JP6241661B2 - Arsenic separation and immobilization method - Google Patents

Arsenic separation and immobilization method Download PDF

Info

Publication number
JP6241661B2
JP6241661B2 JP2014063643A JP2014063643A JP6241661B2 JP 6241661 B2 JP6241661 B2 JP 6241661B2 JP 2014063643 A JP2014063643 A JP 2014063643A JP 2014063643 A JP2014063643 A JP 2014063643A JP 6241661 B2 JP6241661 B2 JP 6241661B2
Authority
JP
Japan
Prior art keywords
arsenic
leaching
copper
ferric
feas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014063643A
Other languages
Japanese (ja)
Other versions
JP2014208338A (en
Inventor
ミルワリエフ・リナート
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014063643A priority Critical patent/JP6241661B2/en
Publication of JP2014208338A publication Critical patent/JP2014208338A/en
Application granted granted Critical
Publication of JP6241661B2 publication Critical patent/JP6241661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、ヒ化銅含有スライムなどの銅ヒ素含有物に含まれるヒ素を分離し固定化する処理方法に関し、より詳しくは、ヒ素が選択的に酸化浸出され、FeAs沈澱物を生じてヒ素を簡単に分離濃縮することができ、FeAs沈澱物の処理が容易なヒ素の分離固定化方法に関する。 The present invention relates to a treatment method for separating and immobilizing arsenic contained in copper arsenic-containing materials such as a copper arsenide-containing slime, and more particularly, arsenic is selectively oxidized and leached to form FeAs precipitates, thereby removing arsenic. The present invention relates to a method for separating and immobilizing arsenic, which can be easily separated and concentrated, and facilitates the treatment of an FeAs precipitate.

銅の電解精製の際、銅アノードに含まれるヒ素などの不純物の一部は電解液に蓄積するため、電解液の一部を浄液処理としてこれらの不純物を銅と共に電解採取するのが一般的である。このようにして回収される製錬中間産物としてヒ化銅(Cu3Asなど)が知られている。ヒ化銅含有スライムには、例えば、銅40〜60質量%、ヒ素20〜40質量%、鉛、錫、アンチモン、ビスマスなど(それぞれ0.5〜5質量%)が含まれているので、これを銅製錬工程に戻して繰返し処理するのが今まで一般的であった。又はヒ化銅含有スライム中のヒ素と銅を分離した後、ヒ素を安定な化合物に固定化処理して、銅製錬から系外除去する方法も知られている。 During electrolytic refining of copper, some of the impurities such as arsenic contained in the copper anode accumulate in the electrolytic solution. Therefore, it is common to electrolyze these impurities together with copper using a part of the electrolytic solution as a cleaning treatment. It is. Copper arsenide (such as Cu 3 As) is known as a smelting intermediate product recovered in this manner. The copper arsenide-containing slime contains, for example, 40 to 60% by mass of copper, 20 to 40% by mass of arsenic, lead, tin, antimony, bismuth and the like (each 0.5 to 5% by mass). It has been common so far to return to the copper smelting process and repeat the treatment. Alternatively, after separating arsenic and copper in a copper arsenide-containing slime, the arsenic is fixed to a stable compound and removed from the copper smelting system.

銅とヒ素の分離方法として、硫黄の存在下でヒ素を浸出し、銅を硫化銅として沈澱させる処理方法が知られている。例えば、以下の処理方法が知られている。
(イ) ヒ化銅を含む中間産物と硫化ヒ素を含む中間産物の2種類以上を水溶性スラリーにして、アルカリ剤と酸化剤とを加え、ヒ素を選択的に浸出しながら銅を硫化銅として沈澱させてヒ素と分離する方法(特開2011-212588号公報)。
(ロ) 銅ヒ素化合物を含む物質を水スラリーにし、酸化剤と単体硫黄の存在下でヒ素を選択的に浸出する方法(特開2008-150659号公報)。
(ハ) 銅ヒ素化合物を含む物質と単体硫黄を混合したスラリーを二段浸出し、1段目は酸化剤を吹き込んで酸化浸出し、2段目はSO2ガスを吹き込んで還元浸出し、ヒ素を選択的に浸出する方法(特開2012-67361号公報)。
(ニ) 銅ヒ素化合物を含む物質と単体硫黄を混合したスラリーについて、pH3以下の酸性領域でヒ素を浸出し、さらにpH2〜4にスラリーを保持して、ヒ素(III)イオンを酸化し、ヒ酸銅として沈澱・分離する方法(特開2012-214839号公報)。
As a method for separating copper and arsenic, a treatment method is known in which arsenic is leached in the presence of sulfur and copper is precipitated as copper sulfide. For example, the following processing methods are known.
(Ii) Two or more kinds of intermediate products containing copper arsenide and intermediate products containing arsenic sulfide are made into a water-soluble slurry, an alkali agent and an oxidizing agent are added, and copper is converted into copper sulfide while selectively leaching A method of precipitation and separation from arsenic (JP 2011-212588 A).
(B) A method in which a substance containing a copper arsenic compound is made into a water slurry, and arsenic is selectively leached in the presence of an oxidizing agent and elemental sulfur (Japanese Patent Laid-Open No. 2008-150659).
(C) Slurry mixed with a substance containing a copper arsenic compound and elemental sulfur is leached in two stages, the first stage is oxidatively leached by blowing an oxidizing agent, and the second stage is boiled by SO 2 gas and leached by leaching. Is a method of selectively leaching (JP 2012-67361 A).
(D) For a slurry in which a substance containing a copper arsenic compound and simple sulfur are mixed, arsenic is leached in an acidic region at pH 3 or lower, and further, the slurry is held at pH 2 to 4 to oxidize arsenic (III) ions, A method of precipitation and separation as acid copper (JP 2012-214839 A).

また、銅ヒ素化合物をアルカリ酸化浸出によってヒ素と銅を分離する処理方法が知られている。例えば、(ホ) 硫化ヒ素やヒ化銅を含む物質をpH10以上、OH濃度100g/L以上のNaOH溶液に入れ、90℃以上に加熱し、空気を吹き込んでアルカリ浸出し、ヒ素を溶出させる一方、酸化銅を沈殿させる。これを固液分離し、Naとヒ素を含む濾液にCa化合物を加えてCaヒ素化合物を沈殿させ、NaOH溶液を再生させて回収する。次いで、Caヒ素化合物を硫酸で溶解し、Ca分を石膏にして沈殿させて分離する方法(特許第4149488号)が知られている。 Further, a processing method is known in which arsenic and copper are separated from each other by alkaline oxidation leaching of a copper arsenic compound. For example, (e) A substance containing arsenic sulfide or copper arsenide is placed in an NaOH solution having a pH of 10 or more and an OH concentration of 100 g / L or more, heated to 90 ° C. or more, air is blown out, and alkali leaching is performed to elute arsenic. , Precipitate copper oxide. This is subjected to solid-liquid separation, and a Ca compound is added to the filtrate containing Na and arsenic to precipitate the Ca arsenic compound, and the NaOH solution is regenerated and recovered. Next, a method (Patent No. 4149488) is known in which a Ca arsenic compound is dissolved in sulfuric acid and the Ca content is precipitated into gypsum and separated.

さらに、銅ヒ素化合物を硫酸の酸化浸出によってヒ素と銅を分離する処理方法が知られている。例えば、(ヘ) ヒ化銅を主成分とする中間物を硫酸性スラリーにし、酸素含有ガスを吹き込みながらヒ素と銅を酸化浸出し、ヒ素(V)イオンと銅イオンを含有する浸出液に第2鉄イオン(Fe+3)を添加してヒ素をヒ酸鉄(スコロダイト:FeAsO4・2H2O)として沈澱させ、銅イオンが残留する濾液から分離する方法(特許第4538481号公報、特許第5059081号公報)が知られている。 Furthermore, a processing method is known in which arsenic and copper are separated from a copper arsenic compound by oxidative leaching of sulfuric acid. For example, (f) an intermediate containing copper arsenide as a main component is made into a sulfuric slurry, and arsenic and copper are oxidized and leached while blowing an oxygen-containing gas, and the second leaching solution containing arsenic (V) ions and copper ions is added. A method in which iron ions (Fe +3 ) are added to precipitate arsenic as iron arsenate (scorodite: FeAsO 4 .2H 2 O) and separated from the filtrate in which copper ions remain (Patent No. 4543881, Patent No. 5050881) No.) is known.

特開2011−212588号公報JP 2011-212588 A 特開2008−150659号公報JP 2008-150659 A 特開2012−67361号公報JP 2012-67361 A 特開2012−214839号公報JP 2012-214839 A 特許第4149488号公報(特開2007−314405号公報)Japanese Patent No. 4149488 (Japanese Patent Laid-Open No. 2007-314405) 特許第4538481号公報(特開2009−79237号公報)Japanese Patent No. 4538481 (Japanese Patent Laid-Open No. 2009-79237) 特許第5059081号公報(特開2010−43359号公報)Japanese Patent No. 5059081 (Japanese Patent Laid-Open No. 2010-43359)

上記(イ)〜(ニ)の方法は、銅ヒ素含有物の銅分を硫化銅にして沈殿分離する方法であり、後処理としてヒ素(III)イオンの酸化処理(価数調整)が必要である。上記(ホ)の方法は、銅ヒ素含有物の銅分は酸化銅の残渣になるが、Ca化合物の添加によるNaOH液の再生によって生じるCaヒ素化合物を硫酸溶解してCaを石膏にして分離する工程を含むため処理工程が煩雑である。上記(ヘ)の方法は、硫酸による酸化浸出であるため銅分はヒ素と共に溶出するが、銅イオンの一部はスコロダイト合成時に沈殿するなどの問題がある。 The methods (i) to (d) above are methods for precipitation separation by converting the copper content of the copper arsenic-containing material into copper sulfide, and an arsenic (III) ion oxidation treatment (valence adjustment) is required as a post-treatment. is there. In the method (e), the copper content of the copper arsenic-containing material becomes a copper oxide residue, but the Ca arsenic compound produced by the regeneration of the NaOH solution by addition of the Ca compound is dissolved in sulfuric acid to separate Ca into gypsum. Since the process is included, the processing process is complicated. The above method (f) is an oxidative leaching with sulfuric acid, so that copper is eluted together with arsenic, but there is a problem that a part of copper ions is precipitated during the synthesis of scorodite.

本発明は従来の処理方法における上記不都合を解消した処理方法を提供する。本発明の処理方法は、銅ヒ素含有物をアルカリ酸化浸出して銅分を酸化銅の残渣にし、ヒ素を含む浸出液に第2鉄イオン(Fe3+)を添加して、ヒ素と鉄を含むFeAs澱物を生成させる方法である。この方法によれば、ヒ素が選択的に酸化浸出され、FeAs澱物の形成によってヒ素を簡単に分離することができ、しかもFeAs澱物の容量は元液より格段に小さいので後処理工程への負担が少ない。また、このFeAs殿物を硫酸性スラリーにし加熱処理することによって容易にスコロダイト(ヒ酸鉄:FeAsO4・2H2O)を製造できる利点がある。 The present invention provides a processing method that eliminates the above disadvantages of the conventional processing method. In the treatment method of the present invention, the copper arsenic-containing material is subjected to alkaline oxidation leaching to convert the copper content into a copper oxide residue, and ferric ions (Fe 3+ ) are added to the leaching solution containing arsenic to contain arsenic and iron. This is a method for producing FeAs starch. According to this method, arsenic is selectively oxidized and leached, and arsenic can be easily separated by the formation of FeAs starch, and the capacity of FeAs starch is much smaller than the original solution, so that There is little burden. Further, there is an advantage that scorodite (iron arsenate: FeAsO 4 .2H 2 O) can be easily produced by heat-treating this FeAs deposit into a sulfuric slurry.

本発明によれば以下の構成を有するヒ素の分離固定方法が提供される。
〔1〕銅ヒ素含有物に浸出時のpHが7.5以上になるようにアルカリと酸化剤を添加して酸化浸出を行ってヒ素を浸出させ後、液のpHを7.5〜10に調整して銅分を浸出残渣にして固液分離し、該固液分離して得たヒ素浸出液に、pH10以下で第二鉄化合物を添加して水酸化鉄にヒ素が吸着したFeAs澱物を生成させることを特徴とするヒ素の分離固定化方法。
〔2〕ヒ化銅含有スライムに、浸出時pH7.5以上になるように水酸化ナトリウム溶液を加え、さらに空気を吹き込んで、70℃〜90℃に加熱してヒ素分を浸出させた後、液のpHを7.5〜10に調整して銅分を残渣にするアルカリ性酸化浸出工程と、銅分を含む残渣を固液分離し、ヒ素を含むpH10以下の溶液に、50℃以上で、第二鉄化合物をFe/Asモル比で0.9〜1.1になるように添加し、水酸化鉄にヒ素が吸着したFeAs澱物を生成させる澱物生成工程とを含む上記[1]に記載するヒ素の分離固定化方法。
〔3〕第二鉄化合物として塩化第二鉄、硫酸第二鉄、またはポリ硫酸第二鉄を用い、pH7.5〜10のヒ素浸出液に、液温50℃〜70℃で第二鉄化合物を添加し、水酸化鉄にヒ素が吸着したFeAs澱物を生成させる上記[1]または上記[2]に記載するヒ素の分離固定化方法。
According to the present invention, there is provided a method for separating and fixing arsenic having the following configuration.
[1] After leaching arsenic by adding an alkali and an oxidizing agent so that the leaching pH of the copper arsenic-containing material is 7.5 or higher, the pH of the solution is adjusted to 7.5 to 10 The FeAs starch in which arsenic was adsorbed on iron hydroxide by adding a ferric compound at a pH of 10 or lower to the arsenic leachate obtained by adjusting the copper content to a leaching residue after adjustment and solid-liquid separation. A method for separating and immobilizing arsenic, characterized by comprising:
[2] After adding sodium hydroxide solution to the copper arsenide-containing slime so that the pH is 7.5 or more at the time of leaching, and further blowing air, heating to 70 ° C. to 90 ° C. to leach arsenic, The alkaline oxidation leaching step of adjusting the pH of the liquid to 7.5 to 10 to make the copper content a residue, solid-liquid separation of the residue containing the copper content, and a solution having a pH of 10 or less containing arsenic at 50 ° C. or higher, The above-mentioned [1] including a starch production step of adding a ferric compound so that the Fe / As molar ratio is 0.9 to 1.1 and producing FeAs starch in which arsenic is adsorbed on iron hydroxide . The separation and immobilization method of arsenic described in 1.
[3] Ferric chloride, ferric sulfate, or polyferric sulfate is used as the ferric compound, and the ferric compound is added to the arsenic leachate having a pH of 7.5 to 10 at a liquid temperature of 50 ° C to 70 ° C. The method for separating and immobilizing arsenic according to [1] or [2] above, wherein an FeAs starch in which arsenic is adsorbed on iron hydroxide is added to form an FeAs starch.

〔具体的な説明〕
本発明の処理方法は、銅ヒ素含有物に浸出時のpHが7.5以上になるようにアルカリと酸化剤を添加して酸化浸出を行ってヒ素を浸出させ後、液のpHを7.5〜10に調整して銅分を浸出残渣にして固液分離し、該固液分離して得たヒ素浸出液に、pH10以下で第二鉄化合物を添加して水酸化鉄にヒ素が吸着したFeAs澱物を生成させることを特徴とするヒ素の分離固定化方法である。本発明の処理方法の工程図を図1示す。
[Specific description]
Processing method of the present invention, after performing oxidation leaching by adding an oxidizing agent alkali leached arsenic as pH at leach Dohiso inclusions is 7.5 or more, the pH of the liquid 7. The arsenic was adsorbed to iron hydroxide by adding a ferric compound at a pH of 10 or less to the arsenic leachate obtained by adjusting the content to 5 to 10 to separate the copper content into a leaching residue and solid-liquid separation . This is a method for separating and immobilizing arsenic, characterized in that FeAs starch is produced. A process diagram of the treatment method of the present invention is shown in FIG.

本発明の処理方法において、処理対象の銅ヒ素含有物は、例えば、銅とヒ素の金属間化合物であるヒ化銅(Cu3As、Cu5As2)などを含有するスライムである。該スライムは銅電解液中不純物の電解採取工程において、電極に付着するまた電解槽底部から回収されるもので、ヒ素20〜40質量%および銅40〜60質量%をヒ化銅として含む。ヒ化銅含有スライムのXRDスペクトルとピーク解析結果の一例を図2に示す(図中下側のスペクトル)。本発明の処理方法はこのようなヒ化銅含有スライムのヒ素分離固定化方法として最適である。 In the treatment method of the present invention, the copper arsenic-containing material to be treated is, for example, slime containing copper arsenide (Cu 3 As, Cu 5 As 2 ), which is an intermetallic compound of copper and arsenic. The slime adheres to the electrode and is collected from the bottom of the electrolytic cell in the step of electrolytic collection of impurities in the copper electrolyte, and contains 20 to 40% by mass of arsenic and 40 to 60% by mass of copper as copper arsenide. An example of the XRD spectrum and peak analysis result of the copper arsenide-containing slime is shown in FIG. 2 (lower spectrum in the figure). The treatment method of the present invention is optimal as a method for separating and fixing arsenic of such copper arsenide-containing slime.

なお、硫化ヒ素(As23)やFeAsS硫化物をアルカリ酸化浸出する処理方法が知られているが(特許第4087433号公報、特許第4615561号公報)、これらのヒ素含有物はヒ素と共に硫黄を含む物質であり、本発明の処理対象とは異なる。 In addition, although the processing method of carrying out the alkaline oxidation leaching of arsenic sulfide (As 2 S 3 ) and FeAsS sulfide is known (Japanese Patent No. 4074343, Japanese Patent No. 4615661), these arsenic-containing materials are sulfur together with arsenic. And is different from the object of treatment of the present invention.

〔アルカリ性酸化浸出工程〕
本発明の処理方法は、銅ヒ素含有物にアルカリ溶液をpH7.5以上になるように添加して酸化浸出を行う。例えば、ヒ化銅含有スライムに、水酸化ナトリウム液を加えてpH7.5以上にし、さらに空気を吹き込み、70℃〜90℃に加熱してヒ素分を浸出させた後、液のpHを7.5〜10に調整して液中の銅濃度をできるだけ下げて銅分を残渣にする。酸化剤として、空気の他に、酸素、塩素、塩素酸ナトリウム、亜塩素酸ナトリウム、次亜塩素酸ナトリウムを使用することができる。
[Alkaline oxidation leaching process]
In the treatment method of the present invention, an oxidative leaching is performed by adding an alkaline solution to a copper arsenic-containing material so as to have a pH of 7.5 or higher. For example, a sodium hydroxide solution is added to a copper arsenide-containing slime to a pH of 7.5 or higher, air is further blown, and the mixture is heated to 70 ° C. to 90 ° C. to leach arsenic, and then the pH of the solution is set to 7. Adjust to 5-10 to reduce the copper concentration in the liquid as much as possible to make the copper content a residue. In addition to air, oxygen, chlorine, sodium chlorate, sodium chlorite, and sodium hypochlorite can be used as the oxidizing agent.

この酸化浸出によって、例えば、次式に示すように、ヒ化銅が水酸化ナトリウム液中で酸化され、銅が酸化銅又は水酸化銅として固形分の残渣になり、ヒ素がヒ酸ナトリウムを形成して液中に浸出される。
2Cu3As+4NaOH+4O2=3Cu2O↓+2Na2HAsO4+H2
By this oxidative leaching, for example, as shown in the following formula, copper arsenide is oxidized in a sodium hydroxide solution, copper becomes a solid residue as copper oxide or copper hydroxide, and arsenic forms sodium arsenate. And leached into the liquid.
2Cu 3 As + 4NaOH + 4O 2 = 3Cu 2 O ↓ + 2Na 2 HAsO 4 + H 2 O

酸化浸出のpHとヒ素の浸出状態を図3に示し、pHとPbおよびCuの浸出状態を図4に示す。また、浸出時間とAs濃度を図5に示す。図3に示すように、酸化浸出のpHが7.5より低い領域では、例えば、微量の銅イオンとヒ素(V)イオンが反応してヒ酸銅(Cu3(AsO4)2)の沈澱が生じるので液中のヒ素濃度は低下する(図3左側)。水酸化ナトリウムを添加してpHを7.5以上に調整すれば、ヒ素の浸出が進む(図3右側)。従って、浸出時にpH7.5以上に調整して酸化浸出を行うのが好ましい。 FIG. 3 shows the pH of oxidative leaching and the leaching state of arsenic, and FIG. 4 shows the leaching state of pH, Pb and Cu. Further, the leaching time and As concentration are shown in FIG. As shown in FIG. 3, in a region where the pH of oxidative leaching is lower than 7.5, for example, a small amount of copper ions and arsenic (V) ions react to precipitate copper arsenate (Cu 3 (AsO 4 ) 2 ). As a result, the arsenic concentration in the liquid decreases (left side of FIG. 3). If sodium hydroxide is added to adjust the pH to 7.5 or more, arsenic leaching proceeds (right side of FIG. 3). Therefore, it is preferable to perform oxidative leaching by adjusting the pH to 7.5 or higher during leaching.

また、上記酸化浸出の反応式から分かるように、ヒ素1モルを酸化浸出するには水酸化ナトリウム2モルが消費されるので、NaOHの添加量はNaOH/Asモル比=2倍(1当量)に基づいて調整すればよい。また、原料中のヒ素濃度が明らかなときには必要量の水酸化ナトリウム全量を浸出開始時に添加してもよい。この場合、図4に示すように、浸出初期の液性が強アルカリ(pH14程度)になる場合もあり、Cu、Pbなどの重金属イオンが一旦溶出するが、浸出反応が進むにつれ液中のアルカリが消費されて浸出液のpHが低下し、Cu、Pbなどの溶出濃度も低下する。浸出終了時のpHが7.5〜10の範囲であれば、Cu濃度およびPb濃度は数ppmに過ぎないので、浸出当初のpHを14程度にし、浸出終了時にpH7.5〜10になるようにすれば、CuおよびPbの濃度を抑えて、比較的に高純度のヒ素(V)を含むヒ素浸出液を得ることができる(図4、図5)。 Further, as can be seen from the above reaction formula of oxidative leaching, 2 mol of sodium hydroxide is consumed for oxidative leaching of 1 mol of arsenic, so the amount of NaOH added is NaOH / As molar ratio = 2 times (1 equivalent) It may be adjusted based on the above. Further, when the concentration of arsenic in the raw material is clear, the required amount of sodium hydroxide may be added at the start of leaching. In this case, as shown in FIG. 4, the liquid property at the initial stage of leaching may become strong alkali (about pH 14), and heavy metal ions such as Cu and Pb are once eluted, but as the leaching reaction proceeds, Is consumed, the pH of the leachate is lowered, and the elution concentration of Cu, Pb and the like is also lowered. If the pH at the end of the leaching is in the range of 7.5 to 10, the Cu concentration and the Pb concentration are only a few ppm, so the pH at the beginning of the leaching is about 14, so that the pH is 7.5 to 10 at the end of the leaching. If it is made, the density | concentration of Cu and Pb can be suppressed, and the arsenic leaching liquid containing comparatively high purity arsenic (V) can be obtained (FIG. 4, FIG. 5).

なお、酸化浸出開始時にアルカリを過剰に添加したことによって浸出終了時のpHが10を超える場合には、Cu、Pbなどの重金属イオン濃度が高く、また次のFeAs澱物生成工程においてヒ素の回収率が低下するので、硫酸または硫酸性溶液などの中和剤を添加してpH10以下に調整することが好ましい。
浸出温度は70℃〜90℃がよく、上記温度範囲より低いと浸出時間が長くなり、一方、上記温度範囲より高いと蒸気の発生量が多く、加熱コストが無駄になる。
When the pH at the end of leaching exceeds 10 due to the excessive addition of alkali at the start of oxidative leaching, the concentration of heavy metal ions such as Cu and Pb is high, and arsenic is recovered in the next FeAs starch production step. Since the rate decreases, it is preferable to adjust the pH to 10 or less by adding a neutralizing agent such as sulfuric acid or a sulfuric acid solution.
The leaching temperature is preferably 70 ° C. to 90 ° C. If the temperature is lower than the above temperature range, the leaching time becomes long. On the other hand, if it is higher than the above temperature range, the amount of steam generated is large and the heating cost is wasted.

上記アルカリ酸化浸出によれば、ヒ素が選択的に浸出され、CuおよびPbなどの共存金属との分離性が良い。さらに、浸出後のスラリーの濾過性が良く、短時間で濾過することができる。また、浸出残渣に含まれる銅の品位が80〜85%と高く、銅製錬処理が容易である。 According to the alkaline oxidation leaching, arsenic is selectively leached and the separability from coexisting metals such as Cu and Pb is good. Furthermore, the filterability of the slurry after leaching is good, and the slurry can be filtered in a short time. Moreover, the quality of copper contained in the leaching residue is as high as 80 to 85%, and the copper smelting treatment is easy.

浸出残渣のXRDスペクトルを図2に示す(図中上側のスペクトル)。図示するように、浸出残渣の主成分はCu2O(Cuprite)と未溶解のCu3As(Domeykite)である。 The XRD spectrum of the leaching residue is shown in FIG. 2 (upper spectrum in the figure). As shown in the figure, the main components of the leaching residue are Cu 2 O (Cuprite) and undissolved Cu 3 As (Domeykite).

〔FeAs沈澱生成工程〕
図2に示すように、上記酸化浸出によって銅は酸化銅を形成し固形分として残渣に含まれるので、この浸出残渣を固液分離する。浸出残渣を分離したヒ素浸出液に、pH10以下で、第二鉄化合物を添加して、FeAs澱物を生成させる。具体的には、次式に示すように、浸出残渣を固液分離したヒ酸イオンを含む浸出液に、第二鉄イオン(Fe3+)を添加すると、鉄(水酸化鉄)にヒ素(ヒ酸イオン)が吸着した沈殿が生成する。また、鉄イオンとヒ素イオンとが反応して非結晶質のヒ酸鉄が生成することもある。これらの鉄とヒ素を含む沈殿をFeAs澱物と云う。
HAsO4 2- + Fe3+ + 2OH- = FeOOH(HAsO4 2-)↓+H+
HAsO4 2- + Fe3+ + OH- = FeAsO4↓+H2
[FeAs precipitation generation process]
As shown in FIG. 2, copper forms copper oxide by the oxidative leaching and is contained in the residue as a solid content, and the leaching residue is subjected to solid-liquid separation. A ferric compound is added to the arsenic leachate from which the leaching residue has been separated at a pH of 10 or less to produce a FeAs starch. Specifically, as shown in the following formula, when ferric ion (Fe 3+ ) is added to a leachate containing arsenate ions obtained by solid-liquid separation of the leach residue, arsenic (arsenic) is added to iron (iron hydroxide). Precipitates with adsorbed acid ions are formed. Also, iron ions and arsenic ions may react to produce amorphous iron arsenate. These precipitates containing iron and arsenic are called FeAs starches.
HAsO 4 2- + Fe 3+ + 2OH = FeOOH (HAsO 4 2− ) ↓ + H +
HAsO 4 2- + Fe 3+ + OH = FeAsO 4 ↓ + H 2 O

ヒ素浸出液のpHが10より高いと、ヒ素と鉄の上記反応が進み難くなり、ヒ素が液中に残るので好ましくない。ヒ素浸出液のpHが10以下であれば、ヒ素が十分に取り込まれたFeAs澱物が生じる。上記アルカリ酸化浸出によって得たヒ素浸出液のpHは7.5〜10であるので、このpH域のままヒ素浸出液を用いればよい。 When the pH of the arsenic leachate is higher than 10, it is difficult to proceed the above reaction between arsenic and iron, and arsenic remains in the liquid, which is not preferable. If the pH of the arsenic leachate is 10 or less, a FeAs starch in which arsenic is sufficiently taken in is produced. Since the pH of the arsenic leachate obtained by the alkaline oxidation leaching is 7.5 to 10, the arsenic leachate may be used in this pH range.

第二鉄化合物としては塩化第二鉄、硫酸第二鉄、またはポリ硫酸第二鉄を用いるとよい。このなかで腐食性、経済性からポリ硫酸鉄が望ましい。上記反応式に示すように、第二鉄イオン1モルに対してヒ酸イオン1モルが反応するので、第二鉄化合物の添加量は、Fe/Asモル比で0.9〜1.1モルがよく、1モルが好ましい。ヒ素に対して鉄が0.9モルより少ないと、液中のヒ素の一部が未反応のまま液中に残るので好ましくない。また、ヒ素に対して鉄のモル数が1.1より多いと第二鉄化合物が未反応で残るので無駄になる。 As the ferric compound, ferric chloride, ferric sulfate, or polyferric sulfate may be used. Of these, iron iron sulfate is desirable because of its corrosiveness and economy. As shown in the above reaction formula, since 1 mol of arsenate ion reacts with 1 mol of ferric ion, the addition amount of ferric compound is 0.9 to 1.1 mol in Fe / As molar ratio. 1 mole is preferred. If the amount of iron is less than 0.9 mol relative to arsenic, a part of the arsenic in the liquid remains unreacted in the liquid, which is not preferable. On the other hand, if the number of moles of iron relative to arsenic is greater than 1.1, the ferric compound remains unreacted and is wasted.

ヒ素浸出液に対するポリ硫酸鉄の添加量と液中のヒ素濃度の変化を図6に示す。また、第二鉄イオンの添加量に対するAs,Feの沈殿量、pHの変化を図7に示す。図示するように、第二鉄イオンの添加量の増加に伴ってpHおよびAs濃度が低下し、FeAs澱物量が増加する。 FIG. 6 shows changes in the amount of polyiron sulfate added to the arsenic leachate and the arsenic concentration in the liquid. Further, FIG. 7 shows changes in the amounts of precipitation of As and Fe and the pH with respect to the amount of ferric ion added. As shown in the figure, as the amount of ferric ion added increases, the pH and As concentration decrease, and the amount of FeAs starch increases.

第二鉄化合物を添加するときの液温は50℃以上が好ましく、50℃〜70℃がより好ましい。これより液温が低いとFeAs澱物の濾過性が低下する。70℃以上ではヒ素の沈降性や澱物の濾過性に問題はないが、加熱コストが増大するので好ましくない。FeAs澱物生成の反応時間は10〜30分と短いので、酸化浸出後のヒ素浸出液を本工程によって素早く処理すれば、加熱する手間を省くことができる。 The liquid temperature when adding the ferric compound is preferably 50 ° C or higher, and more preferably 50 ° C to 70 ° C. If the liquid temperature is lower than this, the filterability of the FeAs starch decreases. Above 70 ° C., there is no problem with arsenic sedimentation and starch filterability, but heating costs increase, which is not preferable. Since the reaction time for producing the FeAs starch is as short as 10 to 30 minutes, if the arsenic leaching solution after the oxidative leaching is quickly processed in this step, the labor of heating can be saved.

上記FeAs澱物は結晶質スコロダイトの原料として好適である。例えば、図8に示すように、固液分離したFeAs澱物を液温50℃以上の硫酸性溶液に混合し、pH0.7〜1.2のスラリーまたは溶液にし、該スラリーまたは該溶液を、90℃以上に加熱して結晶質のスコロダイト(FeAsO4・2H2O)を生成させることができる。 The FeAs starch is suitable as a raw material for crystalline scorodite. For example, as shown in FIG. 8, the solid-liquid separated FeAs starch is mixed with a sulfuric acid solution having a liquid temperature of 50 ° C. or higher to form a slurry or solution having a pH of 0.7 to 1.2. Crystalline scorodite (FeAsO 4 .2H 2 O) can be produced by heating to 90 ° C. or higher.

本発明の処理方法は、酸化浸出工程において、硫黄を使用せずに銅とヒ素を酸化浸出するので硫化銅が生成せず、ヒ素(V)イオンを含む浸出液と銅を含む残渣との分離が容易である。また、アルカリを添加し、pH7.5以上で酸化浸出することによって、ヒ素の浸出が進む。酸化浸出反応が進むにつれてアルカリが消費されるので、スラリーpHが低下する。浸出初期のpHが10以上の場合、酸化浸出反応が進んでpHが10以下に低下すると、Pb、Cuなどの重金属は水酸化物になって浸出残渣に含まれるので、容易にヒ素含有浸出液と分離することができる。 In the treatment method of the present invention, copper and arsenic are oxidatively leached without using sulfur in the oxidative leaching step, so that copper sulfide is not generated, and the leaching solution containing arsenic (V) ions and the residue containing copper are separated. Easy. Further, leaching of arsenic proceeds by adding an alkali and oxidizing and leaching at pH 7.5 or higher. Since alkali is consumed as the oxidation leaching reaction proceeds, the slurry pH decreases. When the initial leaching pH is 10 or more, when the oxidative leaching reaction proceeds and the pH is lowered to 10 or less, heavy metals such as Pb and Cu are converted into hydroxides and contained in the leaching residue. Can be separated.

また、本発明の処理方法は、沈殿生成工程において、第二鉄化合物を添加することによって生じる水酸化鉄にヒ素イオンが選択的に吸着した沈殿、あるいはヒ酸鉄を形成したFeAs澱物になり、一方、浸出液に含まれるアルカリ金属イオンや、鉄イオン(Fe3+)のカウンターイオン(例えば、塩酸イオン、硫酸イオン)は液中に残るので、ヒ素を簡単に分離することができる。 Moreover, the treatment method of the present invention becomes a precipitate in which arsenic ions are selectively adsorbed on iron hydroxide generated by adding a ferric compound in the precipitation generation step, or an FeAs starch that forms iron arsenate. On the other hand, alkali metal ions and counter ions (for example, hydrochloric acid ions and sulfate ions) of iron ions (Fe 3+ ) contained in the leachate remain in the liquid, so that arsenic can be easily separated.

上記FeAs澱物にはヒ素が濃縮されており、澱物の容量はヒ素浸出液の1/4以下であって格段に容量が少ないので、後工程の処理設備をコンパクトにすることができる。また、上記FeAs澱物は短時間に生成し、澱物の濾過性が良く、フィルタープレスなどによって容易に固形化できる。従って、ヒ素を固形分として濃縮して回収し、保管するのに適する。 Arsenic is concentrated in the FeAs starch, and the capacity of the starch is 1/4 or less that of the arsenic leachate, and the capacity is much smaller, so that the processing equipment in the subsequent process can be made compact. Further, the FeAs starch is formed in a short time, the starch has good filterability, and can be easily solidified by a filter press or the like. Therefore, it is suitable for concentrating and collecting arsenic as a solid and storing it.

さらに、上記FeAs澱物は、これを加熱処理して容易にスコロダイトに転換させることができるので、本発明の処理方法はスコロダイト製造の前段処理工程として有用である。また、上記FeAs澱物中のFe/Asモル比は約1であるので、スコロダイトの原料として好適である。浸出液中のNaイオンなどは大部分が液中に残り、澱物には殆ど含まれないので、良質なスコロダイトを製造することができる。 Furthermore, since the FeAs starch can be easily converted into scorodite by heat treatment, the treatment method of the present invention is useful as a pre-treatment step for producing scorodite. Further, since the Fe / As molar ratio in the FeAs starch is about 1, it is suitable as a raw material for scorodite. Most of the Na ions and the like in the leachate remain in the liquid and are hardly contained in the starch, so that a high-quality scorodite can be produced.

本発明の処理方法の一例を示す工程図。Process drawing which shows an example of the processing method of this invention. ヒ化銅含有スライム(図中下側)と浸出残渣(図中上側)のXRDスペクトル。XRD spectra of copper arsenide-containing slime (lower side in the figure) and leaching residue (upper side in the figure). ヒ化銅含有スライムのアルカリ酸化浸出時間と浸出pH、およびAsイオン濃度変化を示すグラフ。The graph which shows the alkali oxidation leaching time and leaching pH of a copper arsenide containing slime, and As ion concentration change. アルカリ酸化浸出時間とPb濃度、Cu濃度、およびpH変化の関係を示すグラフ。The graph which shows the relationship between alkali oxidation leaching time, Pb density | concentration, Cu density | concentration, and pH change. アルカリ酸化浸出時間とAs濃度、NaOH濃度変化の関係を示すグラフ。The graph which shows the relationship between alkali oxidation leaching time, As concentration, and NaOH concentration change. ポリ硫酸第二鉄の添加量とヒ素濃度とpH変化の関係を示すグラフ。The graph which shows the relationship between the addition amount of poly ferric sulfate, an arsenic density | concentration, and pH change. 第二鉄イオンの添加量とFeとAsの沈殿量(上側)とpH変化(下側)の関係を示すグラフ。The graph which shows the relationship between the addition amount of a ferric ion, the precipitation amount (upper side) of Fe and As, and pH change (lower side). スコロダイトの製造プロセス。Scorodite manufacturing process.

以下、本発明の実施例を示す。なお%は特に示す場合を除き質量%である。
〔実施例1:アルカリ酸化浸出〕
ヒ化銅を主成分とするスライム100g-dry(As20%)と水600ccをスラリーにし、攪拌しながら濃度48質量%の水酸化ナトリウム溶液を約15cc加え、pH12(NaOH/Asのモル比を約0.5)に調整した。このスラリーを75〜80℃に加熱し、空気を1L/分の流量で1時間導入し、酸化浸出を行った。浸出時間1hr後にAsは約7g/Lまで浸出され、一方、水酸化ナトリウムの大部分も消費され、スラリーpHは7.2になった。この状態でAsの挙動を観察すると、Asの浸出反応は進まなくなり、Asイオンが沈降することが確認された(図3)。次に、水酸化ナトリウムをスラリーpHが7.5以上になるまで添加するとAsが再び浸出することを確認した。浸出が進むにつれてスラリーの色は黒色から茶色(Cu2Oの色)に変わった。pH7.5以上にして浸出時間3時間後に攪拌を止め、スラリーを濾過して浸出液と残渣を回収した。ヒ化銅スライム(原料)と浸出残渣のXRDスペクトルを比較すると、原料の主成分はCu3As(Domeykite)およびCu5As2(Koutekite)であり、一方、浸出残渣には、未溶解のDomeykiteとCu2O(Cuprite)が含まれていることを確認した(図2)。また、浸出後の濾液(600cc)を分析した結果、pH8.5、As15g/L、Cu2ppm以下であり、Asの約50%が浸出された。水酸化ナトリウム消費量はAs1モルに対し約2.5モルが消費された。
Examples of the present invention will be described below. % Is mass% unless otherwise specified.
[Example 1: Alkaline oxidation leaching]
Slurry 100 g-dry (As 20%) of copper arsenide as main component and 600 cc of water are added to a slurry, and about 15 cc of sodium hydroxide solution with a concentration of 48% by mass is added with stirring to a pH of 12 (NaOH / As molar ratio of about Adjusted to 0.5). This slurry was heated to 75 to 80 ° C., and air was introduced at a flow rate of 1 L / min for 1 hour to perform oxidative leaching. After 1 hour of leaching time, As was leached to about 7 g / L, while most of the sodium hydroxide was consumed and the slurry pH was 7.2. When the behavior of As was observed in this state, it was confirmed that the leaching reaction of As did not proceed and As ions settled (FIG. 3). Next, when sodium hydroxide was added until the slurry pH became 7.5 or more, it was confirmed that As was leached again. The color of the slurry changed from black to brown (Cu 2 O color) as leaching progressed. At pH 7.5 or higher, stirring was stopped after 3 hours of leaching, and the slurry was filtered to recover the leachate and residue. Comparing XRD spectra of copper arsenide slime (raw material) and leaching residue, the main components of the raw material are Cu 3 As (Domeykite) and Cu 5 As 2 (Koutekite), while the leaching residue contains undissolved Domeykite. And Cu 2 O (Cuprite) were confirmed (FIG. 2). Further, as a result of analyzing the filtrate (600 cc) after leaching, pH was 8.5, As15 g / L, Cu was 2 ppm or less, and about 50% of As was leached. About 2.5 mol of sodium hydroxide was consumed per 1 mol of As.

〔実施例2:アルカリ酸化浸出〕
ヒ化銅を主成分とするスライム75g-dry(As約40%)と水700ccを混合し、攪拌しながら濃度48質量%の水酸化ナトリウム溶液を約45cc加え、NaOH/Asのモル比を約2に調整し、pH14のスラリーにした。このスラリーを85℃に加熱し、空気を2L/分の流量で12時間導入し、酸化浸出を行った。浸出が進むにつれてスラリーのpHが低下し、または数百ppmまで浸出されたPb濃度とCuの濃度の低下も確認された(図4)。図5に示すフリーNaOHとAs濃度の経時変化から、pH低下は苛性ソーダ濃度の減少に従うことが分かる。浸出開始から12時間後にスラリー色は黒色から茶色(Cu2Oの色)に変化し、ここで攪拌を止め、スラリーを濾過して浸出液と残渣を回収した。浸出後の濾液(700cc)を分析した結果、pH9.5、As30g/L、Cu2ppm、Pb5ppmであり、Asの約80%が浸出された。水酸化ナトリウムはAs1モルに対し約2.4モルが消費された。
[Example 2: Alkaline oxidation leaching]
Mix 75g-dry of slime mainly composed of copper arsenide (As about 40%) and 700cc of water, add about 45cc of sodium hydroxide solution with a concentration of 48% by mass with stirring, and adjust the molar ratio of NaOH / As to about To a pH of 14 slurry. This slurry was heated to 85 ° C., and air was introduced at a flow rate of 2 L / min for 12 hours to perform oxidative leaching. As the leaching progressed, the pH of the slurry decreased, or a decrease in the concentration of Pb and Cu leached to several hundred ppm was confirmed (FIG. 4). From the time course of the free NaOH and As concentrations shown in FIG. 5, it can be seen that the decrease in pH follows the decrease in caustic soda concentration. After 12 hours from the start of leaching, the slurry color changed from black to brown (Cu 2 O color), where stirring was stopped and the slurry was filtered to recover the leachate and residue. As a result of analyzing the filtrate (700 cc) after leaching, pH was 9.5, As was 30 g / L, Cu was 2 ppm, Pb was 5 ppm, and about 80% of As was leached. About 2.4 mol of sodium hydroxide was consumed per 1 mol of As.

〔比較例1〕
ヒ化銅含有スライム500g-dry(含有率:As29%、Cu55%、Pb1.4%)を水酸化ナトリウム溶液(NaOH濃度220g/L)2.3Lと混合し(固液比1:4.6、NaOH/Asモル比6.5)、pH14のスラリーにした。このスラリーを52℃に加熱し、空気を通気させながら150分攪拌して酸化浸出を行った。浸出後、スラリーを濾過し、濾液2L(pH14、As濃度12g/L、Cu16ppm、Pb2300ppm)と浸出残渣416g(dry)を回収した。As浸出率17%、Cu浸出率0.1%以下、Pb浸出率66%であり、Asの浸出率は低く、一方、鉛の浸出率は高い結果になった。
[Comparative Example 1]
Copper arsenide-containing slime 500 g-dry (content ratio: As 29%, Cu 55%, Pb 1.4%) was mixed with 2.3 L of sodium hydroxide solution (NaOH concentration 220 g / L) (solid-liquid ratio 1: 4.6). , NaOH / As molar ratio 6.5), pH 14 slurry. This slurry was heated to 52 ° C. and stirred for 150 minutes while allowing air to pass through to perform oxidative leaching. After leaching, the slurry was filtered to recover 2 L of filtrate (pH 14, As concentration 12 g / L, Cu 16 ppm, Pb 2300 ppm) and 416 g (dry) of leaching residue. As leaching rate was 17%, Cu leaching rate was 0.1% or less, and Pb leaching rate was 66%. As leaching rate was low, while leaching rate of lead was high.

〔比較例2〕
ヒ化銅含有スライム500g-dry(含有率:As29%、Cu55%、Pb1.4%)を水酸化ナトリウム溶液(NaOH濃度180g/L)2.7Lと混合し(固液比1:5.4、NaOH/Asモル比6.5)、pH14のスラリーにした。このスラリーを60℃に加熱し、空気を通気させながら150分攪拌して酸化浸出を行った。浸出後、スラリーを濾過し、濾液2.5L(pH14、 As濃度16g/L、Cu10ppm、Pb500ppm)と浸出残渣390g(dry)を回収した。As浸出率28%、Cu浸出率0.1%以下、Pb浸出率18%であり、比較例1よりはAsの浸出率は少々改善したが、30%未満と低くかった。またPb浸出量は低下したものの500ppmと比較的に高かった。
[Comparative Example 2]
500 g-dry of copper arsenide-containing slime (content: As 29%, Cu 55%, Pb 1.4%) was mixed with 2.7 L of sodium hydroxide solution (NaOH concentration 180 g / L) (solid-liquid ratio 1: 5.4). , NaOH / As molar ratio 6.5), pH 14 slurry. The slurry was heated to 60 ° C. and stirred for 150 minutes while allowing air to pass through to perform oxidative leaching. After leaching, the slurry was filtered to recover 2.5 L of filtrate (pH 14, As concentration 16 g / L, Cu 10 ppm, Pb 500 ppm) and 390 g (dry) of leaching residue. The As leaching rate was 28%, the Cu leaching rate was 0.1% or less, and the Pb leaching rate was 18%. Although the As leaching rate was slightly improved as compared with Comparative Example 1, it was lower than 30%. Although the amount of Pb leaching was reduced, it was relatively high at 500 ppm.

〔実施例3〕
ヒ化銅含有スライム132g-dry(含有率:As37%、Cu41%)を水酸化ナトリウム溶液(NaOH濃度56g/L)0.9Lと混合し(固液比1:6.8、NaOH/Asモル比1.9)、pH14のスラリーにした。このスラリーを88℃に加熱し、空気を通気させながら180分攪拌して酸化浸出を行った。浸出後のスラリーに、pH10になるように、小量の稀硫酸を添加し、濾過によって、濾液0.8L(pH10、 As濃度42g/L、Cu5ppm)と浸出残渣82g(dry)を回収した。As浸出率は69%、Cu浸出率0.1%以下であり、比較例1,2よりもAsの浸出率は高かった。
Example 3
132 g-dry of copper arsenide-containing slime (content: As 37%, Cu 41%) was mixed with 0.9 L of sodium hydroxide solution (NaOH concentration 56 g / L) (solid-liquid ratio 1: 6.8, NaOH / As mole). A slurry with a ratio of 1.9) and pH of 14. This slurry was heated to 88 ° C. and stirred for 180 minutes while allowing air to pass through to perform oxidative leaching. A small amount of dilute sulfuric acid was added to the slurry after leaching so that the pH was 10, and 0.8 L of the filtrate (pH 10, As concentration 42 g / L, Cu 5 ppm) and 82 g (dry) of the leaching residue were collected by filtration. The As leaching rate was 69%, the Cu leaching rate was 0.1% or less, and the As leaching rate was higher than those of Comparative Examples 1 and 2.

〔実施例4:FeAs沈殿生成〕
実施例1と実施例2で調製した浸出液を混合し、As濃度24g/Lにした液から600ccを取り、60℃に加熱した。この液を攪拌しながら日鉄鉱業社製ポリ硫酸第二鉄液(ポリテツ)58ccを加え、10分間攪拌した後、湿潤状態の澱物約160g(含水率約70%)を吸引ろ過、通水洗浄を行った。濾液中のAs残濃度は0.2g/Lであり、Asの約99%が沈澱した。また、図6に示すように、ポリテツの添加に従い、ヒ素濃度及びpHが低下する。図7に、添加したポリテツ液中のFeイオンのモル数に対する、鉄とヒ素の沈殿量(モル数)を示すとおり、pH9.2からpH2.3の広い範囲でFe1モルに対しAs約1モルが吸着・共沈することが分かる。
[Example 4: FeAs precipitate formation]
The leachate prepared in Example 1 and Example 2 was mixed, 600 cc was taken from the liquid having an As concentration of 24 g / L, and heated to 60 ° C. While stirring this liquid, 58 cc of polyferric sulfate (polytetsu) manufactured by Nippon Steel & Mining Co., Ltd. was added and stirred for 10 minutes, and then about 160 g of wet starch (water content of about 70%) was suction filtered and passed through water. Washing was performed. The As residual concentration in the filtrate was 0.2 g / L, and about 99% of As was precipitated. Further, as shown in FIG. 6, the arsenic concentration and pH decrease with the addition of polytetsu. As shown in FIG. 7, the amount of iron and arsenic precipitation (number of moles) relative to the number of moles of Fe ion in the added polytetsu solution, As is about 1 mole per mole of Fe in a wide range from pH 9.2 to pH 2.3. Can be adsorbed and co-precipitated.

Claims (3)

銅ヒ素含有物に浸出時のpHが7.5以上になるようにアルカリと酸化剤を添加して酸化浸出を行ってヒ素を浸出させ後、液のpHを7.5〜10に調整して銅分を浸出残渣にして固液分離し、該固液分離して得たヒ素浸出液に、pH10以下で第二鉄化合物を添加して水酸化鉄にヒ素が吸着したFeAs澱物を生成させることを特徴とするヒ素の分離固定化方法。 After leaching arsenic by adding an alkali and an oxidizing agent so that the leaching pH of the copper arsenic-containing material is 7.5 or higher, the pH of the solution is adjusted to 7.5-10. Solid-liquid separation using copper as a leaching residue, and addition of a ferric compound at a pH of 10 or less to the arsenic leachate obtained by solid-liquid separation to produce FeAs starch in which arsenic is adsorbed on iron hydroxide Arsenic separation and immobilization method characterized by the above. ヒ化銅含有スライムに、浸出時pH7.5以上になるように水酸化ナトリウム溶液を加え、さらに空気を吹き込んで、70℃〜90℃に加熱してヒ素分を浸出させた後、液のpHを7.5〜10に調整して銅分を残渣にするアルカリ性酸化浸出工程と、銅分を含む残渣を固液分離し、ヒ素を含むpH10以下の溶液に、50℃以上で、第二鉄化合物をFe/Asモル比で0.9〜1.1になるように添加し、水酸化鉄にヒ素が吸着したFeAs澱物を生成させる澱物生成工程とを含む請求項1に記載するヒ素の分離固定化方法。 Sodium hydroxide solution was added to the copper arsenide-containing slime so that the pH was 7.5 or more at the time of leaching, air was further blown into the lime, and the arsenic content was leached by heating to 70 ° C to 90 ° C. The alkaline oxidation leaching step for adjusting the copper content to 7.5 to 10 and making the copper content a residue, solid-liquid separation of the copper content residue, and the solution containing arsenic at a pH of 10 or less at 50 ° C. or higher and ferric iron The arsenic according to claim 1, further comprising: adding a compound such that the Fe / As molar ratio is 0.9 to 1.1 to form a FeAs starch in which arsenic is adsorbed on iron hydroxide. Separation and immobilization method. 第二鉄化合物として塩化第二鉄、硫酸第二鉄、またはポリ硫酸第二鉄を用い、pH7.5〜10のヒ素浸出液に、液温50℃〜70℃で第二鉄化合物を添加し、水酸化鉄にヒ素が吸着したFeAs澱物を生成させる請求項1または請求項2に記載するヒ素の分離固定化方法。
Using ferric chloride, ferric sulfate, or polyferric sulfate as the ferric compound, adding the ferric compound to the arsenic leachate with a pH of 7.5 to 10 at a liquid temperature of 50 ° C to 70 ° C, The method for separating and immobilizing arsenic according to claim 1 or 2, wherein an FeAs starch in which arsenic is adsorbed on iron hydroxide is produced.
JP2014063643A 2013-03-29 2014-03-26 Arsenic separation and immobilization method Expired - Fee Related JP6241661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063643A JP6241661B2 (en) 2013-03-29 2014-03-26 Arsenic separation and immobilization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013073773 2013-03-29
JP2013073773 2013-03-29
JP2014063643A JP6241661B2 (en) 2013-03-29 2014-03-26 Arsenic separation and immobilization method

Publications (2)

Publication Number Publication Date
JP2014208338A JP2014208338A (en) 2014-11-06
JP6241661B2 true JP6241661B2 (en) 2017-12-06

Family

ID=51902964

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014063643A Expired - Fee Related JP6241661B2 (en) 2013-03-29 2014-03-26 Arsenic separation and immobilization method
JP2014063644A Active JP6226235B2 (en) 2013-03-29 2014-03-26 Method for producing scorodite

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014063644A Active JP6226235B2 (en) 2013-03-29 2014-03-26 Method for producing scorodite

Country Status (1)

Country Link
JP (2) JP6241661B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241661B2 (en) * 2013-03-29 2017-12-06 三菱マテリアル株式会社 Arsenic separation and immobilization method
JP6691680B2 (en) 2015-12-23 2020-05-13 三菱マテリアル株式会社 Arsenic immobilization method
JP6652746B2 (en) * 2016-02-24 2020-02-26 三菱マテリアル株式会社 Arsenic leaching method
CN106045140B (en) * 2016-06-30 2018-09-11 中南大学 A kind of method of Copper making waste acid control current potential Selective Separation
CN106823233B (en) * 2016-12-21 2019-08-13 中南大学 A method of distribution crystallisation preparation high stability consolidates arsenic mineral
CN106823234B (en) * 2016-12-21 2019-08-27 中南大学 A kind of method that hydro-thermal method preparation high stability consolidates arsenic mineral
JP6828527B2 (en) * 2017-03-11 2021-02-10 三菱マテリアル株式会社 Manufacturing method of scrodite
AU2018292424B2 (en) * 2017-06-29 2023-09-28 The Royal Institution For The Advancement Of Learning/Mcgill University Stabilization of hazardous materials
CN107354301B (en) * 2017-07-19 2019-01-25 中南大学 A method of improving arsenic-containing material arsenic-removing rate
JP7068618B2 (en) * 2017-11-10 2022-05-17 三菱マテリアル株式会社 Manufacturing method of scrodite
CN111072206B (en) * 2019-12-16 2022-03-15 昆明理工大学 Method for treating acidic sewage
CN113699380A (en) * 2021-07-15 2021-11-26 湖南有色金属研究院有限责任公司 Arsenic-antimony smoke treatment method
CN115704060A (en) * 2021-08-05 2023-02-17 核工业北京化工冶金研究院 Comprehensive utilization method of gold slag containing high arsenic and antimony
CN115069747A (en) * 2022-06-07 2022-09-20 湖北中和联信环保股份有限公司 Treatment process of arsenic-containing waste salt
CN115491495A (en) * 2022-09-17 2022-12-20 湖南省和清环境科技有限公司 Wet treatment process for harmlessness and reclamation of arsenic alkali slag

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160590A (en) * 1978-06-09 1979-12-19 Sumitomo Metal Mining Co Method of separating and recovering arsenic from refining intermediate in state of sulfide containing arsenic
JPS6277431A (en) * 1985-09-30 1987-04-09 Sumitomo Metal Mining Co Ltd Method for selectively extracting copper and arsenic respectively from decopperizing slime
JP3999805B1 (en) * 2006-04-28 2007-10-31 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP4087433B2 (en) * 2006-04-28 2008-05-21 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP4615561B2 (en) * 2006-04-28 2011-01-19 Dowaメタルマイン株式会社 Arsenic-containing solution processing method
JP4710033B2 (en) * 2006-04-28 2011-06-29 Dowaメタルマイン株式会社 Arsenic content treatment method
JP4710034B2 (en) * 2006-04-28 2011-06-29 Dowaメタルマイン株式会社 Arsenic-containing material treatment method
JP4960686B2 (en) * 2006-11-17 2012-06-27 Dowaメタルマイン株式会社 Arsenic-containing liquid treatment method
JP4822445B2 (en) * 2007-07-13 2011-11-24 Dowaメタルマイン株式会社 Arsenic treatment method with seed crystals added
JP2009242935A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method for alkali-treating substance containing arsenic
FI122349B (en) * 2009-02-23 2011-12-15 Outotec Oyj Procedure for removing arsenic as chorodite
JP2010285322A (en) * 2009-06-12 2010-12-24 Dowa Metals & Mining Co Ltd Method for obtaining crystalline scorodite from solution containing arsenic
JP2011212588A (en) * 2010-03-31 2011-10-27 Dowa Metals & Mining Co Ltd Treatment method of refinement intermediate product
JP6241661B2 (en) * 2013-03-29 2017-12-06 三菱マテリアル株式会社 Arsenic separation and immobilization method

Also Published As

Publication number Publication date
JP2014208338A (en) 2014-11-06
JP6226235B2 (en) 2017-11-08
JP2014208581A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6241661B2 (en) Arsenic separation and immobilization method
JP6304530B2 (en) Tellurium separation and recovery method
JP3999805B1 (en) Arsenic-containing solution processing method
EP2174912B1 (en) Method of removing arsenic from smelting residues comprising copper-arsenic compounds
JP4216307B2 (en) Process for electrolytically precipitated copper
EA012466B1 (en) Method for the recovery of valuable metals and arsenic from a solution
JP4268196B2 (en) Method for producing scorodite
JP2011206757A (en) Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese
JP4960686B2 (en) Arsenic-containing liquid treatment method
KR20100049593A (en) Method of treating arsenical matter with alkali
KR20090082925A (en) Purified molybdenum technical oxide from molybdenite
WO2003078670A1 (en) Method for separating platinum group element
JP7016463B2 (en) How to collect tellurium
JP5370777B2 (en) Method for recovering copper from copper sulfide
WO2013129130A1 (en) Method for separating rhenium and arsenic, and method for purifying rhenium
JP5146017B2 (en) Chlorine leaching method for lead anode slime
JP5843069B2 (en) Tellurium separation and recovery method
JP5512482B2 (en) Method for separating and recovering zinc from galvanizing waste liquid
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6193603B2 (en) Method for producing scorodite from non-ferrous smelting ash
JP4710033B2 (en) Arsenic content treatment method
JP2009209421A (en) Method for producing high purity silver
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP4615561B2 (en) Arsenic-containing solution processing method
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6241661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees