JP2020033229A - Method for producing aqueous nickel sulfate solution - Google Patents

Method for producing aqueous nickel sulfate solution Download PDF

Info

Publication number
JP2020033229A
JP2020033229A JP2018161223A JP2018161223A JP2020033229A JP 2020033229 A JP2020033229 A JP 2020033229A JP 2018161223 A JP2018161223 A JP 2018161223A JP 2018161223 A JP2018161223 A JP 2018161223A JP 2020033229 A JP2020033229 A JP 2020033229A
Authority
JP
Japan
Prior art keywords
nickel sulfate
aqueous solution
solution
sulfate aqueous
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018161223A
Other languages
Japanese (ja)
Inventor
英一 中川
Hidekazu Nakagawa
英一 中川
二郎 早田
Jiro Hayata
二郎 早田
亜季子 藤
Akiko Fuji
亜季子 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018161223A priority Critical patent/JP2020033229A/en
Publication of JP2020033229A publication Critical patent/JP2020033229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method for producing an aqueous nickel sulfate solution capable of suppressing nickel loss, reducing the amount of an alkali agent used, and producing iron hydroxide in a shorter reaction time.SOLUTION: A method comprises an oxidation step in which air is blown into a crude nickel sulfate aqueous solution containing iron as an impurity and 0.01 to 0.2 parts by volume of hydrogen peroxide prepared preferably in a 35 mass% aqueous solution is added to 100 parts by volume of the aqueous crude nickel sulfate solution for oxidation treatment, a neutralization step in which a neutralizing agent preferably comprising a slaked lime slurry is added to the aqueous crude nickel sulfate solution to form a neutralized precipitate containing iron under a pH 3.5 to 6.5 condition, and a solid-liquid separation step in which the neutralized precipitate is removed from the oxidation-neutralized slurry obtained in the oxidation and neutralization steps.SELECTED DRAWING: Figure 2

Description

本発明は、硫酸ニッケル水溶液の製造方法に関し、特に不純物として鉄を含有する粗硫酸ニッケル水溶液を処理して鉄濃度の低い硫酸ニッケル水溶液を製造する方法に関する。   The present invention relates to a method for producing an aqueous solution of nickel sulfate, and more particularly to a method for producing an aqueous solution of nickel sulfate having a low iron concentration by treating a crude aqueous solution of nickel sulfate containing iron as an impurity.

不純物として鉄を含む粗硫酸ニッケル水溶液の浄液方法として、該粗硫酸ニッケル水溶液にアルカリ剤を添加してpH制御を行うことで、水酸化鉄の沈澱物を生成すると共に該沈澱物に鉄以外の不純物を共沈させた後、固液分離により沈澱物を除去することによって精製された硫酸ニッケル水溶液を得る脱鉄工程が知られている。上記の脱鉄工程に用いるアルカリ剤には、例えば、消石灰、水酸化マグネシウム、水酸化ナトリウム水溶液等が使用される。これらのうち、消石灰や水酸化マグネシウム等の固体状のアルカリ剤の場合は、そのまま粗硫酸ニッケル水溶液に添加しても良いが、上記pH制御の精度と安定性を担保するため、所定のスラリー濃度を有するスラリーにあらかじめ調製してから添加することが一般的に行われている。   As a method for purifying a crude nickel sulfate aqueous solution containing iron as an impurity, an alkaline agent is added to the crude nickel sulfate aqueous solution to perform pH control, so that a precipitate of iron hydroxide is formed and the precipitate other than iron is added to the precipitate. Is known in which a purified aqueous solution of nickel sulfate is obtained by coprecipitating the above-mentioned impurity and removing the precipitate by solid-liquid separation. As the alkaline agent used in the above-described iron removal step, for example, slaked lime, magnesium hydroxide, an aqueous sodium hydroxide solution or the like is used. Among them, in the case of a solid alkaline agent such as slaked lime or magnesium hydroxide, it may be added to the crude nickel sulfate aqueous solution as it is, but in order to ensure the accuracy and stability of the pH control, a predetermined slurry concentration is used. Is generally prepared beforehand and then added.

ところで、上記の脱鉄工程では、粗硫酸ニッケル水溶液中の鉄の除去率の上限値、すなわち該水溶液中の鉄濃度をどの程度まで下げることができるかについては、鉄イオンの水酸化反応のpH、ORP(酸化還元電位)、反応温度及び反応時間などによって決まる。これらのうち、反応時間は反応設備の容量及び該反応設備に供給される処理液の流量でほぼ定まるため、既設設備を増設することなく処理量を増加する場合は、反応槽の滞留時間が減少することになるので、より短い反応時間で鉄濃度を低減させることが必要となる。   By the way, in the above-described iron removal step, the upper limit of the iron removal rate in the crude nickel sulfate aqueous solution, that is, the extent to which the iron concentration in the aqueous solution can be reduced, depends on the pH of the hydroxylation reaction of iron ions. , ORP (redox potential), reaction temperature and reaction time. Of these, the reaction time is substantially determined by the capacity of the reaction equipment and the flow rate of the processing solution supplied to the reaction equipment, so if the processing amount is increased without adding existing equipment, the residence time of the reaction tank will decrease. Therefore, it is necessary to reduce the iron concentration in a shorter reaction time.

一方で、処理対象となる鉄を含む粗硫酸ニッケル水溶液は、上記脱鉄工程において鉄イオンを水酸化反応で処理する前にその前段階として亜鉛、カドミウム、銅等の不純物を除去する前処理工程を経ることが多い。この前処理工程(脱亜鉛工程とも称する)では、硫化水素ガス等の硫化剤を用いて亜鉛、カドミウム、銅等の不純物を硫化物として除去する方法が用いられている。その結果、粗硫酸ニッケル水溶液のORPは低下し、鉄イオンもFe2+として存在する割合が多くなる。 On the other hand, a crude nickel sulfate aqueous solution containing iron to be treated is a pretreatment step of removing impurities such as zinc, cadmium, and copper before treating the iron ions by the hydroxylation reaction in the above-described deironing step. Often go through. In this pretreatment step (also referred to as a dezincing step), a method of removing impurities such as zinc, cadmium, and copper as sulfides using a sulfide agent such as hydrogen sulfide gas is used. As a result, the ORP of the crude nickel sulfate aqueous solution decreases, and the proportion of iron ions present as Fe 2+ increases.

上記のように、ORPが低くFe2+の存在割合が多い粗硫酸ニッケル水溶液の反応始液に対して、上記脱鉄工程で処理して高純度硫酸ニッケル水溶液として求められる水準にまで鉄濃度を低減するには、該反応始液中のニッケルが水酸化物を生成する条件までpHを上昇させなければならない。すなわち、水酸化鉄の沈澱物としての除去の際に、ニッケルの一部から生成した水酸化物も沈澱物として除去されてしまう。従って、ニッケルのロスを減らすため、除去された沈澱物の中からニッケルを回収する工程が必要になる。更に、上記のようにpHを上昇させるためにはアルカリ剤の消費量が増加するのでコスト増になるうえ、沈澱物の生成量が増加するので固液分離装置の負荷が増加する。このように脱鉄工程においてpHを上昇させると多くのデメリットが生じる。 As described above, the reaction start solution of the crude nickel sulfate aqueous solution having a low ORP and a large proportion of Fe 2+ is treated in the above-described iron removal step to reduce the iron concentration to a level required for a high-purity nickel sulfate aqueous solution. To this end, the pH must be raised to a condition where nickel in the starting solution of the reaction forms a hydroxide. That is, when iron hydroxide is removed as a precipitate, hydroxide generated from part of nickel is also removed as a precipitate. Therefore, in order to reduce nickel loss, a step of recovering nickel from the removed precipitate is required. Furthermore, in order to raise the pH as described above, the consumption of the alkaline agent increases, so that the cost increases. In addition, since the amount of the precipitate formed increases, the load on the solid-liquid separator increases. As described above, increasing the pH in the deironing process has many disadvantages.

そこで特許文献1や2には、脱鉄工程で処理する粗硫酸ニッケル水溶液中に空気を吹き込んでORPを上昇させ、これにより該粗硫酸ニッケル水溶液に含まれる鉄イオンの形態をFe2+からFe3+にする技術が開示されている。このように、ORPを上昇させてからアルカリ剤を添加することにより低pH領域においても安定的にFe(OH)を含む沈澱物を生成することが可能になるので、ニッケル水酸化物の生成を抑制することができる。 Thus, Patent Documents 1 and 2 disclose that the ORP is raised by blowing air into a crude nickel sulfate aqueous solution to be treated in the iron removal step, thereby changing the form of iron ions contained in the crude nickel sulfate aqueous solution from Fe 2+ to Fe 3+. Is disclosed. As described above, by adding the alkaline agent after increasing the ORP, it becomes possible to stably generate a precipitate containing Fe (OH) 3 even in a low pH range, and thus it is possible to form nickel hydroxide. Can be suppressed.

特開2003−095660号公報JP 2003-095660 A 特開2006−225217号公報JP 2006-225217 A

しかしながら、上記脱鉄工程が行われる反応設備によっては、例えば物理的な理由から空気の吹込み量が制約され、粗硫酸ニッケル水溶液に接触させる空気の量が不足したり、粗硫酸ニッケル水溶液と空気との接触時間が不十分になったりする場合があった。特に、上記前処理工程によって粗硫酸ニッケル水溶液のORPが低下している場合、上記した空気の吹き込みによる酸化では十分にORPを上昇させることができず、鉄の除去のためにニッケルの水酸化物が生成する条件までpHを上昇させることが必要であった。また、空気の吹き込みによる酸化は脱鉄工程の効率化の阻害要因になっており、前述したように既設の反応設備の容量を変えずに処理液の流量を増加するのは困難であった。   However, depending on the reaction equipment in which the above-described iron removal step is performed, the amount of air blown is limited, for example, for physical reasons, and the amount of air to be brought into contact with the crude nickel sulfate aqueous solution is insufficient, or the crude nickel sulfate aqueous solution and air In some cases, the contact time with the film became insufficient. In particular, when the ORP of the crude nickel sulfate aqueous solution is lowered by the pretreatment step, the ORP cannot be sufficiently increased by the above-described oxidation by blowing air, and the hydroxide of nickel is removed to remove iron. It was necessary to raise the pH to the conditions under which Further, oxidation by blowing air is a hindrance to improving the efficiency of the iron removal process, and as described above, it has been difficult to increase the flow rate of the processing solution without changing the capacity of the existing reaction equipment.

本発明は上記した従来技術が抱える問題に鑑みてなされたものであり、粗硫酸ニッケル水溶液の脱鉄工程において、ニッケル水酸化物の生成を抑制することでニッケルロスを削減したりアルカリ剤の使用量を削減したりできるうえ、後段の固液分離工程の負荷を低減することができ、更には、より短い反応時間で水酸化鉄を生成することが可能な硫酸ニッケル水溶液の製造方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems of the related art, and in a step of removing iron from a crude nickel sulfate aqueous solution, reducing nickel hydroxide by reducing nickel hydroxide or using an alkaline agent. A method for producing an aqueous solution of nickel sulfate capable of reducing the amount, reducing the load of a subsequent solid-liquid separation step, and producing iron hydroxide in a shorter reaction time. It is intended to be.

本発明者らは、上記目的を達成すべく、粗硫酸ニッケル水溶液の脱鉄工程における反応設備や酸化方法について鋭意検討を重ねた結果、粗硫酸ニッケル水溶液に対して、空気の吹き込みと共に補助的に過酸化水素の添加を行うと共に、アルカリ剤の添加により中和処理を行うことで極めて短時間に粗硫酸ニッケル溶液中の鉄濃度を低減できることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies on the reaction equipment and oxidation method in the step of deironing the crude nickel sulfate aqueous solution in order to achieve the above object, and as a result, The inventors have found that the concentration of iron in the crude nickel sulfate solution can be reduced in a very short time by adding hydrogen peroxide and performing a neutralization treatment by adding an alkali agent, thereby completing the present invention.

すなわち、本発明に係る硫酸ニッケル水溶液の製造方法は、不純物として鉄を含有する粗硫酸ニッケル水溶液に空気を吹き込むと共に過酸化水素を添加して酸化処理する酸化工程と、前記粗硫酸ニッケル水溶液に中和剤を添加することでpH3.5〜6.5の条件で鉄を含む中和澱物を生成させる中和工程と、前記酸化工程及び前記中和工程で得た酸化中和後スラリーから該中和澱物を除去する固液分離工程とからなることを特徴としている。   That is, the method for producing an aqueous solution of nickel sulfate according to the present invention comprises the steps of: oxidizing the crude nickel sulfate aqueous solution by blowing air and adding hydrogen peroxide to the crude nickel sulfate aqueous solution; A neutralizing step of forming a neutralized precipitate containing iron under conditions of pH 3.5 to 6.5 by adding a wetting agent; and And a solid-liquid separation step of removing the neutralized precipitate.

本発明によれば、粗硫酸ニッケル水溶液の脱鉄工程においてニッケル水酸化物の生成を抑制することができるので、ニッケルロスの削減及びアルカリ剤の使用量の削減が可能になるうえ、後段の固液分離工程の負荷を低減することができる。また、より短い反応時間で水酸化鉄を生成することができるので、既設の処理設備を増強することなく処理能力を高めることができる。   According to the present invention, the production of nickel hydroxide can be suppressed in the step of removing iron from the aqueous solution of crude nickel sulfate, so that it is possible to reduce the nickel loss and the amount of use of the alkali agent, and to reduce the amount of the solid solution in the latter stage. The load of the liquid separation step can be reduced. In addition, since iron hydroxide can be generated in a shorter reaction time, the processing capacity can be increased without increasing existing processing equipment.

本発明の実施形態の硫酸ニッケル水溶液の製造方法のプロセスフロー図である。It is a process flow figure of the manufacturing method of the nickel sulfate aqueous solution of the embodiment of the present invention. 本発明の実施形態の硫酸ニッケル水溶液の製造方法が好適に実施される設備の模式的なフロー図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a typical flowchart of the equipment which the manufacturing method of the nickel sulfate aqueous solution of embodiment of this invention is implemented suitably. 図2の設備に好適に用いられる中和反応槽の斜視図である。FIG. 3 is a perspective view of a neutralization reaction tank suitably used in the facility of FIG. 2. 本発明の参考例で行った酸化剤の添加とORPとの関係をプロットしたグラフである。It is the graph which plotted the relationship between the addition of the oxidizing agent and the ORP performed in the reference example of the present invention.

以下、本発明の硫酸ニッケル水溶液の製造方法の実施形態について詳細に説明する。本発明の実施形態に係る硫酸ニッケル水溶液の製造方法の原料となる鉄を含む粗硫酸ニッケル水溶液は、例えば、銅製錬所等の種々の重金属を取り扱う工場において回収される不純物を多く含む粗硫酸ニッケルの水溶液が主に用いられる。   Hereinafter, an embodiment of the method for producing an aqueous solution of nickel sulfate of the present invention will be described in detail. Crude nickel sulfate aqueous solution containing iron, which is a raw material of the method for producing a nickel sulfate aqueous solution according to the embodiment of the present invention, is, for example, crude nickel sulfate containing a large amount of impurities recovered in various heavy metal factories such as copper smelters. Aqueous solution is mainly used.

本発明の実施形態に係る硫酸ニッケル水溶液の製造方法は、図1に示すように、該粗硫酸ニッケル水溶液に硫化剤を添加することによって該粗硫酸ニッケル水溶液に含まれ得る亜鉛、カドミウム、及び銅のうちの少なくとも1つから硫化物を生成させた後、固液分離により該硫化物を除去する硫化工程S1と、該硫化工程S1で処理された硫化処理後粗硫酸ニッケル水溶液を空気及び過酸化水素で酸化処理すると共に消石灰等のアルカリ剤で中和処理することで、該硫化処理後粗硫酸ニッケル水溶液中の鉄イオンを水酸化鉄の中和澱物として除去する脱鉄工程S2とからなる。   As shown in FIG. 1, the method for producing an aqueous solution of nickel sulfate according to the embodiment of the present invention comprises zinc, cadmium, and copper which can be contained in the aqueous solution of crude nickel sulfate by adding a sulfurizing agent to the aqueous solution of nickel sulfate. A sulfide is generated from at least one of the above, and then the sulfide is removed by solid-liquid separation. A deironing step S2 of oxidizing with hydrogen and neutralizing with an alkaline agent such as slaked lime to remove iron ions in the crude nickel sulfate aqueous solution as neutralized precipitates of iron hydroxide after the sulfidation. .

この脱鉄工程S2は、粗硫酸ニッケル水溶液に空気を吹き込むと共に過酸化水素を添加して酸化処理する酸化工程と、該粗硫酸ニッケル水溶液に中和剤を添加することでpH3.5〜6.5の条件で鉄を含む中和澱物を生成する中和工程と、これら酸化工程及び中和工程で得た酸化中和後スラリーから該中和澱物を除去する固液分離工程とに分けることができる。これら工程のうち酸化工程と中和工程とは同時に行ってもよいし、酸化工程の後に中和工程を行ってもよいし、中和工程の後に酸化工程を行ってもよい。以下の説明では酸化工程と中和工程とを同時に行う場合を例に挙げて具体的に説明する。   The deironing step S2 includes an oxidation step in which air is blown into the crude nickel sulfate aqueous solution and an oxidation treatment is performed by adding hydrogen peroxide, and a neutralizing agent is added to the crude nickel sulfate aqueous solution to obtain a pH of 3.5 to 6.5. The process is divided into a neutralization step of producing a neutralized precipitate containing iron under the conditions of 5, and a solid-liquid separation step of removing the neutralized precipitate from the oxidized and neutralized slurry obtained in the neutralization step. be able to. Of these steps, the oxidation step and the neutralization step may be performed simultaneously, the neutralization step may be performed after the oxidation step, or the oxidation step may be performed after the neutralization step. In the following description, the case where the oxidation step and the neutralization step are performed simultaneously will be specifically described by way of example.

上記硫化工程S1は、粗硫酸ニッケル水溶液に含まれる不純物としての亜鉛、カドミウム、銅の含有量が製品の品質に悪影響を及ぼさない程度に低いのであれば、経由させなくてもよく、この場合は粗硫酸ニッケル水溶液をそのまま次工程の脱鉄工程S2で処理することになる。粗硫酸ニッケル水溶液を硫化工程S1で処理する場合は、微加圧状態が維持された反応槽を用いてバッチ式反応により硫化処理するのが好ましい。   The sulfurization step S1 may not be performed if the contents of zinc, cadmium, and copper as impurities contained in the crude nickel sulfate aqueous solution are low enough not to adversely affect the quality of the product. The crude nickel sulfate aqueous solution is directly processed in the next step of iron removal step S2. When treating the crude nickel sulfate aqueous solution in the sulfidation step S1, it is preferable to perform the sulfurization treatment by a batch reaction using a reaction tank maintained in a slightly pressurized state.

具体的には、反応槽に粗硫酸ニッケル水溶液を装入した後、該反応槽内の圧力がゲージ圧で0.015〜0.020MPa程度に維持されるように圧力制御しながら硫化水素ガスを吹き込む。その際、硫化水素ガスは、粗硫酸ニッケル水溶液1m当たり0.3Nm/hの流速で吹き込まれるようにする。上記の硫化水素ガスの吹き込みを約3〜6時間程度継続することで、1バッチ分の反応が終了する。この硫化工程S1では反応槽内の反応液のpHが1〜2程度の低pH領域に維持されるので、粗硫酸ニッケル水溶液に含まれる低pH領域で安定的に硫化物を生成する銅、亜鉛、カドミウムを硫化物沈澱として除去することができる。 Specifically, after charging the crude nickel sulfate aqueous solution into the reaction tank, hydrogen sulfide gas is supplied while controlling the pressure so that the pressure in the reaction tank is maintained at about 0.015 to 0.020 MPa in gauge pressure. Inhale. At that time, the hydrogen sulfide gas is blown at a flow rate of 0.3 Nm 3 / h per 1 m 3 of the crude nickel sulfate aqueous solution. By continuing the blowing of the hydrogen sulfide gas for about 3 to 6 hours, the reaction for one batch is completed. In the sulfidation step S1, the pH of the reaction solution in the reaction tank is maintained in a low pH range of about 1 to 2, so that copper and zinc which stably generate sulfides in the low pH range contained in the crude nickel sulfate aqueous solution Cadmium can be removed as a sulfide precipitate.

この硫化物の固液分離による除去方法については特に限定はないが、一般的なフィルタープレス等のろ過装置を用いるのが好ましい。この硫化工程S1で処理された硫化処理後粗硫酸ニッケル水溶液は、一例としてNiが120g/Lの場合はFeを0.6〜1.2g/L程度含有しているが、上記硫化処理によりCu含有量を0.3mg/L程度以下、Zn含有量を0.1g/L程度以下、Cd含有量を0.15mg/L程度以下に低減することができる。   The method for removing the sulfide by solid-liquid separation is not particularly limited, but it is preferable to use a general filtration device such as a filter press. The sulfuric acid-treated crude nickel sulfate aqueous solution treated in the sulfurizing step S1 contains about 0.6 to 1.2 g / L of Fe when Ni is 120 g / L, for example. The content can be reduced to about 0.3 mg / L or less, the Zn content to about 0.1 g / L or less, and the Cd content to about 0.15 mg / L or less.

次に、脱鉄工程S2において、上記の硫化工程S1で処理した硫化処理後粗硫酸ニッケル水溶液を中和反応槽に導入し、空気を吹き込むと共に過酸化水素水を添加する。これにより粗硫酸ニッケル水溶液のORPを銀塩化銀電極基準において好適には400〜600mV程度、より好適には500〜570mV程度まで上昇させることができ、該粗硫酸ニッケル水溶液中の鉄イオンが2価のイオンから3価のイオンに酸化される。更に、中和剤の添加により粗硫酸ニッケル水溶液のpHを3.5〜6.5に調整することで、粗硫酸ニッケル水溶液に含まれる3価の鉄イオンが水酸化鉄からなる中和澱物として沈澱する。この沈澱した水酸化鉄を固液分離により除去することで、鉄濃度が低下した硫酸ニッケル水溶液からなる脱鉄終液を得ることができる。   Next, in the deironing process S2, the sulfuric acid-treated crude nickel sulfate aqueous solution treated in the above-mentioned sulfurizing process S1 is introduced into a neutralization reaction tank, and air is blown and hydrogen peroxide solution is added. As a result, the ORP of the aqueous solution of crude nickel sulfate can be raised to preferably about 400 to 600 mV, more preferably about 500 to 570 mV, based on the silver-silver chloride electrode. Is oxidized into trivalent ions. Further, by adjusting the pH of the crude nickel sulfate aqueous solution to 3.5 to 6.5 by adding a neutralizing agent, the trivalent iron ions contained in the crude nickel sulfate aqueous solution are converted into a neutralized precipitate comprising iron hydroxide. As a precipitate. By removing the precipitated iron hydroxide by solid-liquid separation, it is possible to obtain a final deironing solution comprising an aqueous solution of nickel sulfate having a reduced iron concentration.

上記の中和反応時のpHが3.5未満では、反応終液の鉄濃度を十分に低減することができなくなり、逆にpHが6.5を超えると、中和反応時にニッケル水酸化物が生成するのでニッケルがロスする。また、上記中和剤には消石灰を用いるのが好ましい。この場合、あらかじめ消石灰を水に懸濁させておくことで調製した、スラリー濃度が約200g/Lの乳液状のスラリーの形態で上記中和反応槽に添加するのが好ましい。   If the pH during the neutralization reaction is less than 3.5, the iron concentration in the final reaction solution cannot be sufficiently reduced. Conversely, if the pH exceeds 6.5, the nickel hydroxide during the neutralization reaction cannot be reduced. Is generated, and nickel is lost. Further, it is preferable to use slaked lime as the neutralizing agent. In this case, it is preferable to add the slaked lime to the neutralization reaction tank in the form of an emulsion slurry having a slurry concentration of about 200 g / L prepared by suspending the slaked lime in water in advance.

上記中和反応槽には、図2に示すような好ましくは3基からなる複数の反応槽が直列に接続された反応装置を用いるのが好ましい。この場合は硫化処理後粗硫酸ニッケル水溶液を複数の中和反応槽のうち最も上流側の第1槽11に連続的に供給して中和処理を行った後、中和処理された液をオーバーフローにより抜き出して隣接する第2槽12供給し、同様に中和処理を行う。以降、同様にして隣接する後流側の中和反応槽にオーバーフローにより順次移送して段階的に中和処理を行うことで、効率よく中和処理を行うことができる。   As the neutralization reaction tank, it is preferable to use a reaction apparatus in which a plurality of preferably three reaction tanks are connected in series as shown in FIG. In this case, after the sulfuration treatment, the crude nickel sulfate aqueous solution is continuously supplied to the first upstream tank 11 among the plurality of neutralization reaction tanks to perform the neutralization treatment, and then the neutralized liquid overflows. To supply the adjoining second tank 12, and similarly perform a neutralization treatment. Thereafter, similarly, the neutralization treatment can be efficiently performed by sequentially transferring by overflow to the adjacent neutralization reaction tank on the downstream side and performing the neutralization treatment stepwise.

各中和反応槽は、反応液のショートパスを防いでほぼ均一な滞留時間を確保するため、図3に示すように、中和反応槽の内壁面に沿って該中和反応槽の底部近傍からオーバーフローの液面より上方に至るまで上下方向に延在する断面コの字状で且つ上下両端部が開口した形状のいわゆる整水筒20を経由して反応液を排出するのが好ましい。また、空気は各中和反応槽内の反応液に直接吹き込むのが好ましい。特に、微小径の空気バブルが反応液中に均一に分散されるのが好ましく、その吹込方法や吹込装置については特に限定はないが、例えば環状のパイプに多数の貫通孔が穿孔された構造の吹込管や多孔質のセラミックノズルを用いるのが好ましい。   As shown in FIG. 3, each neutralization reaction tank is disposed along the inner wall surface of the neutralization reaction tank in the vicinity of the bottom of the neutralization reaction tank in order to prevent a short path of the reaction solution and to secure a substantially uniform residence time. It is preferable that the reaction solution is discharged through a so-called water adjusting cylinder 20 having a U-shaped cross section extending vertically in a direction extending from the liquid level above the liquid level of the overflow and having upper and lower ends opened. Further, it is preferable that air is directly blown into the reaction solution in each neutralization reaction tank. In particular, it is preferable that air bubbles having a small diameter are uniformly dispersed in the reaction solution, and the blowing method and the blowing device are not particularly limited. For example, a structure in which a large number of through holes are formed in an annular pipe. It is preferable to use a blowing pipe or a porous ceramic nozzle.

このようにして最も下流側の槽である第3槽13で処理された後にオーバーフローにより排出される水酸化鉄の中和澱物を含んだスラリー(酸化中和後スラリーとも称する)は、必要に応じて中継槽14に一旦受け入れられた後、該中継槽14の底部から抜き出されてスラリーポンプ15で所定の圧力まで昇圧された後、フィルタープレス等の固液分離装置16に供給される。該固液分離装置16で液相側に分離された脱鉄終液は、溶媒抽出工程S3で更に処理されることで不純物が除去され、高純度硫酸ニッケル水溶液となる。一方、該固液分離装置16で固相側に分離された中和澱物は、ニッケル回収工程S4において硫酸による浸出処理が施され、中和澱物に含まれるニッケル水酸化物の共沈澱物がニッケル回収液として回収され、それ以外はニッケル回収後中和澱物として払い出される。   The slurry containing the neutralized precipitate of iron hydroxide discharged by the overflow after being treated in the third tank 13 which is the most downstream tank in this way (also referred to as a slurry after oxidation neutralization) is necessary. After being once received in the relay tank 14, the liquid is extracted from the bottom of the relay tank 14, and the pressure is increased to a predetermined pressure by a slurry pump 15, and then supplied to a solid-liquid separation device 16 such as a filter press. The deiron removal liquid separated into the liquid phase side by the solid-liquid separation device 16 is further processed in a solvent extraction step S3 to remove impurities, and becomes a high-purity nickel sulfate aqueous solution. On the other hand, the neutralized precipitate separated to the solid phase by the solid-liquid separator 16 is subjected to a leaching treatment with sulfuric acid in a nickel recovery step S4, and a coprecipitate of nickel hydroxide contained in the neutralized precipitate is obtained. Is recovered as a nickel recovery liquid, and the others are discharged as a neutralized precipitate after recovering the nickel.

上記粗硫酸ニッケル水溶液に添加する過酸化水素には、市販の35質量%過酸化水素水を用いることができる。35質量%過酸化水素水を使用する場合は、粗硫酸ニッケル水溶液100体積部に対して該35質量%過酸化水素水を0.01〜0.2体積部添加するのが好ましい。例えば、上記中和反応槽に粗硫酸ニッケル水溶液を30L/分の流量で連続的に供給する場合、35質量%過酸化水素水を3〜60mL/分の流量で添加することになる。この過酸化水素水の添加量が0.01体積部未満では反応液のORPを十分上昇させることができず、過酸化水素水を添加する効果がほとんど生じなくなる。逆に0.2体積部を超えても上記した以上の効果が得られることはなく、かえって過酸化水素水の使用量が過剰になるのでコストが高くなる。   As the hydrogen peroxide added to the crude nickel sulfate aqueous solution, a commercially available 35% by mass aqueous hydrogen peroxide solution can be used. When using 35% by mass of aqueous hydrogen peroxide, it is preferable to add 0.01 to 0.2 part by volume of 35% by mass of hydrogen peroxide to 100 parts by volume of the crude nickel sulfate aqueous solution. For example, when the crude nickel sulfate aqueous solution is continuously supplied to the neutralization reaction tank at a flow rate of 30 L / min, a 35 mass% aqueous hydrogen peroxide solution is added at a flow rate of 3 to 60 mL / min. If the amount of the hydrogen peroxide solution is less than 0.01 part by volume, the ORP of the reaction solution cannot be sufficiently increased, and the effect of adding the hydrogen peroxide solution hardly occurs. Conversely, even if the amount exceeds 0.2 parts by volume, the above-mentioned effects are not obtained, and the amount of hydrogen peroxide used is excessively increased, so that the cost is increased.

なお、上記粗硫酸ニッケル水溶液に添加する過酸化水素水の濃度が35質量%以外の場合は、過酸化水素自体の添加量が変わらないように調整すればよい。例えば、過酸化水素水の濃度が上記の1/2倍の17.5質量%の場合は、その逆数である2倍に相当する0.02〜0.4体積部の17.5質量%過酸化水素水を添加すればよい。   When the concentration of the hydrogen peroxide solution to be added to the crude nickel sulfate aqueous solution is other than 35% by mass, the adjustment may be made so that the addition amount of the hydrogen peroxide itself does not change. For example, when the concentration of the hydrogen peroxide solution is 17.5% by mass, which is 倍 of the above, the reciprocal of twice the volume of 0.02 to 0.4% by volume of 17.5% by mass is used. Hydrogen oxide water may be added.

[参考例]
反応始液として鉄を含む粗硫酸ニッケル水溶液200mLをビーカーに入れ、液温25℃を維持しながらマグネチックスターラを180rpmにセットして撹拌した。この状態で該ビーカー内の反応始液中に浸漬させた多孔質材を介して簡易ブロワーから空気を連続的に吹き込むと共に定期的にポータブルORP計を用いてORPを測定した。空気の吹き込み開始からの時間とこのようにして測定したORPとの関係をプロットしたグラフを図4(a)に示す。この図4(a)の結果から分かるように、空気の吹き込みだけではORPは250mV(Ag/AgCl電極基準)程度までしか上昇しなかった。
[Reference example]
200 mL of a crude nickel sulfate aqueous solution containing iron was placed in a beaker as a reaction starting solution, and a magnetic stirrer was set at 180 rpm and stirred while maintaining the liquid temperature at 25 ° C. In this state, air was continuously blown from a simple blower through a porous material immersed in the reaction starting solution in the beaker, and the ORP was measured periodically using a portable ORP meter. FIG. 4A is a graph plotting the relationship between the time from the start of air blowing and the ORP measured in this manner. As can be seen from the results of FIG. 4A, the ORP increased only to about 250 mV (based on the Ag / AgCl electrode) only by blowing air.

次に、5個のビーカーを用意してそれらの各々に上記と同様にして反応始液を調製し、上記と同様にして空気を吹き込みながら反応始液100体積部に対して、35質量%の過酸化水素水をそれぞれ0.01体積部、0.03体積部、0.05体積部、0.1体積部、及び0.2体積部の割合で添加し、2時間後にORPを測定した。この場合の過酸化水素水の添加割合とORPとの関係をプロットしたグラフを図4(b)に示す。この図4(b)の結果から過酸化水素水の添加によりORPを400〜600mV(Ag/AgCl電極基準)まで上昇できることが分かる。   Next, five beakers were prepared, and a reaction starting solution was prepared for each of them in the same manner as described above, and 35% by mass of 100 mass parts of the reaction starting solution was blown while air was blown in the same manner as above. Hydrogen peroxide solution was added at a ratio of 0.01 part by volume, 0.03 part by volume, 0.05 part by volume, 0.1 part by volume, and 0.2 part by volume, respectively, and ORP was measured after 2 hours. FIG. 4B is a graph plotting the relationship between the addition ratio of the hydrogen peroxide solution and the ORP in this case. From the results of FIG. 4B, it is understood that the ORP can be increased to 400 to 600 mV (based on the Ag / AgCl electrode) by adding the hydrogen peroxide solution.

[実施例1]
図1のプロセスフローに従って先ず硫化工程S1で処理した鉄を含む硫化処理後粗硫酸ニッケル水溶液を、図2に示すような直列に接続された3基の中和反応槽に導入して水酸化鉄を生成した後、該水酸化鉄を含むスラリーをフィルタープレスに供給して固液分離した。具体的には、各中和反応槽にはプロペラ2段翼の撹拌機を具備する円筒縦型の反応槽を用いた。これら反応槽のオーバーフロー口までの有効容積は第1槽11では5.0m、第2槽12では5.0m、第3槽13では4.5mであった。第3槽13からオーバーフローしたスラリーは、有効容積4.5mの中継槽14及びスラリーポンプ15を経由してろ過面積40m、ろ滓容積500Lの全自動フィルタープレス(則武鉄工所製1100型)16に供給して固液分離した。
[Example 1]
First, a sulfuric acid-treated crude nickel sulfate aqueous solution containing iron treated in the sulfuration step S1 according to the process flow of FIG. 1 is introduced into three series-connected neutralization reaction tanks as shown in FIG. Was produced, the slurry containing the iron hydroxide was supplied to a filter press to perform solid-liquid separation. Specifically, a cylindrical vertical reaction vessel equipped with a two-stage propeller stirrer was used for each neutralization reaction vessel. Effective volume to overflow port of the reaction vessel is first tank 11 in 5.0 m 3, the second tank 12 in 5.0 m 3, it was 4.5 m 3 in the third tank 13. The slurry overflowing from the third tank 13 is passed through a relay tank 14 having an effective volume of 4.5 m 3 and a slurry pump 15 to provide a fully automatic filter press having a filtration area of 40 m 2 and a filter cake volume of 500 L (Model No. 1100 manufactured by Noritake Iron Works). The resulting mixture was supplied to No. 16 for solid-liquid separation.

上記の第1槽11に連続的に供給する硫化処理後粗硫酸ニッケル水溶液の供給流量は、12〜36L/分の範囲内で変化させた。空気吹込量は、第1槽11、第2槽12、及び第3槽13の各々において0.5〜1.0Nm/分とした。また、中和反応槽内の反応液のpHが第1槽11では3.8、第2槽12では5.8、第3槽13では5.9となるように、中和剤(アルカリ剤)として200g/Lに調製した消石灰スラリーを各々供給することで制御した。また、各中和反応槽内の反応液の反応温度が52℃となるように温度制御した。更に、中和反応槽の第1槽11に、粗硫酸ニッケル水溶液の供給流量100体積部に対して35質量%過酸化水素水を0.03体積部添加した。 The supply flow rate of the sulfuric acid-treated crude nickel sulfate aqueous solution continuously supplied to the first tank 11 was changed within a range of 12 to 36 L / min. Air blowing amount, the first tank 11, and a 0.5~1.0Nm 3 / min in each of the second tank 12, and a third tank 13. The neutralizing agent (alkali agent) is adjusted so that the pH of the reaction solution in the neutralization reaction tank is 3.8 in the first tank 11, 5.8 in the second tank 12, and 5.9 in the third tank 13. ) Was controlled by supplying each slaked lime slurry adjusted to 200 g / L. Further, the temperature was controlled so that the reaction temperature of the reaction solution in each neutralization reaction tank was 52 ° C. Further, 0.03 parts by volume of 35 mass% aqueous hydrogen peroxide was added to the first tank 11 of the neutralization reaction tank with respect to 100 parts by volume of the supply amount of the crude nickel sulfate aqueous solution.

このようにして脱鉄処理された硫酸ニッケル水溶液(脱鉄終液)を得た。この脱鉄処理された硫酸ニッケル水溶液のFe濃度を蛍光X線分析装置で測定したところ、反応時間9時間に相当する処理流量27L/分のとき、脱鉄処理後の硫酸ニッケル水溶液のFe濃度は9.5mg/Lであった。また、脱鉄処理後の硫酸ニッケル水溶液のFe濃度が10mg/Lとなる反応時間は8.5時間だった。なお、反応始液として用いた鉄を含む硫化処理後粗硫酸ニッケル水溶液のORPは−50〜100mV(Ag/AgCl電極基準)であった。   Thus, a nickel sulfate aqueous solution (final iron removal solution) subjected to the iron removal treatment was obtained. When the Fe concentration of the aqueous solution of nickel sulfate subjected to the iron removal treatment was measured with a fluorescent X-ray analyzer, the Fe concentration of the aqueous solution of nickel sulfate after the iron removal treatment was found to be 27 L / min at a treatment flow rate of 9 hours. It was 9.5 mg / L. Further, the reaction time when the Fe concentration of the aqueous nickel sulfate solution after the deironing treatment became 10 mg / L was 8.5 hours. The ORP of the sulfuric acid-treated crude nickel sulfate aqueous solution containing iron used as a reaction starting solution was −50 to 100 mV (based on an Ag / AgCl electrode).

[実施例2]
35質量%過酸化水素水を、粗硫酸ニッケル水溶液100体積部に対して0.03体積部に代えて0.04体積部とした以外は実施例1と同様の条件で脱鉄処理を行った。その結果、反応時間9時間に相当する処理流量27L/分において、脱鉄後硫酸ニッケル水溶液のFe濃度が8.7mg/Lとなった。また、脱鉄後硫酸ニッケル水溶液のFe濃度が10mg/Lとなる反応時間は8.0時間だった。
[Example 2]
The iron removal treatment was performed under the same conditions as in Example 1 except that 35% by mass of hydrogen peroxide solution was changed to 0.04 parts by volume with respect to 100 parts by volume of the aqueous solution of crude nickel sulfate. . As a result, at a processing flow rate of 27 L / min corresponding to a reaction time of 9 hours, the Fe concentration of the aqueous nickel sulfate solution after deironation was 8.7 mg / L. Further, the reaction time when the Fe concentration of the aqueous nickel sulfate solution became 10 mg / L after the removal of iron was 8.0 hours.

[実施例3]
35質量%過酸化水素水を、粗硫酸ニッケル水溶液100体積部に対して0.03体積部に代えて0.01体積部とした以外は実施例1と同様の条件で脱鉄処理を行った。その結果、反応時間9時間に相当する処理流量27L/分において、脱鉄後硫酸ニッケル水溶液のFe濃度が9.9mg/Lとなった。また、脱鉄後硫酸ニッケル水溶液のFe濃度が10mg/Lとなる反応時間は8.9時間だった。
[Example 3]
The iron removal treatment was performed under the same conditions as in Example 1 except that 35% by mass of aqueous hydrogen peroxide was changed to 0.01 part by volume instead of 0.03 part by volume with respect to 100 parts by volume of the crude nickel sulfate aqueous solution. . As a result, at a treatment flow rate of 27 L / min corresponding to a reaction time of 9 hours, the Fe concentration of the aqueous nickel sulfate solution after deironation became 9.9 mg / L. In addition, the reaction time for the Fe concentration of the aqueous nickel sulfate solution to become 10 mg / L after the removal of iron was 8.9 hours.

[実施例4]
35質量%過酸化水素水を、粗硫酸ニッケル水溶液100体積部に対して0.03体積部に代えて0.2体積部とした以外は実施例1と同様の条件で脱鉄処理を行った。その結果、反応時間9時間に相当する処理流量27L/分において、脱鉄後硫酸ニッケル水溶液のFe濃度が6.8mg/Lとなった。また、脱鉄後硫酸ニッケル水溶液のFe濃度が10mg/Lとなる反応時間は7.5時間だった。
[Example 4]
The iron removal treatment was performed under the same conditions as in Example 1 except that 35% by mass of hydrogen peroxide solution was replaced with 0.03 parts by volume with respect to 100 parts by volume of the crude nickel sulfate aqueous solution and 0.2 parts by volume. . As a result, at a treatment flow rate of 27 L / min corresponding to a reaction time of 9 hours, the Fe concentration of the aqueous nickel sulfate solution after deironation became 6.8 mg / L. Further, the reaction time when the Fe concentration of the aqueous nickel sulfate solution became 10 mg / L after the removal of iron was 7.5 hours.

[比較例1]
35質量%過酸化水素水を添加しなかった以外は実施例1と同様の条件で脱鉄処理を行った。その結果、反応時間9時間に相当する処理流量27L/分において、脱鉄後硫酸ニッケル水溶液のFe濃度が10.6mg/Lとなった。また、脱鉄後硫酸ニッケル水溶液のFe濃度が10mg/Lとなる反応時間は15.0時間だった。
[Comparative Example 1]
The iron removal treatment was performed under the same conditions as in Example 1 except that 35% by mass of hydrogen peroxide was not added. As a result, at a treatment flow rate of 27 L / min corresponding to a reaction time of 9 hours, the Fe concentration of the aqueous nickel sulfate solution after deironation became 10.6 mg / L. Further, the reaction time when the Fe concentration of the aqueous nickel sulfate solution became 10 mg / L after the removal of iron was 15.0 hours.

S1 硫化工程
S2 脱鉄工程
S3 溶媒抽出工程
S4 ニッケル回収工程
11 第1槽
12 第2槽
13 第3槽
14 中継槽
15 スラリーポンプ
16 固液分離装置
20 整水筒
S1 Sulfidation step S2 Deironing step S3 Solvent extraction step S4 Nickel recovery step 11 First tank 12 Second tank 13 Third tank 14 Relay tank 15 Slurry pump 16 Solid-liquid separator 20 Water tank

Claims (6)

不純物として鉄を含有する粗硫酸ニッケル水溶液に空気を吹き込むと共に過酸化水素を添加して酸化処理する酸化工程と、前記粗硫酸ニッケル水溶液に中和剤を添加することでpH3.5〜6.5の条件で鉄を含む中和澱物を生成させる中和工程と、前記酸化工程及び前記中和工程で得た酸化中和後スラリーから該中和澱物を除去する固液分離工程とからなることを特徴とする硫酸ニッケル水溶液の製造方法。   An oxidation step in which air is blown into a crude nickel sulfate aqueous solution containing iron as an impurity and an oxidation treatment is performed by adding hydrogen peroxide thereto, and a pH 3.5 to 6.5 is obtained by adding a neutralizing agent to the crude nickel sulfate aqueous solution. And a solid-liquid separation step of removing the neutralized precipitate from the oxidized and neutralized slurry obtained in the neutralization step. A method for producing an aqueous solution of nickel sulfate, comprising: 前記中和剤が消石灰スラリーであることを特徴とする、請求項1に記載の硫酸ニッケル水溶液の製造方法。   The method for producing a nickel sulfate aqueous solution according to claim 1, wherein the neutralizing agent is slaked lime slurry. 前記酸化工程において前記粗硫酸ニッケル水溶液100体積部に対して、35質量%水溶液に調製された前記過酸化水素を0.01〜0.2体積部添加することを特徴とする、請求項1又は2に記載の硫酸ニッケル水溶液の製造方法。   2. The method according to claim 1, wherein in the oxidation step, 0.01 to 0.2 parts by volume of the hydrogen peroxide prepared as a 35% by mass aqueous solution is added to 100 parts by volume of the crude nickel sulfate aqueous solution. 3. The method for producing a nickel sulfate aqueous solution according to 2. 粗硫酸ニッケル水溶液に硫化剤を添加することによって、該粗硫酸ニッケル水溶液に含まれ得る亜鉛、カドミウム、及び銅のうちの少なくとも1つから硫化物を生成させた後、固液分離により該硫化物を除去する硫化工程を前記酸化工程及び前記中和工程の前に行うことを特徴とする、請求項1〜3のいずれか1項に記載の硫酸ニッケル水溶液の製造方法。   After adding a sulfurizing agent to the crude nickel sulfate aqueous solution to generate sulfide from at least one of zinc, cadmium, and copper that can be contained in the crude nickel sulfate aqueous solution, the sulfide is formed by solid-liquid separation. The method for producing an aqueous solution of nickel sulfate according to any one of claims 1 to 3, wherein a sulfurizing step of removing the sulfuric acid is performed before the oxidation step and the neutralization step. 前記酸化工程と前記中和工程とを同時に行うことを特徴とする、請求項1〜4のいずれか1項に記載の硫酸ニッケル水溶液の製造方法。   The method for producing a nickel sulfate aqueous solution according to any one of claims 1 to 4, wherein the oxidation step and the neutralization step are performed simultaneously. 直列に接続された複数の反応槽群のうちの最上流の反応槽に前記粗硫酸ニッケル水溶液を供給してオーバーフローにより順次後流側の反応槽に移送しながら、各反応槽において段階的に前記酸化工程及び前記中和工程を行うことを特徴とする、請求項5に記載の硫酸ニッケル水溶液の製造方法。   The crude nickel sulfate aqueous solution is supplied to the most upstream reaction tank among the plurality of reaction tank groups connected in series, and is sequentially transferred to the downstream reaction tank by overflow, and the above-described steps are sequentially performed in each reaction tank. The method for producing an aqueous solution of nickel sulfate according to claim 5, wherein the oxidation step and the neutralization step are performed.
JP2018161223A 2018-08-30 2018-08-30 Method for producing aqueous nickel sulfate solution Pending JP2020033229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161223A JP2020033229A (en) 2018-08-30 2018-08-30 Method for producing aqueous nickel sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161223A JP2020033229A (en) 2018-08-30 2018-08-30 Method for producing aqueous nickel sulfate solution

Publications (1)

Publication Number Publication Date
JP2020033229A true JP2020033229A (en) 2020-03-05

Family

ID=69667260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161223A Pending JP2020033229A (en) 2018-08-30 2018-08-30 Method for producing aqueous nickel sulfate solution

Country Status (1)

Country Link
JP (1) JP2020033229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158381A (en) * 2018-11-21 2020-10-01 住友金属鉱山株式会社 Method for production of high-purity nickel sulfate aqueous solution
CN111826525A (en) * 2020-07-24 2020-10-27 广西银亿新材料有限公司 Method for producing metal cobalt by sulfuric acid system electrodeposition
KR102393814B1 (en) * 2021-11-04 2022-05-03 주식회사 정수뉴테크 A method for preparing zinc oxide or nickel oxide powder with controlled particle size by a continuous wet process
CN115069311A (en) * 2022-06-22 2022-09-20 格林美(江苏)钴业股份有限公司 Iron removal device, iron removal system and iron removal method for nickel sulfate solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158381A (en) * 2018-11-21 2020-10-01 住友金属鉱山株式会社 Method for production of high-purity nickel sulfate aqueous solution
JP7354710B2 (en) 2018-11-21 2023-10-03 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate aqueous solution
CN111826525A (en) * 2020-07-24 2020-10-27 广西银亿新材料有限公司 Method for producing metal cobalt by sulfuric acid system electrodeposition
CN111826525B (en) * 2020-07-24 2021-11-26 广西银亿新材料有限公司 Method for producing metal cobalt by sulfuric acid system electrodeposition
KR102393814B1 (en) * 2021-11-04 2022-05-03 주식회사 정수뉴테크 A method for preparing zinc oxide or nickel oxide powder with controlled particle size by a continuous wet process
CN115069311A (en) * 2022-06-22 2022-09-20 格林美(江苏)钴业股份有限公司 Iron removal device, iron removal system and iron removal method for nickel sulfate solution

Similar Documents

Publication Publication Date Title
JP2020033229A (en) Method for producing aqueous nickel sulfate solution
EP2546203B1 (en) Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese
JP6241661B2 (en) Arsenic separation and immobilization method
JP6299620B2 (en) Method for producing nickel sulfate
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP2011214092A (en) Method for treating reducing slag containing selenium and tellurium
JP2019173107A (en) Method of recovering tellurium
CN105753038B (en) A kind of production technology of feed grade monohydrate zinc sulphate
JP2009173983A (en) Method for producing sulfide containing nickel and cobalt
JP6953988B2 (en) How to remove sulfide
JP6098569B2 (en) Purification method of aqueous cobalt chloride solution
JP5920584B2 (en) Method of oxidation neutralization treatment of nickel chloride aqueous solution
AU2017341012A1 (en) Hydrometallurgical method for refining nickel oxide ore
JP7354710B2 (en) Method for producing high-purity nickel sulfate aqueous solution
JP5751393B1 (en) Heavy metal removal method and heavy metal removal apparatus
JPS5810995B2 (en) Method for selectively removing antimony and bismuth from electrolyte
JP2012237030A (en) Method for separating manganese from nickel chloride solution
JP6540548B2 (en) Method for removing copper ions from aqueous solution of nickel chloride, copper ion removal treatment apparatus
JP2009215611A (en) Method for purifying nickel chloride aqueous solution
CN105695764A (en) Method for separating lead from lead-containing alkaline leaching liquor by oxidizing and precipitating
JP2020029589A (en) Odor-reducing method in wet refining method of nickel oxide ore
JPH10140258A (en) Removing method of impurity from chlorine leaching liquid of nickel
JP7087601B2 (en) Sulfide removal method and nickel oxide ore hydrometallurgy method
RU2444574C1 (en) Method for obtaining cobalt and its compounds
JP2005298309A (en) Method for purifying nickel chloride solution