JP5843069B2 - Tellurium separation and recovery method - Google Patents

Tellurium separation and recovery method Download PDF

Info

Publication number
JP5843069B2
JP5843069B2 JP2012134176A JP2012134176A JP5843069B2 JP 5843069 B2 JP5843069 B2 JP 5843069B2 JP 2012134176 A JP2012134176 A JP 2012134176A JP 2012134176 A JP2012134176 A JP 2012134176A JP 5843069 B2 JP5843069 B2 JP 5843069B2
Authority
JP
Japan
Prior art keywords
tellurium
copper
selenium
precipitate
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012134176A
Other languages
Japanese (ja)
Other versions
JP2013256419A (en
Inventor
ミルワリエフ・リナート
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012134176A priority Critical patent/JP5843069B2/en
Publication of JP2013256419A publication Critical patent/JP2013256419A/en
Application granted granted Critical
Publication of JP5843069B2 publication Critical patent/JP5843069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、テルル化銅やテルル還元滓などのテルル含有物からテルルを効率よく分離回収する方法に関する。 The present invention relates to a method for efficiently separating and recovering tellurium from tellurium-containing materials such as copper telluride and tellurium reducing soot.

銅の電解精製の副産物として世界中の多くの銅製錬所においてテルル化銅が製造され、精製テルルの原料として用いられている。また、最近では、テルル化銅の他に、湿式貴金属回収工程の副産物としてテルルとセレンを主成分とする還元滓が副産・製造され、精製テルルの原料として使われはじめている。 As a by-product of electrolytic refining of copper, copper telluride is produced in many copper smelters around the world and used as a raw material for refined tellurium. Recently, in addition to copper telluride, as a by-product of the wet precious metal recovery process, reduced soot containing tellurium and selenium as by-products has been produced as a by-product and has begun to be used as a raw material for refined tellurium.

テルル化銅からテルルを回収する方法として乾式法または湿式法が知られている(非特許文献1)。これらの方法は何れもテルル化銅をアルカリ性領域で酸化させテルルを水溶性亜テルル酸ソーダにし、難溶の水酸化銅と分離する。しかし、一般にテルル化銅には少量のセレンが含有されており、セレンも水溶性亜セレン酸イオンとして存在し、これをテルルと分離するのは難しい。セレンとテルルを分離するため、アルカリ性浸出液を鉱酸で中和(pH6)し、粗酸化テルル(TeO2)を沈殿させ、この粗酸化テルル沈殿を洗浄、溶解、再結晶などの処理をして精製酸化テルルとし、この精製した酸化テルルを溶解させた後に化学的還元または電気化学的に金属テルルが得られる。 A dry method or a wet method is known as a method for recovering tellurium from copper telluride (Non-patent Document 1). In any of these methods, copper telluride is oxidized in an alkaline region to convert tellurium into water-soluble sodium tellurite and separated from hardly soluble copper hydroxide. However, copper telluride generally contains a small amount of selenium, and selenium is also present as a water-soluble selenite ion, which is difficult to separate from tellurium. In order to separate selenium and tellurium, the alkaline leachate is neutralized with mineral acid (pH 6), and the crude tellurium oxide (TeO 2 ) is precipitated. The crude tellurium oxide precipitate is washed, dissolved, recrystallized, etc. Purified tellurium oxide is obtained, and after the purified tellurium oxide is dissolved, metal tellurium is obtained by chemical reduction or electrochemically.

また、特許文献1(特開2011−214092号公報)に記載されているテルル還元滓などの処理方法が知られている。この方法は、セレンやテルルなどを含む還元滓を水酸化ナトリウム水溶液スラリーにし、このスラリーに空気を吹き込んで酸化雰囲気にしてセレンおよびテルルをアルカリ酸化溶出させる。この溶出液に鉱酸を加えて中和し、テルルを沈降させて液中のセレンと分離回収する。 Further, a processing method such as tellurium reducing soot described in Patent Document 1 (Japanese Patent Laid-Open No. 2011-214092) is known. In this method, reduced soot containing selenium, tellurium and the like is made into a sodium hydroxide aqueous solution slurry, and air is blown into this slurry to create an oxidizing atmosphere to elute selenium and tellurium by alkaline oxidation. Mineral acid is added to the eluate to neutralize it, tellurium is allowed to settle, and selenium in the liquid is separated and recovered.

特許文献2(特許第3616314号:特開2001−316735号公報)には、テルル含有物を必要に応じテルル化銅と併せて、アルカリ浸出した後に中和して二酸化テルルを沈澱させ、この沈澱を回収してさらにアルカリ浸出し、この浸出液から電解採取によりテルルを回収する処理方法が記載されている。 Patent Document 2 (Patent No. 3616314: Japanese Patent Laid-Open No. 2001-316735) describes tellurium dioxide by precipitating tellurium dioxide by neutralizing the tellurium-containing material together with copper telluride if necessary and leaching with alkali. And a method of recovering tellurium from the leaching solution by electrolytic collection is described.

特許文献3(特許第4574825号公報:特開2002−105553号公報)には、テルル化銅に硫黄を添加し加熱処理(500-600℃)して銅を硫化銅(CuS、Cu9S5)にし、次に減圧化で200℃〜1000℃に加熱してテルルを揮発分離する方法が開示されている。 In Patent Document 3 (Japanese Patent No. 4574825: JP 2002-105553 A), sulfur is added to copper telluride, and heat treatment (500-600 ° C.) is performed to convert copper to copper sulfide (CuS, Cu 9 S 5). ) And then heated to 200 ° C. to 1000 ° C. under reduced pressure to volatilize tellurium.

しかし、特許文献1の処理方法では、セレンとテルルに対し2〜5倍当量の苛性ソーダを使用し、酸化浸出は1〜2日と長い。また、浸出工程でテルルと共にセレンも溶出するので、これらを分けるにはテルルをTeO2として沈殿させ、この沈澱は数回洗浄を繰り返すことによってセレンをある程度まで分離することはできるものの十分にテルルとセレンを分離することはできない。 However, in the treatment method of Patent Document 1, 2-5 times equivalent of caustic soda is used for selenium and tellurium, and the oxidative leaching is as long as 1-2 days. In addition, since selenium is eluted together with tellurium in the leaching process, tellurium is precipitated as TeO 2 in order to separate these, and this precipitation can be separated to a certain extent by repeating washing several times, but it is sufficiently separated from tellurium. Selenium cannot be separated.

また、特許文献2の処理方法では、テルル化銅を苛性ソーダ液で酸化浸出するとき、原料の約半分を占める銅分は水酸化銅になってテルル化銅の表面を覆うのでテルルの溶解が妨げられ、浸出時間が長くかかり、テルルの一部が未溶解のまま残る。また、浸出されるテルルの一部は6価まで酸化されて苛性ソーダ液に難溶なテルル酸ナトリウム(Na2TeO4)の形で浸出中に析出することもある。さらに、共存するセレンの一部も6価まで酸化されることもあり、SO2還元によるセレンの還元時間が長くかかる。 Further, in the treatment method of Patent Document 2, when copper telluride is oxidized and leached with caustic soda solution, the copper content that occupies about half of the raw material becomes copper hydroxide and covers the surface of copper telluride, so that dissolution of tellurium is hindered. And leaching takes longer and some tellurium remains undissolved. Also, some of the tellurium that is leached is oxidized to hexavalent and may precipitate during leaching in the form of sodium tellurate (Na 2 TeO 4 ), which is sparingly soluble in caustic soda solution. Furthermore, part of the coexisting selenium may be oxidized to hexavalent, and it takes a long time to reduce selenium by SO 2 reduction.

特開2011−214092号公報JP 2011-214092 A 特許第3616314号公報Japanese Patent No. 3616314 特許第4574825号公報Japanese Patent No. 4557425

Recent Trends in Extraction of Selenium & Tellurium from Electrolytic Copper Slimes, NML Technical Journal, Vol.12, November 1970, pp.101-110Recent Trends in Extraction of Selenium & Tellurium from Electrolytic Copper Slimes, NML Technical Journal, Vol.12, November 1970, pp.101-110

本発明は、従来の処理方法における上記問題を解決したものであり、不純物金属の分離が容易であって、テルルの回収率が高く、また、例えばテルル化銅を原料として用いたときには、共存する銅の浸出率が高く、しかも銅滓の発生を従来の約1/10まで低減することができるテルルの分離回収方法を提供する。 The present invention solves the above-mentioned problems in the conventional processing method, is easy to separate impurity metals, has a high recovery rate of tellurium, and coexists when, for example, copper telluride is used as a raw material. Provided is a tellurium separation and recovery method which has a high copper leaching rate and can reduce the occurrence of copper soot to about 1/10 of the conventional one.

本発明の処理方法は以下の構成からなるテルルの分離回収方法である。
〔1〕テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出し、テルルを含む浸出液のpHを1.5〜2.5に調整してテルルオキシ塩化物を沈殿させ、この沈殿を分離してテルルを回収することを特徴とするテルルの分離回収方法。
〔2〕酸化浸出工程において、テルル含有原料の初期スラリー濃度を100〜300g/Lに調整し、塩酸の初期濃度を4〜6モル/Lに調整する上記[1]に記載するテルルの分離回収方法。
〔3〕酸化浸出工程において、酸化還元電位(Ag/AgCl電極)を600〜700mVに制御する上記[1]または上記[2]に記載するテルルの分離回収方法。
〔4〕テルルオキシ塩化物を固液分離して濾液中の不純物金属と分離し、回収したテルルオキシ塩化物をアルカリ溶解して残渣を分離し、このアルカリ溶解液に硫化剤を添加して液中の不純物金属を沈澱させて分離し、この浄液処理したアルカリ溶解液を強酸性にして還元剤を加え、酸化還元電位350mV以上で液中のセレンを沈澱させて分離し、セレンを除去した溶液に還元剤を加え、酸化還元電位350mV未満で液中のテルルを還元析出させる上記[1]〜上記[3]の何れかに記載するテルルの分離回収方法。
〔5〕テルル含有原料がテルル化銅またはテルルとセレンを主成分とする還元滓である上記[1]〜上記[4]の何れかに記載するテルルの分離回収方法。
The treatment method of the present invention is a tellurium separation and recovery method having the following constitution.
[1] Tellurium-containing raw materials are mixed with hydrochloric acid, and tellurium is oxidatively leached in the presence of an oxidizing agent, and the pH of the leachate containing tellurium is adjusted to 1.5 to 2.5 to precipitate tellurium oxychloride. A method for separating and recovering tellurium, wherein the tellurium is recovered by separating the precipitate.
[2] Separation and recovery of tellurium as described in [1] above, wherein the initial slurry concentration of the tellurium-containing raw material is adjusted to 100 to 300 g / L and the initial concentration of hydrochloric acid is adjusted to 4 to 6 mol / L in the oxidation leaching step. Method.
[3] The tellurium separation and recovery method according to the above [1] or [2], wherein the oxidation-reduction potential (Ag / AgCl electrode) is controlled to 600 to 700 mV in the oxidation leaching step.
[4] Tellurium oxychloride is solid-liquid separated and separated from the impurity metal in the filtrate, the recovered tellurium oxychloride is alkali-dissolved to separate the residue, and a sulfiding agent is added to the alkali-dissolved solution. The impurity metal is precipitated and separated, and the purified alkali solution is made strongly acidic, a reducing agent is added, and selenium in the liquid is precipitated and separated at an oxidation-reduction potential of 350 mV or more, and the selenium is removed. The tellurium separation and recovery method according to any one of [1] to [3] above, wherein a reducing agent is added and tellurium in the liquid is reduced and precipitated at an oxidation-reduction potential of less than 350 mV.
[5] The tellurium separation and recovery method according to any one of [1] to [4] above, wherein the tellurium-containing raw material is copper telluride or reduced soot containing tellurium and selenium as main components.

本発明の処理方法は、原料に含まれるテルルを塩酸で酸化浸出するので、浸出時間を大幅に短縮することができる。例えば、従来のアルカリ浸出では16時間〜24時間の浸出時間を要するが、本発明の塩酸酸化浸出の時間は30分〜40分程度で良い。 In the treatment method of the present invention, tellurium contained in the raw material is oxidized and leached with hydrochloric acid, so that the leaching time can be greatly shortened. For example, the conventional alkali leaching requires a leaching time of 16 to 24 hours, but the hydrochloric acid leaching time of the present invention may be about 30 to 40 minutes.

本発明の処理方法は、原料に含まれる銅の浸出率をほぼ100%に高めることができる。また、浸出後に液のpHを1.5〜2.5に調整してテルルを沈澱させるときに、このpH域で銅は沈降せず濾液に残るので、浸出した銅のほぼ全量を濾液から回収することができる。回収した銅は銅製錬工程内で処理することができる。 The treatment method of the present invention can increase the leaching rate of copper contained in the raw material to almost 100%. Also, when tellurium is precipitated by adjusting the pH of the solution to 1.5 to 2.5 after leaching, copper does not settle in this pH range and remains in the filtrate, so almost all of the leached copper is recovered from the filtrate. can do. The recovered copper can be processed in the copper smelting process.

従来のアルカリ浸出では、原料中の銅は水酸化銅を形成して残渣に含まれ、これを濾過して濾液のテルルと分離するが、このアルカリ性スラリーは濾過し難く、テルルの10%以上が銅残渣に取り込まれるので、テルルの回収率が大幅に低下する。
一方、本発明の処理方法では、テルルオキシ塩化物を沈澱させて分離する方法であり、このテルルオキシ塩化物は濾過しやすいので処理が容易であり、また不純物金属に対して分離性が良い。
In conventional alkali leaching, copper in the raw material forms copper hydroxide and is contained in the residue, which is filtered and separated from the tellurium of the filtrate, but this alkaline slurry is difficult to filter, and more than 10% of the tellurium Since it is taken up by the copper residue, the tellurium recovery rate is significantly reduced.
On the other hand, the treatment method of the present invention is a method in which tellurium oxychloride is precipitated and separated. This tellurium oxychloride is easy to filter and easy to treat, and has good separability against impurity metals.

本発明の処理方法では、塩酸を用いた酸化浸出において、酸化還元電位(ORP)をコントロールしやすく、セレン化物の溶解を抑えられるなどテルル化銅に対する浸出の選択性が良い。また、酸化浸出において少量のセレンや銀が溶出しても、浸出後にスラリーのpHを1.5〜2.5の範囲に調整することによって、このpH域ではテルルオキシクロライドが選択的に沈降し、セレンや銀は沈澱を生じ難いので、テルルをこれら不純物から濾過分離することができる。 In the treatment method of the present invention, in oxidation leaching using hydrochloric acid, the oxidation-reduction potential (ORP) can be easily controlled, and the leaching selectivity to copper telluride is good, for example, the dissolution of selenide can be suppressed. In addition, even if a small amount of selenium or silver is eluted in the oxidative leaching, by adjusting the pH of the slurry to 1.5 to 2.5 after leaching, tellurium oxychloride selectively precipitates in this pH range. Since selenium and silver are less likely to precipitate, tellurium can be separated from these impurities by filtration.

本発明の処理方法の概略工程図。The schematic process drawing of the processing method of the present invention. pHとテルルイオン濃度の関係を示すグラフ。The graph which shows the relationship between pH and tellurium ion concentration. pHとテルルと銅の溶解量の関係を示すグラフ。The graph which shows the relationship between pH and the dissolution amount of tellurium and copper. pHとヒ素、セレン、銀の溶解量の関係を示すグラフ。The graph which shows the relationship between pH and the dissolution amount of arsenic, selenium, and silver. 中和沈澱化によって生じた澱物のXRD回折チャート。The XRD diffraction chart of the starch produced by neutralization precipitation.

以下、本発明を実施形態に基いて具体的に説明する。本発明のテルル分離回収方法の処理工程を図1に示す。なお、以下の説明において%は質量%である。 Hereinafter, the present invention will be specifically described based on embodiments. The processing steps of the tellurium separation and recovery method of the present invention are shown in FIG. In the following description,% is mass%.

本発明の処理方法は、テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出し、テルルを含む浸出液のpHを1.5〜2.5に調整してテルルオキシ塩化物を沈殿させ、この沈殿を分離してテルルを回収することを特徴とするテルルの分離回収方法である。 In the treatment method of the present invention, tellurium-containing raw materials are mixed with hydrochloric acid, and tellurium is oxidized and leached in the presence of an oxidizing agent, and the pH of the leachate containing tellurium is adjusted to 1.5 to 2.5 to obtain tellurium oxychloride. This tellurium separation and recovery method is characterized by precipitating and separating the precipitate to recover tellurium.

テルル含有原料として、例えば、テルル化銅やテルル還元滓が用いられる。例えば、テルル化銅は銅の電解精製の副産物として得られ、テルルと銅をおのおの約50%を含有している。また、テルル還元滓は湿式貴金属回収工程の副産物として得られ、主成分のテルルの他に、セレン、銅、ヒ素、銀を数%含有している。 As the tellurium-containing raw material, for example, copper telluride or tellurium reducing soot is used. For example, copper telluride is obtained as a byproduct of the electrolytic refining of copper and contains about 50% of tellurium and copper each. Further, tellurium reduced soot is obtained as a by-product of the wet noble metal recovery step, and contains several percent of selenium, copper, arsenic and silver in addition to the main component tellurium.

〔塩酸酸化浸出工程〕
テルル含有原料を塩酸に混合してスラリーにし、このスラリーに酸化剤を添加してテルルを酸化浸出する。テルル含有原料としてテルル化銅などを用いた場合にはテルルと共に銅が浸出される。スラリーの初期濃度は100〜300g/Lの範囲が好ましい。この塩酸酸化浸出によって原料中のテルルと銅はほぼ全量が浸出される。
[Hydrochloric acid oxidation leaching process]
A tellurium-containing raw material is mixed with hydrochloric acid to form a slurry, and an oxidizing agent is added to the slurry to oxidize and leach tellurium. When copper telluride is used as the tellurium-containing raw material, copper is leached together with tellurium. The initial concentration of the slurry is preferably in the range of 100 to 300 g / L. By this hydrochloric acid leaching, almost all of tellurium and copper in the raw material are leached.

スラリーの初期濃度が100g/Lより小さいと、液量が多すぎるために酸化反応熱のみで最適温度を維持できず、加熱が必要となる。一方、スラリーの初期濃度が300g/Lよりも高いと銅イオン濃度が高くなり、酸化浸出反応が遅くなる。 If the initial concentration of the slurry is less than 100 g / L, the amount of liquid is too large, so that the optimum temperature cannot be maintained only by the heat of oxidation reaction, and heating is required. On the other hand, when the initial concentration of the slurry is higher than 300 g / L, the copper ion concentration becomes high and the oxidative leaching reaction becomes slow.

浸出スラリーの初期塩酸濃度は4〜6モル/Lが好ましい。初期塩酸濃度が4モル/Lより低いと、スラリー濃度が300g/Lに近いときにテルルの浸出が不十分になる可能性がある。一方、初期塩酸濃度が6モル/Lを上回ると、浸出後のフリーの塩酸濃度が高くなり、中和に必要な中和剤の消費量が多くなる。
The initial hydrochloric acid concentration of the leaching slurry is preferably 4 to 6 mol / L. If the initial hydrochloric acid concentration is lower than 4 mol / L , tellurium leaching may be insufficient when the slurry concentration is close to 300 g / L. On the other hand, when the initial hydrochloric acid concentration exceeds 6 mol / L , the concentration of free hydrochloric acid after leaching increases, and the consumption of the neutralizing agent necessary for neutralization increases.

酸化剤として、過酸化水素(H22)、塩素酸ソーダ(NaClO3)などを用いることができる。酸化剤の添加量は、酸化還元電位(ORP)が600〜700mV(Ag/AgCl電極)になる範囲が好ましい。ORPが600mV未満ではテルルの酸化浸出が十分でなく、700mVより高いと酸化剤の消費が増大し、またセレンの酸化溶解が大きくなる。 As an oxidizing agent, hydrogen peroxide (H 2 O 2 ), sodium chlorate (NaClO 3 ), or the like can be used. The addition amount of the oxidizing agent is preferably in the range where the redox potential (ORP) is 600 to 700 mV (Ag / AgCl electrode). When the ORP is less than 600 mV, tellurium is not sufficiently oxidized and leached, and when it is higher than 700 mV, the consumption of the oxidizing agent is increased, and the selenium is dissolved more and more.

浸出スラリーの温度は60℃〜90℃が好ましい。上記スラリー濃度および塩酸濃度の範囲で酸化浸出を行うと、その酸化反応熱で上記温度範囲を維持することができる。なお、浸出条件の変化に対応できるように、リアクタに加熱手段や冷却機構を備えると良い。 The temperature of the leaching slurry is preferably 60 ° C to 90 ° C. When oxidative leaching is carried out in the range of the slurry concentration and hydrochloric acid concentration, the temperature range can be maintained by the heat of oxidation reaction. Note that the reactor may be provided with a heating means and a cooling mechanism so as to cope with changes in the leaching conditions.

上記酸化浸出条件において、浸出時間は30分〜2時間程度である。酸化剤の添加速度やリアクタによる放熱ないし冷却能力によって浸出時間は異なるので、これらを考慮して浸漬時間を定めると良い。 In the above oxidative leaching conditions, the leaching time is about 30 minutes to 2 hours. The leaching time varies depending on the rate of addition of the oxidant and the heat radiation or cooling ability of the reactor, so it is preferable to determine the immersing time in consideration of these.

〔中和沈澱化工程〕
テルルを含む浸出液に苛性ソーダなどのアルカリを加えて浸出液のpHを1.5〜2.5に調整し、液中のテルルを沈澱させる。テルルと共に銅、ヒ素、セレン、銀などが含まれている塩酸性浸出液について、液のpH変化によるこれら金属イオン濃度の変化を図3、図4に示す。図示するように、pHの増加に比例して液中のテルル濃度は次第に低下し沈澱を生じる。一方、銅濃度は変わらず、ヒ素、セレン、銀の濃度もpH2付近まではあまり変わらない。
[Neutralization and precipitation process]
An alkali such as caustic soda is added to the leachate containing tellurium to adjust the pH of the leachate to 1.5 to 2.5 to precipitate the tellurium in the liquor. FIG. 3 and FIG. 4 show changes in these metal ion concentrations due to changes in pH of the hydrochloric acid leaching solution containing copper, arsenic, selenium, silver and the like together with tellurium. As shown in the figure, the tellurium concentration in the liquid gradually decreases and precipitates in proportion to the increase in pH. On the other hand, the copper concentration does not change, and the concentrations of arsenic, selenium, and silver do not change much up to around pH 2.

図3、図4に示すように、浸出液のpHが1.5未満では数g/L濃度のテルルが濾液に残るので好ましくない。一方、浸出液のpHが2.5より高いとセレンやヒ素、銀が共沈するのでテルルの分離性が低下する。
As shown in FIGS. 3 and 4, when the pH of the leachate is less than 1.5, tellurium having a concentration of several g / L is not preferable because it remains in the filtrate. On the other hand, when the pH of the leachate is higher than 2.5, selenium, arsenic and silver co-precipitate, so that the tellurium separability is lowered.

浸出液のpHを1.5〜2.5に調整すると、液中のテルルは、例えば次式[1]のようにテルルオキシ塩化物を形成して沈澱する。一方、銅は沈澱しないので、固液分離することによってテルルと銅を分離することができる。また、原料からヒ素やセレン、銀が溶出してもこれらは上記pH域で沈澱せず、テルルが選択的に沈澱するので、これら不純物金属とテルルを分離することができる。 When the pH of the leachate is adjusted to 1.5 to 2.5, tellurium in the liquid precipitates, for example, by forming tellurium oxychloride as represented by the following formula [1]. On the other hand, since copper does not precipitate, tellurium and copper can be separated by solid-liquid separation. Further, even if arsenic, selenium, and silver are eluted from the raw material, they do not precipitate in the pH range, but tellurium is selectively precipitated, so that these impurity metals and tellurium can be separated.

処理温度は室温より高い方が、オキシ塩化テルル沈殿のろ過性が増すので望ましい。pH調整後に数時間〜一晩静置すると良い。それは、図2に示すように、液温の低下に伴ってオキシ塩化テルルの溶解度が減少するからである。実際には、塩酸酸化浸出直後のスラリ温度が常温より高いうちに、中和処理を開始すると、再加熱に必要な手間が省けるので好ましい。
6H2TeCl6 + 34NaOH → Te6O11Cl2↓ + 34NaCl + 23H2O……[1]
A treatment temperature higher than room temperature is desirable because the filterability of the tellurium oxychloride precipitate is increased. It is good to leave it for several hours to overnight after pH adjustment. This is because the solubility of tellurium oxychloride decreases with decreasing liquid temperature, as shown in FIG. In practice, it is preferable to start the neutralization treatment while the slurry temperature immediately after the hydrochloric acid oxidation leaching is higher than the normal temperature, because the labor required for reheating can be saved.
6H 2 TeCl 6 + 34NaOH → Te 6 O 11 Cl 2 ↓ + 34NaCl + 23H 2 O …… [1]

銅の大部分は濾液に含まれるので、濾液の後処理で回収することができる。一方、オキシ塩化テルル沈殿に取り込まれる銅の量は僅かなので、テルル沈殿の後処理で発生する銅滓の発生量は従来の処理方法の約1/10まで低減し、銅滓に取り込まれるテルルの損失量も大幅に低下する。 Since most of the copper is contained in the filtrate, it can be recovered by post-treatment of the filtrate. On the other hand, since the amount of copper incorporated into the tellurium oxychloride precipitate is small, the amount of copper soot generated in the post-treatment of tellurium precipitation is reduced to about 1/10 of the conventional treatment method, and the amount of tellurium incorporated into the copper soot is reduced. The amount of loss is also greatly reduced.

〔固液分離工程〕
テルルオキシ塩化物沈澱を濾過して回収する。銅、セレン、ヒ素、銀などは沈澱せずに濾液に含まれるので、テルルとこれらの不純物金属を固液分離することができる。テルルオキシ塩化物沈澱は水酸化銅などのアルカリ性スラリーに比べて濾過性が良いので、テルルと上記不純物金属との分離性が良い。例えば、テルルオキシ塩化物沈澱を十分に濾過すればテルルの濾液への移行率を1%以下に抑えることができる。
[Solid-liquid separation process]
The tellurium oxychloride precipitate is recovered by filtration. Copper, selenium, arsenic, silver, and the like are contained in the filtrate without being precipitated, so that tellurium and these impurity metals can be solid-liquid separated. Tellurium oxychloride precipitates have better filterability than alkaline slurries such as copper hydroxide, so that separation between tellurium and the above impurity metals is good. For example, if the tellurium oxychloride precipitate is sufficiently filtered, the transfer rate of tellurium to the filtrate can be suppressed to 1% or less.

テルルオキシ塩化物を分離した濾液には、炭酸カルシウムなどを添加して不純物金属を沈澱させる。この排水処理によって、例えば液中の銅は次式[2]のように水酸化銅を形成して沈澱するので、これを濾過して除去する。
CuCl2+CaCO3+H2O→Cu(OH)2↓+CaCl2+CO2 ……[2]
To the filtrate from which the tellurium oxychloride has been separated, calcium carbonate or the like is added to precipitate the impurity metal. By this waste water treatment, for example, copper in the liquid is precipitated by forming copper hydroxide as shown in the following formula [2], which is removed by filtration.
CuCl 2 + CaCO 3 + H 2 O → Cu (OH) 2 ↓ + CaCl 2 + CO 2 …… [2]

〔テルル回収工程〕
回収したテルルオキシ塩化物沈澱から、例えば以下の処理工程によって、金属テルルを回収することができる。
テルルオキシ塩化物沈澱をアルカリ溶解して残渣を分離し(アルカリ溶解)、このアルカリ溶解液に硫化剤を添加して液中の不純物金属を沈澱させて分離し(硫化浄液処理)、この浄液処理したアルカリ溶解液を強酸性にして還元剤を加え、酸化還元電位350mV以上で液中のセレンを沈澱させて分離し(セレン還元析出)、セレンを除去した溶液に還元剤を加え、酸化還元電位350mV未満で液中のテルルを還元析出させて金属テルルを回収する(テルル析出処理)。
[Tellurium recovery process]
Metal tellurium can be recovered from the recovered tellurium oxychloride precipitate, for example, by the following processing steps.
Dissolve the tellurium oxychloride precipitate in an alkali to separate the residue (alkali dissolution), add a sulfiding agent to the alkaline solution to precipitate and separate the impurity metal in the liquid (sulfurized liquid treatment) The treated alkaline solution is made strongly acidic, a reducing agent is added, selenium in the solution is precipitated and separated at an oxidation-reduction potential of 350 mV or more (selenium reduction precipitation), and the reducing agent is added to the solution from which selenium has been removed. Metal tellurium is recovered by reducing and precipitating tellurium in the liquid at a potential of less than 350 mV (tellurium precipitation treatment).

アルカリ溶解
テルルオキシ塩化物沈澱を苛性ソーダで溶解する。沈澱に少量含まれる銅、銀などは溶解せずに固形分として残る。液温は室温〜60℃程度で良く、pH10〜13程度が好ましい。pH10未満ではテルルオキシ塩化物の溶解が不十分であり、pH13より高いと沈澱に含まれる銅などの重金属の溶出が進むので好ましくない。
Alkaline dissolution The tellurium oxychloride precipitate is dissolved with caustic soda. Copper, silver, etc. contained in a small amount in the precipitate remain as solids without dissolving. The liquid temperature may be from room temperature to about 60 ° C., and is preferably about pH 10 to 13. When the pH is less than 10, the dissolution of tellurium oxychloride is insufficient. When the pH is higher than 13, the elution of heavy metals such as copper contained in the precipitate proceeds, which is not preferable.

硫化浄液処理
上記アルカリ溶解液に水硫化ソーダ(NaHS)などの硫化剤を添加して液中の不純物金属を沈澱させて分離する。液中の銅、鉛、鉄、銀などの不純物金属はpH10〜13の液性下で硫化物を形成して沈澱するので、これを濾過してこれらの不純物金属を分離することができる。
Sulfurized liquid treatment A sulfurizing agent such as sodium hydrosulfide (NaHS) is added to the alkaline solution to precipitate and separate impurity metals in the liquid. Impurity metals such as copper, lead, iron, and silver in the liquid form a sulfide under the pH of 10 to 13 and precipitate, and can be filtered to separate these impurity metals.

セレン還元析出
浄液処理したアルカリ溶解液に酸を加えて強酸性にする。4モル/L濃度塩酸などを用いるとよい。この強酸性液に還元剤(NaHSO3等)を加え、酸化還元電位350mV以上、好ましくは350mV〜360mVに調整すると、液中のセレンが還元されて析出するので、この金属セレンを濾過して回収する。液中にはテルルが残る。
Selenium reduction precipitation An acid is added to the purified alkali solution to make it strongly acidic. It is preferable to use 4 mol / L hydrochloric acid or the like. When a reducing agent (NaHSO 3 or the like) is added to this strongly acidic liquid and the redox potential is adjusted to 350 mV or higher, preferably 350 mV to 360 mV, selenium in the liquid is reduced and deposited. To do. Tellurium remains in the liquid.

テルル還元析出
セレンを除去した溶液に還元剤(NaHSO3等)を加え、酸化還元電位350mV未満、好ましくは300mV〜350mV未満に調整すると、液中のテルルが還元されて析出するので、この金属テルルを濾過して回収する。回収した金属テルルを温水洗浄し、脱水乾燥して3N純度の金属テルルを得ることができる。
Tellurium reduction precipitation When a reducing agent (NaHSO 3 or the like) is added to a solution from which selenium has been removed and adjusted to an oxidation-reduction potential of less than 350 mV, preferably less than 300 mV to less than 350 mV, tellurium in the liquid is reduced and deposited. The metal tellurium is recovered by filtration. The recovered metal tellurium can be washed with warm water, dehydrated and dried to obtain 3N purity metal tellurium.

以下、本発明の実施例を示す。
〔実施例1〕
テルル化銅(Te:44%、Cu:40%)乾燥重量660gを、2Lの塩酸性水溶液(HCl:6mol/L)と混合してスラリー化し、40℃まで加熱した。次に、スラリー温度と酸化還元電位を見ながら、過酸化水素液(HO:35%)約1L(CuとTeの酸化に必要な量の1.2倍当量)を加えた。液の酸化還元電位は640mV(対Ag/AgCl電極)まで上昇し、スラリー温度は最高80℃に達してから下がり始めた。次いで、このスラリーを攪拌しながら、pH2.0になるまで苛性ソーダ液(NaOH:48%)約90mlを加え、約1時間攪拌し続け、沈澱を生成させた。攪拌終了時のスラリー温度は約50℃であった。静置4時間後のスラリー温度は30℃まで低下し、吸引ろ過機を使って固液分離を行った。原料中の銅の90%以上が濾液(濾液量2.9L、Cu:82g/L、Te:1.5g/L)に残り、一方、テルルの98.5%が沈澱物中に含まれている(表1)。
Examples of the present invention will be described below.
[Example 1]
Copper telluride (Te: 44%, Cu: 40%) dry weight of 660 g was mixed with 2 L of hydrochloric acid aqueous solution (HCl: 6 mol / L ) to make a slurry, and heated to 40 ° C. Next, while observing the slurry temperature and oxidation-reduction potential, about 1 L of hydrogen peroxide solution (H 2 O 2 : 35%) (1.2 times equivalent to the amount necessary for the oxidation of Cu and Te) was added. The oxidation-reduction potential of the liquid increased to 640 mV (vs. Ag / AgCl electrode), and the slurry temperature began to decrease after reaching a maximum of 80 ° C. Next, while stirring the slurry, about 90 ml of caustic soda solution (NaOH: 48%) was added until pH 2.0, and stirring was continued for about 1 hour to form a precipitate. The slurry temperature at the end of stirring was about 50 ° C. The slurry temperature after standing for 4 hours was lowered to 30 ° C., and solid-liquid separation was performed using a suction filter. Over 90% of the copper in the raw material remains in the filtrate (filtrate 2.9 L, Cu: 82 g / L, Te: 1.5 g / L), while 98.5% of tellurium is contained in the precipitate ( table 1).

Figure 0005843069
Figure 0005843069

実施例1で回収した中和澱物のXRD回折チャートを図5に示す。図示するように、この沈澱はテルルオキシ塩化物(Te6O11Cl2)と一致するピークを有しており、テルルはテルルオキシ塩化物を形成していることが判る。また澱物中の銅は塩化銅(CuCl2)と一致するピークを有しているが、その強度は低く、表1に示すように大部分の銅は濾液に含まれている。
An XRD diffraction chart of the neutralized starch recovered in Example 1 is shown in FIG . As shown, this precipitate has a peak consistent with tellurium oxychloride (Te 6 O 11 Cl 2 ), indicating that tellurium forms tellurium oxychloride. Further, copper in the starch has a peak corresponding to copper chloride (CuCl 2 ), but its strength is low, and most of the copper is contained in the filtrate as shown in Table 1.

〔実施例2〕
テルルオキシ塩化物の沈殿750g(水分率40%)を苛性ソーダ液(20%NaOH液2.4L)に溶解させた。このテルル溶解液(2.35L、Te:121g/L、 Cu:50ppm)と銅残渣(7.5g dry、Cu含有率60%、Te含有率6%)とを濾別した。この結果より、テルル化銅中のテルル量100%に対し、97.5%以上のテルルが溶出してアルカリ溶解液に移行した。
[Example 2]
750 g of tellurium oxychloride precipitate (water content 40%) was dissolved in caustic soda solution (2.4 L of 20% NaOH solution). This tellurium solution (2.35 L, Te: 121 g / L, Cu: 50 ppm) and copper residue (7.5 g dry, Cu content 60%, Te content 6%) were separated by filtration. From this result, 97.5% or more of tellurium eluted with respect to 100% of tellurium in copper telluride and transferred to an alkali solution.

〔実施例3〕
実施例2のアルカリ溶解液(2.35L)に水硫化ソーダ(NaHS)を添加して生じた沈澱を濾過分離した。硫化処理後の液(2.3L)に塩酸を添加して強酸性にし、さらに亜硫酸水素ナトリウム(NaHSO3)を添加し、酸化還元電位360mVでセレンを還元析出させて濾過分離した。さらに、テルルが含まれる濾液へ酸化還元電位が300mVになるまで亜硫酸水素ナトリウム(NaHSO3)を添加し、テルルを還元析出させた。還元テルルを固液分離、温水洗浄、脱水乾燥し、純度3Nの金属テルル270g(原料中テルルに対する93%)を回収した。
Example 3
A precipitate formed by adding sodium hydrosulfide (NaHS) to the alkali solution (2.35 L) of Example 2 was separated by filtration. Hydrochloric acid was added to the sulfidized solution (2.3 L) to make it strongly acidic, sodium hydrogen sulfite (NaHSO 3 ) was further added, and selenium was reduced and precipitated at an oxidation-reduction potential of 360 mV and separated by filtration. Furthermore, sodium bisulfite (NaHSO 3 ) was added to the filtrate containing tellurium until the oxidation-reduction potential reached 300 mV, and tellurium was reduced and precipitated. The reduced tellurium was separated into solid and liquid, washed with warm water, dehydrated and dried to recover 270 g of metal tellurium having a purity of 3N (93% relative to tellurium in the raw material).

〔実施例4〕
テルルとセレンを含む還元滓(Te:93%、Se:3.8%)乾燥重量200gを、2Lの塩酸性水溶液(HCl:4mol/L)と混合してスラリー化し、40℃まで加熱した。次に、スラリー温度と酸化還元電位を見ながら、過酸化水素液(HO:35%)約240cc(Teの酸化に必要な量の1.2倍当量)を加えた。液の酸化還元電位は700mV(対Ag/AgCl電極)まで上昇し、スラリー温度は最高70℃に達してから下がり始めた。次いで、このスラリーを攪拌しながら、pH2.0になるまで苛性ソーダを加え、約1時間攪拌し続け、中和澱物を生成させた。静置4時間後のスラリーを固液分離し、中和後の濾液と中和澱物を得た(表2)。表2より、原料中セレンの約68%、テルルの98%以上が中和澱物中に存在することが分かる。次に、中和澱物をNaOH水溶液と混合し、オキシ塩化テルルを溶解させた。このアルカリ性溶解液においてテルル濃度121g/L(原料中テルルに対し97.5%)存在した。一方、セレンは63ppm(原料中セレンに対し1.3%)しか溶解しなかった。
Example 4
Reduced soot (Te: 93%, Se: 3.8%) containing 200 g of dry weight containing tellurium and selenium was mixed with 2 L of a hydrochloric acid aqueous solution (HCl: 4 mol / L ) to make a slurry and heated to 40 ° C. Next, while observing the slurry temperature and oxidation-reduction potential, about 240 cc of hydrogen peroxide solution (H 2 O 2 : 35%) (1.2 times equivalent to the amount required for oxidation of Te) was added. The oxidation-reduction potential of the liquid increased to 700 mV (vs. Ag / AgCl electrode), and the slurry temperature began to decrease after reaching a maximum of 70 ° C. Next, while stirring the slurry, caustic soda was added until the pH reached 2.0, and stirring was continued for about 1 hour to produce a neutralized starch. The slurry after standing for 4 hours was subjected to solid-liquid separation to obtain a neutralized filtrate and neutralized starch (Table 2). From Table 2, it can be seen that about 68% of selenium in the raw material and 98% or more of tellurium are present in the neutralized starch. Next, the neutralized starch was mixed with an aqueous NaOH solution to dissolve tellurium oxychloride. In this alkaline solution, a tellurium concentration of 121 g / L (97.5% based on tellurium in the raw material) was present. On the other hand, only 63 ppm of selenium (1.3% with respect to selenium in the raw material) was dissolved.

Figure 0005843069
Figure 0005843069

Claims (5)

テルル含有原料を塩酸に混合して酸化剤の存在下でテルルを酸化浸出し、テルルを含む浸出液のpHを1.5〜2.5に調整してテルルオキシ塩化物を沈殿させ、この沈殿を分離してテルルを回収することを特徴とするテルルの分離回収方法。
Tellurium-containing raw materials are mixed with hydrochloric acid, and tellurium is oxidatively leached in the presence of an oxidizing agent. The pH of the leachate containing tellurium is adjusted to 1.5 to 2.5 to precipitate tellurium oxychloride, and this precipitate is separated. Then, tellurium is recovered, and tellurium is separated and recovered.
酸化浸出工程において、テルル含有原料の初期スラリー濃度を100〜300g/Lに調整し、塩酸の初期濃度を4〜6モル/Lに調整する請求項1に記載するテルルの分離回収方法。
The tellurium separation and recovery method according to claim 1, wherein in the oxidation leaching step, the initial slurry concentration of the tellurium-containing raw material is adjusted to 100 to 300 g / L, and the initial concentration of hydrochloric acid is adjusted to 4 to 6 mol / L.
酸化浸出工程において、酸化還元電位(Ag/AgCl電極)を600〜700mVに制御する請求項1または請求項2に記載するテルルの分離回収方法。
The tellurium separation and recovery method according to claim 1 or 2, wherein the oxidation-reduction potential (Ag / AgCl electrode) is controlled to 600 to 700 mV in the oxidation leaching step.
テルルオキシ塩化物を固液分離して濾液中の不純物金属と分離し、回収したテルルオキシ塩化物をアルカリ溶解して残渣を分離し、このアルカリ溶解液に硫化剤を添加して液中の不純物金属を沈澱させて分離し、この浄液処理したアルカリ溶解液を強酸性にして還元剤を加え、酸化還元電位350mV以上で液中のセレンを沈澱させて分離し、セレンを除去した溶液に還元剤を加え、酸化還元電位350mV未満で液中のテルルを還元析出させる請求項1〜請求項3の何れかに記載するテルルの分離回収方法。
Tellurium oxychloride is separated into solid and liquid and separated from the impurity metal in the filtrate. The recovered tellurium oxychloride is dissolved in alkali to separate the residue, and a sulfurizing agent is added to the alkaline solution to remove the impurity metal in the liquid. Precipitate and separate, make the purified alkali solution strongly acidic, add a reducing agent, precipitate selenium in the solution at an oxidation-reduction potential of 350 mV or more, separate it, and add the reducing agent to the solution from which selenium has been removed. In addition, the tellurium separation and recovery method according to any one of claims 1 to 3, wherein tellurium in the liquid is reduced and precipitated at an oxidation-reduction potential of less than 350 mV.
テルル含有原料がテルル化銅またはテルルとセレンを主成分とする還元滓である請求項1〜請求項4の何れかに記載するテルルの分離回収方法。 The method for separating and recovering tellurium according to any one of claims 1 to 4, wherein the tellurium-containing raw material is copper telluride or reduced soot containing tellurium and selenium as main components.
JP2012134176A 2012-06-13 2012-06-13 Tellurium separation and recovery method Active JP5843069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134176A JP5843069B2 (en) 2012-06-13 2012-06-13 Tellurium separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134176A JP5843069B2 (en) 2012-06-13 2012-06-13 Tellurium separation and recovery method

Publications (2)

Publication Number Publication Date
JP2013256419A JP2013256419A (en) 2013-12-26
JP5843069B2 true JP5843069B2 (en) 2016-01-13

Family

ID=49953193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134176A Active JP5843069B2 (en) 2012-06-13 2012-06-13 Tellurium separation and recovery method

Country Status (1)

Country Link
JP (1) JP5843069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113267A (en) * 2013-12-13 2015-06-22 三菱マテリアル株式会社 Separation/recovery method of tellurium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490418B2 (en) * 2014-12-19 2019-03-27 Dowaメタルマイン株式会社 Method for producing metal selenium
JP6708065B2 (en) * 2016-09-05 2020-06-10 三菱マテリアル株式会社 Tellurium separation and recovery method
CN111606308B (en) * 2020-06-04 2022-11-25 江西铜业技术研究院有限公司 Method for efficiently separating and recycling tellurium from copper anode slime copper separation slag
CN115465842B (en) * 2022-09-02 2024-03-08 江西铜业股份有限公司 4N tellurium casting method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684428A (en) * 1979-12-10 1981-07-09 Nippon Shinkinzoku Kk Method of recovering tellurium and copper from tellurium-containing copper slime
JPS6153103A (en) * 1984-08-23 1986-03-17 Sumitomo Metal Mining Co Ltd Recovery of high-purity tellurium from crude tellurium dioxide
JP3826603B2 (en) * 1999-02-19 2006-09-27 住友金属鉱山株式会社 Tellurium separation and purification method
JP4134613B2 (en) * 2002-07-05 2008-08-20 三菱マテリアル株式会社 Purification method for selenium, etc.
CN101289171B (en) * 2008-06-02 2010-06-02 王钧 Hydrometallurgy process for abstracting 99.99% Te and 99.99% Bi2O3 and comprehensively recovering accessory products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113267A (en) * 2013-12-13 2015-06-22 三菱マテリアル株式会社 Separation/recovery method of tellurium

Also Published As

Publication number Publication date
JP2013256419A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP6241661B2 (en) Arsenic separation and immobilization method
JP4999108B2 (en) Gold leaching method
MXPA03005959A (en) Production of zinc oxide from complex sulfide concentrates using chloride processing.
JP5843069B2 (en) Tellurium separation and recovery method
KR20090082925A (en) Purified molybdenum technical oxide from molybdenite
WO2003078670A1 (en) Method for separating platinum group element
JP7016463B2 (en) How to collect tellurium
WO2013129130A1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
WO2013044380A1 (en) A method and a system for gold extraction with halogens
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP5200588B2 (en) Method for producing high purity silver
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP6233177B2 (en) Method for producing rhenium sulfide
JP4817005B2 (en) Copper converter dust treatment method
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP4281534B2 (en) Treatment method for platinum group-containing materials
JP2007231397A (en) Method for refining silver chloride
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP7247050B2 (en) Method for treating selenosulfuric acid solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151103

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5843069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150