JP2009173983A - Method for producing sulfide containing nickel and cobalt - Google Patents

Method for producing sulfide containing nickel and cobalt Download PDF

Info

Publication number
JP2009173983A
JP2009173983A JP2008012173A JP2008012173A JP2009173983A JP 2009173983 A JP2009173983 A JP 2009173983A JP 2008012173 A JP2008012173 A JP 2008012173A JP 2008012173 A JP2008012173 A JP 2008012173A JP 2009173983 A JP2009173983 A JP 2009173983A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
gas
hydrogen sulfide
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012173A
Other languages
Japanese (ja)
Other versions
JP5125543B2 (en
Inventor
Keisuke Shibayama
敬介 柴山
Tomoshi Matsumoto
智志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008012173A priority Critical patent/JP5125543B2/en
Priority to AU2008255267A priority patent/AU2008255267B2/en
Publication of JP2009173983A publication Critical patent/JP2009173983A/en
Application granted granted Critical
Publication of JP5125543B2 publication Critical patent/JP5125543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sulfide by which sulfuric acid aqueous solution containing nickel and cobalt is introduced into a pressurized reaction vessel, and when hydrogen sulfide concentration in sulfurizing gas supplied into the reaction vessel is lowered into the lower concentration from 95-100 vol% used in the stationary state of the operation, by supplying gas for sulfide containing hydrogen sulfide in the gas phase, high yield of the nickel and the cobalt can be maintained. <P>SOLUTION: The following (1) or (2) operation is adopted. (1) In the case of being the hydrogen sulfide concentration at 85-90 vol%, the charging quantity of the nickel and the cobalt introduced into the reaction vessel is reduced to 30-35% mass ratio to the charging quantity under the stationary state. (2) In the case of being the hydrogen sulfide concentration at exceeding 90 vol%, the charging quantity of the nickel and the cobalt introduced into the reaction vessel is reduced to 55-60% mass ratio to the charging quantity under the stationary state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ニッケル及びコバルトを含む硫化物の製造方法に関し、さらに詳しくは、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、定常状態に用いられる95〜100容量%からそれ未満の濃度に低下したとき、例えば、硫化水素ガス合成設備の立ち上げ時などの非定常状態に際しても、硫化反応が効率的に行われ、ニッケル及びコバルトの高収率を維持することができる硫化物の製造方法に関する。   The present invention relates to a method for producing a sulfide containing nickel and cobalt. More specifically, the present invention relates to a sulfide containing hydrogen sulfide in a gas phase by introducing a sulfuric acid aqueous solution containing nickel and cobalt into a pressurized reaction vessel. In the method for producing a sulfide containing nickel and cobalt by supplying a working gas, the hydrogen sulfide gas concentration in the sulfide gas supplied into the reaction vessel is 95 to 100% by volume or less used in a steady state Sulfide that can efficiently perform a sulfidation reaction and maintain a high yield of nickel and cobalt even in an unsteady state such as when a hydrogen sulfide gas synthesis facility is started up. It relates to the manufacturing method.

従来、酸性水溶液中に含有される重金属を選択的に沈殿させ回収する方法として、硫化剤を添加して、硫化反応によって該重金属を硫化物として沈殿させる方法が広く用いられている。ところが、通常、硫化水素を用いた硫化反応においては、その制御が難しいとされ、回収対象となる重金属に応じて適切に硫化反応を制御するためには、酸化還元電位(ORP)、pH等を調整する必要があった。しかしながら、硫化反応が、微細な硫化物殿物を生成させる反応であるため、生成した硫化物が電極等の制御機器の表面を被覆し、ORPやpHの正確な測定が困難となり、さらに、硫化水素ガスを溶液中に吹き込む場合には、生成した硫化物が硫化水素ガスの吹込み配管を閉塞させてしまい、硫化水素ガスの流量制御を安定して行うことも困難であった。   Conventionally, as a method for selectively precipitating and recovering heavy metals contained in an acidic aqueous solution, a method of adding a sulfurizing agent and precipitating the heavy metals as sulfides by a sulfurization reaction has been widely used. However, in the sulfidation reaction using hydrogen sulfide, it is usually difficult to control. In order to appropriately control the sulfidation reaction according to the heavy metal to be recovered, the oxidation-reduction potential (ORP), pH, and the like are set. There was a need to adjust. However, since the sulfurization reaction is a reaction that produces fine sulfide deposits, the generated sulfide coats the surface of control devices such as electrodes, making it difficult to accurately measure ORP and pH. When hydrogen gas is blown into the solution, the generated sulfide clogs the piping for blowing hydrogen sulfide gas, and it is difficult to stably control the flow rate of hydrogen sulfide gas.

この解決策として、例えば、硫化剤として硫化水素ガスを用いて、気相中の硫化水素濃度を調整して、液中のORPやpHを正確に制御することにより重金属の硫化反応を制御する方法(例えば、特許文献1参照。)、硫化反応の促進と同時に反応容器内面への生成硫化物の付着を抑制するため、硫化物種晶を添加する方法(例えば、特許文献2参照。)等が行われている。   As a solution to this, for example, a method of controlling the sulfurization reaction of heavy metals by adjusting the hydrogen sulfide concentration in the gas phase by using hydrogen sulfide gas as a sulfiding agent and accurately controlling the ORP and pH in the liquid (For example, refer to Patent Document 1), a method of adding a sulfide seed crystal (for example, refer to Patent Document 2) or the like is performed in order to prevent the sulfide from adhering to the inner surface of the reaction vessel at the same time as promoting the sulfurization reaction. It has been broken.

ところで、ニッケル製錬においては、従来、硫化ニッケル鉱を乾式製錬して、ニッケル品位が70〜80質量%程度のマットを得て、これを塩素浸出法に供し、次いで電解採取法で電気ニッケルを製造する方法が行われていた。
近年、ニッケル酸化鉱石の湿式製錬法として、硫酸を用いた高温加圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であることとともに、ニッケル品位が50質量%程度まで上昇したニッケルとコバルトを含む硫化物(以下、ニッケルコバルト混合硫化物と呼称する場合がある。)を得ることができるという利点を有している。
By the way, in nickel smelting, conventionally, nickel sulfide ore is dry smelted to obtain a mat having a nickel quality of about 70 to 80% by mass, and this is subjected to a chlorine leaching method. The method of manufacturing was performed.
In recent years, attention has been paid to a high pressure acid leaching method using sulfuric acid as a wet smelting method of nickel oxide ore. Unlike the conventional dry smelting method, which is a conventional nickel oxide ore smelting method, this method does not include dry processes such as reduction and drying processes, and is a consistent wet process. And a sulfide containing nickel and cobalt whose nickel quality has been raised to about 50% by mass (hereinafter sometimes referred to as nickel-cobalt mixed sulfide). ing.

前記高温加圧酸浸出法では、例えば、ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、ニッケル及びコバルトを含む浸出液を得る浸出工程、浸出スラリーの固体と液体を分離する工程、ニッケル、コバルトとともに、不純物元素を含む浸出液のpHを調整し、鉄等の不純物元素を含む中和澱物スラリーと浄液されたニッケル回収用母液を形成する中和工程、及び該ニッケル回収用母液に硫化水素ガスを供給し、ニッケルコバルト混合硫化物と貧液を形成する硫化工程を含む(例えば、特許文献2参照。)。   In the high-temperature pressurized acid leaching method, for example, sulfuric acid is added to a slurry of nickel oxide ore, and leaching is performed at a high temperature and high pressure to obtain a leachate containing nickel and cobalt, and a step of separating the solid and liquid of the leach slurry The neutralization step of adjusting the pH of the leachate containing impurity elements together with nickel and cobalt, forming a neutralized starch slurry containing impurity elements such as iron and the purified nickel recovery mother liquor, and for recovering the nickel It includes a sulfiding step of supplying hydrogen sulfide gas to the mother liquor and forming a poor solution with the nickel cobalt mixed sulfide (see, for example, Patent Document 2).

前記硫化工程では、前記ニッケル回収用母液を、耐圧性を有する加圧容器からなる反応容器に導入し、さらに反応容器の気相中に、上記プラントに設けられた硫化水素ガスの合成設備から供給される硫化用ガスを吹き込み、液相での硫化水素による硫化反応を制御することにより、生成されるニッケルコバルト混合硫化物を高収率で回収し、かつニッケル及びコバルトが十分に分離除去された貧液を得ることが、工程を経済的に管理する上で重要な技術課題である。なお、前記硫化水素ガスの合成設備から供給される硫化用ガスは、その定常的な運転状態では、その硫化水素濃度が95〜100容量%である。   In the sulfiding step, the nickel recovery mother liquor is introduced into a reaction vessel comprising a pressure vessel having pressure resistance, and further supplied from a hydrogen sulfide gas synthesis facility provided in the plant into the gas phase of the reaction vessel. The resulting nickel-cobalt mixed sulfide was recovered in a high yield by controlling the sulfurization reaction by hydrogen sulfide in the liquid phase, and nickel and cobalt were sufficiently separated and removed. Obtaining a poor solution is an important technical issue in managing the process economically. The sulfurizing gas supplied from the hydrogen sulfide gas synthesis facility has a hydrogen sulfide concentration of 95 to 100% by volume in a steady operation state.

このため、硫化工程の操業の定常状態では、硫化水素濃度95〜100容量%の硫化用ガスを気相中に吹き込んで反応容器内の圧力を所定値に制御しながら、反応容器中に導入するニッケル回収用母液のニッケル濃度、導入流量、温度、pH等の操業条件を所定値に管理するとともに、必要により硫化物種晶を添加して運転することにより、95%以上のニッケル収率が確保されていた。   For this reason, in the steady state of the operation of the sulfiding step, a sulfurizing gas having a hydrogen sulfide concentration of 95 to 100% by volume is blown into the gas phase and introduced into the reaction vessel while controlling the pressure in the reaction vessel to a predetermined value. By controlling the operating conditions such as nickel concentration, introduction flow rate, temperature, pH, etc. of the mother liquor for nickel recovery to predetermined values and operating by adding sulfide seed crystals as necessary, a nickel yield of 95% or more is secured. It was.

しかしながら、例えば、硫化水素ガスの合成設備の定期的な設備保全のための休止から硫化水素ガスの製造を再開するためなど、該合成設備を立ち上げるときのように、硫化用ガスの供給が非定常な状態に際しては、立ち上げ当初は硫化用ガス中の硫化水素濃度は低く、徐々に増加して所望の95〜100容量%の範囲に回復する。この硫化水素濃度が低い硫化用ガスを反応容器に供給すると、硫化工程でのニッケル収率が大幅に低下し、それと同時に貧液中のニッケル含有量が増加してしまうという問題があった。例えば、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%から85%容量から95容量%未満の範囲に低下すると、ニッケル収率は、硫化用ガス中の硫化水素ガス濃度の低下割合よりも大幅に低い、70%程度にまで低下してしまう。
このため、硫化ガス中の硫化水素ガス濃度が、所望の95〜100容量%の範囲に回復するまでの間、硫化用ガスとして用いることを停止することが行われるが、このためには、この間に発生した硫化水素ガスを別途に無害化処理することが必要である。この無害化処理の実施においては、苛性ソーダ等の薬品コストが発生するとともに、硫化水素のコストの上昇を来たしていた。
However, for example, when the synthesis equipment is started up, such as when the production of hydrogen sulfide gas is resumed from the suspension for periodic equipment maintenance of the synthesis equipment for hydrogen sulfide gas, the supply of the sulfide gas is not In a steady state, the hydrogen sulfide concentration in the sulfiding gas is low at the beginning of startup, and gradually increases and recovers to a desired range of 95 to 100% by volume. When the sulfurizing gas having a low hydrogen sulfide concentration is supplied to the reaction vessel, the nickel yield in the sulfiding step is greatly reduced, and at the same time, the nickel content in the poor solution is increased. For example, when the concentration of hydrogen sulfide gas in the sulfide gas supplied into the reaction vessel is reduced from 95 to 100% by volume used in the steady state of operation to 85% to less than 95% by volume, the nickel yield is The hydrogen sulfide gas concentration in the sulfurizing gas is reduced to about 70%, which is significantly lower than the rate of decrease in the hydrogen sulfide gas concentration.
For this reason, the hydrogen sulfide gas concentration in the sulfurized gas is stopped from being used as a sulfurizing gas until it is restored to the desired range of 95 to 100% by volume. It is necessary to separately detoxify the hydrogen sulfide gas generated in the process. In carrying out this detoxification treatment, chemical costs such as caustic soda are generated, and the cost of hydrogen sulfide is increased.

以上の状況から、ニッケル及びコバルトを含む硫酸水溶液から、ニッケル及びコバルトを含む硫化物を製造する方法において、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%から低下したときに、ニッケル及びコバルトの高収率を維持することができる硫化物の製造方法が望まれている。   From the above situation, in the method for producing a sulfide containing nickel and cobalt from a sulfuric acid aqueous solution containing nickel and cobalt, the hydrogen sulfide gas concentration in the sulfide gas supplied into the reaction vessel is used in the steady state of operation. There is a need for a method for producing sulfides that can maintain high yields of nickel and cobalt when reduced from 95-100 volume percent.

特開2003−313617号公報(第1頁、第2頁)JP 2003-316617 A (first page, second page) 特開2005−350766号公報(第1頁、第2頁)JP-A-2005-350766 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下したとき、例えば、硫化水素ガス合成設備の立ち上げ時などの非定常状態に際しても、硫化反応が効率的に行われ、ニッケル及びコバルトの高収率を維持することができる硫化物の製造方法を提供することにある。   An object of the present invention is to introduce a sulfuric acid aqueous solution containing nickel and cobalt into a pressurized reaction vessel and supply a sulfurizing gas containing hydrogen sulfide in a gas phase in view of the above-mentioned problems of the prior art. Thus, in the method for producing a sulfide containing nickel and cobalt, the hydrogen sulfide gas concentration in the sulfide gas supplied into the reaction vessel is 95 to 100% by volume used in the steady state of operation and less than that. Production of sulfides capable of efficiently performing a sulfidation reaction and maintaining a high yield of nickel and cobalt even in an unsteady state such as when a hydrogen sulfide gas synthesis facility is started up, for example. It is to provide a method.

本発明者らは、上記目的を達成するために、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法について、鋭意研究を重ねた結果、該硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、該硫化水素ガス濃度に応じて、反応容器内に、硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量から特定の割合に減少させる操作を採用したところ、該硫化用ガス中の硫化水素ガス濃度の低下にかかわらず、硫化反応が効率的に行われ、ニッケル及びコバルトの高収率を維持することができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors introduce an aqueous sulfuric acid solution containing nickel and cobalt into a pressurized reaction vessel and supply a sulfurizing gas containing hydrogen sulfide in the gas phase. As a result of intensive research on a method for producing a sulfide containing nickel and cobalt, the hydrogen sulfide gas concentration in the sulfiding gas is less than 95 to 100% by volume used in the steady state of operation. When the concentration is lowered, an operation of reducing the amount of nickel and cobalt introduced into the reaction vessel in accordance with the hydrogen sulfide gas concentration with the sulfuric acid aqueous solution from the amount of the steady state to a specific ratio according to the hydrogen sulfide gas concentration. As a result, it was found that the sulfidation reaction was carried out efficiently and the high yield of nickel and cobalt could be maintained regardless of the decrease in the hydrogen sulfide gas concentration in the sulfiding gas. And, to complete the present invention.

すなわち、本発明の第1の発明によれば、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、
前記硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、該硫化水素ガス濃度に応じて、下記(1)又は(2)の操作を採用することを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。
(1)前記硫化用ガス中の硫化水素ガス濃度が85〜90容量%の場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で30〜35%に減少させる。
(2)前記硫化用ガス中の硫化水素ガス濃度が90容量%を超える場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で55〜60%の割合に減少させる。
That is, according to the first invention of the present invention, by introducing a sulfuric acid aqueous solution containing nickel and cobalt into a pressurized reaction vessel and supplying a sulfurizing gas containing hydrogen sulfide in the gas phase. In a method for producing a sulfide containing nickel and cobalt,
When the hydrogen sulfide gas concentration in the sulfiding gas is reduced from 95 to 100% by volume used in the steady state of operation to a concentration lower than that, the following (1) or ( There is provided a method for producing a sulfide containing nickel and cobalt, which employs the operation of 2).
(1) When the hydrogen sulfide gas concentration in the sulfiding gas is 85 to 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is the amount introduced in a steady state. The mass ratio is reduced to 30 to 35%.
(2) When the hydrogen sulfide gas concentration in the sulfiding gas exceeds 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is changed to the amount introduced in a steady state. On the other hand, the mass ratio is reduced to 55 to 60%.

また、本発明の第2の発明によれば、第1の発明において、前記反応容器内に、製造されたニッケル及びコバルトを含む硫化物からなる種晶を、反応容器内に投入するニッケル及びコバルト量に対し150〜200質量%に相当する割合で投入することを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。   According to the second invention of the present invention, in the first invention, nickel and cobalt are charged into the reaction vessel with a seed crystal made of sulfide containing nickel and cobalt produced in the reaction vessel. A method for producing a sulfide containing nickel and cobalt, characterized in that it is charged at a rate corresponding to 150 to 200% by mass with respect to the amount.

また、本発明の第3の発明によれば、第1又は2の発明において、前記反応容器内の圧力は、100〜300kPaであることを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。   According to a third aspect of the present invention, there is provided the method for producing a sulfide containing nickel and cobalt according to the first or second aspect, wherein the pressure in the reaction vessel is 100 to 300 kPa. Provided.

また、本発明の第4の発明によれば、第1〜3いずれかの発明において、前記硫酸水溶液は、ニッケル酸化鉱石を高温高圧浸出法により湿式製錬する方法において、浸出及び固液分離工程で、ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、浸出スラリーを多段洗浄しながら、ニッケル及びコバルトとともに不純物元素を含む浸出液を得て、次いで、中和工程で、この浸出液のpHを調整し、不純物元素を含む中和澱物スラリーを分離して得られたニッケル回収用母液であり、かつニッケルとコバルトの合計濃度が2〜6g/Lであることを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。   According to a fourth invention of the present invention, in any one of the first to third inventions, the aqueous sulfuric acid solution is a leaching and solid-liquid separation step in a method of hydrometallizing nickel oxide ore by a high temperature high pressure leaching method. Then, sulfuric acid is added to the slurry of nickel oxide ore and leached under high temperature and high pressure to obtain a leachate containing impurity elements together with nickel and cobalt while performing multistage cleaning of the leach slurry, and this leachate is then neutralized. The mother liquor for nickel recovery obtained by adjusting the pH of the solution and separating the neutralized starch slurry containing the impurity element, and the total concentration of nickel and cobalt is 2 to 6 g / L And a method for producing a sulfide comprising cobalt.

また、本発明の第5の発明によれば、第1〜4いずれかの発明において、前記硫酸水溶液の温度は、65〜90℃であることを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。   According to a fifth invention of the present invention, in any one of the first to fourth inventions, the temperature of the aqueous sulfuric acid solution is 65 to 90 ° C. A method is provided.

また、本発明の第6の発明によれば、第1〜5いずれかの発明において、前記硫酸水溶液のpHは、3.0〜3.8であることを特徴とするニッケル及びコバルトを含む硫化物の製造方法が提供される。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the sulfuric acid aqueous solution has a pH of 3.0 to 3.8, and is a sulfur containing nickel and cobalt A method of manufacturing an article is provided.

本発明のニッケル及びコバルトを含む硫化物の製造方法は、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下したとき、例えば、硫化水素ガス合成設備の立ち上げ時などの非定常状態に際しても、硫化反応が効率的に行われ、ニッケル及びコバルトの高収率を維持することができるので、その工業的価値は極めて大きい。   In the method for producing a sulfide containing nickel and cobalt of the present invention, an aqueous sulfuric acid solution containing nickel and cobalt is introduced into a pressurized reaction vessel, and a sulfurizing gas containing hydrogen sulfide is supplied into the gas phase. Thus, in the method for producing a sulfide containing nickel and cobalt, the concentration of hydrogen sulfide gas in the sulfide gas supplied into the reaction vessel is reduced from 95 to 100% by volume used in the steady state of operation. When it is lowered, for example, in an unsteady state such as when the hydrogen sulfide gas synthesis facility is started up, the sulfidation reaction is efficiently performed, and the high yield of nickel and cobalt can be maintained. The value is extremely great.

以下、本発明のニッケル及びコバルトを含む硫化物の製造方法について、詳細に説明する。
本発明のニッケル及びコバルトを含む硫化物の製造方法は、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、前記硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、該硫化水素ガス濃度に応じて、下記(1)又は(2)の操作を採用することを特徴とする。
(1)前記硫化用ガス中の硫化水素ガス濃度が85〜90容量%の場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で30〜35%に減少させる。
(2)前記硫化用ガス中の硫化水素ガス濃度が90容量%を超える場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で55〜60%の割合に減少させる。
Hereinafter, the manufacturing method of the sulfide containing nickel and cobalt of the present invention will be described in detail.
In the method for producing a sulfide containing nickel and cobalt of the present invention, an aqueous sulfuric acid solution containing nickel and cobalt is introduced into a pressurized reaction vessel, and a sulfurizing gas containing hydrogen sulfide is supplied into the gas phase. Thus, in the method for producing a sulfide containing nickel and cobalt, when the hydrogen sulfide gas concentration in the sulfiding gas is reduced from 95 to 100% by volume used in a steady state of operation to a concentration lower than that. Depending on the hydrogen sulfide gas concentration, the following operation (1) or (2) is employed.
(1) When the hydrogen sulfide gas concentration in the sulfiding gas is 85 to 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is the amount introduced in a steady state. The mass ratio is reduced to 30 to 35%.
(2) When the hydrogen sulfide gas concentration in the sulfiding gas exceeds 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is changed to the amount introduced in a steady state. On the other hand, the mass ratio is reduced to 55 to 60%.

本発明において、硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる濃度から95容量%未満に低下した際に、硫化用ガス中の硫化水素ガス濃度に応じて、反応容器内に導入するニッケル及びコバルト投入量(以下、投入量と呼称する場合がある。)を、定常状態のときの投入量からその所定の割合に大幅に減少させる操作を行うことが重要である。これによって、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下したときにも、硫化反応が効率的に行われ、ニッケル及びコバルトの高収率を維持することができる   In the present invention, when the hydrogen sulfide gas concentration in the sulfurizing gas is reduced to less than 95% by volume from the concentration used in the steady state of operation, the reaction vessel contains It is important to carry out an operation for greatly reducing the amount of nickel and cobalt introduced into the reactor (hereinafter sometimes referred to as the amount of introduction) from the amount introduced in the steady state to a predetermined ratio. As a result, even when the concentration of hydrogen sulfide gas in the sulfide gas supplied into the reaction vessel is reduced from 95 to 100% by volume used in the steady state of operation to a concentration lower than that, the sulfurization reaction is efficiently performed. Can maintain high yields of nickel and cobalt

なお、硫化工程の操業の定常状態では、硫化水素濃度95〜100容量%の硫化用ガスを気相中に吹き込んで反応容器内の圧力を所定値に制御しながら、反応容器中に導入する硫酸水溶液のニッケル及びコバルト濃度及び導入流量により決められる投入量の他、温度、pH等の操業条件を所定値に管理するとともに、必要により硫化物種晶を添加して運転することにより、95%以上のニッケル収率が確保されていた。   In the steady state of the operation of the sulfiding step, sulfuric acid introduced into the reaction vessel while blowing a sulfurizing gas having a hydrogen sulfide concentration of 95 to 100% by volume into the gas phase and controlling the pressure in the reaction vessel to a predetermined value. In addition to the input amount determined by the nickel and cobalt concentrations of the aqueous solution and the introduction flow rate, the operating conditions such as temperature and pH are controlled to predetermined values, and if necessary, the operation is performed by adding sulfide seed crystals. Nickel yield was ensured.

ここで、加圧下で行われる硫化水素を用いた硫化反応において、硫化用ガス中の硫化水素ガス濃度とニッケル収率の関係について説明する。すなわち、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、反応溶液中に溶存する硫化水素濃度は、気相の硫化水素濃度と平衡し、また反応溶液中酸化還元電位は、溶存する硫化水素濃度と線形の関係があるので、硫化反応は、気相の硫化水素濃度に依存する所定の酸化還元電位のもとで、下記の式(1)にしたがって行われる。   Here, the relationship between the hydrogen sulfide gas concentration in the sulfurizing gas and the nickel yield in the sulfurization reaction using hydrogen sulfide performed under pressure will be described. That is, a sulfide containing nickel and cobalt is produced by introducing a sulfuric acid aqueous solution containing nickel and cobalt into a pressurized reaction vessel and supplying a sulfurizing gas containing hydrogen sulfide in the gas phase. In the method, the concentration of hydrogen sulfide dissolved in the reaction solution is balanced with the concentration of hydrogen sulfide in the gas phase, and the oxidation-reduction potential in the reaction solution is linearly related to the concentration of dissolved hydrogen sulfide. This is performed according to the following equation (1) under a predetermined oxidation-reduction potential that depends on the hydrogen sulfide concentration in the gas phase.

MSO + HS = MS +HSO ………(1)
(式中のMは、Ni、Coを表す。)
MSO 4 + H 2 S = MS + H 2 SO 4 (1)
(M in the formula represents Ni or Co.)

したがって、硫化反応は、ニッケル及びコバルトの硫化反応が十分に進行する酸化還元電位のもとでは、硫化水素の濃度により定量的に行われる。しかしながら、気相の硫化水素濃度が操業の定常状態に用いられる95〜100容量%の濃度よりも低いときには、硫酸溶液中に溶存する硫化水素量が少なくなり、しかもそれに依存する酸化還元電位が高めに維持されるため、ニッケル及びコバルトの硫化反応の進行が不十分となる領域となると考えられる。   Therefore, the sulfurization reaction is quantitatively performed based on the concentration of hydrogen sulfide under the oxidation-reduction potential at which the sulfurization reaction of nickel and cobalt sufficiently proceeds. However, when the hydrogen sulfide concentration in the gas phase is lower than the concentration of 95 to 100% by volume used in the steady state of operation, the amount of hydrogen sulfide dissolved in the sulfuric acid solution decreases, and the oxidation-reduction potential depending on it increases. Therefore, it is considered that the progress of the sulfidation reaction of nickel and cobalt is insufficient.

そのための対策として、前記操業条件を、供給する硫化水素ガス濃度の低下に見合うように変更することは容易でない。すなわち、前述のように硫化水素ガスを用いた硫化反応では、反応途上の液中の酸化還元電位及びpHを正確に測定することが困難であるからである。この中で、液中の硫化水素の溶存量と酸化還元電位の変化に、迅速かつ定量的に対応するためには、硫化用ガス中の硫化水素ガス濃度に応じて、反応容器内に投入するニッケル及びコバルト量を、定常状態のときの投入量からその所定の割合に減少させることが最も簡便で効果的であった。   As a countermeasure for this, it is not easy to change the operating conditions so as to meet the decrease in the concentration of hydrogen sulfide gas to be supplied. That is, as described above, in the sulfurization reaction using hydrogen sulfide gas, it is difficult to accurately measure the oxidation-reduction potential and pH in the liquid during the reaction. Among these, in order to respond quickly and quantitatively to changes in the dissolved amount of hydrogen sulfide and redox potential in the liquid, it is introduced into the reaction vessel according to the concentration of hydrogen sulfide gas in the sulfiding gas. It was the simplest and most effective to reduce the amount of nickel and cobalt from the amount charged in the steady state to the predetermined ratio.

すなわち、投入量の変更が、硫化用ガス中の硫化水素ガス濃度の低下割合と同じ程度の低下割合では、その効果が不十分であり、ニッケル及びコバルトの高収率が得られない。しかも、硫化用ガス中の硫化水素ガス濃度により液中の硫化反応の進行度合が変わるので、硫化用ガス中の硫化水素ガス濃度に応じて適切な投入量が選ばれる。   That is, when the change in the input amount is the same as the reduction rate of the hydrogen sulfide gas concentration in the sulfurizing gas, the effect is insufficient and a high yield of nickel and cobalt cannot be obtained. In addition, since the progress of the sulfidation reaction in the liquid varies depending on the hydrogen sulfide gas concentration in the sulfidizing gas, an appropriate input amount is selected according to the hydrogen sulfide gas concentration in the sulfiding gas.

例えば、硫化用ガス中の硫化水素ガス濃度が85〜90容量%の場合においては、反応容器内に導入するニッケル及びコバルト投入量としては、定常状態のときの投入量に対し質量割合で30〜35%に減少させる操作を採用する。すなわち、投入量の割合が定常状態のときの投入量に対し質量割合で35%を超えると、ニッケル及びコバルト収率が95%未満となる。一方、投入量の割合が定常状態のときの投入量に対し質量割合で30%未満では、ニッケル及びコバルト収率は向上するが、生産効率が低下する。   For example, when the hydrogen sulfide gas concentration in the sulfurizing gas is 85 to 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel is 30 to 30% by mass with respect to the amount charged in the steady state. Adopt the operation to reduce to 35%. That is, when the ratio of the input amount exceeds 35% by mass ratio with respect to the input amount in the steady state, the yields of nickel and cobalt are less than 95%. On the other hand, if the proportion of the input amount is less than 30% by mass with respect to the input amount in the steady state, the yield of nickel and cobalt is improved, but the production efficiency is lowered.

また、硫化用ガス中の硫化水素ガス濃度が95容量%未満で90容量%を超える値の場合においては、反応容器内に導入するニッケル及びコバルト投入量としては、定常状態のときの投入量に対し質量割合で55〜60%に減少させる操作を採用する。すなわち、投入量の割合が定常状態のときの投入量に対し質量割合で60%を超えると、ニッケル及びコバルト収率が95%未満となる。一方、投入量の割合が定常状態のときの投入量に対し質量割合で55%未満では、ニッケル及びコバルト収率は向上するが、生産効率が低下する。   In addition, when the hydrogen sulfide gas concentration in the sulfurizing gas is less than 95% by volume and more than 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel is set to a steady state input amount. On the other hand, an operation of reducing the mass ratio to 55 to 60% is adopted. That is, when the proportion of the input amount exceeds 60% by mass ratio with respect to the input amount in the steady state, the yield of nickel and cobalt becomes less than 95%. On the other hand, if the proportion of the input amount is less than 55% by mass relative to the input amount in the steady state, the yield of nickel and cobalt is improved, but the production efficiency is lowered.

したがって、例えば、硫化水素ガスの合成設備の定期的な設備保全のための休止から硫化水素ガスの製造を再開するためなど、該合成設備を立ち上げるときには、生成される硫化用ガス中の硫化水素濃度が上昇し、85容量%以上の濃度に達したときに、硫化反応工程に供給を開始することが好ましい。その後、生成される硫化用ガス中の硫化水素濃度が95〜100容量%の範囲に回復するまでの間は、上記(1)又は(2)の操作を採用して、反応容器内に投入するニッケル及びコバルト量を調整して操業することにより、95%以上のニッケル及びコバルトの高収率を得ることができる。なお、硫化用ガス中の硫化水素濃度が85容量%に達するまでは、生成される硫化用ガスは無害化処理に供される。   Therefore, when the synthesis equipment is started up, for example, in order to restart the production of hydrogen sulfide gas from the suspension for periodic equipment maintenance of the hydrogen sulfide gas synthesis equipment, hydrogen sulfide in the generated sulfurizing gas is used. When the concentration increases and reaches a concentration of 85% by volume or more, it is preferable to start supplying to the sulfurization reaction step. Thereafter, until the hydrogen sulfide concentration in the generated sulfurizing gas is restored to the range of 95 to 100% by volume, the operation of (1) or (2) above is adopted and put into the reaction vessel. By operating by adjusting the amounts of nickel and cobalt, a high yield of nickel and cobalt of 95% or more can be obtained. In addition, until the hydrogen sulfide concentration in the sulfiding gas reaches 85% by volume, the generated sulfiding gas is subjected to a detoxification process.

上記製造方法に用いるニッケル及びコバルトを含む硫酸水溶液としては、特に限定されるものではなく、種々のものが用いられるが、この中で、ニッケル酸化鉱石を高温高圧浸出法により湿式製錬する方法で得られたニッケル回収用母液が好ましく用いられる。すなわち、本発明の方法は、前記高温加圧酸浸出法によりニッケル酸化鉱石を湿式製錬する方法において、その硫化工程でのニッケル及びコバルトを含む硫化物の製造方法として、好ましく適用される。   The sulfuric acid aqueous solution containing nickel and cobalt used in the above production method is not particularly limited, and various types are used. Among them, a nickel oxide ore is hydrometallized by a high-temperature high-pressure leaching method. The obtained nickel recovery mother liquor is preferably used. That is, the method of the present invention is preferably applied as a method for producing a sulfide containing nickel and cobalt in the sulfiding step in the method of hydrometallizing nickel oxide ore by the high-temperature pressure acid leaching method.

前記高温加圧酸浸出法によりニッケル酸化鉱石を湿式製錬する方法としては、特に限定されるものではないが、例えば、図1に表す工程フローにより行われる。図1は、高温加圧酸浸出法によるニッケル酸化鉱石の湿式製錬方法の実施態様の一例を表す工程図である。
図1において、ニッケル酸化鉱石5は、最初に、浸出工程1で、硫酸を用いた高温加圧浸出に付され、浸出スラリー6が形成される。次いで、浸出スラリー6は、固液分離工程2に付され、多段洗浄された後ニッケル及びコバルトを含む浸出液7と浸出残渣8に分離される。浸出液7は、中和工程3に付され、3価の鉄水酸化物を含む中和澱物スラリー9とニッケル回収用母液10が形成される。最後に、ニッケル回収用母液10は、硫化工程4に付され、ニッケル及びコバルトを含む硫化物11とニッケル等が除去された貧液12に分離される。
Although it does not specifically limit as a method of hydrometallizing nickel oxide ore by the said high temperature pressurization acid leaching method, For example, it is performed by the process flow shown in FIG. FIG. 1 is a process diagram showing an example of an embodiment of a method for hydrometallizing nickel oxide ore by a high-temperature pressure acid leaching method.
In FIG. 1, nickel oxide ore 5 is first subjected to high temperature pressure leaching using sulfuric acid in leaching step 1 to form leaching slurry 6. Next, the leaching slurry 6 is subjected to the solid-liquid separation step 2 and, after being subjected to multi-stage washing, is separated into a leaching solution 7 containing nickel and cobalt and a leaching residue 8. The leachate 7 is subjected to a neutralization step 3 to form a neutralized starch slurry 9 containing a trivalent iron hydroxide and a nickel recovery mother liquor 10. Finally, the mother liquor 10 for nickel recovery is subjected to a sulfiding step 4 and separated into a sulfide 11 containing nickel and cobalt and a poor solution 12 from which nickel and the like have been removed.

前記ニッケル回収用母液としては、例えば、前記ニッケル酸化鉱石を高温高圧浸出法により湿式製錬する方法において、浸出及び固液分離工程で、ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、浸出スラリーを多段洗浄しながら、ニッケル、コバルトとともに、鉄、マンガン、マグネシウム、クロム、アルミニウム等の不純物元素を含む浸出液を得て、次いで、中和工程で、この浸出液のpHを調整し、鉄等の不純物元素を含む中和澱物スラリーを分離して得られるものである。なお、上記ニッケル回収用母液中に、ニッケル及びコバルトを含む硫化物からニッケル及びコバルトを回収する工程において技術的問題を誘発する量の亜鉛を含有する場合には、ニッケル及びコバルトを含む硫化物を分離する前に、亜鉛硫化物を分離する硫化工程を別途設けることができる。
また、前記ニッケル回収用母液のニッケルとコバルトの合計濃度としては、特に限定されるものではないが、通常2〜6g/Lである。ここで、ニッケル濃度としては、2〜5g/L、コバルト濃度としては、0.1〜0.6g/Lである。
As the mother liquor for nickel recovery, for example, in a method of hydrometallizing the nickel oxide ore by a high temperature high pressure leaching method, sulfuric acid is added to the nickel oxide ore slurry in the leaching and solid-liquid separation step, While leaching and leaching slurry are washed in multiple stages, a leachate containing impurity elements such as iron, manganese, magnesium, chromium and aluminum is obtained together with nickel and cobalt, and then the pH of the leachate is adjusted in the neutralization step. And a neutralized starch slurry containing an impurity element such as iron. In the case where the nickel recovery mother liquor contains zinc in an amount that induces technical problems in the step of recovering nickel and cobalt from the sulfide containing nickel and cobalt, the sulfide containing nickel and cobalt is added. Prior to the separation, a sulfurization step for separating the zinc sulfide can be separately provided.
The total concentration of nickel and cobalt in the mother liquor for nickel recovery is not particularly limited, but is usually 2 to 6 g / L. Here, the nickel concentration is 2 to 5 g / L, and the cobalt concentration is 0.1 to 0.6 g / L.

上記製造方法に用いる硫化用ガスとしては、高温加圧酸浸出法の実用プラントにおいて、該プラントに設けられた硫化水素ガスの合成設備から供給される硫化用ガスであり、該硫化用ガス中の硫化水素ガス濃度は、操業の定常状態においては95〜100容量%である。しかしながら、硫化用ガス中の硫化水素ガス濃度は、前記合成設備を立ち上げるときのように、硫化用ガスの供給が非定常な状態では、立ち上げ当初は硫化用ガス中の硫化水素濃度は低く、徐々に増加して所望の95〜100容量%の範囲に到達するものである。   The sulfurizing gas used in the above production method is a sulfurizing gas supplied from a hydrogen sulfide gas synthesis facility provided in the plant in a high-temperature pressurized acid leaching practical plant. The hydrogen sulfide gas concentration is 95 to 100% by volume in the steady state of operation. However, the hydrogen sulfide gas concentration in the sulfiding gas is low when the supply of the sulfiding gas is unsteady as in the case of starting up the synthesis facility. , Gradually increasing to reach the desired 95-100 volume% range.

上記製造方法において、反応容器内に投入するニッケル及びコバルト量の調整方法としては、硫化用ガス中の硫化水素ガス濃度に応じて、上記ニッケル及び/又はコバル硫酸水溶液の導入流量を絞ることにより行うことが最も簡便である。   In the above production method, the amount of nickel and cobalt introduced into the reaction vessel is adjusted by reducing the flow rate of the nickel and / or koval sulfuric acid aqueous solution according to the hydrogen sulfide gas concentration in the sulfurizing gas. Is the simplest.

上記製造方法において、必要に応じて、製造されたニッケル及びコバルトを含む硫化物からなる種晶を、反応容器内へ投入することができる。ここで、種晶の割合としては、特に限定されるものではないが、反応容器内に投入するニッケル及びコバルト量に対し150〜200質量%に相当する量が好ましい。これによって、より低温度で硫化反応を促進させ、同時に反応容器内面への生成硫化物の付着を抑制することができる。すなわち、硫化物の核生成を種晶表面で起こさせ析出が起こりやすい状態とすることと、それにより硫化物の微細核が容器内部で発生するのを抑制することができることに起因している。また、種晶の粒径を調整することにより得られる粒子径を制御することができる。   In the above production method, if necessary, seed crystals made of sulfide containing nickel and cobalt can be introduced into the reaction vessel. Here, the ratio of the seed crystal is not particularly limited, but an amount corresponding to 150 to 200% by mass with respect to the amount of nickel and cobalt charged into the reaction vessel is preferable. As a result, the sulfidation reaction can be promoted at a lower temperature, and at the same time, the produced sulfide can be prevented from adhering to the inner surface of the reaction vessel. That is, it is caused by the fact that sulfide nucleation is caused to occur on the surface of the seed crystal and precipitation is likely to occur, and that it is possible to suppress the generation of sulfide fine nuclei inside the container. Moreover, the particle diameter obtained by adjusting the particle diameter of the seed crystal can be controlled.

上記製造方法に用いる反応容器内の圧力としては、特に限定されるものではないが、ニッケル及びコバルトの硫化反応を進行させるため、100〜300kPaであることが好ましい。なお、硫化反応容器としては、多段に連結して用いることが効率的であり、その場合には、第1段を250〜300kPaとし、徐々に圧力を降下させ、最終段では100〜150kPaとすることが好ましい。これによって、硫化水素ガスが効率的に硫化反応に用いられる。   Although it does not specifically limit as a pressure in the reaction container used for the said manufacturing method, In order to advance the sulfurization reaction of nickel and cobalt, it is preferable that it is 100-300 kPa. In addition, as a sulfurization reaction vessel, it is efficient to use it connected in multiple stages. In that case, the first stage is 250 to 300 kPa, the pressure is gradually reduced, and the final stage is 100 to 150 kPa. It is preferable. Thereby, hydrogen sulfide gas is efficiently used for the sulfurization reaction.

上記製造方法に用いる硫酸水溶液のpHは、特に限定されるものではないが、硫化反応を進行させるため、3.0〜3.8であることが好ましい。すなわち、硫酸水溶液のpHが3.0未満では、前段の中和工程で鉄、アルミニウム等を十分に除去できない。一方、硫酸水溶液のpHが3.8を超えると、ニッケルやコバルトの水酸化物の生成が懸念される。   The pH of the aqueous sulfuric acid solution used in the above production method is not particularly limited, but is preferably 3.0 to 3.8 in order to promote the sulfurization reaction. That is, when the pH of the sulfuric acid aqueous solution is less than 3.0, iron, aluminum and the like cannot be sufficiently removed in the previous neutralization step. On the other hand, when the pH of the sulfuric acid aqueous solution exceeds 3.8, there is a concern about the formation of nickel or cobalt hydroxide.

上記製造方法に用いる硫酸水溶液の温度は、特に限定されるものではないが、65〜90℃であることが好ましい。すなわち、硫化反応自体は一般的に高温ほど促進されるが、90℃を超えると、温度を上昇するためにコストがかかること、反応速度が速いため反応容器への硫化物の付着起こること等の問題点も多い。   Although the temperature of the sulfuric acid aqueous solution used for the said manufacturing method is not specifically limited, It is preferable that it is 65-90 degreeC. That is, the sulfurization reaction itself is generally promoted at a higher temperature. However, when the temperature exceeds 90 ° C., the temperature increases, and the reaction rate is high, so that the sulfide is attached to the reaction vessel. There are many problems.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析方法はICP発光分析法で、また、硫化水素ガス濃度分析方法は、UVタイプの測定器で行った。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The metal analysis method used in Examples and Comparative Examples was ICP emission analysis, and the hydrogen sulfide gas concentration analysis method was performed using a UV type measuring instrument.

(実施例1、2、3、比較例1〜5)
ニッケル酸化鉱の高温加圧酸浸出法プラントから産出された、ニッケル濃度4.0g/L及びコバルト濃度0.3g/Lの組成を有し、pHが3.3で、液温度が65℃のニッケル回収用母液を用いて、並流式の硫化反応槽(4段)のそれぞれが所定の圧力になるように硫化水素を含む硫化用ガスを気相部に挿入して、ニッケルコバルト混合硫化物を製造した。また、硫化反応槽の第4段から回収されたニッケルコバルト混合硫化物を、種晶として硫化反応槽の第1段へ繰り返した。ここで、種晶の量は、ニッケル回収用母液により反応容器内に投入するニッケル及びコバルト量に対し180質量%に相当する量であった。また、硫化反応槽の内圧としては、第1段が270kPa、第2段が220kPa、第3段が180kPa及び第4段が150kPaであった。また、硫化反応槽の気−液界面の面積としては、4段合計で20〜30mであった。
(Examples 1, 2, 3, Comparative Examples 1-5)
Produced from a high-temperature pressure acid leaching process plant for nickel oxide ore and having a nickel concentration of 4.0 g / L and a cobalt concentration of 0.3 g / L, a pH of 3.3 and a liquid temperature of 65 ° C. Using nickel recovery mother liquor, a sulfiding gas containing hydrogen sulfide is inserted into the gas phase so that each of the cocurrent sulfiding reaction tanks (four stages) has a predetermined pressure, and nickel cobalt mixed sulfide Manufactured. Further, the nickel cobalt mixed sulfide recovered from the fourth stage of the sulfurization reactor was repeated as a seed crystal to the first stage of the sulfurization reactor. Here, the amount of the seed crystal was an amount corresponding to 180% by mass with respect to the amount of nickel and cobalt charged into the reaction vessel by the mother liquor for nickel recovery. The internal pressure of the sulfurization reactor was 270 kPa for the first stage, 220 kPa for the second stage, 180 kPa for the third stage, and 150 kPa for the fourth stage. In addition, the area of the gas-liquid interface of the sulfurization reactor was 20 to 30 m 2 in total for the four stages.

このときの操業の定常状態では、硫化用ガスの硫化水素ガス濃度としては、95〜100容量%、及びニッケル回収用母液の導入流量としては、375m/hであり、ニッケルの投入量としては1500kg/hである操業条件で行われ、ニッケル収率は97%が得られた。 In the steady state of the operation at this time, the hydrogen sulfide gas concentration of the sulfurizing gas is 95 to 100% by volume, the introduction flow rate of the nickel recovery mother liquor is 375 m 3 / h, and the input amount of nickel is A nickel yield of 97% was obtained under an operating condition of 1500 kg / h.

続いて、硫化用ガスの供給が非定常な状態を想定して、硫化水素ガス濃度が85〜90容量%の範囲の値の場合において、ニッケル回収用母液の導入流量を変えてニッケルの投入量を、上記操業の定常状態のニッケルの投入量(1500kg/h)に対し質量割合で33%(実施例1)、46%(比較例1)、60%(比較例2)、又は73%(比較例3)としたときのニッケル収率を求めた。結果を表1に示す。   Subsequently, assuming that the supply of the sulfurizing gas is in an unsteady state, when the hydrogen sulfide gas concentration is in the range of 85 to 90% by volume, the amount of nickel input is changed by changing the flow rate of the nickel recovery mother liquor. Is 33% (Example 1), 46% (Comparative Example 1), 60% (Comparative Example 2), or 73% (by weight) with respect to the amount of nickel input (1500 kg / h) in the steady state of the above operation. The nickel yield was determined as Comparative Example 3). The results are shown in Table 1.

また、硫化水素ガス濃度が95容量%未満で90容量%を超える値の場合において、ニッケル回収用母液の導入流量を変えてニッケルの投入量を、上記操業の定常状態のニッケルの投入量(1500kg/h)に対し質量割合で55%(実施例2)、60%(実施例3)、73%(比較例4)、又は86%(比較例5)としたときのニッケル収率を求めた。結果を表1に示す。
なお、ニッケル収率は、そのときのニッケルの投入量に対して硫化物として回収されたニッケルの割合で表す。
In addition, when the hydrogen sulfide gas concentration is less than 95% by volume and more than 90% by volume, the amount of nickel introduced is changed by changing the flow rate of the nickel recovery mother liquor, and the amount of nickel introduced in the steady state of operation (1500 kg). / H), the nickel yield was determined when the mass ratio was 55% (Example 2), 60% (Example 3), 73% (Comparative Example 4), or 86% (Comparative Example 5). . The results are shown in Table 1.
The nickel yield is expressed as the ratio of nickel recovered as sulfide to the amount of nickel input at that time.

Figure 2009173983
Figure 2009173983

表1より、実施例1〜3では、硫化用ガスの硫化水素ガス濃度供給が95%未満に低下した際に、ニッケルの投入量を、操業の定常状態のニッケルの投入量に対し所定の割合に減少させることにより本発明の方法に従って行われたので、高いニッケル収率が得られることが分かる。
これに対して、比較例1〜5では、ニッケルの投入量の割合がこれらの条件に合わないので、ニッケル収率が低いことによって満足すべき結果が得られないことが分かる。
From Table 1, in Examples 1 to 3, when the hydrogen sulfide gas concentration supply of the sulfurizing gas was reduced to less than 95%, the amount of nickel input was a predetermined ratio with respect to the amount of nickel input in a steady state of operation. It can be seen that a high nickel yield can be obtained because the process was carried out according to the method of the present invention by reducing the amount.
On the other hand, in Comparative Examples 1-5, since the ratio of the input amount of nickel does not meet these conditions, it can be seen that satisfactory results cannot be obtained due to the low nickel yield.

以上より明らかなように、本発明のニッケル及びコバルトを含む硫化物の製造方法は、加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、前記硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、ニッケル及びコバルトの高収率を維持する方法として好適である。特に、例えば、硫化水素ガス合成設備の立ち上げ時などの非定常状態に際して、有効に活用することができる。   As apparent from the above, the method for producing a sulfide containing nickel and cobalt according to the present invention introduces an aqueous sulfuric acid solution containing nickel and cobalt into a pressurized reaction vessel and introduces hydrogen sulfide into the gas phase. In a method for producing a sulfide containing nickel and cobalt by supplying a sulfide gas containing sulfur, the hydrogen sulfide gas concentration in the sulfide gas is less than 95 to 100% by volume used in a steady state of operation. It is suitable as a method for maintaining a high yield of nickel and cobalt when the concentration is reduced to a low concentration. In particular, it can be effectively used in an unsteady state such as when a hydrogen sulfide gas synthesis facility is started up.

高温加圧酸浸出法によるニッケル酸化鉱石の湿式製錬方法の実施態様の一例を表す工程図である。It is process drawing showing an example of the embodiment of the hydrometallurgy method of the nickel oxide ore by the high temperature pressurization acid leaching method.

符号の説明Explanation of symbols

1 浸出工程
2 固液分離工程
3 中和工程
4 硫化工程
5 ニッケル酸化鉱石
6 浸出スラリー
7 浸出液
8 浸出残渣
9 中和澱物スラリー
10 ニッケル回収用母液
11 硫化物
12 貧液
DESCRIPTION OF SYMBOLS 1 Leaching process 2 Solid-liquid separation process 3 Neutralization process 4 Sulfurization process 5 Nickel oxide ore 6 Leaching slurry 7 Leaching liquid 8 Leaching residue 9 Neutralized starch slurry 10 Nickel recovery mother liquor 11 Sulfide 12 Poor liquid

Claims (6)

加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、
前記硫化用ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、該硫化水素ガス濃度に応じて、下記(1)又は(2)の操作を採用することを特徴とするニッケル及びコバルトを含む硫化物の製造方法。
(1)前記硫化用ガス中の硫化水素ガス濃度が85〜90容量%の場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で30〜35%に減少させる。
(2)前記硫化用ガス中の硫化水素ガス濃度が90容量%を超える場合において、前記反応容器内に、前記硫酸水溶液にともない導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で55〜60%の割合に減少させる。
In a method for producing a sulfide containing nickel and cobalt by introducing a sulfuric acid aqueous solution containing nickel and cobalt into a pressurized reaction vessel and supplying a sulfurizing gas containing hydrogen sulfide in the gas phase. ,
When the hydrogen sulfide gas concentration in the sulfiding gas is reduced from 95 to 100% by volume used in the steady state of operation to a concentration lower than that, the following (1) or ( A method for producing a sulfide containing nickel and cobalt, wherein the operation of 2) is employed.
(1) When the hydrogen sulfide gas concentration in the sulfiding gas is 85 to 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is the amount introduced in a steady state. The mass ratio is reduced to 30 to 35%.
(2) When the hydrogen sulfide gas concentration in the sulfiding gas exceeds 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel with the sulfuric acid aqueous solution is changed to the amount introduced in a steady state. On the other hand, the mass ratio is reduced to 55 to 60%.
前記反応容器内に、製造されたニッケル及びコバルトを含む硫化物からなる種晶を、反応容器内に投入するニッケル及びコバルト量に対し150〜200質量%に相当する割合で投入することを特徴とする請求項1に記載のニッケル及びコバルトを含む硫化物の製造方法。   A seed crystal made of a sulfide containing nickel and cobalt is charged into the reaction vessel at a ratio corresponding to 150 to 200% by mass with respect to the amount of nickel and cobalt charged into the reaction vessel. A method for producing a sulfide containing nickel and cobalt according to claim 1. 前記反応容器内の圧力は、100〜300kPaであることを特徴とする請求項1又は2に記載のニッケル及びコバルトを含む硫化物の製造方法。   The method for producing a sulfide containing nickel and cobalt according to claim 1 or 2, wherein the pressure in the reaction vessel is 100 to 300 kPa. 前記硫酸水溶液は、ニッケル酸化鉱石を高温高圧浸出法により湿式製錬する方法において、浸出及び固液分離工程で、ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、浸出スラリーを多段洗浄しながら、ニッケル及びコバルトとともに不純物元素を含む浸出液を得て、次いで、中和工程で、この浸出液のpHを調整し、不純物元素を含む中和澱物スラリーを分離して得られたニッケル回収用母液であり、かつニッケルとコバルトの合計濃度が2〜6g/Lであることを特徴とする請求項1〜3のいずれかに記載のニッケル及びコバルトを含む硫化物の製造方法。   In the method of hydrometallizing nickel oxide ore by high-temperature and high-pressure leaching method, the sulfuric acid aqueous solution is obtained by adding sulfuric acid to a slurry of nickel oxide ore in a leaching and solid-liquid separation step, leaching under a high temperature and high pressure, Nickel obtained by obtaining a leachate containing impurity elements together with nickel and cobalt while performing multi-stage cleaning, and then adjusting the pH of the leachate and separating the neutralized starch slurry containing impurity elements in a neutralization step The method for producing a sulfide containing nickel and cobalt according to any one of claims 1 to 3, wherein the method is a recovery mother liquor and the total concentration of nickel and cobalt is 2 to 6 g / L. 前記硫酸水溶液の温度は、65〜90℃であることを特徴とする請求項1〜4のいずれかに記載のニッケル及びコバルトを含む硫化物の製造方法。   The method for producing a sulfide containing nickel and cobalt according to any one of claims 1 to 4, wherein the temperature of the aqueous sulfuric acid solution is 65 to 90 ° C. 前記硫酸水溶液のpHは、3.0〜3.8であることを特徴とする請求項1〜5のいずれかに記載のニッケル及びコバルトを含む硫化物の製造方法。   The method for producing a sulfide containing nickel and cobalt according to any one of claims 1 to 5, wherein the aqueous sulfuric acid solution has a pH of 3.0 to 3.8.
JP2008012173A 2008-01-23 2008-01-23 Method for producing sulfide containing nickel and cobalt Active JP5125543B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008012173A JP5125543B2 (en) 2008-01-23 2008-01-23 Method for producing sulfide containing nickel and cobalt
AU2008255267A AU2008255267B2 (en) 2008-01-23 2008-12-12 Method for producing sulfide containing nickel and cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012173A JP5125543B2 (en) 2008-01-23 2008-01-23 Method for producing sulfide containing nickel and cobalt

Publications (2)

Publication Number Publication Date
JP2009173983A true JP2009173983A (en) 2009-08-06
JP5125543B2 JP5125543B2 (en) 2013-01-23

Family

ID=40943451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012173A Active JP5125543B2 (en) 2008-01-23 2008-01-23 Method for producing sulfide containing nickel and cobalt

Country Status (2)

Country Link
JP (1) JP5125543B2 (en)
AU (1) AU2008255267B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145644A1 (en) * 2010-05-18 2011-11-24 住友金属鉱山株式会社 Method for controlling reaction in sulfuration reaction step
WO2013027603A1 (en) * 2011-08-22 2013-02-28 住友金属鉱山株式会社 Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
WO2014021062A1 (en) 2012-07-31 2014-02-06 住友金属鉱山株式会社 Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014141408A (en) * 2014-02-27 2014-08-07 Sumitomo Metal Mining Co Ltd Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas
JP2014141749A (en) * 2014-04-02 2014-08-07 Sumitomo Metal Mining Co Ltd Method of reducing nickel recovery loss, wet metallurgy method for nickel oxide ore and sulfurization processing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
CN115341106A (en) * 2022-08-30 2022-11-15 中伟新材料股份有限公司 Method and device for producing high nickel matte from low nickel matte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442327A (en) * 1977-08-01 1979-04-04 Amax Inc Method of precipitating nickel as nickel sulfide from acidic nickel sulfate solution
JPS5732786A (en) * 1980-08-02 1982-02-22 Nippon Mining Co Ltd Method and device for dearsenization
JP2003313617A (en) * 2002-02-25 2003-11-06 Sumitomo Metal Mining Co Ltd Control method for sulfidization reaction
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424866A (en) * 1942-04-15 1947-07-29 Marvin J Udy Process for the treatment of matte to recover metallic salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442327A (en) * 1977-08-01 1979-04-04 Amax Inc Method of precipitating nickel as nickel sulfide from acidic nickel sulfate solution
JPS5732786A (en) * 1980-08-02 1982-02-22 Nippon Mining Co Ltd Method and device for dearsenization
JP2003313617A (en) * 2002-02-25 2003-11-06 Sumitomo Metal Mining Co Ltd Control method for sulfidization reaction
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145644A1 (en) * 2010-05-18 2011-11-24 住友金属鉱山株式会社 Method for controlling reaction in sulfuration reaction step
JP2011241446A (en) * 2010-05-18 2011-12-01 Sumitomo Metal Mining Co Ltd Method for controlling reaction in sulfuration reaction step
AU2011255953B2 (en) * 2010-05-18 2015-06-18 Sumitomo Metal Mining Co., Ltd. Method for controlling reaction in sulfuration reaction step
WO2013027603A1 (en) * 2011-08-22 2013-02-28 住友金属鉱山株式会社 Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
US8916115B2 (en) 2011-08-22 2014-12-23 Sumitomo Metal Mining Co., Ltd. Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
WO2014021062A1 (en) 2012-07-31 2014-02-06 住友金属鉱山株式会社 Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
US9321646B2 (en) 2012-07-31 2016-04-26 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014141408A (en) * 2014-02-27 2014-08-07 Sumitomo Metal Mining Co Ltd Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas
JP2014141749A (en) * 2014-04-02 2014-08-07 Sumitomo Metal Mining Co Ltd Method of reducing nickel recovery loss, wet metallurgy method for nickel oxide ore and sulfurization processing system

Also Published As

Publication number Publication date
AU2008255267A1 (en) 2009-08-06
JP5125543B2 (en) 2013-01-23
AU2008255267B2 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
AU2009202417C1 (en) Hydrometallurgical process for a nickel oxide ore
US8716177B2 (en) Production process of sulfide containing nickel and cobalt
JP5125543B2 (en) Method for producing sulfide containing nickel and cobalt
JP4888580B2 (en) Liquid storage device and pressure control method thereof
JP6388043B2 (en) Sulfide production method, nickel oxide ore hydrometallurgy method
WO2022213679A1 (en) Method for leaching nickel-ammonia solution from nickel-iron alloy in wet process and application
AU2017218246A1 (en) Sulfuration treatment method, sulfide production method, and hydrometallurgical process for nickel oxide ore
JP5359989B2 (en) Method for preventing the formation of sulfides
JP7251406B2 (en) Method for producing cobalt aqueous solution
CA2978233C (en) Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
EP3357609A1 (en) Method for manufacturing nickel powder, and method for operating reaction facility
JP6953988B2 (en) How to remove sulfide
WO2016194709A1 (en) Free acid-removing equipment, free acid-removing method, and method for manufacturing mixed nickel and cobalt sulfide
JP2008231470A (en) Method for controlling reaction in sulphidizing process
JP2012206868A (en) Method for producing readily-soluble molybdenum trioxide, and readily soluble molybdenum trioxide
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2021105206A (en) Solvent extraction method and method for producing cobalt aqueous solution
WO2017130693A1 (en) Method for removing residual hydrogen sulfide
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP2019044207A (en) Manufacturing method of nickel and cobalt sulfide
JP2021110024A (en) Method for producing nickel sulfate aqueous solution
JP2019035132A (en) Neutralization treatment method
JP2019094544A (en) Dezincing system for nickel sulfate aqueous solution, and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3