JP7005909B2 - Neutralization treatment method and turbidity reduction method of neutralization final liquid - Google Patents

Neutralization treatment method and turbidity reduction method of neutralization final liquid Download PDF

Info

Publication number
JP7005909B2
JP7005909B2 JP2017038259A JP2017038259A JP7005909B2 JP 7005909 B2 JP7005909 B2 JP 7005909B2 JP 2017038259 A JP2017038259 A JP 2017038259A JP 2017038259 A JP2017038259 A JP 2017038259A JP 7005909 B2 JP7005909 B2 JP 7005909B2
Authority
JP
Japan
Prior art keywords
leachate
slurry
neutralization
leaching
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017038259A
Other languages
Japanese (ja)
Other versions
JP2017201056A (en
Inventor
真 杉之原
智暁 米山
敬介 柴山
学 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2017201056A publication Critical patent/JP2017201056A/en
Application granted granted Critical
Publication of JP7005909B2 publication Critical patent/JP7005909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、中和処理方法に関するものであり、より詳しくは、ニッケル酸化鉱石の湿式製錬の中和工程における中和処理方法であって、得られる中和終液の濁度を有効に低減させることができる中和処理方法、及び中和終液の濁度低減方法に関する。 The present invention relates to a neutralization treatment method, and more particularly, a neutralization treatment method in a neutralization step of wet smelting of nickel oxide ore, which effectively reduces the turbidity of the obtained neutralization final solution. The present invention relates to a neutralization treatment method capable of allowing the neutralization to occur, and a method for reducing the turbidity of the neutralization final liquid.

ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いた高圧酸浸出による方法がある。この方法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬法とは異なり、還元工程及び乾燥工程を含まず、一貫した湿式工程からなるため、エネルギー的及びコスト的に有利である。また、ニッケル品位を50質量%程度にまで上昇したニッケルとコバルトとを含む硫化物(以下、「ニッケル・コバルト混合硫化物」又は「混合硫化物」ともいう)を得ることができるという利点を有している。 As a hydrometallurgical method for nickel oxide ore, there is a method by high-pressure acid leaching using sulfuric acid. This method is different from the conventional dry smelting method, which is a general method for smelting nickel oxide ore, because it does not include a reduction step and a drying step and consists of a consistent wet step, which is advantageous in terms of energy and cost. Is. Further, it has an advantage that a sulfide containing nickel and cobalt whose nickel grade has been increased to about 50% by mass (hereinafter, also referred to as "nickel-cobalt mixed sulfide" or "mixed sulfide") can be obtained. is doing.

この高圧酸浸出法は、例えば、下記の工程を含む。すなわち、
(a)ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出し、浸出液と浸出残渣とからなる浸出スラリーを得る浸出工程と、
(b)浸出スラリーを多段洗浄しながら浸出残渣を分離して、ニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程と、
(c)浸出液に中和剤を添加してpHを調整することで不純物元素を含む中和澱物を分離して、ニッケル及びコバルトを含む中和終液を得る中和工程と、
(d)中和終液に亜鉛が多く含まれる場合に、硫化水素ガスを添加することで亜鉛を硫化物として取り除き脱亜鉛終液を得る脱亜鉛工程と、
(e)ニッケル回収用の母液(中和終液又は脱亜鉛終液)に硫化水素ガスを添加することでニッケル及びコバルトを含む硫化物を生成させ、そのニッケル・コバルト混合硫化物を他から分離するニッケル回収工程と、を含む。
This high pressure acid leaching method includes, for example, the following steps. That is,
(A) A leaching step in which sulfuric acid is added to a nickel oxide ore slurry and leached under high temperature and high pressure to obtain a leaching slurry consisting of a leaching solution and a leaching residue.
(B) A solid-liquid separation step of separating the leachate residue while washing the leachate slurry in multiple stages to obtain a leachate containing an impurity element together with nickel and cobalt.
(C) A neutralization step of separating a neutralized starch containing an impurity element by adding a neutralizing agent to the leachate to adjust the pH to obtain a neutralized final solution containing nickel and cobalt.
(D) When the neutralization final solution contains a large amount of zinc, a dezincification step of removing zinc as a sulfide by adding hydrogen sulfide gas to obtain a dezincification final solution, and
(E) Hydrogen sulfide gas is added to the mother liquor (neutralization final solution or dezincification final solution) for nickel recovery to generate sulfide containing nickel and cobalt, and the nickel-cobalt mixed sulfide is separated from others. Includes a nickel recovery step.

具体的に、中和工程では、固液分離工程を経て回収された浸出液を中和槽に装入し、例えば炭酸カルシウムスラリー等の中和剤を添加して中和し、得られる水酸化物沈澱を固液分離することによって、中和澱物と中和終液とを得る。ところが、この固液分離処理は難しく、中和終液への微細な中和澱物の混入が避けられなかった。このように中和澱物が混入すると、中和終液は濁度が高くなるとともに、後工程へ不純物が持ち込まれてしまう。 Specifically, in the neutralization step, the leachate recovered through the solid-liquid separation step is charged into a neutralization tank and neutralized by adding a neutralizing agent such as a calcium carbonate slurry to neutralize the obtained hydroxide. By solid-liquid separation of the precipitate, a neutralized starch and a neutralized final solution are obtained. However, this solid-liquid separation treatment was difficult, and it was unavoidable that fine neutralized starch was mixed into the neutralized final solution. When the neutralized starch is mixed in this way, the neutralized final liquid becomes highly turbid and impurities are brought into the subsequent process.

さて、例えば特許文献1には、上述した中和工程により得た中和終液に含まれる亜鉛を除去するための脱亜鉛工程において、亜鉛を硫化物として固定し分離する処理の促進のために、その中和終液の濁度を高く維持して処理する技術が提案されている。これにより、中和澱物を亜鉛硫化物によって粗大化して濾過性を向上させ、またニッケル回収率を高めることが可能となる。 By the way, for example, in Patent Document 1, in order to promote the process of fixing and separating zinc as sulfide in the dezincination step for removing zinc contained in the neutralization final solution obtained by the above-mentioned neutralization step. , A technique for maintaining the turbidity of the neutralized final liquid at a high level and treating the solution has been proposed. This makes it possible to coarsen the neutralized starch with zinc sulfide to improve the filterability and increase the nickel recovery rate.

しかしながら、例えば特許文献1に記載の方法を用いた場合、不純物量に応じて中和工程と脱亜鉛工程の条件を適切に組み合わせないと、脱亜鉛工程を経て得られたニッケル回収用の母液には不純物が多く残存した状態となりやすく、このようなニッケル回収用母液(硫化反応始液)を用いて硫化処理によりニッケル・コバルト混合硫化物を生成させると、その混合硫化物には不純物が多く含まれてしまうという問題が生じる。 However, for example, when the method described in Patent Document 1 is used, if the conditions of the neutralization step and the dezulfization step are not properly combined according to the amount of impurities, the mother liquor for recovering nickel obtained through the dezulfization step can be obtained. Is likely to have a large amount of impurities remaining, and when nickel-cobalt mixed sulfide is produced by sulfurization treatment using such a nickel recovery mother liquor (sulfurization reaction starting solution), the mixed sulfide contains a large amount of impurities. There is a problem of being lost.

このように、ニッケル回収工程での硫化反応の反応始液となる中和終液においては、その濁度が、得られるニッケル・コバルト混合硫化物の不純物含有量に影響する。そのため、中和工程では、浸出液中の不純物を効果的に析出させるとともに、次工程へ送る中和終液の濁度を安定的に低く維持することが求められる。 As described above, in the neutralization final liquid which is the reaction start liquid of the sulfurization reaction in the nickel recovery step, the turbidity affects the impurity content of the obtained nickel-cobalt mixed sulfurized product. Therefore, in the neutralization step, it is required to effectively precipitate impurities in the leachate and to stably maintain the turbidity of the neutralization final liquid sent to the next step at a low level.

特開2010-37626号公報Japanese Unexamined Patent Publication No. 2010-37626

本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石の湿式製錬プロセスでの中和処理において、浸出液中の不純物を効果的に沈澱物として除去可能とするとともに、次工程へ送る中和終液の濁度を低減させることができる方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and can effectively remove impurities in the leachate as a precipitate in the neutralization treatment in the hydrometallurgical process of nickel oxide ore. It is an object of the present invention to provide a method capable of reducing the turbidity of the neutralizing final liquid to be sent to the next step.

本発明者は、鋭意検討を重ねた結果、中和処理において、浸出液に対する中和剤の添加により所定の範囲にpHを調整するとともに、浸出残渣スラリーを特定の割合で添加して中和終液の濁度が100NTU未満となるようにすることで、上述した課題を解決できることを見出し、本発明を完成するに至った。 As a result of repeated diligent studies, the present inventor adjusted the pH to a predetermined range by adding a neutralizing agent to the leachate in the neutralization treatment, and added the leachate residue slurry at a specific ratio to neutralize the final solution. We have found that the above-mentioned problems can be solved by setting the turbidity of the above-mentioned material to less than 100 NTU, and have completed the present invention.

(1)本発明の第1の発明は、ニッケル酸化鉱石に対して酸により浸出処理を施して浸出液と浸出残渣とを含む浸出スラリーを得た後、該浸出スラリーを固液分離して回収した該浸出液に中和剤を添加して中和処理を施し、不純物を含む中和澱物とニッケル及びコバルトを含む中和終液とを得る中和処理方法であって、前記浸出液に、中和剤を添加してpHを2.5~3.5の範囲に調整するとともに、前記浸出スラリーを固液分離して得られた浸出残渣のスラリーを添加することによって、得られる中和終液の濁度が100NTU未満となるようにする、中和処理方法である。 (1) In the first invention of the present invention, a nickel oxide ore is leached with an acid to obtain a leached slurry containing a leached liquid and a leached residue, and then the leached slurry is solid-liquid separated and recovered. A neutralization treatment method in which a neutralizing agent is added to the leachate to neutralize the leachate to obtain a neutralizing starch containing impurities and a neutralizing final solution containing nickel and cobalt, which is neutralized with the leachate. The neutralization final solution obtained by adding an agent to adjust the pH in the range of 2.5 to 3.5 and adding the slurry of the leachate residue obtained by solid-liquid separation of the leachate slurry. It is a neutralization treatment method that makes the turbidity less than 100 NTU.

(2)本発明の第2の発明は、第1の発明において、前記浸出残渣スラリーを、中和処理に供される浸出液(始液)の流量に対して7.0体積%~16.0体積%の比率となる流量で、該浸出液に添加する、中和処理方法である。 (2) In the second invention of the present invention, in the first invention, the leachate residue slurry is subjected to the neutralization treatment from 7.0% by volume to 16.0 with respect to the flow rate of the leachate (starting liquid). It is a neutralization treatment method of adding to the leachate at a flow rate of a volume%.

(3)本発明の第3の発明は、第1又は第2の発明において、前記浸出液の温度を55℃~70℃に調整する、中和処理方法である。 (3) The third aspect of the present invention is the neutralization treatment method for adjusting the temperature of the leachate to 55 ° C. to 70 ° C. in the first or second invention.

(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記浸出残渣スラリーは、スラリー濃度が1.5t/m~1.7t/mである、中和処理方法である。 (4) In the fourth aspect of the present invention, in any one of the first to third inventions, the leachate residue slurry has a slurry concentration of 1.5 t / m 3 to 1.7 t / m 3 . It is a sum processing method.

(5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記浸出残渣スラリーを添加するに際して、凝結剤を併せて添加する、中和処理方法である。 (5) The fifth aspect of the present invention is the neutralization treatment method in which the coagulant is also added when the leachate residue slurry is added in any one of the first to fourth inventions.

(6)本発明の第6の発明は、第1乃至第5のいずれかの発明において、前記浸出残渣スラリーは、前記浸出スラリーを多段洗浄しながら固液分離して得られたものである、中和処理方法である。 (6) The sixth invention of the present invention is obtained by solid-liquid separation of the leaching residue slurry in any one of the first to fifth inventions while washing the leaching slurry in multiple stages. It is a neutralization treatment method.

(7)本発明の第7の発明は、ニッケル酸化鉱石に対して酸により浸出処理を施して浸出液と浸出残渣とを含む浸出スラリーを得た後、該浸出スラリーを多段洗浄しながら固液分離して回収した該浸出液に中和剤を添加して中和処理を施すことによって得られる、不純物を含む中和澱物を除去した中和終液の濁度低減方法であって、前記中和処理において、前記浸出液に、中和剤を添加してpHを2.5~3.5の範囲に調整するとともに、前記多段洗浄して固液分離された浸出残渣のスラリーを添加することによって、得られる中和終液の濁度が100NTU未満となるようにする、中和終液の濁度低減方法である。 (7) In the seventh invention of the present invention, a nickel oxide ore is leached with an acid to obtain a leached slurry containing a leaching solution and a leaching residue, and then the leaching slurry is washed in multiple stages for solid-liquid separation. This is a method for reducing the turbidity of the neutralized final solution from which the neutralized starch containing impurities is removed, which is obtained by adding a neutralizing agent to the recovered leachate and performing a neutralization treatment. In the treatment, a neutralizing agent is added to the leachate to adjust the pH to the range of 2.5 to 3.5, and the slurry of the leachate residue that has been multi-stage washed and solid-liquid separated is added. This is a method for reducing the turbidity of the neutralized final liquid so that the turbidity of the obtained neutralized final liquid is less than 100 NTU.

本発明によれば、ニッケル酸化鉱石の湿式製錬プロセスでの中和処理において、浸出液中の不純物を効果的に沈澱物として除去可能とし、濁度を低減させた中和終液を得ることができる。このようにして濁度を低減させた中和終液を用いて、硫化反応によりニッケルやコバルトを含む硫化物を生成させることで、不純物含有量の極めて少ない硫化物を得ることができ、製品品質を向上させることができる。したがって、このような中和処理方法は、その工業的価値が極めて高い。 According to the present invention, in the neutralization treatment of nickel oxide ore in the hydrometallurgical process, impurities in the leachate can be effectively removed as a precipitate, and a neutralized final liquid having reduced turbidity can be obtained. can. By using the neutralized final solution with reduced turbidity in this way to generate sulfides containing nickel and cobalt by a sulfurization reaction, it is possible to obtain sulfides with extremely low impurity content, resulting in product quality. Can be improved. Therefore, such a neutralization treatment method has extremely high industrial value.

ニッケル酸化鉱石の湿式製錬プロセスの流れの一例を示す工程図である。It is a process diagram which shows an example of the flow of the wet smelting process of nickel oxide ore. 中和処理に供される浸出液(始液)の流量に対する浸出残渣スラリーの添加流量の比率の相違に基づく中和終液の濁度の推移を調べた結果を示すグラフ図である。It is a graph which shows the result of having investigated the transition of the turbidity of a neutralizing final liquid based on the difference in the ratio of the addition flow rate of the leachate residue slurry to the flow rate of the leachate (starting liquid) subjected to the neutralization treatment. 中和処理に供される浸出液(始液)の流量に対する浸出残渣スラリーの添加流量の比率の相違に基づく濁度低減率の関係を調べた結果を示すグラフ図である。It is a graph which shows the result of having investigated the relationship of the turbidity reduction rate based on the difference in the ratio of the addition flow rate of the leachate residue slurry to the flow rate of the leachate (starting liquid) to be neutralized.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

≪1.中和処理方法の概要≫
本実施の形態に係る中和処理方法は、ニッケル酸化鉱石の湿式製錬プロセス(以下、単に「湿式製錬プロセス」ともいう)における中和工程での中和処理の方法である。
≪1. Outline of neutralization treatment method ≫
The neutralization treatment method according to the present embodiment is a method of neutralization treatment in the neutralization step in the wet smelting process of nickel oxide ore (hereinafter, also simply referred to as “wet smelting process”).

具体的に、湿式製錬プロセスにおける中和処理は、ニッケル酸化鉱石に対する酸浸出処理で得られた浸出液に対し、中和剤を添加してpHを所定の範囲に調整することによって、浸出液に含まれる不純物を沈澱物(中和澱物)とし、その不純物を除去した中和終液を得る処理である。ニッケル酸化鉱石の湿式製錬プロセスでは、このような中和工程における処理で得られた中和終液をニッケル回収用の母液として用いて、ニッケルやコバルトを硫化物として回収する。 Specifically, the neutralization treatment in the hydrometallurgical process is included in the leachate by adding a neutralizing agent to the leachate obtained by the acid leaching treatment for nickel oxide ore to adjust the pH to a predetermined range. This is a process of obtaining a neutralized final solution from which the impurities are removed as a precipitate (neutralized starch). In the hydrometallurgical process of nickel oxide ore, the neutralized final solution obtained by the treatment in such a neutralization step is used as a mother liquor for recovering nickel, and nickel and cobalt are recovered as sulfides.

本実施の形態に係る中和処理方法は、上述したニッケル酸化鉱石の湿式製錬プロセスにおける中和工程にて実施されるものであって、ニッケルやコバルトを含む浸出液に、中和剤を添加してpHを2.5~3.5の範囲に調整するとともに、浸出処理で得られた浸出スラリーを固液分離して得られた浸出残渣のスラリーを添加することで、得られる中和終液の濁度が100NTU未満となるようにすることを特徴としている。 The neutralization treatment method according to the present embodiment is carried out in the neutralization step in the hydrometallurgical process of nickel oxide ore described above, and a neutralizing agent is added to the leachate containing nickel and cobalt. The neutralization final solution obtained by adjusting the pH to the range of 2.5 to 3.5 and adding the slurry of the leachate residue obtained by solid-liquid separation of the leachate slurry obtained by the leachate treatment. It is characterized in that the turbidity of the above is less than 100 NTU.

このような方法によれば、得られる中和終液の濁度を低い状態に維持することができ、湿式製錬プロセスの後工程の硫化工程において、不純物の少ないニッケル・コバルト混合硫化物を生成させることができる。不純物の含有量の少ない混合硫化物は、製品品質が極めて優れたものであり、この中和処理方法の工業的価値は極めて高い。 According to such a method, the turbidity of the obtained neutralized final liquid can be maintained in a low state, and a nickel-cobalt mixed sulfurized product having less impurities is produced in the sulfurization step after the wet smelting process. Can be made to. The mixed sulfide having a low content of impurities has extremely excellent product quality, and the industrial value of this neutralization treatment method is extremely high.

≪2.ニッケル酸化鉱石の湿式製錬プロセス≫
まず、中和処理方法のより具体的な説明に先立ち、この処理方法を適用する中和工程を含むニッケル酸化鉱石の湿式製錬プロセスについて説明する。
≪2. Wet smelting process of nickel oxide ore ≫
First, prior to a more specific description of the neutralization treatment method, a hydrometallurgical process of nickel oxide ore including a neutralization step to which this treatment method is applied will be described.

図1は、ニッケル酸化鉱石の湿式製錬プロセスの流れの一例を示す工程図である。図1に示すように、湿式製錬方法プロセスは、原料のニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、浸出スラリーから浸出残渣を分離してニッケル及びコバルトを含む浸出液を得る固液分離工程S2と、浸出液のpHを調整して浸出液中の不純物を中和澱物として分離して中和終液を得る中和工程S3と、中和終液に硫化剤を添加することでニッケル及びコバルトの混合硫化物を生成させる硫化工程S4とを有する。 FIG. 1 is a process diagram showing an example of the flow of a hydrometallurgical process for nickel oxide ore. As shown in FIG. 1, the hydrometallurgical process consists of a leaching step S1 in which sulfuric acid is added to a slurry of nickel oxide ore as a raw material and a leaching treatment is performed under high temperature and high pressure, and a leaching residue is separated from the leaching slurry to obtain nickel. And a solid-liquid separation step S2 to obtain a leachate containing cobalt, a neutralization step S3 to adjust the pH of the leachate and separate impurities in the leachate as neutralizing starch to obtain a neutralizing final solution, and a neutralizing final solution. It has a sulphurization step S4 for producing a mixed sulfide of nickel and cobalt by adding a sulphurizing agent to the mixture.

(1)浸出工程
浸出工程S1では、オートクレーブ等の高温加圧反応槽を用い、ニッケル酸化鉱石のスラリー(以下、「鉱石スラリー」ともいう)に硫酸を添加して、温度230℃~270℃程度、圧力3MPa~5MPa程度の条件下で撹拌して浸出液と浸出残渣とからなる浸出スラリーを生成する。
(1) Leaching step In the leaching step S1, a high-temperature pressure reaction tank such as an autoclave is used, sulfuric acid is added to a slurry of nickel oxide ore (hereinafter, also referred to as “ore slurry”), and the temperature is about 230 ° C to 270 ° C. A leach slurry composed of a leachate and a leachate residue is produced by stirring under the condition of a pressure of about 3 MPa to 5 MPa.

原料のニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ酸マグネシウム鉱物として含有される。また、鉄の含有量は10重量%~50重量%であり、主として3価の水酸化物の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。また、浸出工程S1では、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等を用いることができる。 Examples of the nickel oxide ore as a raw material mainly include so-called laterite ores such as limonite ore and saprolite ore. The nickel content of the laterite ore is usually 0.8% by weight to 2.5% by weight, and is contained as a hydroxide or a magnesium silicate mineral. The iron content is 10% by weight to 50% by weight, mainly in the form of a trivalent hydroxide, but some divalent iron is contained in the magnesium magnesium mineral. Further, in the leaching step S1, in addition to such laterite ore, an oxide ore containing a valuable metal such as nickel, cobalt, manganese, and copper, for example, a manganese aneurysm endowed on the deep sea bottom can be used.

浸出工程S1における浸出処理では、例えば下記式(a)~(e)で表される浸出反応と高温加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。なお、浸出工程S1では、次工程の固液分離工程S2で分離されるヘマタイトを含む浸出残渣の濾過性の観点から、得られる浸出液のpHが0.1~1.0にとなるように調整することが好ましい。 In the leaching treatment in the leaching step S1, for example, a leaching reaction represented by the following formulas (a) to (e) and a high-temperature hydrolysis reaction occur, and leaching of nickel, cobalt and the like as sulfates and leaching iron sulfate are carried out. Immobilization as hematite is performed. However, since the immobilization of iron ions does not proceed completely, the liquid portion of the obtained leachate slurry usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like. In the leachate step S1, the pH of the obtained leachate is adjusted to 0.1 to 1.0 from the viewpoint of the filterability of the leachate residue containing hematite separated in the solid-liquid separation step S2 of the next step. It is preferable to do so.

・浸出反応
MO+HSO⇒MSO+HO ・・(a)
(なお、式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
2Fe(OH)+3HSO⇒Fe(SO+6HO ・・(b)
FeO+HSO⇒FeSO+HO ・・(c)
・高温加水分解反応
2FeSO+HSO+1/2O⇒Fe(SO+HO ・・(d)
Fe(SO+3HO⇒Fe+3HSO ・・(e)
・ Leachation reaction MO + H 2 SO 4 ⇒ MSO 4 + H 2 O ・ ・ (a)
(Note that M in the formula represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
2Fe (OH) 3 + 3H 2 SO 4 ⇒ Fe 2 (SO 4 ) 3 + 6H 2 O ... (b)
FeO + H 2 SO 4 ⇒ FeSO 4 + H 2 O ... (c)
・ High temperature hydrolysis reaction 2 FeSO 4 + H 2 SO 4 + 1 / 2O 2 ⇒ Fe 2 (SO 4 ) 3 + H 2 O ・ ・ (d)
Fe 2 (SO 4 ) 3 + 3H 2 O ⇒ Fe 2 O 3 + 3H 2 SO 4 ... (e)

なお、鉱石スラリーを装入したオートクレーブへの硫酸の添加量としては、特に限定されないが、鉱石中の鉄が浸出されるような過剰量が用いられる。例えば、鉱石1トン当り300kg~400kgの割合とする。 The amount of sulfuric acid added to the autoclave charged with the ore slurry is not particularly limited, but an excess amount such that iron in the ore is leached is used. For example, the ratio is 300 kg to 400 kg per ton of ore.

(2)固液分離工程
固液分離工程S2では、浸出工程S1で生成した浸出スラリーを多段洗浄して、ニッケルやコバルト等の有価金属を含む浸出液と浸出残渣とを分離する。
(2) Solid-Liquid Separation Step In the solid-liquid separation step S2, the leachate slurry generated in the leachation step S1 is washed in multiple stages to separate the leachate containing valuable metals such as nickel and cobalt from the leachate residue.

固液分離工程S2では、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈度合に応じて減少させることができる。また、このようにシックナーを多段に連結して用いて多段洗浄しながら固液分離することにより、洗浄液、すなわち浸出液へのニッケル及びコバルトの回収率の向上を図ることができる。 In the solid-liquid separation step S2, the leachate slurry is mixed with the cleaning liquid, and then the solid-liquid separation treatment is performed using a solid-liquid separation device such as a thickener. Specifically, first, the leachate slurry is diluted with a washing liquid, and then the leachate residue in the leachate slurry is concentrated as a sediment of thickener. As a result, the nickel content adhering to the leachate residue can be reduced according to the degree of dilution thereof. Further, by solid-liquid separation while performing multi-stage cleaning by using the thickeners connected in multiple stages in this way, it is possible to improve the recovery rate of nickel and cobalt in the cleaning liquid, that is, the leachate.

固液分離処理における多段洗浄方法として、ニッケルを含まない洗浄液で向流に接触させる連続向流洗浄法(CCD法)を用いる。これにより、系内に新たに導入する洗浄液を削減できるとともに、ニッケル及びコバルトの回収率を高めることができる。 As a multi-stage cleaning method in the solid-liquid separation treatment, a continuous countercurrent cleaning method (CCD method) in which nickel-free cleaning liquid is used to contact the countercurrent is used. As a result, the amount of cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be increased.

洗浄液としては、特に限定されないが、ニッケルを含まず、工程に影響を及ぼさないものを用いることができる。その中でも、pHが1~3の水溶液を用いることが好ましい。洗浄液のpHが高いと、浸出液中にアルミニウムが含まれる場合には嵩の高いアルミニウム水酸化物が生成され、シックナー内での浸出残渣の沈降不良の原因となる。洗浄液としては、好ましくは、後工程である硫化工程S4で得られる低pH(pHが1~3程度)の貧液を繰り返して利用することができる。 The cleaning liquid is not particularly limited, but a nickel-free solution that does not affect the process can be used. Among them, it is preferable to use an aqueous solution having a pH of 1 to 3. When the pH of the cleaning liquid is high, bulky aluminum hydroxide is generated when aluminum is contained in the leachate, which causes poor sedimentation of the leachate residue in the thickener. As the cleaning liquid, preferably, a poor liquid having a low pH (pH of about 1 to 3) obtained in the sulfurization step S4, which is a subsequent step, can be repeatedly used.

固液分離装置として、例えば、周縁部に上澄み液を排出するオーバーフロー部と、中心部に垂直に配設された筒状のフィードウェルとを有する沈降分離槽と、撹拌槽とを備えたシックナーを用いることができる。このシックナーを多段に設けて、処理対象となるスラリーを多段洗浄しながら固形分である浸出残渣を分離除去する。 As a solid-liquid separation device, for example, a thickener provided with an overflow portion for discharging the supernatant liquid at the peripheral portion, a settling separation tank having a tubular feed well arranged vertically in the central portion, and a stirring tank. Can be used. This thickener is provided in multiple stages, and the leachate residue, which is a solid content, is separated and removed while the slurry to be treated is washed in multiple stages.

(3)中和工程
中和工程S3では、浸出液の酸化を抑制しながら、得られた浸出液に中和剤を添加してpHを所定の範囲に調整し、不純物元素を含む中和澱物とニッケル回収用母液となる中和終液とを生成させる。
(3) Neutralization Step In the neutralization step S3, while suppressing the oxidation of the leachate, a neutralizing agent is added to the obtained leachate to adjust the pH to a predetermined range, and the neutralized starch containing an impurity element is used. It produces a neutralized final solution that serves as a mother liquor for recovering nickel.

具体的に、中和工程S3では、得られる中和終液のpHが2.5~3.5の範囲となるように、その浸出液に中和剤を添加して、中和終液と不純物元素として例えば3価の鉄を含む中和澱物スラリーとを形成する。中和工程S3では、このようにして浸出液に対する中和処理を施すことで、浸出工程S1での浸出処理で用いた過剰の酸を中和して中和終液を生成させるとともに、溶液中に残留する鉄イオンやアルミニウムイオン等の不純物元素を中和澱物として除去する。なお、回収した中和澱物は、固液分離工程S2に繰り返し添加することができる。 Specifically, in the neutralization step S3, a neutralizing agent is added to the leachate so that the pH of the obtained neutralization final solution is in the range of 2.5 to 3.5, and the neutralization final solution and impurities are added. It forms a neutralized starch slurry containing, for example, trivalent iron as an element. In the neutralization step S3, by performing the neutralization treatment on the leachate in this way, the excess acid used in the leachation treatment in the leachation step S1 is neutralized to generate a neutralized final liquid, and the solution is added to the solution. Residual impurity elements such as iron ions and aluminum ions are removed as neutralized starch. The recovered neutralized starch can be repeatedly added to the solid-liquid separation step S2.

ここで、本実施の形態では、この中和処理において、中和剤を添加してpHを2.5~3.5の範囲に調整するとともに、浸出スラリーを固液分離して得られた浸出残渣のスラリーを添加する。詳しくは後述するが、このようにpHを調整するとともに、浸出残渣のスラリーを添加し、またその添加量を調整することにより、不純物元素を効果的に析出沈澱させることができ、得られる中和終液の濁度を100NTU未満とすることができる。言い換えると、効果的に中和澱物を生成させて不純物元素を除去しながら、その濁度を安定的に低い状態に維持することができる。 Here, in the present embodiment, in this neutralization treatment, a neutralizing agent is added to adjust the pH in the range of 2.5 to 3.5, and the leaching slurry is leached out by solid-liquid separation. Add the residue slurry. As will be described in detail later, by adjusting the pH in this way, adding the slurry of the leachate residue, and adjusting the amount of the addition, the impurity elements can be effectively precipitated and precipitated, and the resulting neutralization can be obtained. The turbidity of the final liquid can be less than 100 NTU. In other words, the turbidity can be stably maintained at a low state while effectively producing neutralized starch and removing impurity elements.

(4)硫化工程
硫化工程S4では、ニッケル及びコバルト回収用母液である中和終液を硫化反応始液として、その硫化反応始液に対して硫化剤としての硫化水素ガスを吹き込むことによって硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの混合硫化物と、ニッケル及びコバルトの濃度を低い水準で安定させた貧液である硫化反応終液とを生成させる。
(4) Sulfurization step In the sulfurization step S4, a neutralization final solution which is a mother liquor for recovering nickel and cobalt is used as a sulfurization reaction initial solution, and hydrogen sulfide gas as a sulfurizing agent is blown into the sulfurization reaction initial solution to cause a sulfurization reaction. Is generated, and a mixed sulfurized product of nickel and cobalt having a small amount of impurity components and a sulfurization reaction final liquid which is a poor liquid in which the concentration of nickel and cobalt is stabilized at a low level are produced.

なお、中和終液中に亜鉛が含まれる場合には、硫化物としてニッケルやコバルトを分離するに先立って、亜鉛を硫化物として選択的に分離することができる。 When zinc is contained in the neutralization final solution, zinc can be selectively separated as a sulfide prior to separating nickel or cobalt as a sulfide.

硫化工程S4における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に移動した硫化水素ガスによって緩やかに硫化反応を生じさせることができる。この硫化処理により、硫化反応始液中に含まれるニッケル及びコバルトを混合硫化物として固定化する。 The sulfurization treatment in the sulfurization step S4 can be performed using a sulfurization reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion of the sulfurization reaction starting solution introduced into the sulfurization reaction tank to form a solution. The hydrogen sulfide gas that has moved inside can slowly cause a sulfurization reaction. By this sulfurization treatment, nickel and cobalt contained in the sulfurization reaction starting liquid are immobilized as a mixed sulfurized product.

硫化反応の終了後においては、得られたニッケル・コバルト混合硫化物を含むスラリーをフィルタープレス等の濾過装置に装入して濾過処理を施し、濾布上にその混合硫化物を捕集する。濾布を通過した水溶液成分は、貧液として回収する。濾過装置への通液量を低減するために、スラリーはあらかじめシックナー等の沈降濃縮装置に装入して、上澄み液を貧液として除去しておくのがよい。 After the completion of the sulfurization reaction, the obtained slurry containing the nickel-cobalt mixed sulfide is charged into a filtration device such as a filter press and subjected to a filtration treatment, and the mixed sulfide is collected on a filter cloth. The aqueous solution component that has passed through the filter cloth is recovered as a poor liquid. In order to reduce the amount of liquid passing through the filtration device, it is preferable to charge the slurry in a sedimentation and concentrating device such as a thickener in advance to remove the supernatant liquid as a poor liquid.

本実施の形態においては、詳しくは後述するように、中和工程S3における中和処理において、中和剤を添加してpHを所定の範囲に調整するとともに、浸出残渣スラリーを添加することで中和終液の濁度が100NTU未満となるように処理している。このような中和処理により得られた、濁度を有効に低減させた中和終液(ニッケル回収用母液)を、この硫化工程S4における硫化反応始液として用いることによって、極めて不純物含有量の少ないニッケル・コバルト混合硫化物を生成させることができる。 In the present embodiment, as will be described in detail later, in the neutralization treatment in the neutralization step S3, a neutralizing agent is added to adjust the pH to a predetermined range, and a leachate residue slurry is added to the medium. The treatment is performed so that the turbidity of the final solution is less than 100 NTU. By using the neutralization final solution (nickel recovery mother liquor) obtained by such neutralization treatment with effectively reduced turbidity as the sulfurization reaction starting solution in the sulfurization step S4, the impurity content is extremely high. A small amount of nickel-cobalt mixed sulfide can be produced.

≪3.中和工程における中和処理について≫
上述したように、湿式製錬プロセスの中和工程S3での中和処理においては、浸出工程S1で生成した浸出スラリーを固液分離して得られた浸出液に中和剤を添加することによって、得られる中和終液のpHが2.5~3.5の範囲となるようにする。そしてまた、この中和処理においては、pH調整を行うとともに、その浸出液に対して、浸出スラリーを固液分離して得られた浸出残渣のスラリーを添加することによって、得られる中和終液の濁度が100NTU未満となるようにする。
≪3. About neutralization treatment in the neutralization process ≫
As described above, in the neutralization treatment in the neutralization step S3 of the hydrometallurgical process, a neutralizing agent is added to the leachate obtained by solid-liquid separation of the leachate slurry produced in the leachation step S1. The pH of the obtained neutralized final solution should be in the range of 2.5 to 3.5. Further, in this neutralization treatment, the pH of the neutralized final solution is adjusted and the slurry of the leachate residue obtained by solid-liquid separation of the leachate slurry is added to the leachate. The turbidity should be less than 100 NTU.

(pH調整について)
この中和処理においては、浸出液に中和剤を添加することによって、得られる中和終液のpHが2.5~3.5の範囲となるように調整する。
(About pH adjustment)
In this neutralization treatment, the pH of the obtained neutralization final solution is adjusted to be in the range of 2.5 to 3.5 by adding a neutralizing agent to the leachate.

中和終液のpHが2.5未満となるように調整すると、浸出液中に含まれる不純物元素を十分に水酸化物等の沈澱物にすることができない。これにより、得られる中和終液の不純物含有量が高まり、次工程の硫化工程にて生成するニッケル・コバルト混合硫化物の不純物量が上昇してしまう。一方で、中和終液のpHが3.5を超えるように調整すると、沈降性の悪い微粒子が発生して濁度が高くなりやすい。また、後工程で亜鉛を硫化物として除去する際に、ニッケル及びコバルトの一部も析出してしまう。 If the pH of the neutralized final solution is adjusted to be less than 2.5, the impurity elements contained in the leachate cannot be sufficiently converted into a precipitate such as a hydroxide. As a result, the impurity content of the obtained neutralization final liquid increases, and the impurity content of the nickel-cobalt mixed sulfurized product produced in the sulfurization step of the next step increases. On the other hand, if the pH of the neutralized final solution is adjusted to exceed 3.5, fine particles having poor sedimentation property are generated and the turbidity tends to increase. In addition, when zinc is removed as a sulfide in a subsequent step, a part of nickel and cobalt also precipitates.

中和剤としては、特に限定されるものではなく、例えば、水酸化マグネシウムや炭酸カルシウム等の水酸化アルカリ金属塩や炭酸アルカリ金属塩の水溶液あるいはスラリーを用いることができる。なお、工業的には、安価な炭酸カルシウムのスラリーを用いることが好ましい。 The neutralizing agent is not particularly limited, and for example, an alkali metal hydroxide salt such as magnesium hydroxide or calcium carbonate, an aqueous solution of the alkali metal carbonate, or a slurry can be used. Industrially, it is preferable to use an inexpensive calcium carbonate slurry.

(浸出残渣スラリーの添加による濁度低減)
この中和処理においては、中和剤の添加によりpHを所定の範囲に調整するとともに、浸出スラリーを固液分離して得られた浸出残渣のスラリーを添加することによって、得られる中和終液の濁度が100NTU未満となるようにする。
(Reduction of turbidity by adding leachate residue slurry)
In this neutralization treatment, the pH is adjusted to a predetermined range by adding a neutralizing agent, and the neutralization final liquid obtained by adding the slurry of the leachate residue obtained by solid-liquid separation of the leachate slurry is added. The turbidity of the is less than 100 NTU.

なお、中和終液の濁度の測定においては、ISO7027、USEPA180.1規格に準拠した装置を用いて測定することができる。また、濁度測定は、例えば10分に1回~24時間に1回の頻度で測定し、好ましくは1時間に1回程度の頻度で測定する。 In the measurement of the turbidity of the neutralized final liquid, it can be measured using an apparatus compliant with ISO7027 and USEPA180.1 standards. The turbidity is measured, for example, once every 10 minutes to once every 24 hours, preferably about once an hour.

浸出残渣スラリーは、湿式製錬プロセスの浸出工程S1にて生成した浸出スラリーを、固液分離工程S2で例えば多段洗浄しながら固液分離して得られた浸出残渣のスラリーである。この浸出残渣は、ヘマタイト(Fe)を主成分(通常、50質量%~70質量%)として含有するものであり、比重が大きい。 The leaching residue slurry is a slurry of leaching residue obtained by solid-liquid separation of the leaching slurry produced in the leaching step S1 of the hydrometallurgical process in the solid-liquid separation step S2, for example, while performing multi-stage washing. This leachate residue contains hematite (Fe 2 O 3 ) as a main component (usually 50% by mass to 70% by mass) and has a large specific gravity.

このように、浸出液に対する中和処理において、浸出残渣スラリーを添加することによって、比重の大きな浸出残渣を核として中和澱物が凝集形成されるようになり、その結果として中和澱物の沈降性を高めることができ、得られる中和終液の濁度を有効に低減させることができる。 As described above, in the neutralization treatment for the leachate, by adding the leachate residue slurry, the neutralized starch is aggregated and formed with the leachate residue having a large specific gravity as the nucleus, and as a result, the neutralized starch is settled. The properties can be enhanced, and the turbidity of the obtained neutralized final liquid can be effectively reduced.

なお、浸出残渣スラリーとしては、浸出工程S1で得られた浸出スラリーを、固液分離工程S2にて多段洗浄しながら固液分離して得られた固体側(固体含有率の高いスラリー)であることが好ましい。このように多段洗浄して得られた浸出残渣は、酸やアルカリの付着が少ない。このため、全体のpHを制御する妨げにならず、また添加した浸出残渣の近傍の局所的なpHもバルクのpHの変化に追随することから、中和澱物の析出速度や粒子径の制御が容易となる。また、多段洗浄しながら固液分離したものは、水との比重分離性や濾過分離性に優れた性質を備えている。このような性質の特に強い浸出残渣(例えば、シックナーの最底部や初期沈澱)を選んで使用することによって、中和澱物をさらに容易に分離することができ、中和終液の濁度をより効率的に低減することができる。 The leaching residue slurry is the solid side (slurry having a high solid content) obtained by solid-liquid separation of the leaching slurry obtained in the leaching step S1 while performing multi-stage washing in the solid-liquid separation step S2. Is preferable. The leachate residue obtained by multi-stage washing in this way has little adhesion of acids and alkalis. Therefore, it does not interfere with the control of the overall pH, and the local pH in the vicinity of the added leachate residue also follows the change in the pH of the bulk, so that the precipitation rate and particle size of the neutralized starch are controlled. Becomes easier. In addition, the solid-liquid separated product while being washed in multiple stages has excellent properties of specific gravity separation with water and filtration separation. By selecting and using a particularly strong exudate residue of this property (eg, the bottom of the thickener or the initial precipitate), the neutralized starch can be separated more easily and the turbidity of the neutralized final solution can be reduced. It can be reduced more efficiently.

浸出残渣スラリーの添加に際しては、中和処理に供される浸出液(始液)の流量(始液流量)に対して好ましくは7.0体積%~16.0体積%の比率となる流量で、より好ましくは10.0体積%~15.5体積%の比率となる流量で、さらに好ましくは11.8体積%~15.3体積%の比率となる流量で、浸出液に添加していく。このように、始液流量に対して上述した範囲の流量で浸出残渣スラリーを添加していくことで、より効果的に、得られる中和終液の濁度を100NTU未満にまで、またさらに好ましくは70NTU未満にまで低減させることができる。 When adding the leachate residue slurry, the flow rate is preferably 7.0% by volume to 16.0% by volume with respect to the flow rate (starting liquid flow rate) of the leachate (starting liquid) to be subjected to the neutralization treatment. It is added to the leachate at a flow rate of 10.0% by volume to 15.5% by volume, more preferably at a flow rate of 11.8% by volume to 15.3% by volume. In this way, by adding the leachate residue slurry at a flow rate within the above-mentioned range with respect to the initial liquid flow rate, the turbidity of the obtained neutralized final liquid can be more effectively reduced to less than 100 NTU, and even more preferably. Can be reduced to less than 70 NTU.

図2は、中和処理に供される浸出液(始液)の流量に対する、浸出スラリーを固液分離して得られた浸出残渣スラリーの添加流量の比率の相違に基づく中和終液の濁度の推移を調べた結果を示すグラフ図である。また、図3は、その浸出残渣スラリーの添加流量の比率の相違に基づく濁度低減率の関係を調べた結果を示すグラフ図である。
浸出残渣スラリーの添加比率(体積%)=浸出残渣スラリー流量/始液流量×100
濁度低減率(%)=(始液の濁度-中和終液の濁度)/始液の濁度×100
FIG. 2 shows the turbidity of the neutralizing final liquid based on the difference in the ratio of the addition flow rate of the leachate residue slurry obtained by solid-liquid separation of the leachate slurry to the flow rate of the leachate (starting liquid) subjected to the neutralization treatment. It is a graph which shows the result of having investigated the transition of. Further, FIG. 3 is a graph showing the results of investigating the relationship of the turbidity reduction rate based on the difference in the addition flow rate ratio of the leachate residue slurry.
Addition ratio of leaching residue slurry (% by volume) = leaching residue slurry flow rate / starting liquid flow rate x 100
Turbidity reduction rate (%) = (turbidity of starting liquid-turbidity of neutralized final liquid) / turbidity of starting liquid x 100

なお、この調査試験においては、中和処理に供した始液として、ニッケル濃度:3.7g/L~4.4g/L、コバルト濃度:0.24g/L~0.45g/L、鉄濃度:0.4g/L~1.8g/L、亜鉛濃度:0.07g/L~0.12g/Lの組成を有し、pHが2.5~3.0のものを用いた。また、浸出残渣スラリーとしては、浸出スラリーを多段洗浄しながら固液分離して得られたものであって、ニッケル品位:0.1質量%以下、コバルト品位:0.01質量%以下、鉄品位:50質量%以上、亜鉛品位:0.02質量%以下の組成のものを用いた。また、5倍に希釈したポリダドマックを凝結剤として使用し、中和処理の始液に対して0.047体積%~0.051体積%の割合の添加量で添加した。 In this investigation test, the starting liquid used for the neutralization treatment had a nickel concentration of 3.7 g / L to 4.4 g / L, a cobalt concentration of 0.24 g / L to 0.45 g / L, and an iron concentration. : 0.4 g / L to 1.8 g / L, zinc concentration: 0.07 g / L to 0.12 g / L, and a pH of 2.5 to 3.0 were used. The leachate residue slurry was obtained by solid-liquid separation of the leachate slurry while being washed in multiple stages, and had a nickel grade of 0.1% by mass or less, a cobalt grade of 0.01% by mass or less, and an iron grade. : A composition having a composition of 50% by mass or more and a zinc grade: 0.02% by mass or less was used. In addition, Polydadomac diluted 5-fold was used as a coagulant and added in an amount of 0.047% by volume to 0.051% by volume with respect to the starting solution of the neutralization treatment.

図2、図3のグラフ図から分かるように、始液である浸出液の流量に対して浸出残渣スラリーの添加流量を増加させるに伴って、得られる中和終液の濁度を効果的に低減させることができる。浸出残渣スラリーの添加比率をさらに増加させることによって、より一層に濁度を低減させることが可能であると考えられるが、その添加比率としては、7.0体積%~16.0体積%の範囲であることが好ましい。なお、これ以上に添加比率を高めた場合、濁度の低減度合いに対して、添加供給する浸出残渣スラリー量の増加に伴うポンプ等の設備負荷が増加し、また使用する凝結剤の量も増加する可能性がある。 As can be seen from the graphs of FIGS. 2 and 3, the turbidity of the obtained neutralized final liquid is effectively reduced by increasing the addition flow rate of the leachate residue slurry with respect to the flow rate of the leachate which is the starting liquid. Can be made to. It is considered possible to further reduce the turbidity by further increasing the addition ratio of the leachate residue slurry, and the addition ratio is in the range of 7.0% by volume to 16.0% by volume. Is preferable. When the addition ratio is further increased, the load on the equipment such as the pump increases due to the increase in the amount of the leachate residue slurry added and supplied with respect to the degree of reduction in turbidity, and the amount of the coagulant used also increases. there's a possibility that.

また、浸出液に添加する浸出残渣スラリーとしては、上述したように、固液分離工程S2にて多段洗浄しながら固液分離して得られたものが好ましい。また、そのスラリー濃度を1.5t/m~1.7t/mの範囲に調整したものを用いることが好ましい。このようなスラリー濃度に調整した浸出残渣スラリーを用いることで、中和処理を経て得られる中和終液の濁度をより効果的に低減させることができる。 Further, as the leachate residue slurry to be added to the leachate, as described above, the slurry obtained by solid-liquid separation while performing multi-stage washing in the solid-liquid separation step S2 is preferable. Further, it is preferable to use a slurry whose slurry concentration is adjusted in the range of 1.5 t / m 3 to 1.7 t / m 3 . By using the leachate residue slurry adjusted to such a slurry concentration, the turbidity of the neutralized final liquid obtained through the neutralization treatment can be more effectively reduced.

また、浸出残渣スラリーを添加するに際しては、凝結剤を併せて添加することが好ましい。一般的に、水酸化物沈澱等の中和澱物は、沈降性が極めて悪いことが知られており、凝集の母体となる浸出残渣スラリーを添加するとともに、凝結剤を併せて添加することによって、比重の大きな浸出残渣スラリーと水酸化物沈澱等の中和澱物とを凝結させて、より沈降性を促進させることができる。このように、浸出残渣スラリーという、水酸化物沈澱等の中和澱物と凝結する母体が存在することで、凝結剤の効果を高めることができる。 Further, when adding the leachate residue slurry, it is preferable to add a coagulant together. In general, it is known that neutralized sediments such as hydroxide precipitates have extremely poor sedimentation properties, and by adding a leachate residue slurry which is a mother of aggregation, and also by adding a coagulant. , The leachate residue slurry having a large specific gravity and the neutralized sediment such as hydroxide precipitate can be condensed to further promote the sedimentation property. As described above, the presence of the leachate residue slurry, which is a mother body that condenses with a neutralized starch such as hydroxide precipitate, can enhance the effect of the coagulant.

凝結剤としては、特に限定されないが、例えば、ポリアミン、ポリダドマック、ポリエチレンイミン、ポリアクリルアミド等を使用することができる。 The coagulant is not particularly limited, but for example, polyamine, polydadomac, polyethyleneimine, polyacrylamide and the like can be used.

なお、浸出液の流量が増減した場合、浸出残渣スラリーの添加量もそれに応じて増減させるのが好ましい。ただし、浸出残渣スラリーの添加流量を増加させる場合には、徐々に増加させていくことが望ましい。浸出残渣は、中和澱物と凝結してはじめて効果を奏するため、中和澱物の組成、凝結剤や凝集剤の添加量によっては、添加量を増加させても中和澱物の沈降が促進せず、滞留時間の観点では不利になる可能性があるためである。 When the flow rate of the leachate increases or decreases, it is preferable to increase or decrease the amount of the leachate residue slurry added accordingly. However, when increasing the addition flow rate of the leachate residue slurry, it is desirable to gradually increase it. Since the leachate residue is effective only when it condenses with the neutralized sol, the neutralized sol may settle even if the addition amount is increased, depending on the composition of the neutralized sol and the amount of the coagulant or flocculant added. This is because it does not promote and may be disadvantageous in terms of residence time.

(温度の調整について)
また、この中和処理においては、中和処理始液となる浸出液の温度(液温)を、特定の範囲に調整し維持することが好ましい。具体的には、浸出液の温度を55℃~70℃の範囲に調整することが好ましく、60℃~68℃の範囲に調整することがより好ましい。このように、浸出液の温度を55℃~70℃に調整し維持した状態で中和処理を施すことによって、得られる中和終液の濁度をより効果的に低減させることができる。
(About temperature adjustment)
Further, in this neutralization treatment, it is preferable to adjust and maintain the temperature (liquid temperature) of the leachate which is the starting liquid of the neutralization treatment within a specific range. Specifically, it is preferable to adjust the temperature of the leachate to the range of 55 ° C to 70 ° C, and more preferably to adjust it to the range of 60 ° C to 68 ° C. As described above, the turbidity of the obtained neutralized final liquid can be more effectively reduced by performing the neutralization treatment in a state where the temperature of the leachate is adjusted and maintained at 55 ° C to 70 ° C.

浸出液の温度が55℃未満であると、上述した中和処理によって中和終液の濁度を100NTU未満に低減できたとしても、その濁度低減率としては小さく、効率的な処理を行うことができない可能性がある。一方で、浸出液の温度が70℃を超えても、それ以上に中和終液の濁度低減効果は向上せず、70℃を超える液温に調整し維持するための熱エネルギーが増え、コスト増につながる。 When the temperature of the leachate is less than 55 ° C., even if the turbidity of the neutralized final liquid can be reduced to less than 100 NTU by the above-mentioned neutralization treatment, the turbidity reduction rate is small and efficient treatment is performed. May not be possible. On the other hand, even if the temperature of the leachate exceeds 70 ° C, the effect of reducing the turbidity of the neutralized final liquid does not improve further, and the heat energy for adjusting and maintaining the liquid temperature exceeding 70 ° C increases, resulting in cost. It leads to an increase.

なお、浸出液の温度調整方法としては、特に限定されず、例えば高温熱媒体を用いて、その高温熱媒体の流量を調整することにより行うことができる。なお、高温熱媒体としては、比較的安全性の高い蒸気を用いることが好ましい。また、温度調整においては、ヒーター等を用いて行うこともできる。 The method for adjusting the temperature of the leachate is not particularly limited, and for example, it can be performed by using a high-temperature heat medium and adjusting the flow rate of the high-temperature heat medium. As the high temperature heat medium, it is preferable to use steam having a relatively high safety. Further, the temperature can be adjusted by using a heater or the like.

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.

<中和処理について>
[実施例1]
ニッケル酸化鉱石の湿式製錬プロセスにおける中和工程において、浸出液に対して中和剤として炭酸カルシウムのスラリーを添加して中和終液のpHが2.5~3.5の範囲となるように調整するとともに、浸出残渣スラリーを中和処理始液(浸出液、単に「始液」ともいう)の流量に対して7.9体積%の比率となる流量で添加して、中和処理を行った。なお、浸出液の温度は、55℃に調整し維持した。
<Neutralization treatment>
[Example 1]
In the neutralization step in the wet smelting process of nickel oxide ore, a slurry of calcium carbonate is added as a neutralizing agent to the leachate so that the pH of the neutralizing final solution is in the range of 2.5 to 3.5. At the same time, the leachate residue slurry was added at a flow rate of 7.9% by volume with respect to the flow rate of the neutralization treatment starting liquid (leachate, also simply referred to as "starting liquid") to perform the neutralization treatment. .. The temperature of the leachate was adjusted and maintained at 55 ° C.

中和処理始液である浸出液としては、ニッケル濃度:3.7g/L~4.4g/L、コバルト濃度:0.24g/L~0.45g/L、鉄濃度:0.4g/L~1.8g/L、亜鉛濃度:0.07g/L~0.12g/Lの組成を有し、pHが2.5~3.0のものを用いた。また、浸出残渣スラリーとしては、湿式製錬プロセスの浸出工程で得られた浸出スラリーを多段洗浄しながら固液分離して得られたものであって、ニッケル品位:0.1質量%以下、コバルト品位:0.01質量%以下、鉄品位:50質量%以上、亜鉛品位:0.02質量%以下の組成のものを用いた。また、中和処理においては、浸出残渣スラリーの添加に際して、5倍に希釈したポリダドマックを凝結剤として使用し、中和処理の始液に対して0.047体積%~0.051体積%の割合の添加量で添加した。 The leachate, which is the starting solution for the neutralization treatment, has a nickel concentration of 3.7 g / L to 4.4 g / L, a cobalt concentration of 0.24 g / L to 0.45 g / L, and an iron concentration of 0.4 g / L to. The one having a composition of 1.8 g / L and a zinc concentration: 0.07 g / L to 0.12 g / L and a pH of 2.5 to 3.0 was used. The leaching residue slurry was obtained by solid-liquid separation of the leaching slurry obtained in the leaching step of the hydrometallurgical process while performing multi-stage washing, and was obtained by nickel grade: 0.1% by mass or less, cobalt. Grade: 0.01% by mass or less, iron grade: 50% by mass or more, zinc grade: 0.02% by mass or less were used. In the neutralization treatment, when the leachate residue slurry was added, Polydadomac diluted 5-fold was used as a coagulant, and the ratio was 0.047% by volume to 0.051% by volume with respect to the starting solution of the neutralization treatment. Was added in the amount of addition.

このような中和処理の反応により得られた中和終液の濁度を、濁度測定装置(TB1000W,Eutech社製)を用いて測定したところ、84NTUであった。また、その中和終液の不純物負荷は、始液に対して76%減少した。 The turbidity of the neutralized final liquid obtained by the reaction of such a neutralization treatment was measured using a turbidity measuring device (TB1000W, manufactured by Eutech) and found to be 84 NTU. In addition, the impurity load of the neutralized final solution was reduced by 76% with respect to the initial solution.

[実施例2]
中和処理において、浸出残渣スラリーを、始液流量に対して7.4体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 2]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 7.4% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、64NTUであった。また、その中和終液の不純物負荷は、始液に対して84%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 64 NTU. In addition, the impurity load of the neutralized final solution was reduced by 84% with respect to the initial solution.

[実施例3]
中和処理において、浸出残渣スラリーを、始液流量に対して11.8体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 3]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 11.8% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、52NTUであった。また、その中和終液の不純物負荷は、始液に対して90%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 52 NTU. In addition, the impurity load of the neutralized final solution was reduced by 90% with respect to the initial solution.

[実施例4]
中和処理において、浸出残渣スラリーを、始液流量に対して13.2体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 4]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 13.2% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、61NTUであった。また、その中和終液の不純物負荷は、始液に対して85%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 61 NTU. In addition, the impurity load of the neutralized final solution was reduced by 85% with respect to the initial solution.

[実施例5]
中和処理において、浸出残渣スラリーを、始液流量に対して15.3体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 5]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 15.3% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、41NTUであった。また、その中和終液の不純物負荷は、始液に対して90%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 41 NTU. In addition, the impurity load of the neutralized final solution was reduced by 90% with respect to the initial solution.

[実施例6]
中和処理において、浸出残渣スラリーを、始液流量に対して14.8体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 6]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 14.8% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、48NTUであった。また、その中和終液の不純物負荷は、始液に対して89%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 48 NTU. In addition, the impurity load of the neutralized final solution was reduced by 89% with respect to the initial solution.

[実施例7]
中和処理において、浸出残渣スラリーを、始液流量に対して14.5体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Example 7]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 14.5% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、48NTUであった。また、その中和終液の不純物負荷は、始液に対して86%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 48 NTU. In addition, the impurity load of the neutralized final solution was reduced by 86% with respect to the initial solution.

[参考例1]
中和処理において、浸出残渣スラリーを、始液流量に対して5.6体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Reference Example 1]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 5.6% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、120NTUであり、十分に濁度を低減させることができなかった。なお、その中和終液の不純物負荷は、始液に対して81%減少した。 The turbidity of the neutralization final solution obtained by the reaction of such a neutralization treatment was measured and found to be 120 NTU, and the turbidity could not be sufficiently reduced. The impurity load of the neutralized final solution was reduced by 81% with respect to the initial solution.

[参考例2]
中和処理において、浸出残渣スラリーを、始液流量に対して6.1体積%の比率となる流量で添加したこと以外は、実施例1と同様にして処理した。
[Reference Example 2]
In the neutralization treatment, the leaching residue slurry was treated in the same manner as in Example 1 except that the leached residue slurry was added at a flow rate of 6.1% by volume with respect to the initial liquid flow rate.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、104NTUであり、十分に濁度を低減させることができなかった。なお、その中和終液の不純物負荷は、始液に対して84%減少した。 The turbidity of the neutralized final liquid obtained by the reaction of such a neutralization treatment was measured and found to be 104 NTU, and the turbidity could not be sufficiently reduced. The impurity load of the neutralized final solution was reduced by 84% with respect to the initial solution.

[比較例1]
中和処理において、浸出残渣スラリーを添加しなかったこと以外は、実施例1と同様にして処理した。
[Comparative Example 1]
In the neutralization treatment, the treatment was carried out in the same manner as in Example 1 except that the leachate residue slurry was not added.

このような中和処理の反応により得られた中和終液の濁度を測定したところ、325NTUであり、十分に濁度を低減させることができなかった。 The turbidity of the neutralization final liquid obtained by the reaction of such a neutralization treatment was measured and found to be 325 NTU, and the turbidity could not be sufficiently reduced.

<始液の温度について>
次に、中和処理始液(始液)の温度の影響について調べた。
<About the temperature of the starting liquid>
Next, the influence of the temperature of the neutralization treatment starting liquid (starting liquid) was investigated.

具体的には、ニッケル酸化鉱石の湿式製錬プロセスにおける中和工程において、浸出液に対して中和剤として炭酸カルシウムのスラリーを添加して中和終液のpHが2.5~3.5の範囲となるように調整するとともに、浸出残渣スラリーを中和処理始液(浸出液)の流量に対して7.9体積%の比率となる流量で添加して、中和処理を行った。このとき、浸出液の温度を、およそ54℃~66℃に調整して、温度調整による効果を確認した。 Specifically, in the neutralization step in the hydrometallurgical process of nickel oxide ore, a calcium carbonate slurry is added to the leachate as a neutralizing agent, and the pH of the neutralization final solution is 2.5 to 3.5. In addition to adjusting the range, the leaching residue slurry was added at a flow rate of 7.9% by volume with respect to the flow rate of the neutralization treatment starting liquid (leaching liquid) to perform the neutralization treatment. At this time, the temperature of the leachate was adjusted to about 54 ° C. to 66 ° C., and the effect of the temperature adjustment was confirmed.

中和処理始液である浸出液としては、ニッケル濃度:2.3g/L~4.4g/L、コバルト濃度:0.21g/L~0.45g/L、鉄濃度0.4g/L~1.8g/L、亜鉛濃度:0.05g/L~0.12g/Lの組成を有し、pHが2.5~3.5のものを用いた。また、浸出残渣スラリーとしては、湿式製錬プロセスの浸出工程で得られた浸出スラリーを多段洗浄しながら固液分離して得られたものであって、ニッケル品位:0.15質量%以下、コバルト品位:0.02質量%以下、鉄品位:48質量%以上、亜鉛品位:0.02質量%以下の組成のものを用いた。また、中和処理においては、浸出残渣スラリーの添加に際して、5倍に希釈したポリダドマックを凝結剤として使用し、中和処理の始液に対して0.019体積%~0.029体積%の割合の添加量で添加した。 The leachate, which is the starting solution for the neutralization treatment, has a nickel concentration of 2.3 g / L to 4.4 g / L, a cobalt concentration of 0.21 g / L to 0.45 g / L, and an iron concentration of 0.4 g / L to 1. A composition having a composition of .8 g / L, a zinc concentration of 0.05 g / L to 0.12 g / L, and a pH of 2.5 to 3.5 was used. The leaching residue slurry is obtained by solid-liquid separation of the leaching slurry obtained in the leaching step of the hydrometallurgical process while performing multi-stage washing, and has a nickel grade: 0.15% by mass or less, cobalt. The composition of grade: 0.02% by mass or less, iron grade: 48% by mass or more, and zinc grade: 0.02% by mass or less was used. In the neutralization treatment, when the leachate residue slurry was added, Polydadomac diluted 5-fold was used as a coagulant, and the ratio was 0.019% by volume to 0.029% by volume with respect to the starting solution of the neutralization treatment. Was added in the amount of addition.

このような中和処理の反応により得られた中和終液の濁度を、濁度測定装置(TB1000W,Eutech社製)を用いて測定し、またその濁度から以下の式に示すように濁度低減率を算出した。なお、中和処理始液の濁度も同様にして測定しておいた。
濁度低減率(%)=(始液の濁度-中和終液の濁度)/始液の濁度×100
The turbidity of the neutralized final liquid obtained by the reaction of such a neutralization treatment is measured using a turbidity measuring device (TB1000W, manufactured by Eutech), and the turbidity is as shown in the following formula. The turbidity reduction rate was calculated. The turbidity of the neutralization starting liquid was also measured in the same manner.
Turbidity reduction rate (%) = (turbidity of starting liquid-turbidity of neutralized final liquid) / turbidity of starting liquid x 100

下記表1に、試験例1~試験例7の中和処理条件と、中和終液の濁度、濁度低減率の結果を併せて示す。 Table 1 below also shows the neutralization treatment conditions of Test Examples 1 to 7, and the results of the turbidity and the turbidity reduction rate of the neutralization final solution.

Figure 0007005909000001
Figure 0007005909000001

表1に示されるように、中和処理における温度の上昇に伴って、中和処理により得られる中和終液の濁度が低下し、濁度低減率が上昇した。具体的には、温度を54℃以上とすることによって中和終液の濁度が100NTU以下に低下することがわかった。特に、温度を55℃以上とすることによって、濁度低減率が80%以上となり、より効果的に中和終液の濁度を低下させることができる。なお、温度63℃以上では温度を上昇させても濁度低減率はあまり向上せず、温度上昇により蒸気等の熱エネルギーの使用量が増加することから、中和処理における温度条件としては特に55℃~63℃程度が特に好ましいことがわかった。 As shown in Table 1, as the temperature in the neutralization treatment increased, the turbidity of the neutralization final liquid obtained by the neutralization treatment decreased, and the turbidity reduction rate increased. Specifically, it was found that the turbidity of the neutralized final solution was reduced to 100 NTU or less by setting the temperature to 54 ° C. or higher. In particular, by setting the temperature to 55 ° C. or higher, the turbidity reduction rate becomes 80% or higher, and the turbidity of the neutralized final liquid can be reduced more effectively. At a temperature of 63 ° C. or higher, the turbidity reduction rate does not improve much even if the temperature is raised, and the amount of heat energy used such as steam increases due to the temperature rise. Therefore, the temperature condition in the neutralization treatment is particularly 55. It was found that about ° C. to 63 ° C. was particularly preferable.

Claims (5)

ニッケル酸化鉱石に対して酸により浸出処理を施して浸出液と浸出残渣とを含む浸出スラリーを得る浸出工程と、該浸出スラリーを固液分離して回収した該浸出液に中和剤を添加して中和処理を施し、不純物を含む中和澱物とニッケル及びコバルトを含む中和終液とを得る中和工程と、該中和終液に対して硫化剤を添加してニッケル及びコバルトの混合硫化物を生成させる硫化工程と、を含むニッケル酸化鉱石の湿式製錬プロセスにおける該中和工程の中和処理方法であって、
前記浸出液に、中和剤を添加してpHを2.5~3.5の範囲に調整し、前記浸出液の温度を55℃~70℃に調整するとともに、前記浸出スラリーを固液分離して得られた浸出残渣のスラリーを前記浸出液の流量に対して7.0体積%~16.0体積%の比率となる流量で添加することによって、得られる中和終液の濁度が100NTU未満となるようにして、該中和終液の濁度を維持した状態で前記硫化工程に供する
中和処理方法。
A leaching step in which nickel oxide ore is leached with an acid to obtain a leaching slurry containing a leaching solution and a leaching residue, and a neutralizing agent is added to the leaching solution recovered by solid-liquid separation of the leaching slurry. A neutralization step of performing a sum treatment to obtain a neutralized starch containing impurities and a neutralized final solution containing nickel and cobalt, and a mixed sulfide of nickel and cobalt by adding a sulfide agent to the neutralized final solution. It is a neutralization treatment method of the neutralization step in the hydrometallurgical process of nickel oxide ore including the sulfide step of producing a substance.
A neutralizing agent is added to the leachate to adjust the pH in the range of 2.5 to 3.5, the temperature of the leachate is adjusted to 55 ° C. to 70 ° C., and the leachate slurry is solid-liquid separated. By adding the slurry of the obtained leachate residue at a flow rate of 7.0% by volume to 16.0% by volume with respect to the flow rate of the leachate, the turbidity of the neutralized final liquid obtained is less than 100 NTU. A neutralization treatment method for subjecting the neutralization final solution to the sulfide step while maintaining the turbidity of the final solution.
前記浸出残渣スラリーは、スラリー濃度が1.5t/m~1.7t/mである
請求項1に記載の中和処理方法。
The neutralization treatment method according to claim 1, wherein the leachate residue slurry has a slurry concentration of 1.5 t / m 3 to 1.7 t / m 3 .
前記浸出残渣スラリーを添加するに際して、凝結剤を併せて添加する
請求項1又は2に記載の中和処理方法。
The neutralization treatment method according to claim 1 or 2 , wherein a coagulant is also added when the leachate residue slurry is added.
前記浸出残渣スラリーは、前記浸出スラリーを多段洗浄しながら固液分離して得られたものである
請求項1乃至のいずれか1項に記載の中和処理方法。
The neutralization treatment method according to any one of claims 1 to 3 , wherein the leaching residue slurry is obtained by solid-liquid separation while performing multi-stage washing of the leaching slurry.
ニッケル酸化鉱石に対して酸により浸出処理を施して浸出液と浸出残渣とを含む浸出スラリーを得る浸出工程と、該浸出スラリーを固液分離して回収した該浸出液に中和剤を添加して中和処理を施し、不純物を含む中和澱物とニッケル及びコバルトを含む中和終液とを得る中和工程と、該中和終液に対して硫化剤を添加してニッケル及びコバルトの混合硫化物を生成させる硫化工程と、を含むニッケル及びコバルトの混合硫化物の製造方法であって、
前記浸出液に、中和剤を添加してpHを2.5~3.5の範囲に調整し、前記浸出液の温度を55℃~70℃に調整するとともに、前記浸出スラリーを固液分離して得られた浸出残渣のスラリーを前記浸出液の流量に対して7.0体積%~16.0体積%の比率となる流量で添加することによって、得られる中和終液の濁度が100NTU未満となるようにして、該中和終液の濁度を維持した状態で前記硫化工程に供する
ニッケル及びコバルトの混合硫化物の製造方法。
A leaching step of subjecting nickel oxide ore with an acid to obtain a leaching slurry containing a leaching solution and a leaching residue, and adding a neutralizing agent to the leaching solution recovered by solid-liquid separation of the leaching slurry. A neutralization step of performing a sum treatment to obtain a neutralized starch containing impurities and a neutralized final solution containing nickel and cobalt, and a mixed sulfurization of nickel and cobalt by adding a sulfurizing agent to the neutralized final solution. A method for producing a mixed sulfide of nickel and cobalt, which comprises a sulfurization step of producing a substance.
A neutralizing agent is added to the leachate to adjust the pH in the range of 2.5 to 3.5, the temperature of the leachate is adjusted to 55 ° C. to 70 ° C., and the leachate slurry is solid-liquid separated. By adding the slurry of the obtained leachate at a flow rate of 7.0% by volume to 16.0% by volume with respect to the flow rate of the leachate, the turbidity of the obtained neutralized final liquid is less than 100 NTU. A method for producing a mixed sulfide of nickel and cobalt to be subjected to the sulfide step while maintaining the turbidity of the neutralized final liquid.
JP2017038259A 2016-05-02 2017-03-01 Neutralization treatment method and turbidity reduction method of neutralization final liquid Active JP7005909B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016092579 2016-05-02
JP2016092579 2016-05-02

Publications (2)

Publication Number Publication Date
JP2017201056A JP2017201056A (en) 2017-11-09
JP7005909B2 true JP7005909B2 (en) 2022-01-24

Family

ID=60264635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038259A Active JP7005909B2 (en) 2016-05-02 2017-03-01 Neutralization treatment method and turbidity reduction method of neutralization final liquid

Country Status (1)

Country Link
JP (1) JP7005909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115170B2 (en) * 2018-09-12 2022-08-09 住友金属鉱山株式会社 Nickel oxide ore treatment method and nickel-cobalt mixed sulfide production method including the treatment method
JP7147452B2 (en) * 2018-10-12 2022-10-05 住友金属鉱山株式会社 Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2013185179A (en) 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Neutralization method and neutralization plant
JP2014138918A (en) 2013-01-21 2014-07-31 Sumitomo Metal Mining Co Ltd Solid-liquid separation treatment method and hydrometallurgical method of nickel oxide ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2013185179A (en) 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Neutralization method and neutralization plant
JP2014138918A (en) 2013-01-21 2014-07-31 Sumitomo Metal Mining Co Ltd Solid-liquid separation treatment method and hydrometallurgical method of nickel oxide ore

Also Published As

Publication number Publication date
JP2017201056A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2013027603A1 (en) Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
JP7005909B2 (en) Neutralization treatment method and turbidity reduction method of neutralization final liquid
JP6984191B2 (en) Solid-liquid separation method of nickel high-pressure leachate residue
JP5892301B2 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
JP7095606B2 (en) Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy
JP6816410B2 (en) Scandium recovery method
WO2014080665A1 (en) Settling separation method for nuetralized slurry and wet smelting method for nickel oxide ore
EP3252177A1 (en) Wet smelting method for nickel oxide ore
JP6551481B2 (en) Wet smelting method of nickel oxide ore
WO2013187367A1 (en) Neutralization method
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore
JP5637294B1 (en) Neutralization method
JP7039936B2 (en) Solid-liquid separation method of nickel high-pressure leachate residue
JP2019137903A (en) Dezincification treatment method and wet refining method of nickel oxide ore
JP5637296B1 (en) Neutralization method
JP2018079435A (en) Neutralization treatment method
JP2019049020A (en) Wet type smelting method of nickel oxide ore
JP5637295B1 (en) Neutralization method
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP6206518B2 (en) Neutralization treatment method, nickel oxide ore hydrometallurgy method
JP6750698B2 (en) Solid-liquid separation method of nickel high pressure leaching residue
JP2019077928A (en) Neutralization treatment method and wet refining method of nickel oxide ore
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7005909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150