JP6708065B2 - Tellurium separation and recovery method - Google Patents

Tellurium separation and recovery method Download PDF

Info

Publication number
JP6708065B2
JP6708065B2 JP2016172802A JP2016172802A JP6708065B2 JP 6708065 B2 JP6708065 B2 JP 6708065B2 JP 2016172802 A JP2016172802 A JP 2016172802A JP 2016172802 A JP2016172802 A JP 2016172802A JP 6708065 B2 JP6708065 B2 JP 6708065B2
Authority
JP
Japan
Prior art keywords
tellurium
residue
hydrochloric acid
recovering
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016172802A
Other languages
Japanese (ja)
Other versions
JP2018040021A (en
Inventor
翔太 中山
翔太 中山
亮介 佐藤
亮介 佐藤
宇野 貴博
貴博 宇野
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016172802A priority Critical patent/JP6708065B2/en
Publication of JP2018040021A publication Critical patent/JP2018040021A/en
Application granted granted Critical
Publication of JP6708065B2 publication Critical patent/JP6708065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Description

この発明は、金属製錬残滓に含まれるテルルを高収率に回収可能なテルルの分離回収方法に関するものである。 The present invention relates to a tellurium separation and recovery method capable of recovering tellurium contained in a metal smelting residue in a high yield.

レアメタルの一種であるテルルは、太陽電池や一部の電子部品の材料として用いられ、また、ビスマスとテルルとの合金は、熱電変換素子としても用いられている。一方で、テルルは偏在性が高く、金属製錬の過程で出る残滓から回収するなどによって製造されている。 Tellurium, which is a type of rare metal, is used as a material for solar cells and some electronic components, and an alloy of bismuth and tellurium is also used as a thermoelectric conversion element. On the other hand, tellurium is highly ubiquitous and is produced by recovering from the residue produced during the metal smelting process.

例えば、銅の電解精製の副産物として世界中の多くの銅製錬所においてテルル化銅が製造され、精製テルルの原料として用いられている。また、最近では、テルル化銅の他に、湿式貴金属回収工程の副産物としてテルルとセレンを主成分とする還元滓が副産・製造され、精製テルルの原料として用いられている。 For example, as a by-product of electrolytic refining of copper, copper telluride is produced in many copper smelters around the world and used as a raw material for refined tellurium. Further, recently, in addition to copper telluride, a reducing slag containing tellurium and selenium as main components is produced as a by-product as a by-product of the wet precious metal recovery step and is used as a raw material for purified tellurium.

例えば、特許文献1には、テルル含有物をアルカリ浸出した後に中和して二酸化テルルを沈澱させ、この沈澱物を回収してさらにアルカリ浸出し、この浸出液から電解分離によりテルルを回収するテルルの処理方法が開示されている。
また、特許文献2には、テルル含有原料を塩酸に混合して、酸化剤の存在下でテルルを酸化浸出し、このテルルを含む浸出液のpHを1.5〜2.5に調整してテルルオキシ塩化物を沈殿させ、この沈殿物を分離してテルルを回収するテルルの分離回収方法が開示されている。
For example, Patent Document 1 discloses that tellurium containing tellurium is leached with an alkali and then neutralized to precipitate tellurium dioxide, the precipitate is recovered and further leached with alkali, and tellurium is recovered from the leached solution by electrolytic separation. A treatment method is disclosed.
Further, in Patent Document 2, a tellurium-containing raw material is mixed with hydrochloric acid, and tellurium is oxidatively leached in the presence of an oxidizing agent. Disclosed is a method of separating and recovering tellurium by precipitating chloride and separating the precipitate to recover tellurium.

特許第3616314号公報Japanese Patent No. 3616314 特許第5843069号公報Japanese Patent No. 58403069

しかしながら、特許文献1に開示されたテルルの処理方法では、テルル化銅を苛性ソーダ液で酸化浸出する際に、原料の約半分を占める銅分は水酸化銅になってテルル化銅の表面を覆うためにテルルの溶解が妨げられ、テルルの一部が未溶解のまま残留して回収ができないという課題があった。
また、特許文献2に開示されたテルルの分離回収方法では、多くの金属製錬残滓に含まれるルテニウムやロジウムなどと沈殿するpHが近いため、テルルを高収率に分離回収することが困難であった。
However, in the tellurium treatment method disclosed in Patent Document 1, when copper telluride is oxidatively leached with a caustic soda solution, copper occupying about half of the raw material becomes copper hydroxide and covers the surface of the copper telluride. Therefore, there is a problem that the dissolution of tellurium is hindered and a part of the tellurium remains undissolved and cannot be recovered.
Further, in the method of separating and recovering tellurium disclosed in Patent Document 2, it is difficult to separate and recover tellurium in a high yield because the pH of precipitation is close to that of ruthenium or rhodium contained in many metal smelting residues. there were.

本発明は、前述した事情に鑑みてなされたものであって、簡易な工程で、テルルを高収率に回収することが可能なテルルの分離回収方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tellurium separation and recovery method capable of recovering tellurium in a high yield with a simple process.

上記課題を解決するために、実施形態のテルルの分離回収方法は、金属製錬残滓から金および銀を回収した後に得られる、テルル、セレンおよび白金族元素を含む第一の残滓を酸化焙焼して、セレンを分離回収するセレン回収工程と、前記セレン回収工程にて前記第一の残滓からセレンを回収した後に得られる第二の残滓をアルカリ液に溶解させ、テルルの大半を浸出回収するアルカリ浸出工程と、前記アルカリ浸出工程にて前記第二の残滓からテルルの大半を浸出回収した後に得られる第三の残滓を酸化剤を含む塩酸に混合し、テルルの残部および白金族元素を含む混合液を得る塩酸酸化工程と、前記混合液に含まれる白金族元素の塩化物錯体の生成を促進させるために、前記混合液の液温を75℃以上、90℃以下で、少なくとも30分以上保持する錯体形成工程と、前記錯体形成工程を経た混合液から分離した塩酸酸化浸出液を中和して、テルルの残部と白金族元素を互いに分離する中和分離工程と、を備えたことを特徴とする。 In order to solve the above problems, a method for separating and recovering tellurium of the embodiment is an oxidation roasting of a first residue containing tellurium, selenium, and a platinum group element, which is obtained after recovering gold and silver from a metal smelting residue. Then, a selenium recovery step of separating and recovering selenium, and a second residue obtained after recovering selenium from the first residue in the selenium recovery step are dissolved in an alkaline liquid, and most of tellurium is leached and recovered. Alkali leaching step, and the third residue obtained after leaching and recovering most of the tellurium from the second residue in the alkali leaching step is mixed with hydrochloric acid containing an oxidizing agent to remove the balance of tellurium and platinum group elements. In order to promote the hydrochloric acid oxidation step of obtaining a mixed liquid containing the mixture liquid and the formation of a chloride complex of a platinum group element contained in the mixed liquid, the liquid temperature of the mixed liquid is 75° C. or higher and 90° C. or lower for at least 30 minutes A complex formation step of holding the above, and a neutralization separation step of neutralizing the hydrochloric acid oxidation leachate separated from the mixed solution that has undergone the complex formation step to separate the balance of tellurium and the platinum group element from each other, Characterize.

本発明のテルルの分離回収方法によれば、テルルおよび白金族元素が含まれた残滓を塩酸酸化液に混合し、高温状態で保持するだけで、白金族元素の塩化物錯体の生成を促進させることができる。 According to the method for separating and recovering tellurium of the present invention, the residue containing tellurium and the platinum group element is mixed with the hydrochloric acid oxidizing solution and held at a high temperature to accelerate the formation of the chloride complex of the platinum group element. be able to.

そして、白金族元素が充分に塩化物錯体となった塩酸酸化浸出液を用いて、所定のpHにすることにより、テルルだけを選択的に沈殿させ、白金族元素の塩化物錯体は溶存させたままにすることができる。よって、簡易な工程でテルルと白金族元素とを互いに確実に分離、回収することが可能になる。 Then, by using the hydrochloric acid oxidation leaching solution in which the platinum group element is sufficiently converted to the chloride complex, and by adjusting the pH to a predetermined value, only tellurium is selectively precipitated, and the chloride complex of the platinum group element remains dissolved. Can be Therefore, it becomes possible to reliably separate and recover tellurium and platinum group elements from each other in a simple process.

前記錯体形成工程は、前記塩酸酸化工程において反応熱によって昇温した後の前記混合液の液温を75℃以上、90℃以下にして、30分以上、240分以下の間保持する工程であることを特徴とする。
前記混合液の液温が75℃未満の場合、錯体形成が不十分であり、90℃を超えると前記混合液の蒸発が激しく過大な局所排気装置等が必要になる。前記保持時間を30分未満の場合錯体形成が不十分であり、240分を超えても錯体形成はそれ以上進行しない。
The complex formation step is a step in which the liquid temperature of the mixed liquid after being heated by the reaction heat in the hydrochloric acid oxidation step is set to 75° C. or higher and 90° C. or lower, and held for 30 minutes or longer and 240 minutes or shorter. It is characterized by
When the liquid temperature of the mixed liquid is less than 75° C., complex formation is insufficient, and when the liquid temperature exceeds 90° C., evaporation of the mixed liquid is severe and an excessive local exhaust device or the like is required. If the holding time is less than 30 minutes, the complex formation is insufficient, and if it exceeds 240 minutes, the complex formation does not proceed any further.

前記中和分離工程は、前記塩酸酸化浸出液をpH1.0以上、pH3.0以下まで中和して、テルルの残部と白金族元素を互いに分離することを特徴とする。 The neutralization separation step is characterized in that the hydrochloric acid oxidation leachate is neutralized to a pH of 1.0 or higher and a pH of 3.0 or lower to separate the balance of tellurium and the platinum group element from each other.

本発明のテルルの分離回収方法によれば、簡易な工程で、テルルを高収率に回収することが可能なテルルの分離回収方法を提供することが可能になる。 According to the method for separating and recovering tellurium of the present invention, it is possible to provide a method for separating and recovering tellurium that is capable of recovering tellurium in a high yield in a simple process.

本発明のテルルの分離回収方法を段階的に示したフローチャートである。4 is a flow chart showing the method of separating and recovering tellurium of the present invention step by step. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

以下、図面を参照して、本発明のテルルの分離回収方法について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, the method for separating and recovering tellurium of the present invention will be described with reference to the drawings. The following embodiments are specifically described in order to better understand the gist of the invention, and do not limit the invention unless otherwise specified. Further, in the drawings used in the following description, in order to facilitate understanding of the features of the present invention, for convenience, there are cases where essential parts are enlarged, and the dimensional ratios of the respective constituent elements are the same as in reality. Not necessarily.

図1は、実施形態のテルルの分離回収方法を段階的に示したフローチャートである。
本発明のテルルの分離回収方法によってテルルを回収する際には、まず金属製錬残滓として、例えば、銅の電解精錬によって生じたスライム状の銅製錬残滓を用意する。
FIG. 1 is a flowchart showing the tellurium separation and recovery method of the embodiment step by step.
When tellurium is recovered by the method for separating and recovering tellurium of the present invention, first, as a metal smelting residue, for example, a slime-like copper smelting residue generated by electrolytic refining of copper is prepared.

この銅製錬残滓を用いて、まず、金および銀の回収を行う(金、銀回収工程S1)。
金、銀回収工程S1では、例えば、塩酸に酸化剤を混合した塩酸酸化液に銅製錬残滓を混合し、浸出液に金及び銀を溶出させる。そして、この浸出液から、例えば、pH調整などの中和によって金および銀をそれぞれ分離回収する。
First, gold and silver are recovered using the copper smelting residue (gold and silver recovery step S1).
In the gold and silver recovery step S1, for example, a copper smelting residue is mixed with a hydrochloric acid oxidizing solution in which an oxidizing agent is mixed with hydrochloric acid, and gold and silver are eluted in the leachate. Then, gold and silver are separated and recovered from the leachate by neutralization such as pH adjustment.

一方、この金、銀回収工程S1で残った残滓(第一の残滓)から、次に、セレンを分離回収する(セレン回収工程S2)。第一の残滓には、テルル、セレン、および白金族元素が含まれている。 On the other hand, selenium is then separated and recovered from the residue (first residue) remaining in the gold and silver recovery step S1 (selenium recovery step S2). The first residue contains tellurium, selenium, and platinum group elements.

セレン回収工程S2では、例えば、金、銀回収工程S1で残った第一の残滓を酸化雰囲気で焙焼し、第一の残滓に含まれるセレンを酸化物として揮発させて分離回収する。第一の残滓に水分が過剰に含まれている場合、セレン回収工程S2に先立って、予め乾燥や、か焼を行っておくことが好ましい。セレン回収工程S2では、焙焼炉を用いて、例えば、300℃以上、600℃以下の焙焼温度で焙焼を行う。焙焼炉としては、例えば、回転式焙焼炉、多段床式焙焼炉などが挙げられる。 In the selenium recovery step S2, for example, the first residue left in the gold and silver recovery step S1 is roasted in an oxidizing atmosphere, and selenium contained in the first residue is volatilized as an oxide to be separated and recovered. When the first residue contains an excessive amount of water, it is preferable to carry out drying or calcination in advance before the selenium recovery step S2. In the selenium recovery step S2, roasting is performed at a roasting temperature of, for example, 300° C. or higher and 600° C. or lower using a roasting furnace. Examples of the roasting furnace include a rotary roasting furnace and a multi-stage floor roasting furnace.

次に、このセレン回収工程S2で残った焙焼残滓(第二の残滓)から、酸化テルルの一部を分離回収する(アルカリ浸出工程S3)。第二の残滓には、テルルおよび白金族元素が含まれている。 Next, a part of tellurium oxide is separated and recovered from the roasting residue (second residue) remaining in this selenium recovery step S2 (alkali leaching step S3). The second residue contains tellurium and platinum group elements.

アルカリ浸出工程S3では、例えば、第二の残滓を水酸化ナトリウム水溶液などのアルカリ液に混合し、先の工程で酸化したテルルを浸出液に溶出させる。焙焼工程を経たテルルの大半は酸化テルルであり、酸化テルルはアルカリ液に可溶なため、ここで大半のテルルが浸出液に移行する。これにより、アルカリ浸出工程S3では、浸出液にテルルの大半が溶解し、未溶解のテルルが残留する。 In the alkali leaching step S3, for example, the second residue is mixed with an alkaline solution such as an aqueous sodium hydroxide solution, and tellurium oxidized in the previous step is eluted into the leaching solution. Most of the tellurium that has undergone the roasting process is tellurium oxide, and since tellurium oxide is soluble in the alkaline liquid, most of the tellurium is transferred to the leachate. As a result, in the alkali leaching step S3, most of the tellurium is dissolved in the leachate and the undissolved tellurium remains.

次に、このアルカリ浸出工程S3で残った残滓(第三の残滓)を用いて、塩酸酸化浸出を行う(塩酸酸化工程S4)。第三の残滓には、アルカリ浸出工程S3で浸出液に移行しなかったテルルの残部および白金族元素が含まれている。 Next, hydrochloric acid oxidation leaching is performed using the residue (third residue) remaining in the alkali leaching step S3 (hydrochloric acid oxidation step S4). The third residue contains the balance of tellurium and platinum group elements that have not been transferred to the leachate in the alkali leaching step S3.

塩酸酸化工程S4では、塩酸に酸化剤を混合した塩酸酸化液に第三の残滓を混合し、浸出液にテルルと白金族元素を溶出させる。塩酸酸化液に用いる塩酸としては、初期濃度が4mol/L〜6mol/L程度のものを用いることが好ましい。酸化剤として、過酸化水素(H)、塩素酸ソーダ(NaClO)などを用いることができる。酸化剤の添加量は、酸化還元電位(ORP)が800〜900mV(Ag/AgCl電極基準)になる範囲が好ましい。ORPが800mV未満ではテルルの酸化浸出が十分でなく、900mVより高いと酸化剤の消費量が増大する。 In the hydrochloric acid oxidation step S4, the third residue is mixed with a hydrochloric acid oxidizing solution prepared by mixing an oxidizing agent with hydrochloric acid, and tellurium and platinum group elements are eluted into the leachate. The hydrochloric acid used in the hydrochloric acid oxidizing solution preferably has an initial concentration of about 4 mol/L to 6 mol/L. Hydrogen peroxide (H 2 O 2 ) or sodium chlorate (NaClO 3 ) can be used as the oxidizing agent. The addition amount of the oxidizing agent is preferably in a range where the redox potential (ORP) is 800 to 900 mV (Ag/AgCl electrode reference). If the ORP is less than 800 mV, the oxidative leaching of tellurium is not sufficient, and if it is higher than 900 mV, the consumption of the oxidizing agent increases.

こうした塩酸酸化液に第三の残滓を混合し、塩酸酸化液を加温することにより、液温を75℃〜90℃にする。 By mixing the third residue with the hydrochloric acid oxidizing solution and heating the hydrochloric acid oxidizing solution, the solution temperature is brought to 75°C to 90°C.

次に、この塩酸酸化液に第三の残滓を混合して得られた高温状態の混合液を、液温が低下しないように保温して所定時間維持する(錯体形成工程S5)。混合液の液温は、例えば、75℃以上、沸点未満の温度範囲にする。好ましくは、75℃以上、90℃以下である。塩酸酸化液に第三の残滓を混合することによる液温の上昇だけでは既定の温度に達しない場合、さらに混合液を加熱して75℃以上、90℃以下の温度範囲にする。 Next, the hydrochloric acid oxidizing solution is mixed with the third residue to obtain a high temperature mixed solution, which is kept warm for a predetermined time so that the solution temperature does not decrease (complex forming step S5). The liquid temperature of the mixed liquid is, for example, in the temperature range of 75° C. or higher and lower than the boiling point. It is preferably 75° C. or higher and 90° C. or lower. If the predetermined temperature cannot be reached by merely increasing the liquid temperature by mixing the third residue with the hydrochloric acid oxidizing liquid, the mixed liquid is further heated to a temperature range of 75° C. or higher and 90° C. or lower.

そして、このような温度範囲にした混合液を、少なくとも30分以上、例えば、30分〜240分程度保持する。混合液の温度保持は、混合液を加熱し続けても、あるいは混合液が入った容器を断熱部材で覆うなどにより温度低下を防いでもよい。
また、この混合液の高温保持中に、混合液を撹拌することが好ましい。例えば、混合液を200〜400rpm程度で撹拌する。
Then, the mixed liquid in such a temperature range is held for at least 30 minutes or longer, for example, for 30 minutes to 240 minutes. The temperature of the mixed solution may be maintained by continuously heating the mixed solution, or by covering the container containing the mixed solution with a heat insulating member to prevent the temperature from decreasing.
Further, it is preferable to stir the mixed liquid while maintaining the mixed liquid at a high temperature. For example, the mixed liquid is stirred at about 200 to 400 rpm.

なお、錯体形成工程において、オートクレープを使用し、圧力を高めれば、混合液の液温を100℃またはそれ以上にすることが可能となる。これによって、保持時間を更に短縮することができる。この場合、保持時間を30分以下にすることもできる。 In the complex formation step, if an autoclave is used and the pressure is increased, the liquid temperature of the mixed liquid can be 100° C. or higher. As a result, the holding time can be further shortened. In this case, the holding time can be set to 30 minutes or less.

テルルの残部および白金族元素を含む第三の残滓を塩酸酸化液に混合し、上述したような高温状態で30分〜240分程度保持すると、白金族元素の塩化物錯体の生成が促進される。例えば、白金族元素として銅製錬残滓などに含まれるルテニウムやロジウムを、それぞれルテニウム塩化物錯体やロジウム塩化物錯体にする。こうした白金族元素の塩化物錯体は、液温が高く、かつ反応時間が長いほど、より多く生成される。錯体形成工程S5では、塩酸に酸化剤を混合した塩酸酸化液に第三の残滓を混合してそのまま放冷した場合と比較して、白金族元素をより多く塩化物錯体に転換させる。 When the remainder of tellurium and the third residue containing the platinum group element are mixed with the hydrochloric acid oxidizing solution and kept at the high temperature for about 30 minutes to 240 minutes, the formation of the platinum group chloride complex is promoted. . For example, ruthenium and rhodium contained in the copper smelting residue as platinum group elements are converted into ruthenium chloride complex and rhodium chloride complex, respectively. The higher the liquid temperature and the longer the reaction time, the more such a platinum group element chloride complex is produced. In the complex forming step S5, more platinum group elements are converted to chloride complexes, as compared with the case where the third residue is mixed with a hydrochloric acid oxidizing solution in which hydrochloric acid is mixed with an oxidizing agent and allowed to cool as it is.

次に、錯体形成工程S5を経た混合液から、残滓と塩酸酸化浸出液とを互いに分離させる。この塩酸酸化浸出液には、テルルと、白金族元素の塩化物錯体とが含有されている。次に、この塩酸酸化浸出液を用いて、液中に含まれるテルルと、白金族元素の塩化物錯体とを互いに分離させる(中和分離工程S6)。 Next, the residue and the hydrochloric acid oxidation leachate are separated from the mixed solution that has undergone the complex formation step S5. This hydrochloric acid oxidation leachate contains tellurium and a chloride complex of a platinum group element. Next, using this hydrochloric acid oxidation leaching solution, tellurium contained in the solution and the chloride complex of the platinum group element are separated from each other (neutralization separation step S6).

この中和分離工程S6では、例えば、塩酸酸化浸出液をpH1にする。これにより、塩酸酸化浸出液に含まれるテルルの殆ど、例えば90%程度がテルルオキシ塩化物として沈殿する。一方、白金族元素、例えばルテニウムの塩化物錯体の沈殿率は20%以下、ロジウムの塩化物錯体の沈殿率は0.1%以下であり、白金族元素の塩化物錯体の殆どは塩酸酸化浸出液に溶存した状態のままとなる。 In this neutralization separation step S6, for example, the hydrochloric acid oxidation leachate is adjusted to pH 1. As a result, most of the tellurium contained in the hydrochloric acid-oxidized leachate, for example, about 90%, is precipitated as tellurium oxychloride. On the other hand, the precipitation rate of the platinum group element, for example, ruthenium chloride complex is 20% or less, the precipitation rate of the rhodium chloride complex is 0.1% or less, and most of the platinum group element chloride complex is hydrochloric acid oxidation leachate. It remains dissolved in.

この後、沈殿物と塩酸酸化浸出液とを濾別すれば、アルカリ浸出工程S3で回収できなかったテルルの残部のほぼ全てを、選択的に回収することができる。 After that, if the precipitate and the hydrochloric acid oxidation leaching solution are filtered off, almost all of the remaining tellurium that could not be recovered in the alkali leaching step S3 can be selectively recovered.

一方、参考として、錯体形成工程S5を経ずに、白金族元素の塩化物錯体を充分に生成させない状態の塩酸酸化浸出液を中和分離工程でpH1にすると、ルテニウムの47%、ロジウムの32%が沈殿し、テルルとの分離が困難になる。 On the other hand, as a reference, when the hydrochloric acid oxidation leachate in a state in which the chloride complex of the platinum group element is not sufficiently generated without the complex formation step S5 is adjusted to pH 1 in the neutralization separation step, 47% of ruthenium and 32% of rhodium are obtained. Precipitates and becomes difficult to separate from tellurium.

なお、濾別したテルルオキシ塩化物の沈澱から金属テルルを回収する際には、例えば、テルルオキシ塩化物沈澱をアルカリ溶解して残滓を分離し、このアルカリ溶解液に硫化剤を添加して液中の不純物金属を沈澱させて分離し(硫化浄液処理)、この浄液処理したアルカリ溶解液を強酸性にして還元剤を加え、酸化還元電位350mV未満で液中のテルルを還元析出させて金属テルルを回収することができる。 When recovering the metal tellurium from the filtered precipitate of tellurium oxychloride, for example, the tellurium oxychloride precipitate is dissolved in an alkali to separate the residue, and a sulfidizing agent is added to the alkali solution to add a sulfur in the liquid. Impurity metals are precipitated and separated (sulfurized purification solution treatment), and the purified solution treated alkaline solution is made strongly acidic and a reducing agent is added, and tellurium in the solution is reduced and precipitated at an oxidation-reduction potential of less than 350 mV to produce metal tellurium. Can be recovered.

以上のように、本発明のテルルの分離回収方法によれば、テルルおよび白金族元素が含まれた残滓を塩酸酸化液に混合し、例えば75℃以上、90℃以下の高温状態で少なくとも30分以上保持するだけで、白金族元素の塩化物錯体の生成を促進させることができる。そして、白金族元素が充分に塩化物錯体となった塩酸酸化浸出液を用いて、所定のpHにすることにより、テルルだけを選択的に沈殿させ、白金族元素の塩化物錯体は溶存させたままにすることができる。よって、簡易な工程でテルルと白金族元素とを互いに確実に分離、回収することが可能になる。 As described above, according to the method for separating and recovering tellurium of the present invention, the residue containing tellurium and the platinum group element is mixed with the hydrochloric acid oxidizing solution, and for example, at a high temperature of 75° C. or higher and 90° C. or lower for at least 30 minutes. The formation of the chloride complex of the platinum group element can be promoted only by holding the above. Then, by using the hydrochloric acid oxidation leachate in which the platinum group element is sufficiently converted to a chloride complex, and by adjusting the pH to a predetermined value, only tellurium is selectively precipitated, while the platinum group element chloride complex is dissolved. Can be Therefore, it becomes possible to reliably separate and recover tellurium and platinum group elements from each other in a simple process.

以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and their modifications are included in the scope of the invention and the scope thereof, and are included in the invention described in the claims and the scope of equivalents thereof.

試料として、テルル(Te)、ルテニウム(Ru)、ロジウム(Rh)をそれぞれ含む製錬残滓を用意した。この製錬残滓を用いて、以下の実施例1、2、比較例1の試料を作成した。
(実施例1)製錬残滓に対し塩酸酸化工程を液温75℃で実施し、その温度のまま300rpmで撹拌しつつ240分保持し、その後室温まで放冷して実施例1の試料液を得た。酸化剤として過酸化水素水を用いて、液の酸化還元電位が850mV(Ag/AgCl電極基準)になるまで添加した。この原液中のフリー塩素濃度は5M/Lで、Te:14.3g/L、Ru:0.483g/L、Rh:0.0941g/Lであった。
(実施例2)製錬残滓に対し塩酸酸化工程を液温75℃で実施し、さらに液温を90℃まで上昇させたまま300rpmで撹拌しつつ120分保持し、その後室温まで放冷して実施例2の試料液を得た。酸化剤として過酸化水素水を用いて、液の酸化還元電位が850mV(Ag/AgCl電極基準)になるまで添加した。この原液中のフリー塩素濃度は5M/Lで、Te:13.6g/L、Ru:0.478g/L、Rh:0.0975g/Lであった。
(比較例1)製錬残滓に対し塩酸酸化工程塩酸酸化浸出を液温75℃で実施し、その後、室温まで急速に放冷して比較例の試料液を得た。酸化剤として過酸化水素水を用いて、液の酸化還元電位が850mV(Ag/AgCl電極基準)になるまで添加した。この原液中のフリー塩素濃度は5M/Lで、Te:12.9g/L、Ru:0.427g/L、Rh:0.0806g/Lであった。
As a sample, a smelting residue containing tellurium (Te), ruthenium (Ru), and rhodium (Rh) was prepared. Using this smelting residue, samples of the following Examples 1 and 2 and Comparative Example 1 were prepared.
(Example 1) The smelting residue was subjected to a hydrochloric acid oxidation step at a liquid temperature of 75°C, held at that temperature for 240 minutes while stirring at 300 rpm, and then left to cool to room temperature to obtain the sample liquid of Example 1. Obtained. Hydrogen peroxide solution was used as an oxidizing agent, and was added until the redox potential of the solution reached 850 mV (Ag/AgCl electrode standard). The free chlorine concentration in this stock solution was 5 M/L, Te: 14.3 g/L, Ru: 0.483 g/L, and Rh: 0.0941 g/L.
(Example 2) The smelting residue was subjected to a hydrochloric acid oxidation step at a liquid temperature of 75° C., the liquid temperature was raised to 90° C., and the mixture was stirred at 300 rpm for 120 minutes and then left to cool to room temperature. The sample liquid of Example 2 was obtained. Hydrogen peroxide solution was used as an oxidizing agent, and was added until the redox potential of the solution reached 850 mV (Ag/AgCl electrode standard). The free chlorine concentration in this stock solution was 5 M/L, Te: 13.6 g/L, Ru: 0.478 g/L, Rh: 0.0975 g/L.
(Comparative Example 1) Hydrochloric acid oxidation step was carried out on the smelting residue at a liquid temperature of 75°C, and then rapidly cooled to room temperature to obtain a sample liquid of Comparative Example. Hydrogen peroxide solution was used as an oxidizing agent, and was added until the redox potential of the solution reached 850 mV (Ag/AgCl electrode standard). The free chlorine concentration in this stock solution was 5 M/L, Te: 12.9 g/L, Ru: 0.427 g/L, and Rh: 0.0806 g/L.

これら実施例1、2および比較例1の試料液に25%または1mol/L苛性ソーダ液を加えてpH調整を行ったところ、沈殿が発生しスラリー状になった。所定のpHごとにスラリーをサンプリングし、定量ろ紙にて沈殿とろ液を分離した。ろ過前の試料液とろ液中の各元素濃度をICP法にて測定し、それぞれの液量を測定した。沈殿率は、例えば元素Aの場合、(沈殿率(%))={(Wi−W)/Wi }×100(Wi:ろ過前の試料液中のAの物量、W:ろ液中のAの物量)とした。
実施例1、2及び比較例に関し、pHが−1.0より3.0の範囲におけるそれぞれの元素の沈殿率を表1に示す。pHに対する沈殿率の変化を図2に示す。
When 25% or 1 mol/L caustic soda solution was added to the sample solutions of Examples 1 and 2 and Comparative Example 1 to adjust the pH, precipitation occurred and a slurry was formed. The slurry was sampled for each predetermined pH, and the precipitate and the filtrate were separated with a quantitative filter paper. The concentration of each element in the sample liquid before filtration and the filtrate was measured by the ICP method, and the amount of each liquid was measured. The precipitation rate is, for example, in the case of element A, (precipitation rate (%))={(W i −W)/W i }×100 (W i : the amount of A in the sample solution before filtration, W: filtrate) The quantity of A in the above).
With respect to Examples 1 and 2 and Comparative Example, Table 1 shows the precipitation rates of the respective elements in the pH range of -1.0 to 3.0. The change in precipitation rate with pH is shown in FIG.

Figure 0006708065
Figure 0006708065

図2および表1によれば、pH1.0における沈殿率が、実施例1ではTe:85%,Ru:41%,Rh:16%、実施例2ではTe:86%,Ru:29%,Rh:0.0%、であったのに対して、比較例1では、Te:90%,Ru:47%,Rh:32%であり、実施例1および実施例2では、RuおよびRhと、Teとの分離が良好であることが確認された。 According to FIG. 2 and Table 1, the precipitation rate at pH 1.0 was Te: 85%, Ru: 41%, Rh: 16% in Example 1, and Te: 86%, Ru: 29% in Example 2. Rh: 0.0%, whereas in Comparative Example 1, Te: 90%, Ru: 47%, Rh: 32%, and in Example 1 and Example 2, Ru and Rh , Te was confirmed to be well separated.

Claims (3)

金属製錬残滓から金および銀を回収した後に得られる、テルル、セレンおよび白金族元素を含む第一の残滓を酸化焙焼して、セレンを分離回収するセレン回収工程と、
前記セレン回収工程にて前記第一の残滓からセレンを回収した後に得られる第二の残滓をアルカリ液に溶解させ、テルルの大半を浸出回収するアルカリ浸出工程と、
前記アルカリ浸出工程にて前記第二の残滓からテルルの大半を浸出回収した後に得られる第三の残滓を,酸化剤を含む塩酸に混合し、テルルの残部および白金族元素を含む混合液を得る塩酸酸化工程と、
前記混合液に含まれる白金族元素の塩化物錯体の生成を促進させるために、前記混合液の液温を75℃以上、90℃以下で、少なくとも30分以上保持する錯体形成工程と、
前記錯体形成工程を経た混合液から分離した塩酸酸化浸出液を中和して、テルルの残部と白金族元素を互いに分離する中和分離工程と、を備えたことを特徴とするテルルの分離回収方法。
A selenium recovery step of oxidizing and roasting the first residue containing tellurium, selenium and a platinum group element, which is obtained after recovering gold and silver from the metal smelting residue, and separating and recovering selenium,
An alkaline leaching step of dissolving the second residue obtained after recovering selenium from the first residue in the selenium recovering step in an alkaline solution, and leaching and recovering most of tellurium,
The third residue obtained after leaching and recovering most of the tellurium from the second residue in the alkali leaching step is mixed with hydrochloric acid containing an oxidizing agent to obtain a mixed solution containing the balance of tellurium and a platinum group element. Hydrochloric acid oxidation step,
A complex formation step of maintaining the liquid temperature of the mixed liquid at 75° C. or higher and 90° C. or lower for at least 30 minutes or more in order to promote the formation of a chloride complex of a platinum group element contained in the mixed liquid;
The complexation step to neutralize the amount released hydrochloric acid oxidation leachate from a mixture which has undergone, tellurium, characterized in that it comprises a neutralizing separation step of separating from each other the balance and platinum group elements tellurium, the separation and recovery Method.
前記錯体形成工程は、前記塩酸酸化工程において反応熱によって昇温した後の前記混合液の液温を75℃以上、90℃以下にして、30分以上、240分以下の間保持する工程であることを特徴とする請求項1記載のテルルの分離回収方法。 The complex formation step is a step in which the liquid temperature of the mixed liquid after being heated by the reaction heat in the hydrochloric acid oxidation step is set to 75° C. or higher and 90° C. or lower, and held for 30 minutes or longer and 240 minutes or shorter. The method for separating and recovering tellurium according to claim 1, wherein. 前記中和分離工程は、前記塩酸酸化浸出液をpH1.0以上、pH3.0以下まで中和して、テルルの残部と白金族元素を互いに分離することを特徴とする請求項1または2記載のテルルの分離回収方法。 The neutralization separation step neutralizes the hydrochloric acid oxidation leachate to pH 1.0 or more and pH 3.0 or less to separate the balance of tellurium and the platinum group element from each other. Tellurium separation and recovery method.
JP2016172802A 2016-09-05 2016-09-05 Tellurium separation and recovery method Expired - Fee Related JP6708065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016172802A JP6708065B2 (en) 2016-09-05 2016-09-05 Tellurium separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016172802A JP6708065B2 (en) 2016-09-05 2016-09-05 Tellurium separation and recovery method

Publications (2)

Publication Number Publication Date
JP2018040021A JP2018040021A (en) 2018-03-15
JP6708065B2 true JP6708065B2 (en) 2020-06-10

Family

ID=61625473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016172802A Expired - Fee Related JP6708065B2 (en) 2016-09-05 2016-09-05 Tellurium separation and recovery method

Country Status (1)

Country Link
JP (1) JP6708065B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411109B (en) * 2018-04-09 2019-10-25 郑州大学 A kind of golden tellurium separation-extraction technology of the Gold Concentrate under Normal Pressure containing tellurium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684428A (en) * 1979-12-10 1981-07-09 Nippon Shinkinzoku Kk Method of recovering tellurium and copper from tellurium-containing copper slime
JPS59104439A (en) * 1982-12-08 1984-06-16 Sumitomo Metal Mining Co Ltd Removal of selenium from copper electrolytic slime
JPS61174341A (en) * 1985-01-29 1986-08-06 Mitsubishi Metal Corp Method for refining slime produced by electrolysis of copper
JPS61235520A (en) * 1985-04-11 1986-10-20 Nippon Mining Co Ltd Method for leaching noble metal
JP4269586B2 (en) * 2002-07-05 2009-05-27 三菱マテリアル株式会社 Methods for separating platinum group elements
JP4281534B2 (en) * 2002-11-29 2009-06-17 三菱マテリアル株式会社 Treatment method for platinum group-containing materials
JP4158706B2 (en) * 2003-01-14 2008-10-01 三菱マテリアル株式会社 Processing method and manufacturing method for separating gold from platinum group-containing solution
JP4358594B2 (en) * 2003-10-22 2009-11-04 新興化学工業株式会社 Collection method of valuable materials
JP5591749B2 (en) * 2011-03-30 2014-09-17 パンパシフィック・カッパー株式会社 Method for recovering tellurium from alkaline leaching residue containing tellurium
JP5573763B2 (en) * 2011-04-13 2014-08-20 住友金属鉱山株式会社 High purity silver production waste liquid treatment method
JP5843069B2 (en) * 2012-06-13 2016-01-13 三菱マテリアル株式会社 Tellurium separation and recovery method
JP6304530B2 (en) * 2013-12-13 2018-04-04 三菱マテリアル株式会社 Tellurium separation and recovery method

Also Published As

Publication number Publication date
JP2018040021A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
RU2494159C1 (en) Method of noble metal extraction
JP6304530B2 (en) Tellurium separation and recovery method
KR100956050B1 (en) Method for separating platinum group element
JP6376349B2 (en) Method for separating selenium, tellurium and platinum group elements
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP5843069B2 (en) Tellurium separation and recovery method
JP2012246198A (en) Method for purifying selenium by wet process
JP6708065B2 (en) Tellurium separation and recovery method
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
JP2005240170A (en) CHLORIDIZING TREATMENT METHOD FOR Se-CONTAINING MATERIAL
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
JP5339068B2 (en) Ruthenium purification and recovery method
JP4281534B2 (en) Treatment method for platinum group-containing materials
JP4269586B2 (en) Methods for separating platinum group elements
JP5881502B2 (en) Ruthenium recovery method
JP5881469B2 (en) Ruthenium recovery method
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
WO2004050927A1 (en) Method for separating platinum group element
JP4269693B2 (en) Process for treating selenium mixture
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JP4134613B2 (en) Purification method for selenium, etc.
JP2007231397A (en) Method for refining silver chloride
JP7006332B2 (en) How to make gold powder

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R150 Certificate of patent or registration of utility model

Ref document number: 6708065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees