JPH10140258A - Removing method of impurity from chlorine leaching liquid of nickel - Google Patents

Removing method of impurity from chlorine leaching liquid of nickel

Info

Publication number
JPH10140258A
JPH10140258A JP29490696A JP29490696A JPH10140258A JP H10140258 A JPH10140258 A JP H10140258A JP 29490696 A JP29490696 A JP 29490696A JP 29490696 A JP29490696 A JP 29490696A JP H10140258 A JPH10140258 A JP H10140258A
Authority
JP
Japan
Prior art keywords
nickel
leaching
chlorine
residue
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29490696A
Other languages
Japanese (ja)
Inventor
Tomoshi Matsumoto
智志 松本
Masato Sugimoto
誠人 杉本
Nobumasa Iemori
伸正 家守
Kimitatsu Yano
仁美樹 矢野
Susumu Makino
進 牧野
Original Assignee
Sumitomo Metal Mining Co Ltd
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, 住友金属鉱山株式会社 filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29490696A priority Critical patent/JPH10140258A/en
Publication of JPH10140258A publication Critical patent/JPH10140258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To solidify impurities in a residue by introducing an oxygen contg. gas such as air into a slurry after leaching with chlorine so as to control the pH of the leaching liquid. SOLUTION: In a leaching process with chlorine, chlorine having strong oxidation power is introduced, and during the process, sulfur is oxidized to produce a little amt. of sulfuric acid which decreases the pH of the leaching liquid to almost 0 and stabilizes a minute amt. of impurities such as Fe as ions. Therefore, it is necessary to increase the pH of the leaching liquid to fix the impurity ions as insoluble hydroxides or oxides in the residue and to remove the fixed matters. In order to carry out this process, an oxygen-contg. gas such as air which is rather inexpensive is introduced into the slurry to neutralize protons in the leaching liquid. Namely, protons are decreased in number by the reaction of O2 +4H<+> +4e<-> =2H2 O. However, if the pH increases too much, Ni is also distributed as a hydroxide in the residue to decrease the recovery rate of Ni. Therefore, the pH is controlled to 0.5 to 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、ニッケル、コバル
ト、銅、銅より卑な金属及び硫黄を含むマット、硫化物
精鉱、及び電解スライム等から、塩素浸出電解採取法に
よりニッケルを金属として回収するニッケルの湿式精錬
法に関し、特に塩素浸出液からニッケル以外の不純物を
除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering nickel from a matte, sulfide concentrate, electrolytic slime, and the like containing nickel and cobalt, copper, a metal lower than copper and electrolytic slime, by chlorine leaching electrowinning. More specifically, the present invention relates to a method for removing impurities other than nickel from a chlorine leaching solution.
【0002】[0002]
【従来の技術】従来、ニッケル、コバルト、銅、銅より
卑な金属及び硫黄を含むマット、硫化物精鉱、及び電解
スライムなどから、ニッケルなどの有価金属を回収する
方法の一つに、塩素浸出電解採取法による湿式精錬方法
がある。
2. Description of the Related Art Conventionally, one of the methods of recovering valuable metals such as nickel from nickel, cobalt, copper, mats containing sulfur and sulfur-containing mats, sulfide concentrates, and electrolytic slimes, which is lower than copper, is known as chlorine. There is a wet refining method based on leaching electrowinning.
【0003】この塩素浸出電解採取法では、例えば特公
平7−91599号公報に記載されるように、ニッケル
を含有した粉状硫化物を、一価銅イオンを含む塩化物水
溶液と撹拌混合してスラリーとし、このスラリーに酸化
力の強い塩素を吹き込むことにより、銅イオンのレドッ
クスカップル(Cu2+/Cu+)を介在させた固液反応
によってニッケルなどの金属を浸出させ、硫黄を含む残
渣と分離する。
In this chlorine leaching electrowinning method, for example, as described in Japanese Patent Publication No. Hei 7-91599, a powdery sulfide containing nickel is stirred and mixed with a chloride aqueous solution containing monovalent copper ions. A slurry having a strong oxidizing power is blown into the slurry, so that a metal such as nickel is leached by a solid-liquid reaction involving a redox couple (Cu 2+ / Cu + ) of copper ions, and a residue containing sulfur is removed. To separate.
【0004】上記浸出工程で得られた浸出液は、順次脱
銅電解工程に送り、銅を電解採取して浸出工程に循環さ
せる。また、浸出液の残渣からは硫黄の回収が行われ
る。浸出工程を循環した浸出液は、更に塩素を吹き込み
ながらpHを調節することにより鉄やコバルトなどの不
純物金属を共沈させる浄液工程を経た後、電解により電
気ニッケルを回収する。
[0004] The leaching solution obtained in the above leaching step is sequentially sent to a copper removal electrolysis step, where copper is electrolytically collected and circulated to the leaching step. Further, sulfur is recovered from the residue of the leachate. The leach liquor circulated through the leaching step is subjected to a purification step in which impurity metals such as iron and cobalt are coprecipitated by adjusting the pH while further blowing chlorine, and then electronickel is recovered by electrolysis.
【0005】このような塩素浸出電界採取法において、
硫黄残渣へのニッケルの分配はニッケルのロスとなるた
め、塩素浸出時に高いニッケル浸出率を達成するために
酸化還元電位を高く維持することが行われている。とこ
ろが、酸化還元電位の上昇に伴って、酸化される必要の
無い硫黄の一部が酸化されて硫酸が生成し、浸出液の酸
性度が高く、即ちPHが低くなるので、ニッケルは勿論
のこと、浸出された鉄(Fe)や砒素(As)などの不
純物成分も水酸化物を形成することなく、全てイオンの
状態で安定化する。従って、ニッケルの浸出率を高める
ために浸出液のPHを低くすると、残渣を濾過した後の
浸出液には目的金属以外の不純物が多く含まれる結果と
なる。
[0005] In such a chlorine leaching electric field sampling method,
Since the distribution of nickel to the sulfur residue results in loss of nickel, the oxidation-reduction potential is kept high to achieve a high nickel leaching rate during chlorine leaching. However, with the increase of the oxidation-reduction potential, part of the sulfur that does not need to be oxidized is oxidized to generate sulfuric acid, and the acidity of the leachate is high, that is, PH is low. Impurities such as leached iron (Fe) and arsenic (As) also stabilize in an ionic state without forming hydroxides. Therefore, if the pH of the leaching solution is lowered in order to increase the leaching rate of nickel, the leaching solution after filtering the residue will contain a large amount of impurities other than the target metal.
【0006】高純度の電気ニッケルを製造するために
は、浸出液中の不純物を出来るだけ少なくする必要があ
るが、上記のごとく浸出工程でのニッケル浸出率をたか
めるためPHを低くすることによって浸出液中の不純物
が多くなり、その結果、後工程である不純物除去工程の
負荷を増加させ、不純物を除去するための資材コストを
増大させるという問題点があった。更に、不純物負荷が
処理能力を越える場合には、電解液中に不純物が漏洩し
て、高純度電気ニッケルの品質にも悪影響を与える原因
となっていた。
[0006] In order to produce high-purity electric nickel, it is necessary to reduce impurities in the leachate as much as possible. However, as described above, the pH is reduced by lowering the PH in order to increase the nickel leachability in the leach step. As a result, there is a problem in that the load of the impurity removal step, which is a subsequent step, is increased, and the material cost for removing the impurities is increased. Further, when the impurity load exceeds the processing capacity, the impurities leak into the electrolytic solution, causing a bad influence on the quality of the high-purity electric nickel.
【0007】[0007]
【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、ニッケルの湿式精錬方法における塩
素浸出の際に、ニッケルの浸出率を低下させることな
く、残渣中に不純物を分配して固定化させることができ
る、ニッケルの塩素浸出液からの不純物除去方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed to distribute impurities into a residue without reducing the nickel leaching rate during chlorine leaching in a nickel wet smelting method. It is an object of the present invention to provide a method for removing impurities from a chlorine leaching solution of nickel, which can be fixed by the method.
【0008】[0008]
【課題を解決するための手段】上記目的を解決するた
め、本発明は、ニッケルを含有した粉状硫化物と1価銅
イオンを含む塩化物水溶液とのスラリーに、塩素を吹き
込むことによりニッケルを浸出させる浸出工程と、得ら
れた浸出液の電解によりニッケルを回収する電解工程と
を含む、塩素浸出電解採取法によるニッケルの湿式精錬
方法において、前記塩素浸出後のスラリーに空気又は酸
素富化空気若しくは工業用酸素を吹き込むことにより浸
出液のPHを0.5〜1の範囲内に調整することを特徴
とするニッケルの塩素浸出液からの不純物除去方法を提
供する。
In order to solve the above-mentioned object, the present invention provides a method for producing nickel by blowing chlorine into a slurry of a powdery sulfide containing nickel and an aqueous chloride solution containing monovalent copper ions. A leaching step of leaching, and an electrolysis step of recovering nickel by electrolysis of the obtained leachate, in a wet refining method of nickel by chlorine leaching electrowinning method, in the slurry after the chlorine leaching air or oxygen-enriched air or A method for removing impurities from a chlorine leaching solution of nickel, wherein the pH of the leaching solution is adjusted within a range of 0.5 to 1 by blowing industrial oxygen.
【0009】本発明方法により、浸出液中の不純物は残
渣中に分配されて固定化されることによって、浸出液か
ら除去される。かかる不純物としては、鉄及び/又は砒
素が主なものである。
According to the method of the present invention, impurities in the leachate are removed from the leachate by being distributed and immobilized in the residue. The main impurities are iron and / or arsenic.
【0010】[0010]
【発明の実施の形態】ニッケルの湿式精錬の原料となる
ニッケルマットなどのニッケルを含有した硫化物は、目
的金属であるニッケルの他に、FeやAs等の微量の不
純物元素や硫黄を含んでいる。塩素浸出工程では、ニッ
ケルを完全に浸出させるためニッケル硫化物のスラリー
に酸化力の強い塩素が吹き込まれるが、この際若干では
あるが硫黄が酸化されて硫酸が生成する。その結果、塩
素浸出液のPHは0以下まで低下し、前述したように浸
出液中に不純物がイオンとして安定化する。
BEST MODE FOR CARRYING OUT THE INVENTION Nickel-containing sulfides such as nickel matte, which is a raw material for nickel wet refining, contain trace amounts of impurity elements such as Fe and As and sulfur in addition to nickel as a target metal. I have. In the chlorine leaching step, strong oxidizing chlorine is blown into the nickel sulfide slurry in order to completely leach nickel. At this time, sulfur is slightly oxidized to generate sulfuric acid. As a result, the pH of the chlorine leachate drops to 0 or less, and the impurities in the leachate are stabilized as ions as described above.
【0011】そこで、本発明においては、浸出液中にイ
オンとして存在するFeやAsなどの不純物を硫黄残渣
へ分配させることとした。即ち、塩化物イオンが存在す
る酸性ニッケル浸出液からFeやAsなどの不純物を硫
黄残渣中に分配して固定化するため、本発明方法では浸
出液中のプロトンを中和することによって浸出液のpH
を高め、不純物イオンを不溶性の水酸化物や酸化物とし
て浸出液中から除去する。
Therefore, in the present invention, impurities such as Fe and As existing as ions in the leachate are distributed to the sulfur residue. That is, since impurities such as Fe and As are distributed and fixed in the sulfur residue from the acidic nickel leachate containing chloride ions, the method of the present invention neutralizes protons in the leachate to neutralize the pH of the leachate.
And removes impurity ions as insoluble hydroxides and oxides from the leachate.
【0012】酸性度の高い浸出液を中和する方法として
は、苛性ソーダやアンモニア等を添加することも考えら
れるが、この方法では系内のアルカリ金属イオンやアン
モニウムイオンが増加して、電気ニッケルの品質を悪化
させる可能性があるほか、これらの資材のコストが比較
的高価なためにランニングコストが悪化する。そこで本
発明方法では、比較的安価である酸素をスラリーに吹き
込むことにより、下記化学式1の反応により浸出液中の
プロトンを中和する方法を採用した。
As a method of neutralizing a leachate having a high acidity, it is conceivable to add caustic soda, ammonia, or the like. However, in this method, alkali metal ions and ammonium ions in the system increase, and the quality of electric nickel deteriorates. In addition, the running cost is worsened due to the relatively high cost of these materials. Therefore, in the method of the present invention, a method of neutralizing protons in the leachate by the reaction of the following chemical formula 1 is employed by blowing relatively inexpensive oxygen into the slurry.
【0013】[0013]
【化1】O2+4H++4e-=2H2Embedded image O 2 + 4H + + 4e = 2H 2 O
【0014】この化学式1に示す反応では、アルカリ中
和の方法に比べると、単にプロトンを中和するだけでな
く、1モルの酸素分子に対して4モルの電子が消費され
る。即ち、この反応は酸−アルカリの中和反応であると
同時に、酸化還元反応でもある。従って、酸素を利用し
て上記化学式1の中和反応を行わせるには、浸出液中に
何らかの還元剤が必要となる。
In the reaction represented by the chemical formula 1, as compared with the alkali neutralization method, not only protons are neutralized, but also 4 moles of electrons are consumed per 1 mole of oxygen molecules. That is, this reaction is not only an acid-alkali neutralization reaction but also an oxidation-reduction reaction. Therefore, in order to carry out the neutralization reaction of the above chemical formula 1 using oxygen, some reducing agent is required in the leachate.
【0015】通常、塩化浴での塩素浸出ではCu+/C
++のレドックスカップルを利用するので、塩素浸出後
のスラリーにおいても浸出液中には1価の銅イオンCu
+が存在する。従って、この1価銅イオンが還元剤とな
り、酸素によって2価銅イオンにまで酸化されると同時
に、化学式1の反応によりプロトンを中和することが可
能である。更に、プロントンの消費により浸出液のPH
が高くなるので、FeやAsなどの不純物は難溶性の水
酸化物や酸化物を形成し易くなり、浸出液中から除去さ
れて残渣中に固定化される。
Normally, in the case of chlorine leaching in a chloride bath, Cu + / C
Since the redox couple of u ++ is used, even in the slurry after chlorine leaching, monovalent copper ion Cu
+ Exists. Therefore, this monovalent copper ion becomes a reducing agent, and is oxidized to divalent copper ion by oxygen, and at the same time, it is possible to neutralize protons by the reaction of chemical formula 1. In addition, the pH of the leachate is
Therefore, impurities such as Fe and As easily form insoluble hydroxides and oxides, are removed from the leachate, and are fixed in the residue.
【0016】しかしながら、浸出液のPHが極端に上昇
してしまうと、逆にニッケルまでもが水酸化物として硫
黄残渣中に分配されるので、ニッケルの回収率が低下し
てしまう。従って、塩素浸出液のニッケルの回収率を大
幅に悪化さず、且つ不純物を効率良く残渣中に分配でき
るようにPHを制御する必要があり、このため本発明で
はpHを0.5〜1の範囲に制御することとする。
However, if the pH of the leachate rises extremely, on the contrary, even nickel is distributed as hydroxide in the sulfur residue, so that the nickel recovery rate decreases. Therefore, it is necessary to control the pH so that the recovery rate of nickel in the chlorine leaching solution is not significantly deteriorated, and the impurities can be efficiently distributed to the residue. Control.
【0017】尚、上記化学式1の中和反応に使用する酸
素としては、工業用酸素のような純度の高い酸素のほ
か、空気や酸素富化空気を使用することができる。
As the oxygen used for the neutralization reaction of the above chemical formula 1, in addition to high-purity oxygen such as industrial oxygen, air and oxygen-enriched air can be used.
【0018】[0018]
【実施例】粉砕したニッケルマットと、銅を一価銅イオ
ン(Cu+)として含む塩化物水溶液とを混合したスラ
リーに、塩素ガスを吹き込むことにより、ニッケル、銅
及び銅より卑な金属の大部分を浸出させた。浸出後のス
ラリーから硫黄残渣を固液分離し、得られた浸出液と硫
黄残渣を分析した。
EXAMPLE A chlorine gas is blown into a slurry in which a crushed nickel mat and a chloride aqueous solution containing copper as monovalent copper ions (Cu + ) are blown, so that nickel, copper, and a metal that is less noble than copper are blown. The part was leached. The sulfur residue was subjected to solid-liquid separation from the leached slurry, and the obtained leachate and sulfur residue were analyzed.
【0019】その結果、浸出液は、Ni:240g/リ
ットル、Cu:40g/リットル、Fe:1g/リット
ル、As:0.5g/リットル、及びCl:330g/
リットルを含有し、pHが−0.1であった。また、硫
黄残渣は約90重量%の硫黄を含有していた。
As a result, the leachate contained 240 g / liter of Ni, 40 g / liter of Cu, 1 g / liter of Fe, 0.5 g / liter of As, and 330 g / liter of Cl.
Liters and the pH was -0.1. Also, the sulfur residue contained about 90% by weight of sulfur.
【0020】次に、この浸出液(温度が109℃)と硫
黄残渣とを、硫黄残渣濃度が100g/リットルとなる
ように、500リットル/分の流量で容積20m3の反
応槽に連続的に供給しながら、同時に反応槽の吹き込み
管から空気を吹き込み、その吹き込み量を下記表1に示
すように変化させることにより浸出液のPHをそれぞれ
制御した。
Next, the leachate (temperature: 109 ° C.) and the sulfur residue are continuously supplied at a flow rate of 500 liter / min to a reaction vessel having a volume of 20 m 3 so that the sulfur residue concentration becomes 100 g / liter. Simultaneously, air was blown from the blow tube of the reaction tank, and the PH of the leachate was controlled by changing the blowing amount as shown in Table 1 below.
【0021】それぞれ反応槽からオーバーフローするス
ラリーを固液分離し、得られた浸出液及び硫黄残渣中の
各成分元素を測定し、その結果を表1に併せて示した。
尚、Cuの1価/(1価+2価)比はいずれも65%で
あった。
The slurries overflowing from the respective reaction tanks were subjected to solid-liquid separation, and the respective constituent elements in the obtained leachate and sulfur residue were measured. The results are shown in Table 1.
In addition, the monovalent / (monovalent + divalent) ratio of Cu was 65% in all cases.
【0022】[0022]
【表1】 空気吹込量 浸出液濃度(g/l) 残渣品位(重量%) 試料 (Nm3/Hr) pH Ni Cu Fe As Cl Ni Fe As S 1* 0 −0.1 240 40 1.0 0.5 330 0.8 0.9 0.08 95 2* 50 0.3 240 40 0.9 0.4 330 1.0 1.2 0.12 93 3 100 0.5 240 40 0.8 0.3 330 1.2 1.6 0.30 93 4 200 1.0 240 40 0.4 0.1 330 1.5 2.3 0.63 92 5* 300 1.5 235 40 0.3 0.1 330 3.0 3.0 1.05 90 (注)表中の*を付した試料は比較例である。[Table 1] Air blowing volume Leachate concentration (g / l) Residue grade (wt%) Sample (Nm 3 / Hr) pH Ni Cu Fe As Cl Ni Fe As S 1 * 0 -0.1 240 40 1.0 0.5 330 0.8 0.9 0.08 95 2 * 50 0.3 240 40 0.9 0.4 330 1.0 1.2 0.12 93 3 100 0.5 240 40 0.8 0.3 330 1.2 1.6 0.30 93 4 200 1.0 240 40 0.4 0.1 330 1.5 2.3 0.63 92 5 * 300 1.5 235 40 0.3 0.1 330 3.0 3.0 1.05 90 (Note) Samples marked with * in the table are comparative examples.
【0023】上記表1に示すように、スラリーへの空気
の吹き込み量が多くなるほど、浸出液のpHが上昇して
おり、このpH上昇に伴って浸出液中の不純物であるF
e及びAsの濃度が減少し、pH0.5〜1の範囲でF
e及びAsが効率良く硫黄残渣中に分配され固定化され
ることが分かる。しかし、pHが1を越えて1.5に達
すると硫黄残渣中のNiが3重量%にも達し、ニッケル
回収率が低下するので好ましくない。
As shown in the above Table 1, as the amount of air blown into the slurry increases, the pH of the leachate increases, and as the pH rises, F, which is an impurity in the leachate, is increased.
e and As concentrations decrease, and F
It can be seen that e and As are efficiently distributed and fixed in the sulfur residue. However, when the pH exceeds 1 and reaches 1.5, the Ni content in the sulfur residue reaches 3% by weight, and the nickel recovery rate is undesirably reduced.
【0024】以上の結果から、浸出液のpHを0.5〜
1.0の範囲に制御することにより、ニッケルの回収率
を殆ど低下させることなく、しかもニッケル以外の不純
物を従来の空気の吹き込みを行わない場合よりも多く浸
出液から除去して、残渣中に固定化できることが分か
る。
From the above results, the pH of the leachate was adjusted to 0.5 to 0.5.
By controlling the content within the range of 1.0, the recovery rate of nickel is hardly reduced, and impurities other than nickel are removed from the leachate more than in the case where conventional air blowing is not performed, and fixed in the residue. It can be seen that it can be converted.
【0025】尚、上記実施例では浸出液と残渣の組成を
調べるために固液分離し、再度混合したスラリーに空気
を吹き込んだが、実際の操業では塩素浸出した後のスラ
リーに直接空気を吹き込むことができる。また、上記実
施例では空気を吹き込む例を示したが、酸素富化空気や
工業用酸素を用いても同様の効果を達成することができ
る。
In the above embodiment, air was blown into the slurry after solid-liquid separation and re-mixing in order to examine the composition of the leachate and the residue. However, in the actual operation, air was blown directly into the slurry after chlorine leaching. it can. Further, in the above embodiment, the example in which air is blown is shown, but the same effect can be achieved by using oxygen-enriched air or industrial oxygen.
【0026】[0026]
【発明の効果】本発明によれば、ニッケルの湿式精錬方
法における塩素浸出後のスラリーに空気又は酸素富化空
気若しくは工業用酸素を吹き込むことにより、液中のプ
ロトンを中和してpHを制御するという簡単な方法で、
ニッケルの浸出率を低下させることなく、本来浸出され
る必要のないFeやAsなどの不純物を残渣中に分配さ
せ、浸出液から不純物を除去することができる。従っ
て、後工程である不純物除去工程の負荷を軽減させ、残
渣分離後の浸出液の電解により高純度のニッケルを回収
することができる。
According to the present invention, air or oxygen-enriched air or industrial oxygen is blown into a slurry after chlorine leaching in a nickel wet refining method to neutralize protons in the liquid to control pH. In a simple way,
Without lowering the leaching rate of nickel, impurities such as Fe and As which do not need to be leached originally can be distributed in the residue, and the impurities can be removed from the leaching solution. Therefore, it is possible to reduce the load of the impurity removal step, which is a subsequent step, and to recover high-purity nickel by electrolysis of the leachate after residue separation.

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 ニッケルを含有した粉状硫化物と1価銅
    イオンを含む塩化物水溶液とのスラリーに、塩素を吹き
    込むことによりニッケルを浸出させる浸出工程と、得ら
    れた浸出液の電解によりニッケルを回収する電解工程と
    を含む、塩素浸出電解採取法によるニッケルの湿式精錬
    方法において、前記塩素浸出後のスラリーに空気又は酸
    素富化空気若しくは工業用酸素を吹き込むことにより浸
    出液のPHを0.5〜1の範囲内に調整することを特徴
    とするニッケルの塩素浸出液からの不純物除去方法。
    1. A leaching step of leaching nickel by blowing chlorine into a slurry of a powdery sulfide containing nickel and an aqueous chloride solution containing monovalent copper ions, and nickel is obtained by electrolysis of the obtained leaching solution. And an electrolytic step of recovering, in the wet refining method of nickel by the chlorine leaching electrowinning method, by blowing air or oxygen-enriched air or industrial oxygen into the slurry after the chlorine leaching to adjust the pH of the leachate to 0.5 to 0.5. 1. A method for removing impurities from a chlorine leaching solution of nickel, wherein the method is adjusted within the range of 1.
  2. 【請求項2】 浸出液から残渣中に分配されて除去され
    る不純物が鉄及び/又は砒素であることを特徴とする、
    請求項1に記載のニッケルの塩素浸出液からの不純物除
    去方法。
    2. The method according to claim 1, wherein the impurities distributed and removed from the leachate in the residue are iron and / or arsenic.
    The method for removing impurities from a chlorine leaching solution of nickel according to claim 1.
JP29490696A 1996-11-07 1996-11-07 Removing method of impurity from chlorine leaching liquid of nickel Pending JPH10140258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29490696A JPH10140258A (en) 1996-11-07 1996-11-07 Removing method of impurity from chlorine leaching liquid of nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29490696A JPH10140258A (en) 1996-11-07 1996-11-07 Removing method of impurity from chlorine leaching liquid of nickel

Publications (1)

Publication Number Publication Date
JPH10140258A true JPH10140258A (en) 1998-05-26

Family

ID=17813794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29490696A Pending JPH10140258A (en) 1996-11-07 1996-11-07 Removing method of impurity from chlorine leaching liquid of nickel

Country Status (1)

Country Link
JP (1) JPH10140258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007801A (en) * 2006-06-27 2008-01-17 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2009046736A (en) * 2007-08-21 2009-03-05 Sumitomo Metal Mining Co Ltd Chlorine leaching method of nickel sulfide
JP2010100938A (en) * 2008-09-29 2010-05-06 Sumitomo Metal Mining Co Ltd Method for leaching nickel from mixed sulfides
KR101192731B1 (en) 2012-04-03 2012-10-18 아사히 프리텍 가부시키가이샤 Method of noble metal recovery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007801A (en) * 2006-06-27 2008-01-17 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2009046736A (en) * 2007-08-21 2009-03-05 Sumitomo Metal Mining Co Ltd Chlorine leaching method of nickel sulfide
JP2010100938A (en) * 2008-09-29 2010-05-06 Sumitomo Metal Mining Co Ltd Method for leaching nickel from mixed sulfides
KR101192731B1 (en) 2012-04-03 2012-10-18 아사히 프리텍 가부시키가이샤 Method of noble metal recovery

Similar Documents

Publication Publication Date Title
CA2138777C (en) Production of metals from minerals
EP1434893B1 (en) Zinc recovery process
BG62180B1 (en) Chloride assisted hydrometallurgical extraction of nickel and cobalt from sulphide ores
CA2639165C (en) Method for recovering metal from ore
US9322105B2 (en) Recovering lead from a lead material including lead sulfide
US20040144208A1 (en) Process for refining raw copper material containing copper sulfide mineral
JP5122295B2 (en) Process for multi-stage direct electrolytic extraction of copper
US4337128A (en) Cupric and ferric chloride leach of metal sulphide-containing material
WO2007039665A1 (en) Method for processing nickel bearing raw material in chloride-based leaching
EA005630B1 (en) System and process for recovering copper from a copper-containing material
MXPA03000744A (en) Method for recovering metal values from metal-containing materials using high temperature pressure leaching.
US20040200730A1 (en) Hydrometallurgical copper recovery process
JP4316582B2 (en) Method for producing metallic nickel from crude nickel sulfate
AU2011228956B2 (en) Method of processing nickel bearing raw material
EP3172348A1 (en) Recovery of zinc and manganese from pyrometallurgy sludge or residues
WO1984000563A1 (en) Recovery of silver and gold from ores and concentrates
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
CN107746956A (en) Using the technique of support methods recovery tellurium from complicated solution
JPH10140258A (en) Removing method of impurity from chlorine leaching liquid of nickel
US5290338A (en) Antimony separation process
WO2000056943A1 (en) Purification of cobalt solutions containing iron and manganese with oxidation mixture of s02 and oxygen
CA1092365A (en) Refining of ferrous and base metal sulphide ores and concentrates
AU734584B2 (en) Production of electrolytic copper from dilute solutions contaminated by other metals
JP3963093B2 (en) Arsenous acid production method
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017