JP2008231470A - Method for controlling reaction in sulphidizing process - Google Patents
Method for controlling reaction in sulphidizing process Download PDFInfo
- Publication number
- JP2008231470A JP2008231470A JP2007069855A JP2007069855A JP2008231470A JP 2008231470 A JP2008231470 A JP 2008231470A JP 2007069855 A JP2007069855 A JP 2007069855A JP 2007069855 A JP2007069855 A JP 2007069855A JP 2008231470 A JP2008231470 A JP 2008231470A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- sulfide
- reaction
- sulfuric acid
- leaching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、硫化工程の反応制御方法に関し、さらに詳しくは、ニッケル及びコバルトを含む硫酸水溶液(A)に、硫化水素ガスを吹きこみ、ニッケル及びコバルトを含む硫化物(B)と貧液を形成する硫化工程において、反応容器内面への生成硫化物の付着を抑制するとともに、反応終点のニッケル濃度を低い水準で安定させ、ニッケル回収率を高めることができる高効率な硫化工程の反応制御方法に関する。特に、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、ニッケルとコバルトを含む硫酸水溶液の硫化工程の反応制御方法として用いられる。 The present invention relates to a reaction control method for a sulfidation step, and more specifically, hydrogen sulfide gas is blown into a sulfuric acid aqueous solution (A) containing nickel and cobalt to form a poor solution with a sulfide (B) containing nickel and cobalt. The present invention relates to a highly efficient sulfidation process reaction control method capable of suppressing the adhesion of the produced sulfide to the inner surface of the reaction vessel and stabilizing the nickel concentration at the reaction end point at a low level and increasing the nickel recovery rate. . In particular, in a hydrometallurgical method based on high-temperature pressure leaching for recovering nickel from nickel oxide ore, it is used as a reaction control method for a sulfurization step of a sulfuric acid aqueous solution containing nickel and cobalt.
従来、ニッケル製錬においては、硫化ニッケル鉱を乾式製錬することにより、ニッケル品位が30重量%程度のマットを得て、その後、塩素浸出−電解採取法により電気ニッケルを製造する方法が行われている。
近年、ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いた高温加圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であることとともに、ニッケル品位を50重量%程度まで向上させたニッケル硫化物を得ることができるという利点を有している。このニッケル硫化物は、通常、浸出液を浄液した後、硫化工程において硫化水素ガスを吹き込むことにより、沈殿生成される。
Conventionally, in nickel smelting, nickel sulfide ore is dry-smelted to obtain a mat having a nickel quality of about 30% by weight, and thereafter a method for producing electrical nickel by a chlorine leaching-electrolytic extraction method is performed. ing.
In recent years, attention has been focused on a high pressure acid leaching method using sulfuric acid as a wet smelting method of nickel oxide ore. Unlike the conventional dry smelting method, which is a conventional nickel oxide ore smelting method, this method does not include dry processes such as reduction and drying processes, and is a consistent wet process. In addition, the nickel sulfide having an improved nickel quality up to about 50% by weight can be obtained. This nickel sulfide is usually precipitated by purifying the leachate and then blowing hydrogen sulfide gas in the sulfiding step.
ところで、ニッケルの湿式製錬の分野においては、ニッケル硫化物の生成のほか、液中の亜鉛、銅、鉄等の不純物元素を微加圧下で硫化して分離する方法が行なわれていた。しかしながら、従来の技術では、硫化の反応温度を100℃前後に設定することにより、反応温度を高めて反応速度を大きくして、反応効率の向上を図っていた。しかしながら、従来の技術では反応容器内面への生成硫化物の付着が発生しやすいという問題点があり、かつ操業コストが高いという問題もあった。 By the way, in the field of nickel hydrometallurgy, in addition to the formation of nickel sulfide, a method of separating and separating impurity elements such as zinc, copper, and iron in a liquid under slight pressure has been performed. However, in the prior art, by setting the reaction temperature of sulfidation to around 100 ° C., the reaction temperature is increased to increase the reaction rate, thereby improving the reaction efficiency. However, the conventional technique has a problem that the produced sulfide is likely to adhere to the inner surface of the reaction vessel, and there is also a problem that the operation cost is high.
この解決策として、ニッケル酸化鉱の高温加圧浸出プロセス(例えば、特許文献1参照。)において、硫化工程で硫化物種晶を添加すること、及び硫化工程で得られたニッケル及びコバルト混合硫化物を繰返し循環して使用することが開示され、前記硫化物の添加量としては、液中のニッケル量の1〜3倍量が好ましいとしている。
ところで、一般に、ニッケル及びコバルトを含む硫酸水溶液に、硫化水素ガスを吹き込み、ニッケル含む硫化物を得る工程においては、反応後に得られる液(以下、貧液と呼称する場合がある。)は微量のニッケルを含んでいる。この貧液は、この工程後に最終中和工程へと送られ処理されるため、貧液に含まれているニッケルは回収することが困難であった。したがって、この貧液中のニッケル濃度を低下させることが、ニッケル回収率を高めるため重要な技術課題であった。
As a solution to this, in the high-temperature pressure leaching process of nickel oxide ore (see, for example, Patent Document 1), a sulfide seed crystal is added in the sulfidation step, and the nickel and cobalt mixed sulfide obtained in the sulfidation step is added. It is disclosed that it is repeatedly circulated and used, and the amount of sulfide added is preferably 1 to 3 times the amount of nickel in the liquid.
By the way, in general, in the step of blowing hydrogen sulfide gas into a sulfuric acid aqueous solution containing nickel and cobalt to obtain a sulfide containing nickel, the liquid obtained after the reaction (hereinafter sometimes referred to as a poor liquid) is a trace amount. Contains nickel. Since this poor solution is sent to the final neutralization step after this step and processed, it is difficult to recover the nickel contained in the poor solution. Therefore, reducing the nickel concentration in the poor solution has been an important technical issue in order to increase the nickel recovery rate.
しかしながら、上記の繰返し循環量では、反応容器内面への生成硫化物の付着を十分に抑制することが困難であるとともに、貧液中のニッケル濃度を十分に低下させることが困難であった。以上の状況から、硫化工程において、反応終点のニッケル濃度を低い水準で安定させ、ニッケル回収率を高めることができる高効率な硫化工程の反応制御方法が求められている。 However, with the above repeated circulation amount, it is difficult to sufficiently suppress the adhesion of the product sulfide to the inner surface of the reaction vessel and it is difficult to sufficiently reduce the nickel concentration in the poor solution. From the above situation, there is a need for a highly efficient reaction control method for the sulfurization process that can stabilize the nickel concentration at the reaction end point at a low level and increase the nickel recovery rate in the sulfurization process.
本発明の目的は、上記の従来技術の問題点に鑑み、ニッケルを含む硫酸水溶液(A)に、硫化水素ガスを吹きこみ、ニッケルを含む硫化物(B)と貧液を形成する硫化工程において、反応容器内面への生成硫化物の付着を抑制するとともに、反応終点のニッケル濃度を低い水準で安定させ、ニッケル回収率を高めることができる高効率な硫化工程の反応制御方法を提供することにある。 In view of the above-mentioned problems of the prior art, an object of the present invention is to perform a sulfurization process in which a hydrogen sulfide gas is blown into a sulfuric acid aqueous solution (A) containing nickel to form a sulfide and a sulfide containing nickel (B). To provide a highly efficient sulfidation process reaction control method capable of suppressing the adhesion of the generated sulfide to the inner surface of the reaction vessel, stabilizing the nickel concentration at the reaction end point at a low level, and increasing the nickel recovery rate. is there.
本発明者らは、上記目的を達成するために、ニッケルを含む硫酸水溶液に、硫化水素ガスを吹きこみ、ニッケルを含む硫化物と貧液を形成する硫化工程について、鋭意研究を重ねた結果、硫化工程に際し、種晶として、該硫酸水溶液に含まれるニッケル量に対し、特定のニッケル量に当たる該硫化物を循環使用したところ、反応容器内面への生成硫化物の付着を十分に抑制するとともに、貧液中のニッケル濃度をこれまで以上に低い水準で安定させることができることを見出し、本発明を完成した。 In order to achieve the above object, the inventors of the present invention have conducted extensive research on a sulfurization process in which hydrogen sulfide gas is blown into a sulfuric acid aqueous solution containing nickel to form a sulfide and a sulfide containing nickel. In the sulfidation step, when the sulfide corresponding to a specific nickel amount is circulated and used as a seed crystal for the nickel amount contained in the sulfuric acid aqueous solution, the adhesion of the generated sulfide to the inner surface of the reaction vessel is sufficiently suppressed, The present inventors have found that the nickel concentration in the poor solution can be stabilized at a level lower than before, thus completing the present invention.
すなわち、本発明の第1の発明によれば、ニッケルを含む硫酸水溶液(A)に、硫化水素ガスを吹きこみ、ニッケルを含む硫化物(B)と貧液を形成する硫化工程において、
種晶として、該硫酸水溶液(A)に含まれるニッケル量に対し、4〜6倍のニッケル量に当たる該硫化物(B)を循環使用することを特徴とする硫化工程の反応制御方法が提供される。
That is, according to the first invention of the present invention, in the sulfurization step of blowing hydrogen sulfide gas into the sulfuric acid aqueous solution (A) containing nickel and forming a sulfide (B) containing nickel and a poor solution,
As a seed crystal, there is provided a reaction control method for a sulfiding step, characterized in that the sulfide (B) corresponding to a
また、本発明の第2の発明によれば、第1の発明において、前記硫化工程の反応温度は、70〜95℃であることを特徴とする硫化工程の反応制御方法が提供される。 Moreover, according to the second invention of the present invention, there is provided the reaction control method for the sulfiding step, characterized in that, in the first invention, the reaction temperature of the sulfiding step is 70 to 95 ° C.
また、本発明の第3の発明によれば、第1又は2の発明において、前記硫酸水溶液(A)は、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、浸出工程、固液分離工程、及び中和工程を経て回収されるニッケル及びコバルトを含む硫酸水溶液からなる母液であることを特徴とする硫化工程の反応制御方法が提供される。 According to a third invention of the present invention, in the first or second invention, the aqueous sulfuric acid solution (A) is leached in a hydrometallurgical method based on high-temperature pressure leaching for recovering nickel from nickel oxide ore. There is provided a reaction control method for a sulfiding step, which is a mother liquor comprising a sulfuric acid aqueous solution containing nickel and cobalt recovered through a step, a solid-liquid separation step, and a neutralization step.
また、本発明の第4の発明によれば、第3の発明において、前記母液は、ニッケル濃度が2〜5g/L、及びコバルト濃度が0.1〜1.0g/Lであって、pHが3.2〜4.0であることを特徴とする硫化工程の反応制御方法が提供される。 According to a fourth invention of the present invention, in the third invention, the mother liquor has a nickel concentration of 2 to 5 g / L, a cobalt concentration of 0.1 to 1.0 g / L, and a pH Is 3.2 to 4.0, a method for controlling the reaction of the sulfiding step is provided.
本発明の硫化工程の反応制御方法は、反応容器内面への生成硫化物の付着を十分に抑制するとともに、貧液中のニッケル濃度をこれまで以上に低い水準で安定させることができる反応制御方法として、その工業的価値は極めて大きい。特に、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、ニッケルとコバルトを含む硫酸水溶液に、硫化水素ガスを吹きこみ、ニッケルとコバルトを含む硫化物と貧液を形成する硫化工程の反応制御方法として有用である。 The reaction control method of the sulfiding step of the present invention is a reaction control method capable of sufficiently suppressing the adhesion of the product sulfide to the inner surface of the reaction vessel and stabilizing the nickel concentration in the poor liquid at a level lower than before. As such, its industrial value is extremely large. In particular, in a hydrometallurgical process based on high-temperature pressure leaching to recover nickel from nickel oxide ore, hydrogen sulfide gas is blown into a sulfuric acid aqueous solution containing nickel and cobalt to form sulfide and poor liquid containing nickel and cobalt. It is useful as a reaction control method for the sulfuration process.
本発明の硫化工程の反応制御方法は、ニッケルを含む硫酸水溶液(A)に、硫化水素ガスを吹きこみ、ニッケルを含む硫化物(B)と貧液を形成する硫化工程において、種晶として、該硫酸水溶液(A)に含まれるニッケル量に対し、4〜6倍のニッケル量に当たる該硫化物(B)を循環使用することを特徴とする。
The reaction control method of the sulfidation step of the present invention is carried out by blowing hydrogen sulfide gas into a sulfuric acid aqueous solution (A) containing nickel, and forming a poor solution with the sulfide (B) containing nickel as a seed crystal. The sulfide (B) corresponding to a
本発明において、種晶として、硫酸水溶液(A)に含まれるニッケル量に対し、4〜6倍、好ましくは4〜5倍のニッケル量に当たる硫化物(B)を循環使用することが重要である。これによって、反応容器内面への生成硫化物の付着を十分に抑制するとともに、貧液中のニッケル濃度をこれまで以上に低い水準で安定させることができる。
すなわち、硫化工程に循環された硫化物は、新規に発生する硫化物の発生の核となるので、反応速度が遅い比較的低温であっても、充分な硫化物の発生速度を維持することができる。また、硫化物発生の核が存在することにより、生成する硫化物の粒子は比較的大きな粒子となるため、反応槽内における滞留時間が短くなるとともに、反応槽内に付着することもなくなる。ここで、循環使用量が4倍未満では、貧液中のニッケル濃度が上昇し、ニッケル回収率が低下する。一方、循環使用量が6倍を超えると、それ以上の効果は期待できない。
In the present invention, it is important to circulate and use the sulfide (B) corresponding to 4 to 6 times, preferably 4 to 5 times the amount of nickel contained in the sulfuric acid aqueous solution (A) as a seed crystal. . As a result, adhesion of the product sulfide to the inner surface of the reaction vessel can be sufficiently suppressed, and the nickel concentration in the poor liquid can be stabilized at a lower level than before.
In other words, since the sulfide circulated in the sulfidation process becomes the nucleus of the generation of newly generated sulfide, a sufficient generation rate of sulfide can be maintained even at a relatively low temperature where the reaction rate is low. it can. In addition, the presence of sulfide-generating nuclei makes the sulfide particles produced relatively large, so that the residence time in the reaction vessel is shortened and the particles are not deposited in the reaction vessel. Here, if the circulation usage is less than 4 times, the nickel concentration in the poor liquid increases and the nickel recovery rate decreases. On the other hand, if the circulation usage exceeds 6 times, no further effect can be expected.
上記硫化工程に用いる設備としては、特に限定されるものではないが、硫化工程内で所定量の硫化物の循環使用がなされる方式のものが用いられる。
図1は、硫化工程の設備配置の一例を表す概略図である。図1において、撹拌反応槽1で、ニッケル及びコバルトを含む硫酸水溶液からなる始液4中に、循環硫化物スラリーからなる種晶6を添加し、さらに硫化水素ガス5を吹き込みながら、硫化反応が行なわれる。反応後のスラリーは、シックナー等の沈降槽2へ流送され、ニッケルを含む硫化物は底部から、濃縮物スラリー7として分離され、中継槽3を経て、所定割合で分配され、撹拌反応槽1へ循環される。一方、中継槽3から、回収硫化物8が抜き出され次工程で処理される。ここで、硫化工程への始液流量を測定、調整し、それが変動した場合には、シックナーより得られる硫化物スラリーの流量を調節することにより、貧液のニッケル濃度を維持するように制御する。
The equipment used in the sulfidation process is not particularly limited, but a system in which a predetermined amount of sulfide is circulated in the sulfidation process is used.
FIG. 1 is a schematic diagram illustrating an example of equipment layout in the sulfurization process. In FIG. 1, in a
上記硫化工程の反応温度は、特に限定されるものではなく、70〜95℃が好ましく、80℃程度の比較的低温度がより好ましい。すなわち、硫化反応自体は一般的に高温ほど促進されるが、95℃を超えると、温度を上昇するためにコストがかかること、反応速度が速いため反応容器への硫化物の付着起こること等の問題点も多い。 The reaction temperature in the sulfiding step is not particularly limited, and is preferably 70 to 95 ° C, and more preferably a relatively low temperature of about 80 ° C. That is, the sulfurization reaction itself is generally promoted at higher temperatures. However, when the temperature exceeds 95 ° C., the temperature rises, and the reaction rate is high. There are many problems.
上記硫酸水溶液(A)としては、特に限定されるものではなく、ニッケル及び/又はコバルトを含む硫酸水溶液に広く適用されるが、この中で、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、浸出工程、固液分離工程、及び中和工程を経て回収されるニッケル及びコバルトを含む硫酸水溶液からなる母液が好ましく用いられる。 The sulfuric acid aqueous solution (A) is not particularly limited and is widely applied to a sulfuric acid aqueous solution containing nickel and / or cobalt. Among them, high-temperature pressure leaching for recovering nickel from nickel oxide ore is used. In the hydrometallurgy method based on this, a mother liquor composed of a sulfuric acid aqueous solution containing nickel and cobalt recovered through a leaching step, a solid-liquid separation step, and a neutralization step is preferably used.
以下に、ニッケル酸化鉱石の高温加圧酸浸出法において、本発明の硫化工程の反応制御方法を用いた場合について説明する。
図2は、本発明の方法を用いたニッケル酸化鉱石の高温加圧酸浸出法の実施態様の一例を表す製錬工程図である。
図2において、ニッケル酸化鉱石15は、最初に、浸出工程11で硫酸を用いた高温加圧浸出に付され、浸出スラリー16が形成される。浸出スラリー16は、固液分離工程12に付され、多段洗浄された後ニッケル及びコバルトを含む浸出液17と浸出残渣18に分離される。浸出液17は、中和工程13に付され、3価の鉄水酸化物を含む中和澱物スラリー19とニッケル回収用の母液20が形成される。母液20は、硫化工程14に付され、ニッケル等が除去された貧液22とニッケル及びコバルトを含む硫化物21とに分離されるが、生成された硫化物21を循環使用する。
Below, the case where the reaction control method of the sulfidation process of the present invention is used in the high-temperature pressure acid leaching method of nickel oxide ore will be described.
FIG. 2 is a smelting process diagram showing an example of an embodiment of a high-temperature pressure acid leaching method of nickel oxide ore using the method of the present invention.
In FIG. 2, the nickel oxide ore 15 is first subjected to high-temperature pressure leaching using sulfuric acid in the leaching step 11 to form a leaching slurry 16. The leaching slurry 16 is subjected to the solid-liquid separation step 12 and, after being subjected to multi-stage washing, is separated into a leaching solution 17 containing nickel and cobalt and a leaching residue 18. The leachate 17 is subjected to a neutralization step 13 to form a neutralized starch slurry 19 containing trivalent iron hydroxide and a mother liquor 20 for nickel recovery. The mother liquor 20 is subjected to the sulfidation step 14 and separated into a poor liquid 22 from which nickel or the like has been removed and a sulfide 21 containing nickel and cobalt, but the produced sulfide 21 is recycled.
次に、上記高温加圧酸浸出法の各工程の概略を説明する。
(1)浸出工程
上記浸出工程は、ニッケル酸化鉱石のスラリーに硫酸を添加し、220〜280℃の温度下で撹拌処理して、浸出残渣と浸出液からなる浸出スラリーを形成する工程である。この工程では、高温加圧容器(オートクレーブ)が用いられる。
Next, an outline of each step of the high-temperature pressure acid leaching method will be described.
(1) Leaching step The leaching step is a step of adding sulfuric acid to a slurry of nickel oxide ore and stirring at a temperature of 220 to 280 ° C. to form a leaching slurry comprising a leaching residue and a leaching solution. In this step, a high-temperature pressurized container (autoclave) is used.
浸出工程で用いるニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱である。前記ラテライト鉱のニッケル含有量は、通常、0.8〜2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10〜50重量%であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。 Nickel oxide ores used in the leaching step are mainly so-called laterite ores such as limonite or saprolite ores. The nickel content of the laterite ore is usually 0.8 to 2.5% by weight, and is contained as a hydroxide or a siliceous clay (magnesium silicate) mineral. Further, the iron content is 10 to 50% by weight and is mainly in the form of trivalent hydroxide (goethite), but partly divalent iron is contained in the siliceous clay.
浸出工程においては、下記の式(1)〜(5)で表される浸出反応と高温熱加水分解反応によって、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。しかしながら、鉄イオンの固定化は、完全には進行しないので得られる浸出スラリーの液部分には、ニッケル、コバルト等のほか、2価と3価の鉄イオンが含まれるのが通常である。 In the leaching step, leaching as sulfates such as nickel and cobalt and leaching iron sulfate as hematite by leaching reaction and high-temperature thermal hydrolysis reaction represented by the following formulas (1) to (5) Immobilization is performed. However, since the fixation of iron ions does not proceed completely, the leaching slurry obtained usually contains divalent and trivalent iron ions in addition to nickel and cobalt.
「浸出反応」
MO+H2SO4 ⇒ MSO4+H2O (1)
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
2Fe(OH)3+3H2SO4 ⇒ Fe2(SO4)3+6H2O (2)
FeO+H2SO4 ⇒ FeSO4+H2O (3)
"Leaching reaction"
MO + H 2 SO 4 ⇒ MSO 4 + H 2 O (1)
(In the formula, M represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
2Fe (OH) 3 + 3H 2 SO 4 ⇒ Fe 2 (SO 4 ) 3 + 6H 2 O (2)
FeO + H 2 SO 4 ⇒ FeSO 4 + H 2 O (3)
「高温熱加水分解反応」
2FeSO4+H2SO4+1/2O2 ⇒ Fe2(SO4)3+H2O (4)
Fe2(SO4)3+3H2O⇒ Fe2O3+3H2SO4 (5)
"High temperature thermal hydrolysis reaction"
2FeSO 4 + H 2 SO 4 + 1 / 2O 2 ⇒ Fe 2 (SO 4 ) 3 + H 2 O (4)
Fe 2 (SO 4) 3 + 3H 2 O⇒ Fe 2
浸出工程におけるスラリー濃度は、特に限定されるものではないが、浸出スラリーのスラリー濃度が15〜45重量%になるように調製することが好ましい。
浸出工程で用いる硫酸量は、特に限定されるものではなく、鉱石中の鉄が浸出されるような過剰量が用いられるが、例えば、鉱石1トン当り300〜400kgであり、鉱石1トン当りの硫酸添加量が400kgを超えると、硫酸コストが大きくなり好ましくない。
The slurry concentration in the leaching step is not particularly limited, but it is preferably prepared so that the slurry concentration of the leaching slurry is 15 to 45% by weight.
The amount of sulfuric acid used in the leaching step is not particularly limited, and an excessive amount that leaches iron in the ore is used. For example, it is 300 to 400 kg per ton of ore, and per 1 ton of ore. If the amount of sulfuric acid added exceeds 400 kg, the sulfuric acid cost increases, which is not preferable.
(2)固液分離工程
上記固液分離工程は、上記浸出工程で形成される浸出スラリーを多段洗浄して、ニッケル及びコバルトを含む浸出液と浸出残渣を得る工程である。
(2) Solid-liquid separation process The said solid-liquid separation process is a process of obtaining the leaching liquid and leaching residue containing nickel and cobalt by carrying out multistage washing | cleaning of the leaching slurry formed at the said leaching process.
上記固液分離工程における多段洗浄としては、特に限定されるものではないが、ニッケルを含まない洗浄液で向流に接触させるCCD法が好ましい。これによって、系内に新たに導入する洗浄液を削減するとともに、ニッケル及びコバルトの回収率を95%以上とすることができる。 The multi-stage cleaning in the solid-liquid separation step is not particularly limited, but a CCD method in which a counter current is brought into contact with a cleaning solution not containing nickel is preferable. As a result, the amount of cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be 95% or more.
(3)中和工程
上記中和工程は、上記浸出液の酸化を抑制しながら、pHが4以下となるように炭酸カルシウムを添加し、3価の鉄を含む中和澱物スラリーとニッケル回収用母液を形成する工程である。これによって、高温高圧酸浸出工程で用いた過剰の酸の中和を行うとともに、溶液中に残留する3価の鉄イオンの除去を行うものである。
(3) Neutralization step The neutralization step is for recovering nickel and neutralized starch slurry containing trivalent iron by adding calcium carbonate so that the pH is 4 or less while suppressing oxidation of the leachate. This is a step of forming a mother liquor. In this way, the excess acid used in the high-temperature and high-pressure acid leaching step is neutralized, and trivalent iron ions remaining in the solution are removed.
上記中和工程のpHは、4以下であり、特に3.2〜3.8が好ましい。すなわち、pHが4を超えると、ニッケルの水酸化物の発生が多くなる。
上記中和工程において、溶液中に残留する3価の鉄イオンの除去に際して、溶液中に2価として存在する鉄イオンを酸化させないことが肝要である。したがって、空気の吹込みは勿論、溶液の酸化を極力防止することが重要である。これによって、2価の鉄の除去にともなう炭酸カルシウム消費量と中和澱物生成量の増加を抑制することができる。すなわち、中和澱物量の増加による澱物へのニッケルロスの増加を抑えることができる。
The pH of the neutralization step is 4 or less, and 3.2 to 3.8 is particularly preferable. That is, when the pH exceeds 4, the generation of nickel hydroxide increases.
In the neutralization step, it is important not to oxidize iron ions present as divalent ions in the solution when removing trivalent iron ions remaining in the solution. Therefore, it is important to prevent oxidation of the solution as much as possible as well as air blowing. Thereby, the increase in the amount of calcium carbonate consumption and the amount of neutralized starch produced due to the removal of divalent iron can be suppressed. That is, an increase in nickel loss to the starch due to an increase in the amount of neutralized starch can be suppressed.
上記中和工程の温度は、50〜80℃が好ましい。すなわち、50℃未満では、澱物が微細となり、固液分離工程へ悪影響を及ぼす。一方、80℃を超えると、装置材料の耐食性の低下や加熱のためのエネルギーコストの増大を招く As for the temperature of the said neutralization process, 50-80 degreeC is preferable. That is, if it is less than 50 degreeC, a starch will become fine and it will have a bad influence on a solid-liquid separation process. On the other hand, when it exceeds 80 ° C., the corrosion resistance of the device material is lowered and the energy cost for heating is increased.
(4)硫化工程
上記硫化工程は、上記母液に硫化水素ガスを吹きこみ、ニッケル及びコバルトを含む硫化物と貧液を形成する工程である。ここで、種晶として、母液に含まれるニッケル量に対し、4〜6倍のニッケル量に当たる硫化物を循環使用する。
(4) Sulfurization step The sulfidation step is a step in which hydrogen sulfide gas is blown into the mother liquor to form sulfide and poor solution containing nickel and cobalt. Here, as a seed crystal, a sulfide corresponding to a
上記母液中に亜鉛が含まれる場合には、ニッケル及びコバルトを硫化物として分離する工程に先だって、亜鉛を硫化物として選択的に分離する工程を用いることができる。すなわち、硫化反応の際に弱い条件を作り出すことで硫化反応の速度を抑制し、亜鉛と比較して濃度の高い共存するニッケルの共沈を抑制することにより、亜鉛を選択的に除去する。 When zinc is contained in the mother liquor, a step of selectively separating zinc as a sulfide can be used prior to the step of separating nickel and cobalt as a sulfide. That is, by creating weak conditions during the sulfurization reaction, the speed of the sulfurization reaction is suppressed, and the coprecipitation of nickel having a higher concentration than zinc is suppressed, thereby selectively removing zinc.
上記母液としては、例えば、pHが3.2〜4.0で、ニッケル濃度が2〜5g/L、コバルト濃度が0.1〜1.0g/Lであり、不純物成分として鉄、マグネシウム、マンガン等を含む。これら不純物成分は浸出の酸化還元電位、オートクレーブの操業条件及び鉱石品位により大きく変化するが、一般的に、鉄、マグネシウム、マンガンが数g/L程度含まれている。ここで、不純物成分は回収するニッケル及びコバルトに対して比較的多く存在するが、硫化物としての安定性が低い、鉄、マンガン、アルカリ金属、及びマグネシウム等アルカリ土類金属は、生成する硫化物には含有されない。 Examples of the mother liquor include a pH of 3.2 to 4.0, a nickel concentration of 2 to 5 g / L, a cobalt concentration of 0.1 to 1.0 g / L, and iron, magnesium, manganese as impurity components. Etc. These impurity components vary greatly depending on the redox potential of leaching, the operating conditions of the autoclave and the ore quality, but generally contain about several g / L of iron, magnesium and manganese. Here, a relatively large amount of impurity components exist with respect to nickel and cobalt to be recovered, but alkaline earth metals such as iron, manganese, alkali metals, and magnesium, which are low in stability as sulfides, are generated sulfides. Is not contained.
上記硫化工程によって、不純物含有の少ないニッケル及びコバルトを含む硫化物とニッケル濃度を低い水準で安定させた貧液が得られる。前記貧液は、pHが1〜3程度、硫化されずに含まれる鉄、マグネシウム、マンガン等の不純物元素を含んでいる。また、回収ロスになるニッケル及びコバルトは、僅かであり、例えば、ニッケル及びコバルトの含有量はそれぞれ40mg/L以下、5mg/L以下である。この貧液は、ニッケルをほとんど含まず、かつpHが低いので、固液分離工程で洗浄液として使用しても水酸化物の生成を引き起こさない。 By the sulfidation step, a sulfide containing nickel and cobalt with a small amount of impurities and a poor solution in which the nickel concentration is stabilized at a low level can be obtained. The poor solution includes an impurity element such as iron, magnesium, manganese, and the like that is contained without being sulfided at a pH of about 1 to 3. Moreover, nickel and cobalt which become recovery loss are few, for example, content of nickel and cobalt is 40 mg / L or less and 5 mg / L or less, respectively. Since this poor liquid contains almost no nickel and has a low pH, even if it is used as a cleaning liquid in the solid-liquid separation process, it does not cause the formation of hydroxide.
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析方法はICP発光分析法で行った。
また、実施例及び比較例で用いたニッケル硫酸水溶液は、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、浸出工程、固液分離工程、及び中和工程を経て回収されたニッケルを含む硫酸水溶液からなる母液であり、ニッケル濃度が4g/Lであり、pHが3.5であった。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used by the Example and the comparative example was performed by the ICP emission analysis method.
In addition, the nickel sulfate aqueous solution used in Examples and Comparative Examples is recovered through a leaching step, a solid-liquid separation step, and a neutralization step in a hydrometallurgical method based on high-temperature pressure leaching that recovers nickel from nickel oxide ore. The mother liquor was made of a sulfuric acid aqueous solution containing nickel, the nickel concentration was 4 g / L, and the pH was 3.5.
(実施例1)
図1に示す硫化設備を用いて、次の硫化方法にしたがって行なった。上記ニッケル硫酸水溶液を始液として用いて、撹拌反応槽に装入し、反応温度を70〜80℃に制御しながら、始液中に、種晶として硫化反応により生成されたニッケル硫化物を添加し、さらに硫化水素ガスを吹き込みながら、硫化反応を行なった。反応後のスラリーを、沈降槽へ流送し、ニッケル硫化物は底部から、濃縮物(Ni、Co硫化物スラリー)7として分離され、中継槽を経て、所定割合を撹拌反応槽へ循環した。ここで、ニッケル硫化物の循環量としては、始液に含まれるニッケル量に対し、4.0〜5.0倍のニッケル量に調節した。反応が安定した後、貧液のニッケル濃度を分析し、ニッケル回収率を求めた。ここで、硫化工程への始液流量を200〜450m3/hの範囲で変更し、それに連動して、沈降槽より得られる硫化物スラリーの撹拌反応槽への循環流量を調節した。結果を図3に示す。
(Example 1)
Using the sulfiding equipment shown in FIG. Using the above nickel sulfate aqueous solution as a starting liquid, charging into a stirred reaction tank, and controlling the reaction temperature to 70 to 80 ° C., adding nickel sulfide produced by a sulfurization reaction as a seed crystal to the starting liquid Further, the sulfurization reaction was performed while blowing hydrogen sulfide gas. The slurry after the reaction was sent to a sedimentation tank, and nickel sulfide was separated from the bottom as a concentrate (Ni, Co sulfide slurry) 7 and circulated through a relay tank to a stirring reaction tank at a predetermined ratio. Here, the amount of nickel sulfide circulated was adjusted to 4.0 to 5.0 times the amount of nickel contained in the starting solution. After the reaction was stabilized, the nickel concentration of the poor solution was analyzed to determine the nickel recovery rate. Here, the starting liquid flow rate to the sulfiding step was changed in the range of 200 to 450 m 3 / h, and in conjunction with this, the circulation flow rate of the sulfide slurry obtained from the settling tank to the stirring reaction tank was adjusted. The results are shown in FIG.
(比較例1)
ニッケル硫化物の循環量を、始液に含まれるニッケル量に対し、2.0倍未満のニッケル量に調節したこと以外は実施例1と同様に行い、反応が安定した後、貧液のニッケル濃度を分析し、ニッケル回収率を求めた。結果を図3に示す。
(Comparative Example 1)
The same procedure as in Example 1 was conducted except that the amount of nickel sulfide circulated was adjusted to a nickel amount less than 2.0 times the amount of nickel contained in the starting solution. The concentration was analyzed and the nickel recovery rate was determined. The results are shown in FIG.
(比較例2)
ニッケル硫化物の循環量を、始液に含まれるニッケル量に対し、6.0倍を超えるニッケル量に調節したこと以外は実施例1と同様に行い、反応が安定した後、貧液のニッケル濃度を分析し、ニッケル回収率を求めた。結果を図3に示す。
(Comparative Example 2)
Nickel sulfide circulation was carried out in the same manner as in Example 1 except that the nickel amount was more than 6.0 times the amount of nickel contained in the starting solution. The concentration was analyzed and the nickel recovery rate was determined. The results are shown in FIG.
図3より、実施例1では、ニッケル硫化物の循環量が、始液に含まれるニッケル量に対し、4.0〜5.0倍のニッケル量に調節され、本発明にしたがって行なわれたので、始液処理量の変化にかかわらず、高いニッケル回収率が維持、制御されることが分かる。
これに対し、比較例1、2では、ニッケル硫化物の循環量がこれらの条件に合わないので、ニッケル回収率において満足すべき結果が得られないことが分かる。
As shown in FIG. 3, in Example 1, the circulating amount of nickel sulfide was adjusted to 4.0 to 5.0 times the amount of nickel contained in the starting liquid, and this was performed according to the present invention. It can be seen that a high nickel recovery rate is maintained and controlled regardless of changes in the starting liquid throughput.
On the other hand, in Comparative Examples 1 and 2, since the circulation amount of nickel sulfide does not meet these conditions, it can be seen that satisfactory results cannot be obtained in the nickel recovery rate.
以上より明らかなように、本発明の硫化工程の反応制御方法は、反応容器内面への生成硫化物の付着を十分に抑制するとともに、貧液中のニッケル濃度をこれまで以上に低い水準で安定させることができる反応制御方法であり、ニッケルを含む硫酸水溶液に、硫化水素ガスを吹きこみ、ニッケルを含む硫化物を回収する際に、有効な方法であり、さらにニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、ニッケルとコバルトを含む硫酸水溶液からニッケルとコバルトを含む硫化物を回収する硫化工程の反応制御方法として特に有用である。 As is clear from the above, the reaction control method of the sulfiding step of the present invention sufficiently suppresses the formation of sulfides on the inner surface of the reaction vessel and stabilizes the nickel concentration in the poor liquid at a lower level than before. It is a reaction control method that can be performed, and is an effective method when hydrogen sulfide gas is blown into a sulfuric acid aqueous solution containing nickel to recover sulfide containing nickel, and nickel is further recovered from nickel oxide ore. In a hydrometallurgical method based on high-temperature pressure leaching, the method is particularly useful as a reaction control method in a sulfiding step for recovering a sulfide containing nickel and cobalt from an aqueous sulfuric acid solution containing nickel and cobalt.
1 撹拌反応槽
2 沈降槽
3 中継槽
4 始液
5 硫化水素ガス
6 種晶
7 濃縮物スラリー
8 回収硫化物
11 浸出工程
12 固液分離工程
13 中和工程
14 硫化工程
15 ニッケル酸化鉱石
16 浸出スラリー
17 浸出液
18 浸出残渣
19 中和澱物スラリー
20 母液
21 硫化物
22 貧液
DESCRIPTION OF
Claims (4)
種晶として、該硫酸水溶液(A)に含まれるニッケル量に対し、4〜6倍のニッケル量に当たる該硫化物(B)を循環使用することを特徴とする硫化工程の反応制御方法。 In a sulfurization step of blowing hydrogen sulfide gas into a sulfuric acid aqueous solution (A) containing nickel to form a poor solution with a sulfide (B) containing nickel,
A reaction control method for a sulfiding step, characterized in that the sulfide (B) corresponding to a nickel amount 4 to 6 times the amount of nickel contained in the aqueous sulfuric acid solution (A) is circulated as a seed crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007069855A JP2008231470A (en) | 2007-03-19 | 2007-03-19 | Method for controlling reaction in sulphidizing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007069855A JP2008231470A (en) | 2007-03-19 | 2007-03-19 | Method for controlling reaction in sulphidizing process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008231470A true JP2008231470A (en) | 2008-10-02 |
Family
ID=39904637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007069855A Pending JP2008231470A (en) | 2007-03-19 | 2007-03-19 | Method for controlling reaction in sulphidizing process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008231470A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048927A1 (en) | 2009-10-19 | 2011-04-28 | 住友金属鉱山株式会社 | Wet smelting plant for nickel oxide ore and method for operating same |
WO2011145644A1 (en) | 2010-05-18 | 2011-11-24 | 住友金属鉱山株式会社 | Method for controlling reaction in sulfuration reaction step |
WO2012014685A1 (en) * | 2010-07-28 | 2012-02-02 | 住友金属鉱山株式会社 | Process for production of ferronickel smelting raw material from low grade lateritic nickel ore |
WO2013027603A1 (en) | 2011-08-22 | 2013-02-28 | 住友金属鉱山株式会社 | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
WO2017069189A1 (en) * | 2015-10-22 | 2017-04-27 | 聡 安斎 | Hydrometallurgy device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
-
2007
- 2007-03-19 JP JP2007069855A patent/JP2008231470A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048927A1 (en) | 2009-10-19 | 2011-04-28 | 住友金属鉱山株式会社 | Wet smelting plant for nickel oxide ore and method for operating same |
US8911531B2 (en) | 2009-10-19 | 2014-12-16 | Sumitomo Metal Mining Co., Ltd. | Hydrometallurgical plant of nickel laterite ore and operation method thereof |
WO2011145644A1 (en) | 2010-05-18 | 2011-11-24 | 住友金属鉱山株式会社 | Method for controlling reaction in sulfuration reaction step |
AU2011255953B2 (en) * | 2010-05-18 | 2015-06-18 | Sumitomo Metal Mining Co., Ltd. | Method for controlling reaction in sulfuration reaction step |
WO2012014685A1 (en) * | 2010-07-28 | 2012-02-02 | 住友金属鉱山株式会社 | Process for production of ferronickel smelting raw material from low grade lateritic nickel ore |
US8747787B2 (en) | 2010-07-28 | 2014-06-10 | Sumitomo Metal Mining Co., Ltd. | Method for producing raw material for ferronickel smelting from low grade nickel oxide ore |
WO2013027603A1 (en) | 2011-08-22 | 2013-02-28 | 住友金属鉱山株式会社 | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
EP2749660A1 (en) * | 2011-08-22 | 2014-07-02 | Sumitomo Metal Mining Co., Ltd. | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
US8916115B2 (en) | 2011-08-22 | 2014-12-23 | Sumitomo Metal Mining Co., Ltd. | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
EP2749660A4 (en) * | 2011-08-22 | 2015-04-29 | Sumitomo Metal Mining Co | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
AU2012297844B2 (en) * | 2011-08-22 | 2016-01-21 | Sumitomo Metal Mining Co., Ltd. | Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system |
WO2017069189A1 (en) * | 2015-10-22 | 2017-04-27 | 聡 安斎 | Hydrometallurgy device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4525428B2 (en) | Method for hydrometallizing nickel oxide ore | |
JP2010180439A (en) | Method for recovering nickel from acidic aqueous solution deriving from sulfuric acid | |
JP5359989B2 (en) | Method for preventing the formation of sulfides | |
JP5516534B2 (en) | Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system | |
JP2008231470A (en) | Method for controlling reaction in sulphidizing process | |
JP5892301B2 (en) | Neutralization method in the hydrometallurgy of nickel oxide ore | |
JP5904100B2 (en) | Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore | |
JP5500208B2 (en) | Neutralization method | |
WO2019035319A1 (en) | Leaching treatment method, and wet smelting method of nickel oxide ore | |
JP5765459B2 (en) | Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system | |
JP5637296B1 (en) | Neutralization method | |
JP5637294B1 (en) | Neutralization method | |
JP7147362B2 (en) | Method for reducing odor in hydrometallurgy of nickel oxide ore | |
JP2021008654A (en) | Nickel oxide ore exudation treatment method and wet smelting method including the same | |
WO2019102652A1 (en) | Dezincification system for aqueous nickel sulfate solutions, and method for same | |
JP5637295B1 (en) | Neutralization method | |
JP2020028858A (en) | Final neutralization method in wet refining process for nickel oxide ore | |
JP5637293B1 (en) | Neutralization method | |
JP5637297B1 (en) | Neutralization method | |
JP2019077928A (en) | Neutralization treatment method and wet refining method of nickel oxide ore | |
JP2019171315A (en) | Method for removing hydrogen sulfide from post-sulfidation liquid produced by wet nickel smelting | |
JP2019183189A (en) | Manufacturing method of nickel cobalt mixed sulfide from low nickel quality oxide ore | |
JP2019035132A (en) | Neutralization treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120515 |