and recovering valuable metal
JP2021023851A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating solution containing seleno sulfate
JP2021025070A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025070A (en) * 2019-07-31 2021-02-22 Jx金属株式会社 Method of treating seleno sulfate solution
JP7247050B2 (en) 2019-07-31 2023-03-28 Jx金属株式会社 Method for treating selenosulfuric acid solution

Also Published As

Publication number Publication date
JP7247049B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
US7479262B2 (en) Method for separating platinum group element
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
JP7206142B2 (en) Method for separating and recovering valuable metals
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
US4662938A (en) Recovery of silver and gold
JP5200588B2 (en) Method for producing high purity silver
JP7247049B2 (en) Method for treating selenosulfuric acid solution
JP7198172B2 (en) Method for treating solution containing selenosulfuric acid
EP1577408B1 (en) Method for separating platinum group elements from selenum/tellurium bearing materials
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP7337209B2 (en) Iridium recovery method
JP2017145434A (en) Processing method of metal-containing acidic aqueous solution
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
JP7423467B2 (en) Ruthenium recovery method
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP6835577B2 (en) How to collect valuables
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP6400047B2 (en) Method for treating metal-containing acidic aqueous solution
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP7498137B2 (en) Method for separating ruthenium and iridium
JP2021143401A (en) Recovery method of rhodium
JP7498138B2 (en) How to Collect Iridium
JP7423479B2 (en) Ruthenium recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R151 Written notification of patent or utility model registration

Ref document number: 7247049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151