JP2019077928A - Neutralization treatment method and wet refining method of nickel oxide ore - Google Patents

Neutralization treatment method and wet refining method of nickel oxide ore Download PDF

Info

Publication number
JP2019077928A
JP2019077928A JP2017206967A JP2017206967A JP2019077928A JP 2019077928 A JP2019077928 A JP 2019077928A JP 2017206967 A JP2017206967 A JP 2017206967A JP 2017206967 A JP2017206967 A JP 2017206967A JP 2019077928 A JP2019077928 A JP 2019077928A
Authority
JP
Japan
Prior art keywords
neutralization
nickel
leaching
calcium carbonate
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017206967A
Other languages
Japanese (ja)
Inventor
宮本 隆史
Takashi Miyamoto
隆史 宮本
道 天野
Michi Amano
道 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017206967A priority Critical patent/JP2019077928A/en
Publication of JP2019077928A publication Critical patent/JP2019077928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a neutralization treatment method capable of reducing used amount of a neutralization agent during a neutralization process for neutralizing an exudate in a wet refining method of a nickel oxide ore, and the wet refining method of the nickel oxide ore.SOLUTION: There is provided a neutralization treatment method including: conducting an exudation treatment by acid on a nickel oxide ore to obtain an exudation slurry containing an exudate containing nickel and an exudation residue, then adding a neutralization agent to the exudate obtained by a solid liquid separation treatment on the exudation slurry and conducting a neutralization treatment to obtain a neutralized final liquid containing nickel and a neutralization deposit containing impurity elements, in which the neutralization agent is calcium carbonate and a calcium carbonate slurry with solid concentration of 270 kg/mto 350 kg/mis added to the exudate.SELECTED DRAWING: Figure 1

Description

本発明は、ニッケル酸化鉱石の湿式製錬方法で生成する浸出液の中和処理方法およびニッケル酸化鉱石の湿式製錬方法に関する。   The present invention relates to a method of neutralizing a leachate produced by a hydrometallurgical process of nickel oxide ore, and a hydrometallurgical process of nickel oxide ore.

ニッケル酸化鉱石の湿式製錬方法(ニッケル酸化鉱石の湿式製錬プロセス)として、硫酸を用いた高圧酸浸出法がある。この方法は、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元および乾燥工程を含まず一貫した湿式工程からなるので、エネルギー的およびコスト的に有利であることとともに、ニッケル品位を50〜60質量%まで高純度化したニッケルを含む硫化物(以下「ニッケル硫化物」ともいう)を得ることができるという利点を有している。   There is a high pressure acid leaching method using sulfuric acid as a wet smelting method of nickel oxide ore (wet smelting process of nickel oxide ore). This method is different from the conventional smelting method of nickel oxide ore which is a smelting method, and it is an energy and cost advantage since it does not include a reduction and drying step and is a consistent wet step. In addition, it has the advantage of being able to obtain a nickel-containing sulfide (hereinafter also referred to as "nickel sulfide") which is highly purified to 50 to 60 mass% of nickel grade.

上記高圧酸浸出法に基づくニッケル酸化鉱石の湿式製錬方法は、例えば、下記工程を含む。
(a)ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、得られた浸出スラリーを多段洗浄しながら、浸出残渣を固液分離して、ニッケルとともにコバルト等の金属元素を含む浸出液を得る、浸出工程及び固液分離工程、
(b)浸出液に中和剤を添加して中和処理を施し、不純物元素を含む中和澱物を分離して、ニッケルを含む中和終液を得る中和工程、
(c)中和終液に硫化水素ガスを添加することによりニッケル硫化物を生成し、該ニッケル硫化物を分離してニッケル硫化物を回収する硫化工程
The hydrosmelting method of nickel oxide ore based on the above-mentioned high pressure acid leaching method includes, for example, the following steps.
(A) Sulfuric acid is added to the slurry of nickel oxide ore, leached under high temperature and high pressure, and the leaching residue is subjected to solid-liquid separation while multistage washing of the obtained leached slurry to contain nickel and metallic elements such as cobalt etc. A leaching step and a solid-liquid separation step to obtain a leachate,
(B) A neutralization step is carried out by adding a neutralizing agent to the leachate to carry out neutralization treatment, and separating the neutralized precipitate containing the impurity element to obtain a nickel-containing neutralization final solution,
(C) A sulfidation step of producing nickel sulfide by adding hydrogen sulfide gas to the final solution of neutralization, separating the nickel sulfide and recovering the nickel sulfide

上記ニッケル酸化鉱石の湿式製錬方法の中和工程について、例えば、特許文献1には、浸出液中に存在する2価の鉄イオンの酸化を抑制しながら、pHが4以下となるように炭酸カルシウムを添加し、3価の鉄を含む中和澱物スラリーとニッケル回収用母液(中和終液)を形成することにより、浸出工程と固液分離工程の簡素化の他、中和工程での中和剤消費量の削減等をする技術が開示されている。   With regard to the neutralization step of the above-mentioned wet refining method of nickel oxide ore, for example, Patent Document 1 discloses calcium carbonate so that the pH becomes 4 or less while suppressing the oxidation of divalent iron ions present in the leachate. In addition to the simplification of the leaching process and the solid-liquid separation process, a neutralization precipitate slurry containing trivalent iron and a mother solution for recovering nickel (neutralization final solution) are added to the neutralization precipitation slurry. A technique for reducing the consumption of neutralizing agent is disclosed.

しかしながら、原単位の低減の必要性から、中和工程での中和剤の使用量をさらに削減できる方法が望まれる。   However, in view of the need to reduce the basic unit, a method capable of further reducing the amount of neutralizing agent used in the neutralization step is desired.

特開2005−350766号公報JP 2005-350766 A

本発明は、上述したような実情に鑑みて提案されたものであり、ニッケル酸化鉱石の湿式製錬方法において浸出液を中和する中和工程での中和剤の使用量を低減することができる中和処理方法およびそれを用いたニッケル酸化鉱石の湿式製錬方法を提供することを目的とする。   The present invention has been proposed in view of the circumstances as described above, and can reduce the amount of the neutralizing agent used in the neutralization step of neutralizing the leachate in the wet smelting method of nickel oxide ore. An object of the present invention is to provide a neutralization treatment method and a hydrometallurgical method of nickel oxide ore using the same.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、中和剤を炭酸カルシウム(CaCO)とし浸出液に添加する該炭酸カルシウムを固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーとすることにより、中和処理の反応効率を高くすることができるため、中和工程での中和剤の使用量を低減できることを見出し、本発明を完成させた。すなわち、本発明は、以下のものを提供する。 The present inventors diligently studied to solve the problems described above. As a result, the neutralizing agent is converted to calcium carbonate (CaCO 3 ), and the calcium carbonate added to the leaching solution is converted to a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less. The inventors have found that the amount of neutralizing agent used in the neutralization step can be reduced because the efficiency can be increased, and the present invention has been completed. That is, the present invention provides the following.

(1)本発明の第1の発明は、ニッケル酸化鉱石に対して酸により浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得た後、該浸出スラリーを固液分離処理して得た浸出液に、中和剤を添加して中和処理を施しニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和処理方法であって、前記中和剤が炭酸カルシウムであり、前記浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加する中和処理方法である。 (1) In the first invention of the present invention, a nickel oxide ore is leached with an acid to obtain a leached slurry containing a leachate containing nickel and a leaching residue, and then the leached slurry is subjected to solid-liquid separation treatment The resulting leachate is neutralized by adding a neutralizing agent to obtain a neutralized final solution containing nickel and a neutralized precipitate containing an impurity element, wherein the neutralizing agent Is calcium carbonate, and a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the leachate.

(2)本発明の第2の発明は、前記中和終液のpHが2.5〜3.0である第1の発明に記載の中和処理方法である。   (2) The second invention of the present invention is the neutralization treatment method according to the first invention, wherein the pH of the neutralization final solution is 2.5 to 3.0.

(3)本発明の第3の発明は、ニッケル酸化鉱石に対して酸により浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得る浸出工程と、浸出工程で得られた前記浸出スラリーに固液分離処理を施して浸出液を得る固液分離工程と、固液分離工程で得られた前記浸出液に中和剤を添加して中和処理を施してニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和工程と、中和工程で得られた前記中和終液に硫化剤を添加してニッケルを含む硫化物を生成する硫化工程とを有するニッケル酸化鉱石の湿式製錬方法であって、前記中和剤が炭酸カルシウムであり、前記中和工程では、前記浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加するニッケル酸化鉱石の湿式製錬方法。 (3) The third invention of the present invention relates to the leaching step of subjecting nickel oxide ore to leaching treatment with an acid to obtain a leaching slurry containing a leaching solution containing nickel and a leaching residue, and the above obtained by the leaching step A solid-liquid separation step of subjecting the leached slurry to solid-liquid separation to obtain a leachate, and a neutralization agent is added to the leachate obtained in the solid-liquid separation step to neutralize the nickel-containing final solution And nickel having a neutralization step of obtaining a neutralized precipitate containing an impurity element, and a sulfide step of adding a sulfurizing agent to the neutralization final solution obtained in the neutralization step to form a sulfide containing nickel. A wet smelting method of oxide ore, wherein the neutralizing agent is calcium carbonate, and in the neutralization step, a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the leachate. Nickel oxide ore Hydrometallurgical method.

本発明の中和処理方法によれば、ニッケル酸化鉱の湿式製錬方法において浸出液を中和する中和工程での中和剤使用量が低減できる。そのため、本発明の工業的価値はきわめて高い。   According to the neutralization treatment method of the present invention, it is possible to reduce the amount of neutralizing agent used in the neutralization step of neutralizing the leachate in the hydrometallurgical method of nickel oxide ore. Therefore, the industrial value of the present invention is extremely high.

本実施の形態におけるニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である。It is process drawing which shows the flow of the hydrometallurgy method of the nickel oxide ore in this Embodiment. 炭酸カルシウムスラリーの固形物濃度と炭酸カルシウム反応効率との関係を示す図である。It is a figure which shows the relationship between the solid substance concentration of a calcium carbonate slurry, and a calcium carbonate reaction efficiency.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。   Hereinafter, specific embodiments of the present invention (hereinafter referred to as "the present embodiment") will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention. Moreover, in this specification, the expression with "X-Y" (X and Y are arbitrary numerical values) is the meaning of "X or more and Y or less".

≪1.概要≫
本実施の形態に係る中和処理方法は、ニッケル硫化物を得るニッケル酸化鉱石の湿式製錬プロセス(以下、単に「湿式製錬プロセス」ともいう)における中和工程での中和処理方法である。なお、ニッケル硫化物とは、ニッケルを含む硫化物をいい、コバルト等の他の金属とニッケルとの混合硫化物をも含む。
<< 1. Overview »
The neutralization treatment method according to the present embodiment is a neutralization treatment method in the neutralization step in a wet smelting process (hereinafter, also simply referred to as “wet smelting process”) of nickel oxide ore to obtain nickel sulfide. . The nickel sulfide is a sulfide containing nickel, and also includes a mixed sulfide of another metal such as cobalt and nickel.

具体的に、ニッケル酸化鉱石の湿式製錬プロセスにおける中和工程は、ニッケル酸化鉱石に対して酸により浸出処理を施して得た浸出液に対し、中和剤を添加して中和処理によって浸出液に含まれる不純物を沈澱物(中和澱物)とし、その不純物が除去された中和終液を得る工程である。そして、本実施の形態の中和処理方法においては、この中和工程において、中和剤として炭酸カルシウムを用い、浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加することを特徴とする。なお、ニッケル酸化鉱石の湿式製錬プロセスでは、このような中和処理で得られた中和終液を硫化して、ニッケルを含む硫化物として回収する。 Specifically, the neutralization step in the hydrometallurgical process of nickel oxide ore is carried out by adding a neutralizing agent to the leachate obtained by subjecting the nickel oxide ore to leaching treatment with acid and neutralizing it to the leachate by neutralization treatment. In this step, the impurities contained are used as a precipitate (neutralized precipitate) to obtain a neutralized final solution from which the impurities have been removed. And, in the neutralization processing method of the present embodiment, calcium carbonate is used as the neutralizing agent in this neutralization step, and calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is used in the leachate. It is characterized by adding. In the hydrometallurgical process of nickel oxide ore, the neutralized final solution obtained by such neutralization treatment is sulfurized and recovered as a sulfide containing nickel.

このような方法によれば、ニッケル酸化鉱石の湿式製錬プロセスにおける中和工程での中和剤使用量の低減ができることから、その工業的価値はきわめて高い。   According to such a method, the industrial value is extremely high because the amount of neutralizing agent used in the neutralization step in the hydrometallurgical process of nickel oxide ore can be reduced.

≪2.ニッケル酸化鉱石の湿式製錬プロセス≫
まず、中和処理方法のより具体的な説明に先立ち、この処理方法を適用する中和工程を含むニッケル酸化鉱石の湿式製錬プロセスについて、図1を用いて説明する。図1は、本実施の形態におけるニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である。
<< 2. Hydrometallurgical process of nickel oxide ore >>
First, prior to a more specific description of the neutralization treatment method, a wet smelting process of nickel oxide ore including the neutralization step to which this treatment method is applied will be described with reference to FIG. FIG. 1 is a process chart showing a flow of a hydrometallurgical method of nickel oxide ore in the present embodiment.

図1に示すように、ニッケル酸化鉱石の湿式製錬方法は、原料のニッケル酸化鉱石に硫酸を添加して硫酸により高温高圧下で浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得る浸出工程S1と、必要に応じて多段洗浄しながら浸出スラリーから浸出残渣を分離してニッケルを含む浸出液を得る固液分離工程S2と、浸出液に中和剤を添加して中和処理を施してニッケルを含む中和終液と不純物元素を含む中和殿物とを得る中和工程S3と、中和終液に硫化剤を添加してニッケルを含む硫化物を生成する硫化工程S4とを有する。   As shown in FIG. 1, the hydrometallurgical method of nickel oxide ore adds sulfuric acid to raw material nickel oxide ore and performs leaching treatment with sulfuric acid under high temperature and high pressure to leach out leaching solution containing nickel and leaching residue A leaching step S1 for obtaining a slurry, a solid-liquid separation step S2 for obtaining a leachate containing nickel by separating a leaching residue from the leached slurry while performing multistage washing if necessary, a neutralization agent by adding a neutralizing agent to the leachate To obtain a neutralized final solution containing nickel and a neutralized precipitate containing an impurity element, and a sulfidation process S4 for adding a sulfiding agent to the neutralized final solution to form a sulfide containing nickel And.

(1)浸出工程
浸出工程S1では、原料のニッケル酸化鉱石に硫酸を添加して硫酸により高温高圧下で浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得る。例えば、オートクレーブ等の高温加圧反応槽を用い、ニッケル酸化鉱石のスラリー(以下「鉱石スラリー」ともいう)に硫酸を添加して、温度230℃〜270℃程度、圧力3MPa〜5MPa程度の条件下で撹拌してニッケルを含む浸出液と浸出残渣とからなる浸出スラリーを生成する。
(1) Leaching Step In the leaching step S1, sulfuric acid is added to the raw material nickel oxide ore, and leaching treatment is performed with sulfuric acid under high temperature and high pressure to obtain a leached slurry containing a leachate containing nickel and a leaching residue. For example, using a high temperature pressure reaction tank such as an autoclave, sulfuric acid is added to a slurry of nickel oxide ore (hereinafter also referred to as "ore slurry"), and a temperature of about 230 ° C to 270 ° C and a pressure of about 3MPa to 5MPa The mixture is stirred to form a leached slurry comprising a nickel-containing leachate and a leaching residue.

原料のニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%〜2.5重量%であり、水酸化物又はケイ酸マグネシウム鉱物として含有される。また、鉄の含有量は10重量%〜50重量%であり、主として3価の水酸化物の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、浸出工程S1では、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等を用いることができる。   As a raw material nickel oxide ore, so-called laterite ores such as limonite ore and saprolite ore are mainly mentioned. The nickel content of laterite ore is usually 0.8% by weight to 2.5% by weight and is contained as hydroxide or magnesium silicate mineral. The iron content is 10% by weight to 50% by weight, and is mainly in the form of a trivalent hydroxide, but part of divalent iron is contained in the siliceous earth mineral. Further, in the leaching step S1, in addition to such laterite ore, an oxide ore containing valuable metals such as nickel, cobalt, manganese, copper and the like, such as a manganese lump and the like stored on the deep sea floor can be used.

浸出工程S1における浸出処理では、例えば下記式(a)〜(e)で表される浸出反応と高温加水分解反応が生じ、ニッケルや、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。なお、浸出工程S1では、次工程の固液分離工程S2で分離されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1〜1.0にとなるように調整することが好ましい。   In the leaching process in the leaching step S1, for example, a leaching reaction represented by the following formulas (a) to (e) and a high temperature hydrolysis reaction occur, leaching as a sulfate such as nickel or cobalt, and leached iron sulfate Immobilization as hematite is performed. However, since the immobilization of iron ions does not proceed completely, the liquid portion of the obtained leaching slurry usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like. Incidentally, in the leaching step S1, from the viewpoint of the filterability of the leaching residue containing hematite separated in the solid-liquid separation step S2 of the next step, the pH of the obtained leachate is adjusted to 0.1 to 1.0. It is preferable to do.

・浸出反応
MO+HSO→MSO+HO ・・(a)
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO→Fe(SO+6HO ・・(b)
FeO+HSO→FeSO+HO ・・(c)
・高温加水分解反応
2FeSO+HSO+1/2O→Fe(SO+HO ・・(d)
Fe(SO+3HO→Fe+3HSO ・・(e)
· Leaching reaction MO + H 2 SO 4 → MSO 4 + H 2 O · · · (a)
(Wherein, M represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
2Fe (OH) 3 + 3H 2 SO 4 → Fe 2 (SO 4 ) 3 + 6H 2 O · · · (b)
FeO + H 2 SO 4 → FeSO 4 + H 2 O · · · (c)
· High temperature hydrolysis reaction 2 FeSO 4 + H 2 SO 4 + 1/2 O 2 → Fe 2 (SO 4 ) 3 + H 2 O · · · (d)
Fe 2 (SO 4 ) 3 + 3H 2 O → Fe 2 O 3 + 3H 2 SO 4 ·· (e)

なお、鉱石スラリーを装入したオートクレーブ等への硫酸の添加量は、特に限定されないが、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300kg〜400kgの割合とする。   The amount of sulfuric acid added to an autoclave or the like charged with an ore slurry is not particularly limited, but an excessive amount is used so that iron in the ore is leached out. For example, the ratio is 300 kg to 400 kg per ton of ore.

(2)固液分離工程
固液分離工程S2では、浸出工程S1で生成した浸出スラリーを多段洗浄して浸出残渣を分離して、ニッケルやコバルト等の有価金属を含む浸出液を得る。
(2) Solid-Liquid Separation Step In the solid-liquid separation step S2, the leached slurry generated in the leaching step S1 is washed in multiple stages to separate the leached residue, and a leachate containing valuable metals such as nickel and cobalt is obtained.

固液分離工程S2では、例えば、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈度合に応じて減少させることができる。また、このようにシックナーを多段に連結して用いて多段洗浄しながら固液分離することにより、洗浄液、すなわち浸出液へのニッケルやコバルトの回収率の向上を図ることができる。   In the solid-liquid separation step S2, for example, after the leached slurry is mixed with the cleaning liquid, solid-liquid separation processing is performed using a solid-liquid separation device such as a thickener. Specifically, the leaching slurry is first diluted by the washing solution, and then the leaching residue in the leaching slurry is concentrated as a thickener of thickener. Thereby, the nickel content adhering to the leaching residue can be reduced according to the degree of dilution. In addition, by separating and performing solid-liquid separation while using thickeners connected in multiple stages and performing multi-stage washing, it is possible to improve the recovery rate of nickel and cobalt to the washing liquid, that is, the leachate.

固液分離処理における多段洗浄方法として、ニッケルを含まない洗浄液で向流に接触させる連続向流洗浄法(CCD法)を用いる。これにより、系内に新たに導入する洗浄液を削減できるとともに、ニッケルやコバルトの回収率を高めることができる。   As a multistage washing method in solid-liquid separation treatment, a continuous countercurrent washing method (CCD method) in which a nickel-free washing solution is brought into contact with a countercurrent is used. As a result, the amount of cleaning solution newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be increased.

洗浄液としては、特に限定されないが、ニッケルを含まず、工程に影響を及ぼさないものを用いることができる。その中でも、pHが1〜3の水溶液を用いることが好ましい。洗浄液のpHが高いと、浸出液中にアルミニウムが含まれる場合には嵩の高いアルミニウム水酸化物が生成され、シックナー内での浸出残渣の沈降不良の原因となる。洗浄液としては、後工程である硫化工程S4で得られる低pH(pHが1〜3程度)の貧液を繰り返して利用することができる。   The cleaning solution is not particularly limited, but a cleaning solution which does not contain nickel and does not affect the process can be used. Among them, it is preferable to use an aqueous solution having a pH of 1 to 3. When the pH of the washing solution is high, if aluminum is contained in the leaching solution, a bulky aluminum hydroxide is formed, which causes poor settling of the leaching residue in the thickener. As a washing | cleaning liquid, the poor solution of low pH (pH is about 1-3) obtained by sulfurization process S4 which is a post process can be utilized repeatedly.

固液分離装置として、例えば、周縁部に上澄み液を排出するオーバーフロー部と、中心部に垂直に配設された筒状のフィードウェルとを有する沈降分離槽と、撹拌槽とを備えたシックナーを用いることができる。このシックナーを多段に設けて、処理対象となるスラリーを多段洗浄しながら固形分である浸出残渣を分離除去する。   As a solid-liquid separation device, for example, a thickener that includes a sedimentation separation tank having an overflow part that discharges the supernatant liquid at the peripheral part, a cylindrical feedwell disposed vertically at the center part, and a stirring tank It can be used. The thickener is provided in multiple stages, and the leaching residue which is solid content is separated and removed while performing multistage washing of the slurry to be treated.

固液分離工程S2で得られる浸出液は、例えば、鉄濃度が2.4〜6.0g/L、アルミニウム濃度が3.0〜6.7g/L、マグネシウム濃度が4.0〜11.0g/L、ニッケル濃度が5.5〜7.2g/L、マンガン濃度が4.0〜5.5g/Lの硫酸水溶液である。また、浸出液のpHは、例えば0.4〜0.9である。   The leachate obtained in the solid-liquid separation step S2 has, for example, an iron concentration of 2.4 to 6.0 g / L, an aluminum concentration of 3.0 to 6.7 g / L, and a magnesium concentration of 4.0 to 11.0 g / L, a sulfuric acid aqueous solution having a nickel concentration of 5.5 to 7.2 g / L and a manganese concentration of 4.0 to 5.5 g / L. The pH of the leachate is, for example, 0.4 to 0.9.

(3)中和工程
中和工程S3では、固液分離工程S2で得られた浸出液(中和始液)に中和剤を添加して中和処理を施して、ニッケルを含む中和終液と不純物元素を含む中和澱物と得る。
(3) Neutralization Step In the neutralization step S3, a neutralization agent is added to the leachate (neutralization start solution) obtained in the solid-liquid separation step S2 to perform neutralization treatment, and the neutralization final solution containing nickel And a neutralized precipitate containing an impurity element.

具体的には、中和工程S3では、浸出液に中和剤を添加して、浸出液中に存在する2価の鉄イオンの酸化を抑制しながら、ニッケルを含む中和終液と不純物元素として例えば3価の鉄を含む中和澱物スラリーとを形成する。中和工程S3では、このようにして浸出液に対して中和処理を施すことで、浸出工程S1での浸出処理で用いた過剰の酸を中和して中和終液を生成するとともに、溶液中に残留する鉄イオンやアルミニウムイオン等の不純物元素を中和澱物として除去する。中和殿物スラリーの沈降速度を促進するために、凝結剤を添加してもよい。なお、回収した中和澱物スラリーは、固液分離工程S2に送ることができる。これにより、ニッケルが中和殿物スラリーに含まれる場合には中和殿物スラリーからもニッケルを回収することができる。また、固液分離工程S2で得られる浸出残渣にはニッケルやコバルト等の有価金属が一部含まれる場合がある。したがって、図1の点線に示すように、浸出残渣を洗浄する等して得られるニッケルやコバルト等の有価金属を含有する液も、中和工程S13に供給するようにしてもよい。   Specifically, in the neutralization step S3, a neutralizing agent is added to the leaching solution to suppress oxidation of divalent iron ions present in the leaching solution, and as a neutralization final solution containing nickel and as an impurity element, for example, Form a neutralized precipitate slurry containing trivalent iron. In the neutralization step S3, the leaching solution is subjected to the neutralization treatment in this way to neutralize the excess acid used in the leaching treatment in the leaching step S1 to form a neutralized final solution and Impurity elements such as iron ions and aluminum ions remaining in the inside are removed as neutralized precipitates. A coagulant may be added to accelerate the settling speed of the neutralized precipitate slurry. The recovered neutralized precipitate slurry can be sent to the solid-liquid separation step S2. Thus, when nickel is contained in the neutralized precipitate slurry, nickel can be recovered also from the neutralized precipitate slurry. The leaching residue obtained in the solid-liquid separation step S2 may contain part of valuable metals such as nickel and cobalt. Accordingly, as shown by the dotted line in FIG. 1, a solution containing valuable metals such as nickel and cobalt obtained by washing the leaching residue may be supplied to the neutralization step S13.

ここで、本実施の形態では、この中和工程S3において中和剤を炭酸カルシウムとし、浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加する。これにより、詳しくは後述するが、中和工程での中和剤の使用量を低減することができる。 Here, in the present embodiment, the neutralizing agent is calcium carbonate in the neutralization step S3, and a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the leachate. Although this will be described in detail later, the amount of the neutralizing agent used in the neutralization step can be reduced.

(4)硫化工程
硫化工程S4では、中和終液を硫化反応始液とし、その硫化反応始液に対して硫化水素ガス等の硫化剤を吹き込む等して添加することによって硫化反応を生じさせる。これにより、不純物成分の少ないニッケルの硫化物と、ニッケルの濃度を低い水準で安定させた貧液である硫化反応終液とを生成し、生成したニッケル硫化物を分離する。なお、中和終液中に亜鉛が含まれる場合には、硫化剤を添加してニッケル硫化物としてニッケルを分離するに先立って、硫化剤を用いて亜鉛を硫化物として選択的に分離してもよい(脱亜鉛工程)。すなわち、硫化工程S4を、中和工程S3により得られた中和終液に硫化剤を添加することにより亜鉛硫化物を生成し該亜鉛硫化物を分離してニッケルを含むニッケル回収用母液を得る脱亜鉛工程と、ニッケル回収用母液に硫化剤を添加することによりニッケル硫化物を生成し該ニッケル硫化物を分離するニッケル回収工程とを有する工程としてもよい。
(4) Sulfurizing step In the sulfiding step S4, the sulfidation reaction is caused by adding the sulfiding agent such as hydrogen sulfide gas to the sulfidation reaction start solution as the sulfidation reaction start solution and blowing in the sulfiding agent. . As a result, a nickel sulfide having few impurity components and a sulfurization reaction final solution which is a poor liquid stabilized at a low concentration of nickel are formed, and the formed nickel sulfide is separated. When zinc is contained in the final solution, zinc is selectively separated as sulfide by using a sulfurizing agent prior to addition of the sulfurizing agent to separate nickel as nickel sulfide. Also good (dezincification process). That is, by adding a sulfiding agent to the neutralization final solution obtained in the neutralization step S3 in the sulfidation step S4, a zinc sulfide is formed and the zinc sulfide is separated to obtain a nickel recovery mother liquor containing nickel. It is good also as a process which has a nickel recovery process which produces nickel sulfide and separates this nickel sulfide by adding a sulfiding agent to a zinc removal process and a mother liquid for nickel recovery.

硫化剤としては、例えば、硫化水素、硫化ナトリウム、水素化硫化ナトリウム等を用いることができるが、その中でも、硫化水素ガスを用いることが、取扱い容易さやコスト等の点で特に好ましい。   As the sulfiding agent, for example, hydrogen sulfide, sodium sulfide, sodium hydrosulfide and the like can be used, and among them, it is particularly preferable to use a hydrogen sulfide gas in terms of ease of handling, cost and the like.

硫化工程S4における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に移動した硫化水素ガスによって緩やかに硫化反応を生じさせることができる。この硫化処理により、硫化反応始液中に含まれるニッケルやコバルトを硫化物として固定化する。   The sulfurization treatment in the sulfurization step S4 can be performed using a sulfurization reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase part in the reaction tank with respect to the sulfurization reaction start solution introduced into the sulfurization reaction tank It is possible to cause a sulfidation reaction gently by the hydrogen sulfide gas transferred therein. By this sulfidation treatment, nickel and cobalt contained in the initial solution of the sulfidation reaction are immobilized as sulfides.

硫化反応の終了後においては、得られたニッケル硫化物を含むスラリーをフィルタープレス等の濾過装置に装入して濾過処理を施し、濾布上にその硫化物を捕集する。濾布を通過した水溶液成分は、貧液として回収する。濾過装置への通液量を低減するために、スラリーはあらかじめシックナー等の沈降濃縮装置に装入して、上澄み液を貧液として除去しておくのがよい。   After completion of the sulfidation reaction, the obtained slurry containing nickel sulfide is charged into a filter device such as a filter press and subjected to a filtration treatment, and the sulfide is collected on a filter cloth. The aqueous solution component that has passed through the filter cloth is recovered as a poor solution. In order to reduce the amount of liquid passing through the filtration device, it is preferable to load the slurry in advance into a sedimentation concentration device such as a thickener and remove the supernatant liquid as a poor solution.

≪3.中和工程について≫
上述したように、湿式製錬プロセスの中和工程S3での中和処理においては、浸出工程S1で生成した浸出スラリーを固液分離工程S2で固液分離して得られた浸出液に中和剤を添加して中和処理を施す。そして、本実施の形態においては、中和剤として炭酸カルシウムを用い、浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加するようにする。このとき、好ましくは、得られる中和終液のpHが2.5〜3.0の範囲となるようにする。
<< 3. About the neutralization process »
As described above, in the neutralization treatment in the neutralization step S3 of the wet smelting process, the leaching slurry produced in the leaching step S1 is subjected to solid-liquid separation in the solid-liquid separation step S2. Add to neutralize. Then, in the present embodiment, calcium carbonate is used as the neutralizing agent, and a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the leachate. At this time, preferably, the pH of the obtained neutralization final solution is in the range of 2.5 to 3.0.

なお、炭酸カルシウムスラリーとは、炭酸カルシウムを水に混合して得られる懸濁液である。そして、本明細書において、炭酸カルシウムスラリーの固形物濃度(kg/m)は、炭酸カルシウムスラリー中に含まれる炭酸カルシウムの質量A(kg)を炭酸カルシウムスラリーの体積B(m)で除すことで求められる。すなわち、炭酸カルシウムスラリーの固形物濃度(kg/m)=A/Bである。 The calcium carbonate slurry is a suspension obtained by mixing calcium carbonate with water. And in this specification, solid substance concentration (kg / m 3 ) of calcium carbonate slurry is obtained by dividing mass A (kg) of calcium carbonate contained in calcium carbonate slurry by volume B (m 3 ) of calcium carbonate slurry It is determined by That is, the solid concentration of the calcium carbonate slurry (kg / m 3 ) = A / B.

本実施の形態の中和工程で用いる炭酸カルシウムスラリーは、固形物濃度が270kg/m以上350kg/m以下である。該炭酸カルシウムスラリーの固形物濃度は、好ましくは、340kg/m以下であり、また、280kg/m以上である。炭酸カルシウムスラリーの固形物濃度が270kg/m以上350kg/m以下であると下記式(1)で示される炭酸カルシウムの反応効率が非常に高い。また、後述する実施例、比較例に示すように、270kg/m以上350kg/m以下付近の範囲では、炭酸カルシウムスラリーの固形物濃度が低下するにつれて、下記式(1)で示される炭酸カルシウムの反応効率は上昇する。そのため、固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを用いると、中和に必要な炭酸カルシウムの使用量(添加量)を低減することができ、中和剤使用量を低減できる。本実施の形態では、下記式(1)で示される炭酸カルシウムの反応効率を、90%以上、さらには、95%以上と高くすることができる。炭酸カルシウムスラリーの固形物濃度が350kg/mを超えると、炭酸カルシウムスラリーの浸出液中での拡散性が悪化するためか、炭酸カルシウムの反応効率が低くなる。このため、中和処理に多量の炭酸カルシウムの添加が必要となってしまう。また、炭酸カルシウムスラリーの固形物濃度が270kg/m未満であると、炭酸カルシウムスラリー濃度が薄いことにより、特に連続処理の場合は滞留時間が減少するためか、逆に炭酸カルシウムの反応効率が大きく低下する。そして、実操業においては、固形物濃度が270kg/m未満であると炭酸カルシウムスラリー濃度が薄いため、中和に必要な炭酸カルシウム量を添加するのに長時間要する場合があり、例えば連続処理の場合には炭酸カルシウムスラリーの供給が間に合わなくなるという問題が生じる場合がある。
炭酸カルシウムの反応効率(%)=理論炭酸カルシウム使用量(mol)/実炭酸カルシウム使用量(mol)・・・(1)
理論炭酸カルシウム使用量(mol)・・・中和に必要な炭酸カルシウム量の理論値
実炭酸カルシウム使用量(mol)・・・浸出液(中和始液)に実際に添加した炭酸カルシウム量
The calcium carbonate slurry used in the neutralization step of the present embodiment has a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less. The solid concentration of the calcium carbonate slurry is preferably 340 kg / m 3 or less and 280 kg / m 3 or more. When the solid concentration of the calcium carbonate slurry is 270 kg / m 3 or more and 350 kg / m 3 or less, the reaction efficiency of calcium carbonate represented by the following formula (1) is very high. In addition, as shown in Examples and Comparative Examples described later, in the range of 270 kg / m 3 or more and 350 kg / m 3 or less, as the solid concentration of the calcium carbonate slurry decreases, the carbonate represented by the following formula (1) The reaction efficiency of calcium increases. Therefore, using a calcium carbonate slurry with a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less can reduce the amount (addition amount) of calcium carbonate required for neutralization, and the amount of neutralizing agent used Can be reduced. In this embodiment, the reaction efficiency of calcium carbonate represented by the following formula (1) can be increased to 90% or more, and further to 95% or more. If the solid concentration of the calcium carbonate slurry exceeds 350 kg / m 3 , the reaction efficiency of the calcium carbonate is lowered, probably because the diffusivity of the calcium carbonate slurry in the leachate is deteriorated. For this reason, addition of a large amount of calcium carbonate is required for the neutralization treatment. Also, if the solid matter concentration of the calcium carbonate slurry is less than 270 kg / m 3 , the residence time is reduced, especially in the case of continuous treatment, because the calcium carbonate slurry concentration is low, conversely, the reaction efficiency of calcium carbonate is It falls sharply. And in a real operation, since calcium carbonate slurry concentration is thin that solid substance concentration is less than 270 kg / m 3 , it may take a long time to add the amount of calcium carbonate necessary for neutralization, for example, continuous treatment In this case, there may be a problem that the calcium carbonate slurry can not be supplied in time.
Reaction efficiency of calcium carbonate (%) = theoretical amount of calcium carbonate used (mol) / actual amount of calcium carbonate used (mol) (1)
Theoretical amount of calcium carbonate used (mol) ... theoretical value of the amount of calcium carbonate required for neutralization actual amount of calcium carbonate used (mol) ... amount of calcium carbonate actually added to leachate (neutralization start solution)

この中和処理においては、浸出液に中和剤を添加することによって得られる中和終液のpHが2.5〜3.0の範囲となるようにすることが好ましい。中和終液のpHが2.5〜3.0の範囲内では、炭酸カルシウムの反応効率が良好である。また、pHが2.5未満では硫化工程S4における反応性が悪化する場合がある。中和終液のpHが3.0超えでは、反応効率が低くなる。また、中和終液のpHが3.0超えでは微細澱物が生成し、中和終液中の清澄度が低下する。中和終液のpHは、より好ましくは、2.7〜2.9である。   In this neutralization treatment, it is preferable that the pH of the neutralization final solution obtained by adding the neutralizing agent to the leachate be in the range of 2.5 to 3.0. When the pH of the neutralization final solution is in the range of 2.5 to 3.0, the reaction efficiency of calcium carbonate is good. If the pH is less than 2.5, the reactivity in the sulfurization step S4 may be deteriorated. When the pH of the neutralization final solution exceeds 3.0, the reaction efficiency is low. In addition, when the pH of the neutralization final solution exceeds 3.0, fine precipitates are formed, and the clarity in the neutralization final solution decreases. The pH of the neutralization final solution is more preferably 2.7 to 2.9.

以上述べたように、本実施の形態に中和処理方法によれば、中和剤を炭酸カルシウムとし、浸出液に添加する炭酸カルシウムを固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーとすることにより、中和処理の反応効率を高くすることができるため、中和工程での中和剤の使用量を低減できる。そして、ニッケル酸化鉱石の湿式製錬方法において中和工程に本実施の形態の中和処理方法を適用することにより、中和剤の使用量が低減されたニッケル酸化鉱石の湿式製錬方法とすることができる。 As described above, according to the neutralization treatment method of the present embodiment, the neutralizing agent is calcium carbonate, and calcium carbonate added to the leachate has a solid concentration of not less than 270 kg / m 3 and not more than 350 kg / m 3. By setting it as a calcium slurry, the reaction efficiency of the neutralization process can be increased, so the amount of the neutralizing agent used in the neutralization step can be reduced. And, by applying the neutralization treatment method of the present embodiment to the neutralization step in the wet smelting method of nickel oxide ore, the method is a wet smelting method of nickel oxide ore in which the amount of the neutralizing agent used is reduced. be able to.

以下、本発明について実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be more specifically described with reference to examples, but the present invention is not limited to the following examples.

[実施例1]
図1に示す本発明のニッケル酸化鉱石の湿式製錬プロセスを行った。具体的には、図1に示すように、まず、ニッケル酸化鉱石のスラリーをオートクレーブに装入し、高温高圧下で硫酸を用いて浸出処理を施すことによって浸出液と浸出残渣とを含有する浸出スラリーを得て(浸出工程S1)、洗浄液を用いて固液分離処理して浸出液および浸出残渣スラリーを得た(固液分離工程S2)。
Example 1
A wet smelting process of the nickel oxide ore of the present invention shown in FIG. 1 was carried out. Specifically, as shown in FIG. 1, first, a slurry of nickel oxide ore is charged into an autoclave, and a leaching slurry containing a leachate and a leaching residue by performing leaching treatment using sulfuric acid under high temperature and high pressure. (Leaching step S1), solid-liquid separation treatment using a washing solution to obtain a leachate and a leaching residue slurry (solid-liquid separation step S2).

次に、得られた浸出液に対して、固形物濃度が290kg/mの炭酸カルシウムのスラリーを添加して中和処理を行うことにより、ニッケルおよびコバルトを含む中和終液と不純物元素を含む中和殿物とを得た(中和工程S3)。得られた中和終液のpHは2.77であった。 Next, a slurry of calcium carbonate having a solid concentration of 290 kg / m 3 is added to the obtained leachate to carry out neutralization treatment, thereby containing a neutralized final solution containing nickel and cobalt and an impurity element. A neutralized precipitate was obtained (neutralization step S3). The pH of the obtained neutralization final solution was 2.77.

そして、得られた中和終液に硫化剤として硫化水素ガスを添加し生成した亜鉛硫化物を分離する脱亜鉛工程、および、脱亜鉛工程後に硫化剤として硫化水素ガスを添加して生成したニッケル硫化物を回収するニッケル回収工程を順に行った(硫化工程S4)。この硫化工程S4におけるニッケル回収工程により、中和終液中のニッケル及びコバルトが硫化され、ニッケル・コバルト混合硫化物が生成した。生成した硫化物は、硫化処理後のスラリーをシックナーにより固液分離して回収した。   Then, a dezincification step of adding hydrogen sulfide gas as a sulfiding agent to the obtained neutralized final solution to separate generated zinc sulfide, and nickel formed by adding a hydrogen sulfide gas as a sulfiding agent after the dezincification step A nickel recovery step of recovering sulfides was sequentially performed (sulfurization step S4). In the nickel recovery step in the sulfurization step S4, nickel and cobalt in the neutralization final solution are sulfided to form a nickel-cobalt mixed sulfide. The formed sulfide was recovered by solid-liquid separation of the slurry after the sulfiding treatment by a thickener.

浸出液(中和始液)は、pHは0.5〜0.9、鉄濃度は2.4〜5.8g/L、アルミニウム濃度は3.0〜6.7g/L、マグネシウム濃度は4.1〜10.7g/L、ニッケル濃度は5.7〜7.2g/L、マンガン濃度は4.0〜5.3g/Lであった。その他の金属の濃度はいずれも1.0g/L未満であった。   The leachate (neutralization solution) has a pH of 0.5 to 0.9, an iron concentration of 2.4 to 5.8 g / L, an aluminum concentration of 3.0 to 6.7 g / L, and a magnesium concentration of 4. 1-10.7 g / L, nickel concentration was 5.7-7.2 g / L, and manganese concentration was 4.0-5.3 g / L. All other metal concentrations were less than 1.0 g / L.

また、中和工程S3について、上記式(1)で示される反応効率を求めたところ、98.8%であった。   Moreover, when the reaction efficiency shown by said Formula (1) was calculated | required about neutralization process S3, it was 98.8%.

[実施例2〜14及び比較例1〜7]
炭酸カルシウムスラリーの固形物濃度を表1に示す値にしたこと以外は、実施例1と同様の操作を行った。なお、浸出液(中和始液)の体積に対する添加する炭酸カルシウムスラリーの体積の割合(炭酸カルシウムスラリーの体積/浸出液の体積)は、実施例1〜14および比較例1〜7において同一条件(17体積%)としている。
[Examples 2-14 and Comparative Examples 1-7]
The same operation as in Example 1 was performed except that the solid concentration of the calcium carbonate slurry was changed to the value shown in Table 1. In addition, the ratio (volume of calcium carbonate slurry / volume of leachate) of the volume of calcium carbonate slurry added to the volume of leachate (neutralization start solution) is the same condition (17 in Examples 1 to 14 and Comparative Examples 1 to 7). Volume%).

表1に、中和工程で得られた中和終液のpH、炭酸カルシウムスラリーの固形物濃度および炭酸カルシウム反応効率を示す。また、炭酸カルシウムスラリーの固形物濃度と炭酸カルシウム反応効率との関係を図2に示す。   Table 1 shows the pH of the neutralization final solution obtained in the neutralization step, the solid concentration of the calcium carbonate slurry, and the calcium carbonate reaction efficiency. Moreover, the relationship between the solid substance concentration of a calcium carbonate slurry and the calcium carbonate reaction efficiency is shown in FIG.

表1および図2に示すように、固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加した実施例1〜14では、炭酸カルシウム反応効率は、90%以上と高い値であった。そして、実施例1〜14の炭酸カルシウムスラリー固形物濃度範囲では、炭酸カルシウムスラリーの固形物濃度が低下するにつれて、炭酸カルシウムの反応効率の上昇が見られた。一方、固形物濃度が270kg/m以上350kg/m以下を満たさない炭酸カルシウムスラリーを添加した比較例1〜7では、炭酸カルシウム反応効率は、実施例1〜14と比べて顕著に低かった。 As shown in Table 1 and FIG. 2, in Examples 1 to 14 in which a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added, the calcium carbonate reaction efficiency is as high as 90% or more. Met. And in the calcium carbonate slurry solid substance concentration range of Examples 1-14, the rise of the reaction efficiency of calcium carbonate was seen as the solid substance concentration of a calcium carbonate slurry fell. On the other hand, in Comparative Examples 1 to 7 in which a calcium carbonate slurry not having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less was added, the calcium carbonate reaction efficiency was significantly lower than in Examples 1 to 14. .

以上の結果から、固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを中和工程に添加すると炭酸カルシウム反応効率が高いことがわかる。そのため、固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを用いると、中和に必要な炭酸カルシウムの使用量(添加量)を低減することができ、中和剤使用量を低減できる。 From the above results, it can be seen that the calcium carbonate reaction efficiency is high when a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the neutralization step. Therefore, using a calcium carbonate slurry with a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less can reduce the amount (addition amount) of calcium carbonate required for neutralization, and the amount of neutralizing agent used Can be reduced.

Figure 2019077928
Figure 2019077928

Claims (3)

ニッケル酸化鉱石に対して酸により浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得た後、該浸出スラリーを固液分離処理して得た浸出液に、中和剤を添加して中和処理を施しニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和処理方法であって、
前記中和剤が炭酸カルシウムであり、前記浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加する
中和処理方法。
A nickel oxide ore is subjected to acid leaching treatment to obtain a leaching slurry containing a nickel-containing leaching solution and a leaching residue, and then a neutralizing agent is added to the leaching solution obtained by solid-liquid separation treatment of the leaching slurry. And subjecting to neutralization treatment to obtain a neutralization final solution containing nickel and a neutralization deposit containing an impurity element,
The neutralization process method of adding the calcium carbonate slurry whose solid concentration is 270 kg / m 3 or more and 350 kg / m 3 or less, wherein the neutralizing agent is calcium carbonate, and the solid solution concentration is in the leachate.
前記中和終液のpHが2.5〜3.0である
請求項1に記載の中和処理方法。
The neutralization treatment method according to claim 1, wherein the pH of the neutralization final solution is 2.5 to 3.0.
ニッケル酸化鉱石に対して酸により浸出処理を施してニッケルを含む浸出液と浸出残渣とを含む浸出スラリーを得る浸出工程と、浸出工程で得られた前記浸出スラリーに固液分離処理を施して浸出液を得る固液分離工程と、固液分離工程で得られた前記浸出液に中和剤を添加して中和処理を施してニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和工程と、中和工程で得られた前記中和終液に硫化剤を添加してニッケルを含む硫化物を生成する硫化工程とを有するニッケル酸化鉱石の湿式製錬方法であって、
前記中和剤が炭酸カルシウムであり、前記中和工程では、前記浸出液に固形物濃度が270kg/m以上350kg/m以下の炭酸カルシウムスラリーを添加する
ニッケル酸化鉱石の湿式製錬方法。
A leaching step of subjecting nickel oxide ore to acid leaching treatment to obtain a leaching slurry containing a leaching solution containing nickel and a leaching residue, and subjecting the leaching slurry obtained in the leaching step to solid-liquid separation treatment to obtain a leachate A neutralizing agent is added to the above-mentioned leachate obtained in the solid-liquid separation step to be obtained and the solid-liquid separation step to perform neutralization treatment to obtain a nickel-containing neutralization final solution and a neutralization precipitate containing an impurity element A wet smelting method of nickel oxide ore comprising a neutralization step, and a sulfiding step of adding a sulfiding agent to the neutralization final solution obtained in the neutralization step to form a sulfide containing nickel,
The wet refining method of nickel oxide ore, wherein the neutralizing agent is calcium carbonate, and in the neutralizing step, a calcium carbonate slurry having a solid concentration of 270 kg / m 3 or more and 350 kg / m 3 or less is added to the leachate.
JP2017206967A 2017-10-26 2017-10-26 Neutralization treatment method and wet refining method of nickel oxide ore Pending JP2019077928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206967A JP2019077928A (en) 2017-10-26 2017-10-26 Neutralization treatment method and wet refining method of nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206967A JP2019077928A (en) 2017-10-26 2017-10-26 Neutralization treatment method and wet refining method of nickel oxide ore

Publications (1)

Publication Number Publication Date
JP2019077928A true JP2019077928A (en) 2019-05-23

Family

ID=66628315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206967A Pending JP2019077928A (en) 2017-10-26 2017-10-26 Neutralization treatment method and wet refining method of nickel oxide ore

Country Status (1)

Country Link
JP (1) JP2019077928A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
WO2008003160A1 (en) * 2006-07-03 2008-01-10 Curlook Enterprises Inc. Metal recovery system as applied to the high pressure leaching of limonitic nickel laterite ores
JP2010037626A (en) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2016222989A (en) * 2015-06-02 2016-12-28 住友金属鉱山株式会社 Apparatus and method for removing free acid, and method for producing nickel-and-cobalt-mixed sulfide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350766A (en) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
WO2008003160A1 (en) * 2006-07-03 2008-01-10 Curlook Enterprises Inc. Metal recovery system as applied to the high pressure leaching of limonitic nickel laterite ores
JP2010037626A (en) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2016222989A (en) * 2015-06-02 2016-12-28 住友金属鉱山株式会社 Apparatus and method for removing free acid, and method for producing nickel-and-cobalt-mixed sulfide

Similar Documents

Publication Publication Date Title
JP2005350766A (en) Hydrometallurgical process of nickel oxide ore
JP6213586B2 (en) Sulfidation treatment method, sulfide production method, and nickel oxide ore hydrometallurgy method
WO2018101039A1 (en) Ion exchange processing method, and scandium recovery method
JP6953988B2 (en) How to remove sulfide
WO2019035319A1 (en) Leaching treatment method, and wet smelting method of nickel oxide ore
WO2017110572A1 (en) Method for removing sulfidizing agent
JPWO2015093364A1 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
WO2020149122A1 (en) Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
JP6996328B2 (en) Dezincification method, wet smelting method of nickel oxide ore
JP7005909B2 (en) Neutralization treatment method and turbidity reduction method of neutralization final liquid
WO2013187367A1 (en) Neutralization method
JP6724351B2 (en) How to remove sulfiding agent
JP5637294B1 (en) Neutralization method
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore
EP3252177A1 (en) Wet smelting method for nickel oxide ore
JP2019077928A (en) Neutralization treatment method and wet refining method of nickel oxide ore
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP2021008654A (en) Nickel oxide ore exudation treatment method and wet smelting method including the same
JP7508977B2 (en) Dezincification treatment method, nickel oxide ore hydrometallurgy method
JP5637296B1 (en) Neutralization method
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore
JP2018079435A (en) Neutralization treatment method
JP2018159109A (en) Smelting method of metal oxide mineral
AU2017220174B2 (en) Neutralization method and nickel oxide ore hydrometallurgical method
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914