JP2021008654A - Nickel oxide ore exudation treatment method and wet smelting method including the same - Google Patents

Nickel oxide ore exudation treatment method and wet smelting method including the same Download PDF

Info

Publication number
JP2021008654A
JP2021008654A JP2019123475A JP2019123475A JP2021008654A JP 2021008654 A JP2021008654 A JP 2021008654A JP 2019123475 A JP2019123475 A JP 2019123475A JP 2019123475 A JP2019123475 A JP 2019123475A JP 2021008654 A JP2021008654 A JP 2021008654A
Authority
JP
Japan
Prior art keywords
sulfuric acid
leaching
ore
leachate
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019123475A
Other languages
Japanese (ja)
Other versions
JP7279546B2 (en
Inventor
英一 中川
Hidekazu Nakagawa
英一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019123475A priority Critical patent/JP7279546B2/en
Publication of JP2021008654A publication Critical patent/JP2021008654A/en
Application granted granted Critical
Publication of JP7279546B2 publication Critical patent/JP7279546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method that minimizes an aluminium exudation rate even in the event of changes of Al quality and Mg quality of raw material ore.SOLUTION: An exudation treatment method includes adding water to nickel oxide ore containing aluminum and magnesium to prepare ore slurry, adding sulfuric acid to the prepared ore slurry, preferably, conducting a sulfuric acid exudation treatment in an autoclave at a high-temperature high-pressure condition of about 220-260°C, to produce exudation slurry comprising nickel-containing exudate and exudation residues. An amount of the added sulfuric acid is controlled so that a free sulfuric acid concentration of the exudate falls within a predetermined range according to the ratio of an aluminum content to a magnesium content of the nickel oxide ore.SELECTED DRAWING: Figure 3

Description

本発明は、高温高圧下において硫酸を添加することで行うニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法に関し、特に、遊離硫酸濃度を調整することによってアルミニウム浸出率を制御しながら行うニッケル酸化鉱石の浸出処理方法及びこれを含む湿式製錬方法に関する。 The present invention relates to a nickel oxide ore leaching treatment method performed by adding sulfuric acid under high temperature and high pressure and a hydrometallurgical method including the leaching method, and particularly, the aluminum leaching rate is controlled by adjusting the free sulfuric acid concentration. The present invention relates to a method for leaching nickel oxide ore and a hydrometallurgical method including the same.

ニッケル品位の低い低品位ニッケル酸化鉱石からニッケルやコバルト等の有価金属を回収する方法として、例えば特許文献1に開示されているような高圧酸浸出(HPAL:High Pressure Acid Leach)法による湿式製錬プロセスが知られている。この湿式製錬プロセスは、原料の低品位ニッケル酸化鉱石に水を加えて調製した鉱石スラリーに対して、高温高圧下で硫酸により浸出処理した後、引き続き湿式で処理して該有価金属を硫化物の形態で回収するものであり、低品位の原料鉱石から効率よく有価金属を回収することが可能になる。 As a method for recovering valuable metals such as nickel and cobalt from low-grade nickel oxide ore having low nickel grade, for example, hydrometallurgy by a high pressure acid leaching (HPAL) method as disclosed in Patent Document 1 The process is known. In this hydrometallurgy process, an ore slurry prepared by adding water to a low-grade nickel oxide ore as a raw material is leached with sulfuric acid under high temperature and high pressure, and then continuously wet-treated to sulfide the valuable metal. It is possible to efficiently recover valuable metals from low-grade raw material ores.

上記の高圧酸浸出法による湿式製錬プロセスは、一般的には下記の一連の湿式処理工程で構成されている。すなわち、原料としての低品位ニッケル酸化鉱石のニッケル品位や粒度を調整すると共に、水を添加して鉱石スラリーに調製する鉱石調合工程と、該鉱石スラリーを硫酸と共にオートクレーブと称する高圧反応用の反応容器に導入して高温加圧下でニッケルの硫酸浸出処理を行う浸出工程と、該浸出工程で生成した浸出スラリー中に残留する遊離硫酸を石灰石を用いて中和処理する予備中和工程と、該予備中和工程で中和処理された浸出スラリーを固液分離して浸出残渣が除去された貴液(浸出液)を得る固液分離工程と、該貴液を中和処理して主に鉄からなる不純物を除去することで中和終液を得る中和工程と、該中和終液に含まれる主に亜鉛からなる不純物を除去することでニッケル回収用母液を得る浄液工程と、該ニッケル回収用母液に硫化水素ガスを添加してニッケル及びコバルトを混合硫化物の形態で回収する硫化工程と、該混合硫化物の回収の際に排出される貧液及び上記固液分離工程から排出される浸出残渣をテーリングダムへ送液する前に中和処理して重金属類を所定の濃度まで除去する最終中和工程とから主に構成される。 The hydrometallurgical process by the above-mentioned high-pressure acid leaching method is generally composed of the following series of wet treatment steps. That is, an ore preparation step of adjusting the nickel grade and particle size of low-grade nickel oxide ore as a raw material and adding water to prepare an ore slurry, and a reaction vessel for high-pressure reaction called autoclave with sulfuric acid. A leaching step in which nickel is leached under high temperature and pressure, and a pre-neutralization step in which free sulfuric acid remaining in the leaching slurry generated in the leaching step is neutralized with limestone, and the preliminary The solid-liquid separation step of solid-liquid separation of the leached slurry neutralized in the neutralization step to obtain a noble liquid (leachate) from which the leachation residue has been removed, and the solid-liquid separation step of neutralizing the noble liquid and mainly consisting of iron. A neutralization step of obtaining a neutralizing final solution by removing impurities, a purification step of obtaining a mother liquor for recovering nickel by removing impurities mainly composed of zinc contained in the neutralizing final solution, and a nickel recovery step. It is discharged from the sulphurization step of adding hydrogen sulfide gas to the mother liquor to recover nickel and cobalt in the form of mixed sulfide, and the poor liquid discharged during the recovery of the mixed sulfide and the solid-liquid separation step. It is mainly composed of a final neutralization step in which the leachate residue is neutralized before being sent to the tailing dam to remove heavy metals to a predetermined concentration.

上記のHPAL法では、処理能力を高めるために様々な技術が導入されている。例えば上記特許文献1には、浸出処理終了時の遊離硫酸の濃度を35〜45g/Lに調整する技術が開示されており、これにより浸出残渣の真密度が向上するので高密度の浸出残渣が安定的に生成され、結果的に浸出残渣を含むスラリーの固液分離性を向上できると記載されている。また、特許文献2には、上記の固液分離工程において、直列に接続した複数のシックナーを用いて多段洗浄しながら浸出残渣を沈降分離する技術が開示されている。なお、この特許文献2では、該多段洗浄の洗浄液に、上記硫化工程から排出される貧液が用いられている。 In the above HPAL method, various techniques have been introduced in order to increase the processing capacity. For example, Patent Document 1 discloses a technique for adjusting the concentration of free sulfuric acid at the end of leaching treatment to 35 to 45 g / L, which improves the true density of leaching residue and thus produces a high-density leaching residue. It is described that it is stably produced, and as a result, the solid-liquid separability of the slurry containing the leaching residue can be improved. Further, Patent Document 2 discloses a technique for separating the leaching residue by sedimentation while performing multi-stage cleaning using a plurality of thickeners connected in series in the above-mentioned solid-liquid separation step. In Patent Document 2, the poor liquid discharged from the sulfurization step is used as the cleaning liquid for the multi-stage cleaning.

更に特許文献3には、高圧硫酸浸出工程における酸素消費量をコントロールするため、鉱石スラリー中のMg+Alの品位を1.5〜4.5%程度となるようにブレンドする技術が開示されている。また、特許文献4には、高いニッケル浸出率を維持しながら硫酸使用量を低減するため、浸出スラリー中の遊離硫酸濃度が所定の濃度となるように、鉱石スラリー中のMg/Ni比に応じて硫酸の添加量を調整する技術が開示されている。 Further, Patent Document 3 discloses a technique for blending the grade of Mg + Al in the ore slurry so as to be about 1.5 to 4.5% in order to control the oxygen consumption in the high-pressure sulfuric acid leaching step. Further, in Patent Document 4, in order to reduce the amount of sulfuric acid used while maintaining a high nickel leaching rate, the concentration of free sulfuric acid in the leached slurry is adjusted to a predetermined concentration according to the Mg / Ni ratio in the ore slurry. A technique for adjusting the amount of sulfuric acid added is disclosed.

特開2005−350766号公報Japanese Unexamined Patent Publication No. 2005-350766 特開2019−000834号公報JP-A-2019-000834 特開2014−037632号公報Japanese Unexamined Patent Publication No. 2014-037632 特開2019−035113号公報Japanese Unexamined Patent Publication No. 2019-035113

ところで、原料のニッケル酸化鉱石にはアルミニウム(Al)やマグネシウム(Mg)が不純物として含まれており、これらの品位が変動すると上記浸出液中のアルミニウム濃度やマグネシウム濃度も変動し、場合によっては上記予備中和工程においてアルミニウム水酸化物からなる澱物の発生量が増大し、後工程の固液分離の負荷が過負荷になったり、該固液分離後の液相の清澄度が悪化したりする問題が生ずることがあった。また、アルミニウム水酸化物からなる澱物は粒径が小さく比重が軽いため固液分離されにくく、上記清澄度がより一層悪化することがあった。 By the way, the raw material nickel oxide ore contains aluminum (Al) and magnesium (Mg) as impurities, and when the grades of these fluctuate, the aluminum concentration and magnesium concentration in the leachate also fluctuate, and in some cases, the reserve In the neutralization step, the amount of starch composed of aluminum hydroxide increases, the load of solid-liquid separation in the subsequent step becomes overloaded, and the clarity of the liquid phase after the solid-liquid separation deteriorates. Problems could occur. Further, since the starch made of aluminum hydroxide has a small particle size and a light specific gravity, it is difficult to separate solid and liquid, and the clarity may be further deteriorated.

このように、原料鉱石のアルミニウム品位やマグネシウム品位が変動すると、浸出工程以降の運転が不安定になり、湿式製錬プロセス全体としての処理能力が低下することがあった。本発明は、上記のような状況に鑑みてなされたものであり、高温高圧下での硫酸浸出処理の原料として用いるニッケル酸化鉱石のAl品位やMg品位が変動しても、該硫酸浸出処理の際のアルミニウム浸出率を低く抑える方法を提供することを目的としている。 In this way, if the aluminum grade or magnesium grade of the raw material ore fluctuates, the operation after the leaching process becomes unstable, and the processing capacity of the entire hydrometallurgy process may decrease. The present invention has been made in view of the above circumstances, and even if the Al grade or Mg grade of the nickel oxide ore used as a raw material for the sulfuric acid leaching treatment under high temperature and high pressure fluctuates, the sulfuric acid leaching treatment is carried out. The purpose is to provide a method for keeping the aluminum leaching rate low.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、高温高圧条件下での硫酸浸出処理の原料として用いるニッケル酸化鉱石のAl/Mg比に応じて添加する硫酸量を調整することで、アルミニウム浸出率を低く抑えうることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors adjust the amount of sulfuric acid to be added according to the Al / Mg ratio of nickel oxide ore used as a raw material for sulfuric acid leaching treatment under high temperature and high pressure conditions. As a result, we have found that the aluminum leaching rate can be suppressed to a low level, and have completed the present invention.

すなわち、本発明に係るニッケル酸化鉱石の浸出処理方法は、アルミニウム及びマグネシウムを含有するニッケル酸化鉱石に水を加えて調製した鉱石スラリーに硫酸を添加し、高温高圧条件下で硫酸浸出処理を施すことでニッケルを含む浸出液と浸出残渣とからなる浸出スラリーを生成する浸出処理方法であって、前記浸出液の遊離硫酸濃度が、前記ニッケル酸化鉱石のマグネシウム含有率に対するアルミニウム含有率の比に応じた所定の範囲内に収まるように前記硫酸の添加量を調整することを特徴としている。 That is, the method for leaching nickel oxide ore according to the present invention is to add sulfuric acid to an ore slurry prepared by adding water to nickel oxide ore containing aluminum and magnesium, and perform sulfuric acid leaching treatment under high temperature and high pressure conditions. A leaching treatment method for producing a leaching slurry composed of a leaching solution containing nickel and a leaching residue, wherein the free sulfuric acid concentration of the leaching solution is determined according to the ratio of the aluminum content to the magnesium content of the nickel oxide ore. It is characterized in that the amount of sulfuric acid added is adjusted so as to be within the range.

本発明によれば、アルミニウム浸出率を低く抑えることができるので、湿式製錬プロセス全体としての処理能力が低下するのを抑えることができる。 According to the present invention, since the aluminum leaching rate can be suppressed to a low level, it is possible to suppress a decrease in the processing capacity of the entire hydrometallurgical process.

本発明に係るニッケル酸化鉱石の浸出処理方法が好適に含まれる湿式製錬方法のブロックフロー図である。It is a block flow figure of the wet smelting method which preferably includes the leaching treatment method of nickel oxide ore which concerns on this invention. 図1の湿式製錬方法が有する固液分離工程において好適に行われる連続向流洗浄法の模式的なプロセスフロー図である。It is a schematic process flow diagram of the continuous countercurrent washing method preferably performed in the solid-liquid separation step of the hydrometallurgical method of FIG. 1. 本発明の実施例の浸出処理方法で使用した鉱石原料のAl/Mg比とそれらの浸出処理時のアルミニウム浸出率との関係を示すグラフである。It is a graph which shows the relationship between the Al / Mg ratio of the ore raw material used in the leaching treatment method of the Example of this invention, and the aluminum leaching rate at the time of their leaching treatment.

以下、本発明に係るニッケル酸化鉱石の浸出処理方法の実施形態について図面を参照しながら説明する。先ず、本発明の実施形態に係るニッケル酸化鉱石の浸出処理方法を含んだ一連の湿式処理工程からなる湿式製錬方法について説明し、次に、この湿式製錬方法に含まれる本発明の実施形態に係る浸出処理方法について説明する。 Hereinafter, embodiments of the nickel oxide ore leaching treatment method according to the present invention will be described with reference to the drawings. First, a wet smelting method including a series of wet treatment steps including a nickel oxide ore leaching treatment method according to the embodiment of the present invention will be described, and then the embodiment of the present invention included in the wet smelting method will be described. The leaching treatment method according to the above will be described.

1.ニッケル酸化鉱石の湿式製錬方法
本発明の実施形態に係る浸出処理方法を含んだニッケル酸化鉱石の湿式製錬方法は、原料のニッケル酸化鉱石を含んだ鉱石スラリーに対して高圧酸浸出法(HPAL法)によりニッケル及びコバルトを浸出した後、得られた浸出液に含まれる鉄や亜鉛等の不純物の除去処理を経て該ニッケル及びコバルトを混合硫化物の形態で回収するものである。
1. 1. Hydrometallurgical method of nickel oxide ore The hydrometallurgical method of nickel oxide ore including the leaching treatment method according to the embodiment of the present invention is a high-pressure acid leaching method (HPAL) for an ore slurry containing nickel oxide ore as a raw material. After leaching nickel and cobalt by the method), the nickel and cobalt are recovered in the form of a mixed sulfide through a treatment for removing impurities such as iron and zinc contained in the obtained leachate.

具体的には、図1に示すように、このニッケル酸化鉱石の湿式製錬方法は、ニッケル品位等を調整すべく複数種類のニッケル酸化鉱石を混合すると共に、水を加えて湿式で分級することで鉱石スラリーを調製する鉱石調合工程S1と、得られた鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施す高圧硫酸浸出工程S2と、該浸出処理により得た浸出スラリーに中和剤を添加してpH調整を行う予備中和工程S3と、該pH調整された浸出スラリーを多段洗浄しながら固液分離することで浸出残渣の分離除去を行う固液分離工程S4と、該浸出残渣の分離除去により得たニッケル及びコバルトと共に不純物元素を含む浸出液に中和剤を添加することで該不純物元素を含む中和澱物を生成し、これを分離除去してニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程S5と、該中和終液に硫化水素ガス等の硫化剤を添加することで亜鉛硫化物を生成し、これを分離除去してニッケル及びコバルトを含むニッケル回収用母液を得る浄液工程S6と、該ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトを含む混合硫化物を生成し、これを固液分離により回収する硫化工程S7と、上記固液分離工程S4で分離除去された遊離硫酸を含む浸出残渣の中和処理、及び上記硫化工程S7の固液分離の際に排出されるマグネシウム、アルミニウム、鉄等の不純物を含む貧液の中和処理を行う最終中和工程S8とから主に構成される。以下、これら一連の湿式処理工程の各々について詳細に説明する。 Specifically, as shown in FIG. 1, in this wet smelting method for nickel oxide ore, a plurality of types of nickel oxide ore are mixed in order to adjust the nickel grade and the like, and water is added to classify them in a wet manner. The ore preparation step S1 for preparing the ore slurry, the high-pressure sulfuric acid leaching step S2 in which sulfuric acid is added to the obtained ore slurry and the leaching treatment is performed under high temperature and high pressure, and the leaching slurry obtained by the leaching treatment is neutralized. Pre-neutralization step S3 for adjusting the pH by adding the above, solid-liquid separation step S4 for separating and removing the leachation residue by solid-liquid separation while performing multi-stage washing of the pH-adjusted leaching slurry, and the leaching residue. By adding a neutralizing agent to the leachate containing an impurity element together with nickel and cobalt obtained by the separation and removal of the above, a neutralized starch containing the impurity element is produced, and this is separated and removed to contain zinc together with nickel and cobalt. Zinc sulfide is generated by adding a sulfide agent such as hydrogen sulfide gas to the neutralization final solution S5 for obtaining the neutralization final solution, and this is separated and removed to recover nickel containing nickel and cobalt. A purification step S6 for obtaining a mother liquor for use, a sulfide step S7 for producing a mixed sulfide containing nickel and cobalt by adding a sulfide agent to the mother liquor for recovering nickel, and recovering the mixed sulfide by solid-liquid separation. Neutralization treatment of the leachation residue containing free sulfuric acid separated and removed in the liquid separation step S4, and neutralization of the poor liquid containing impurities such as magnesium, aluminum and iron discharged during the solid-liquid separation in the sulfide step S7. It is mainly composed of the final neutralization step S8 for performing the treatment. Hereinafter, each of these series of wet treatment steps will be described in detail.

(1)鉱石調合工程S1
鉱石調合工程S1では、リモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱に代表されるニッケル酸化鉱石が原料鉱石として用いられ、所望のニッケル品位や不純物品位となるように、ロット等が異なる複数種類の該ニッケル酸化鉱石を混合すると共に、粉砕機やスクリーンに導入してある程度粒径をそろえた後、湿式分級装置に水と共に導入してオーバーサイズの鉱石粒子を除去する。これにより、該湿式分級装置の篩下側から所定の粒度を有するニッケル酸化鉱石を含んだ鉱石スラリーを回収する。
(1) Ore preparation step S1
In the ore preparation step S1, nickel oxide ore represented by so-called laterite ore such as limonite ore and saprolite ore is used as a raw material ore, and a plurality of types having different lots and the like so as to obtain a desired nickel grade and impurity grade. The nickel oxide ore is mixed and introduced into a crusher or a screen to have a certain particle size, and then introduced into a wet classifier together with water to remove oversized ore particles. As a result, the ore slurry containing nickel oxide ore having a predetermined particle size is recovered from the lower side of the sieve of the wet classifier.

上記の湿式分級装置については、原料のニッケル酸化鉱石に対して所定の分級点で分級してオーバーサイズの鉱石粒子や夾雑物を除去し、篩下側に水と共にアンダーサイズの鉱石粒子を効率よく回収できるものであれば特に限定はなく、例えば、一般的な湿式振動篩やトロンメル等の回転式湿式篩を好適に用いることができる。また、この湿式分級装置で採用する分級点についても特に限定はないが、篩下側に回収されるニッケル酸化鉱石が後工程の高圧硫酸浸出工程において効率よく浸出処理されるようにするため、適切な目開きを有する篩が選定される。 With regard to the above-mentioned wet classifying device, oversized ore particles and impurities are removed by classifying the raw material nickel oxide ore at a predetermined classification point, and undersized ore particles are efficiently placed under the sieve together with water. There is no particular limitation as long as it can be recovered, and for example, a general wet vibrating sieve or a rotary wet sieve such as trommel can be preferably used. Further, the classification point adopted in this wet classification apparatus is not particularly limited, but it is appropriate so that the nickel oxide ore recovered under the sieve can be efficiently leached in the high-pressure sulfuric acid leaching step in the subsequent step. A sieve with a wide opening is selected.

(2)高圧硫酸浸出工程S2
高圧硫酸浸出工程S2では、上記鉱石調合工程S1で調製されたニッケル酸化鉱石を含んだ鉱石スラリーを、硫酸と共に反応容器に導入し、圧力3.0〜5.0MPaG程度、温度220〜260℃程度の高温高圧条件下で浸出処理を行う。これにより、浸出反応と高温熱加水分解反応とが生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化とが行われ、浸出液と浸出残渣とからなる浸出スラリーが生成される。なお、上記の反応容器には、内部が堰により複数の区画室に区画された横型円筒形状のオートクレーブと称する高温高圧反応用の圧力容器が好適に用いられる。
(2) High-pressure sulfuric acid leaching step S2
In the high-pressure sulfuric acid leaching step S2, the ore slurry containing the nickel oxide ore prepared in the above ore preparation step S1 is introduced into the reaction vessel together with sulfuric acid, and the pressure is about 3.0 to 5.0 MPaG and the temperature is about 220 to 260 ° C. Leaching is performed under high temperature and high pressure conditions. As a result, a leaching reaction and a high-temperature thermal hydrolysis reaction occur, leaching of nickel, cobalt, etc. as sulfate and immobilization of leached iron sulfate as hematite are performed, and the leaching solution and leaching residue are formed. Leaching slurry is produced. As the above-mentioned reaction vessel, a pressure vessel for high-temperature and high-pressure reaction called a horizontal cylindrical autoclave whose inside is partitioned into a plurality of compartments by a weir is preferably used.

上記の鉱石スラリーに添加する硫酸の添加量は、ニッケル酸化鉱石中の鉄が浸出されるように過剰に添加される。その際、高圧硫酸浸出工程S2では、後工程の固液分離工程S4におけるヘマタイトを含む浸出残渣の固液分離性向上の観点から、上記浸出液のpHが0.1〜1.0となるように硫酸の添加量を調整することが好ましい。なお、この浸出処理では、鉄イオンの固定化は完全には進行しないため、浸出液には、ニッケル、コバルト等の有価金属のほか、2価と3価の鉄イオンが含まれる。 The amount of sulfuric acid added to the above ore slurry is excessively added so that iron in the nickel oxide ore is leached. At that time, in the high-pressure sulfuric acid leaching step S2, the pH of the leachate is set to 0.1 to 1.0 from the viewpoint of improving the solid-liquid separability of the leaching residue containing hematite in the solid-liquid separation step S4 of the subsequent step. It is preferable to adjust the amount of sulfuric acid added. Since the immobilization of iron ions does not proceed completely in this leaching treatment, the leaching solution contains valuable metals such as nickel and cobalt, as well as divalent and trivalent iron ions.

(3)予備中和工程S3
予備中和工程S3では、上記高圧硫酸浸出工程S2にて得た浸出スラリーに中和剤を添加して該浸出スラリーのpHを所定範囲内に調整する。上述したように、高圧硫酸浸出工程S2では、上記有価金属の浸出率を向上させるため、該有価金属の浸出に必要な硫酸の化学量論量よりも過剰の硫酸をオートクレーブに供給する。そのため、該浸出処理後にオートクレーブから抜き出される浸出スラリーは、浸出反応に関与しなかった余剰の硫酸を含んでおり、そのpHは非常に低い。この余剰の硫酸を中和して、次工程の固液分離工程S4における多段洗浄を効率よく行うため、この予備中和工程S3では浸出スラリーのpHを所定の範囲に調整する。
(3) Pre-neutralization step S3
In the preliminary neutralization step S3, a neutralizing agent is added to the leaching slurry obtained in the high-pressure sulfuric acid leaching step S2 to adjust the pH of the leaching slurry within a predetermined range. As described above, in the high-pressure sulfuric acid leaching step S2, in order to improve the leaching rate of the valuable metal, excess sulfuric acid is supplied to the autoclave, which is larger than the stoichiometric amount of sulfuric acid required for leaching the valuable metal. Therefore, the leaching slurry extracted from the autoclave after the leaching treatment contains excess sulfuric acid that was not involved in the leaching reaction, and its pH is very low. In order to neutralize the excess sulfuric acid and efficiently perform multi-stage washing in the solid-liquid separation step S4 of the next step, the pH of the leaching slurry is adjusted to a predetermined range in this preliminary neutralization step S3.

具体的には、固液分離工程S4に供給する浸出スラリーのpHが2〜6程度となるようにpHを調整することが好ましい。このpHが2より低いと、後工程の設備を耐酸性とするためにかなりのコストが必要となる。逆にこのpHが6より高いと、浸出液中に浸出したニッケルが上記多段洗浄の過程で沈殿し、浸出残渣と共に除去されるのでニッケルの回収率が下がるうえ、該多段洗浄の洗浄効率が低下するおそれがある。 Specifically, it is preferable to adjust the pH so that the pH of the leaching slurry supplied to the solid-liquid separation step S4 is about 2 to 6. If this pH is lower than 2, a considerable cost is required to make the equipment in the subsequent process acid resistant. On the contrary, when this pH is higher than 6, the nickel leached in the leachate is precipitated in the process of the multi-stage washing and is removed together with the leaching residue, so that the recovery rate of nickel is lowered and the washing efficiency of the multi-step washing is lowered. There is a risk.

予備中和工程S3では、後の中和工程S5でのpH変動幅の抑制、及び浄液工程S6や硫化工程S7での反応効率の向上の観点から、固液分離工程S4に供給する浸出スラリーのpH値を高めに設定しておくことが好ましい。しかしながら、浸出スラリーのpH値が高くなると、該浸出スラリー中に含まれる微粒子成分によるSS(懸濁物質)の量が増加するため、後工程の固液分離工程S4において沈降性が悪化して固液分離が不十分になったり、浄液工程S6において濾過機が目詰まりし易くなったりする問題が生ずることがあった。この問題を抑制するため、予備中和工程S3では、上記の固液分離工程S4に供給する浸出スラリーの液相部のpHが2.5〜3.4となるように調整することがより好ましい。このpHの調整方法には特に限定はないが、例えば炭酸カルシウムスラリー等の中和剤の添加量を調整することによって上記のpHの範囲内に好適に調整することができる。 In the preliminary neutralization step S3, the leachate slurry supplied to the solid-liquid separation step S4 is supplied from the viewpoint of suppressing the pH fluctuation range in the subsequent neutralization step S5 and improving the reaction efficiency in the liquid purification step S6 and the sulfide step S7. It is preferable to set the pH value of. However, when the pH value of the leachate slurry becomes high, the amount of SS (suspended substance) due to the fine particle components contained in the leachate slurry increases, so that the sedimentation property deteriorates in the solid-liquid separation step S4 of the subsequent step and the solidity There may be a problem that the liquid separation becomes insufficient or the filter is easily clogged in the liquid purification step S6. In order to suppress this problem, in the preliminary neutralization step S3, it is more preferable to adjust the pH of the liquid phase portion of the leaching slurry supplied to the solid-liquid separation step S4 to be 2.5 to 3.4. .. The method for adjusting the pH is not particularly limited, but it can be suitably adjusted within the above pH range by adjusting the amount of a neutralizing agent added, for example, calcium carbonate slurry.

(4)固液分離工程S4
固液分離工程S4では、上記予備中和工程S3にてpH調整された浸出スラリーを多段洗浄すると共に浸出残渣を重力沈降により分離除去することで、ニッケル及びコバルトのほか、不純物元素として亜鉛を含む浸出液を得ることができる。この固液分離工程S4では、浸出スラリーを洗浄液と混合した後にシックナーなどの沈降分離装置を用いて固液分離することで、先ず浸出スラリーが洗浄液により希釈され、その後、沈降分離により浸出スラリー中の浸出残渣がシックナーの底部に沈降して濃縮スラリーの形態で排出される。これにより、浸出残渣に付着するニッケル分をその希釈の度合いに応じて減少させることができる。
(4) Solid-liquid separation step S4
In the solid-liquid separation step S4, the leachate slurry whose pH has been adjusted in the pre-neutralization step S3 is washed in multiple stages and the leachate residue is separated and removed by gravity sedimentation to contain zinc as an impurity element in addition to nickel and cobalt. The exudate can be obtained. In this solid-liquid separation step S4, the leaching slurry is mixed with the cleaning liquid and then solid-liquid separated using a sedimentation separator such as a thickener, so that the leaching slurry is first diluted with the cleaning liquid and then separated into the leaching slurry by sedimentation separation. The leaching residue settles on the bottom of the thickener and is discharged in the form of a concentrated slurry. As a result, the nickel content adhering to the leaching residue can be reduced according to the degree of dilution thereof.

上記シックナーによる固液分離では、図2に示すような、直列に接続された複数のシックナーT〜Tに上記浸出スラリーと洗浄液とを互いに向流になるように導入して多段で洗浄させる連続向流洗浄法(CCD法:Counter Current Decantation法)を用いるのが好ましい。すなわち、連続する複数のシックナーT〜Tのうち、最上流のシックナーTには予備中和工程S3でpH調製した浸出スラリーを導入し、最下流のシックナーTには洗浄液を導入する。 The solid-liquid separation by the thickener, such as shown in FIG. 2, is washed in multiple stages by introducing the above leach slurry and cleaning liquid to a plurality of thickener T 1 through T n which are connected in series each other become countercurrent It is preferable to use a continuous countercurrent cleaning method (CCD method: Counter Current Decantation method). That is, among the plurality of thickener T 1 through T n consecutive, the thickener T 1 of the most upstream introduced leach slurry pH prepared in the preliminary neutralization step S3, the most downstream thickeners T n introducing a cleaning fluid ..

上記複数のシックナーT〜Tの各々においては、底部から抜き出される濃縮スラリーはスラリーポンプPを介して直ぐ下流側のシックナーに移送され(最下流シックナーTの濃縮スラリーは最終中和工程S8に移送される)、一方、上端部からオーバーフローする清澄液は直ぐ上流側のシックナーに移送される(最上流シックナーTの清澄液は中和工程S5に移送される)。これにより、浸出スラリーに含まれる残渣に付着している可溶性ニッケルやコバルトの量を低下させることができるので系内に新たに導入する洗浄液を削減できると共に、ニッケル及びコバルトの回収率を向上させることができる。なお、各シックナーには凝集剤を添加して浸出残渣を凝集させるのが好ましく、これにより沈降分離性をより一層高めることができる。 In each of the plurality of thickeners T 1 to T n , the concentrated slurry extracted from the bottom is transferred to the thickener on the downstream side immediately via the slurry pump P (the concentrated slurry of the most downstream thickener T n is the final neutralization step. S8 is transferred to), while the clarified liquid overflows from the upper end portion is transferred immediately upstream thickener (most upstream thickener T 1 of the clear solution is transferred to a neutralization step S5). As a result, the amount of soluble nickel and cobalt adhering to the residue contained in the leaching slurry can be reduced, so that the amount of cleaning liquid newly introduced into the system can be reduced and the recovery rate of nickel and cobalt can be improved. Can be done. It is preferable to add a flocculant to each thickener to coagulate the leaching residue, which can further improve the sedimentation separability.

上記最上流のシックナーTの上端部からオーバーフローする清澄液は、貴液として後工程の中和工程S5に送られる。固液分離工程S4では、この貴液の清澄性を高く維持することが好ましく、これにより後工程の中和工程S5や浄液工程S6において用いる濾過機などの固液分離装置の固液分離性が向上し、結果的に本湿式製錬プロセス全体としての生産性が向上する。すなわち、貴液の清澄度が低くて多くの浮遊粒子が含まれていると、例えば濾過機ではその圧力損失がすぐに増大して通液流量が早い段階で低下してしまい、この濾過機がネックになってプロセス全体の処理能力が低下してしまうおそれがある。 The clear liquid overflowing from the upper end of the most upstream thickener T 1 is sent as a noble liquid to the neutralization step S5 in the subsequent step. In the solid-liquid separation step S4, it is preferable to maintain high clarity of this noble liquid, whereby the solid-liquid separability of a solid-liquid separation device such as a filter used in the neutralization step S5 and the liquid purification step S6 of the subsequent step As a result, the productivity of the entire hydrometallurgy process is improved. That is, if the clarity of the noble liquid is low and a large number of suspended particles are contained, for example, in a filter, the pressure loss increases immediately and the flow rate of the liquid decreases at an early stage. It may become a bottleneck and reduce the processing capacity of the entire process.

上記の洗浄液には、ニッケルをほとんど含まず且つ固液分離工程S4以降の反応にほぼ悪影響を及ぼさない低pHの水溶液を用いるのが好ましく、特に、pH1〜3程度の水溶液を用いるのがより好ましい。この洗浄液のpHが3よりも高いと、浸出液中にアルミニウムが含まれる場合には嵩の高いアルミニウム水酸化物が生成され、上記のシックナー内において浸出残渣の沈降不良の原因となるおそれがある。上記の条件を満たす洗浄液としては、限定するものではないが、例えば後工程の硫化工程S7から排出される貧液はpHが1〜3程度であるので、これを繰り返して利用するのが好ましい。 As the cleaning liquid, it is preferable to use an aqueous solution having a low pH that contains almost no nickel and has almost no adverse effect on the reaction after the solid-liquid separation step S4, and it is more preferable to use an aqueous solution having a pH of about 1 to 3. .. If the pH of this cleaning liquid is higher than 3, a bulky aluminum hydroxide may be generated when aluminum is contained in the leaching liquid, which may cause poor sedimentation of the leaching residue in the above thickener. The cleaning liquid satisfying the above conditions is not limited, but for example, the poor liquid discharged from the sulfurization step S7 in the subsequent step has a pH of about 1 to 3, and it is preferable to use this repeatedly.

(5)中和工程S5
中和工程S5では、上記固液分離工程S4にて浸出残渣を分離除去することで得られる貴液(浸出液)に炭酸カルシウム等の中和剤を添加してpH調整し、これにより該貴液に含まれる不純物元素から中和澱物を生成する。この中和澱物をシックナー等を用いて分離除去してニッケル及びコバルトと共に亜鉛を含む中和終液を回収する。上記のpH調整では、該貴液の酸化を抑制しながら、中和終液のpHが好適には4以下、より好適には3.0〜3.5、最も好適には3.1〜3.2になるように該中和剤の添加量を調整する。これにより、高圧硫酸浸出工程S2で過剰に添加した硫酸を中和してニッケル回収用の母液の元になる中和終液を生成すると共に、該浸出液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として除去することができる。なおこの中和澱物は、前工程の固液分離工程S4に戻してもよい。
(5) Neutralization step S5
In the neutralization step S5, a neutralizing agent such as calcium carbonate is added to the noble liquid (leaching liquid) obtained by separating and removing the leachate residue in the solid-liquid separation step S4 to adjust the pH, whereby the noble liquid is adjusted. Neutralized starch is produced from the impurity elements contained in. This neutralized starch is separated and removed using a thickener or the like to recover the neutralized final solution containing zinc together with nickel and cobalt. In the above pH adjustment, the pH of the neutralized final solution is preferably 4 or less, more preferably 3.0 to 3.5, and most preferably 3.1 to 3 while suppressing the oxidation of the noble solution. The amount of the neutralizing agent added is adjusted to be .2. As a result, the sulfuric acid excessively added in the high-pressure sulfuric acid leaching step S2 is neutralized to generate a neutralized final solution which is a source of the mother liquor for recovering nickel, and trivalent iron ions and aluminum remaining in the leaching solution are produced. It is possible to remove impurities such as ions as a neutralized starch. The neutralized starch may be returned to the solid-liquid separation step S4 of the previous step.

(6)浄液工程S6
浄液工程S6では、前工程の中和工程S5で生成した中和終液に硫化水素ガス等の硫化剤を添加して硫化処理を施し、これにより生成する亜鉛硫化物を分離除去してニッケル及びコバルトを含むニッケル回収用母液(脱亜鉛終液)を得る。上記の硫化処理は、例えば微加圧された低圧反応槽内に該中和終液を導入しながら、該低圧反応槽の気相部に硫化水素ガスを吹き込むことによって行うのが好ましい。これにより、ニッケル及びコバルトに対して亜鉛を選択的に硫化して亜鉛硫化物として除去することができ、ニッケル回収用母液としての脱亜鉛終液を効率よく生成することができる。
(6) Purifying process S6
In the purification step S6, a sulfurizing agent such as hydrogen sulfide gas is added to the neutralizing final liquid generated in the neutralizing step S5 of the previous step to perform sulfurization treatment, and zinc sulfide produced thereby is separated and removed to nickel. And obtain a nickel recovery mother liquor (dezincification final solution) containing cobalt. The above-mentioned sulfurization treatment is preferably carried out, for example, by injecting the neutralizing final solution into a slightly pressurized low-pressure reaction vessel and blowing hydrogen sulfide gas into the gas phase portion of the low-pressure reaction vessel. As a result, zinc can be selectively sulfurized with respect to nickel and cobalt and removed as zinc sulfide, and a dezincinated final solution as a mother liquor for recovering nickel can be efficiently produced.

(7)硫化工程S7
硫化工程S7では、上記浄液工程S6で生成した脱亜鉛終液を硫化反応始液として硫化処理することで、不純物成分の少ないニッケル及びコバルトの混合硫化物を生成する。具体的には、該硫化反応始液を加圧された硫化反応槽に装入すると共に、この硫化反応槽内の気相部分に硫化水素ガスを吹き込み、硫化反応始液中に硫化水素ガスを溶解させる。これにより硫化反応を生じさせて、該硫化反応始液中に含まれるニッケル及びコバルトを混合硫化物として固定化させる。このニッケル及びコバルト混合硫化物を含むスラリーを、該硫化反応槽から抜き出してシックナー等の固液分離装置で固液分離することで、該混合硫化物を回収することができる。
(7) Sulfurization step S7
In the sulfurization step S7, the dezincinated final solution produced in the purification step S6 is sulfurized as the starting solution for the sulfurization reaction to produce a mixed sulfide of nickel and cobalt having a small amount of impurity components. Specifically, the sulfur sulfide reaction starting liquid is charged into a pressurized sulfurization reaction tank, and hydrogen sulfide gas is blown into the gas phase portion in the sulfurization reaction tank to add hydrogen sulfide gas into the sulfurization reaction starting liquid. Dissolve. As a result, a sulfurization reaction is caused, and nickel and cobalt contained in the sulfurization reaction starting solution are immobilized as mixed sulfides. The mixed sulfide can be recovered by extracting the slurry containing the nickel and cobalt mixed sulfide from the sulfurization reaction tank and performing solid-liquid separation with a solid-liquid separation device such as a thickener.

上記固液分離装置がシックナーの場合は、重力沈降により分離した混合硫化物がシックナーの底部から濃縮スラリーの形態で回収される。一方、該混合硫化物が分離された上澄み液は、貧液としてシックナーの上端部からオーバーフローにより排出される。この貧液は、ニッケル等の有価金属の濃度が極めて低い水準で安定化された水溶液であるが、硫化されずに残留する鉄、マグネシウム、マンガン等の不純物元素を含んでいる。従って、この貧液は、通常は最終中和工程S8に移送されて無害化処理されるが、必要に応じて少なくとも一部が固液分離工程S4に戻されてニッケル回収のために再利用される。 When the solid-liquid separator is a thickener, the mixed sulfide separated by gravity sedimentation is recovered from the bottom of the thickener in the form of a concentrated slurry. On the other hand, the supernatant from which the mixed sulfide is separated is discharged as a poor liquid from the upper end of the thickener by overflow. This poor liquid is an aqueous solution stabilized at an extremely low concentration of valuable metals such as nickel, but contains impurity elements such as iron, magnesium, and manganese that remain without being sulfurized. Therefore, this poor liquid is usually transferred to the final neutralization step S8 for detoxification treatment, but if necessary, at least a part thereof is returned to the solid-liquid separation step S4 and reused for nickel recovery. To.

(8)最終中和工程S8
最終中和工程S8では、上記の固液分離工程S4で分離除去された遊離硫酸を含む浸出残渣と、上記の硫化工程S7で生成した混合硫化物を沈降分離、濾過等により回収する際に液相側に排出されるマグネシウム、アルミニウム、鉄等の不純物を含んだ貧液とに中和剤を添加して中和処理する。これにより、本湿式製錬プロセスから環境上の問題となるスラリーが系外に廃棄されるのを防ぐことができる。具体的には、上記の浸出残渣や貧液に中和剤を添加することによって所定のpH範囲に調整する。これにより浸出残渣に含まれる遊離硫酸がほぼ完全に中和されると共に、貧液に含まれる不純物が水酸化物として固定化される。このようにして生成される不純物の水酸化物を含むスラリーは、廃棄スラリー(テーリング)としてテーリングダム(廃棄物貯留場)に移送される。
(8) Final neutralization step S8
In the final neutralization step S8, when the leachate residue containing free sulfuric acid separated and removed in the solid-liquid separation step S4 and the mixed sulfide produced in the sulfurization step S7 are recovered by sedimentation separation, filtration, etc. A neutralizing agent is added to the poor liquid containing impurities such as magnesium, aluminum, and iron discharged to the phase side for neutralization treatment. This makes it possible to prevent the slurry, which poses an environmental problem, from being discarded outside the system from the present hydrometallurgy process. Specifically, the pH is adjusted to a predetermined pH range by adding a neutralizing agent to the above-mentioned leaching residue or poor liquid. As a result, the free sulfuric acid contained in the leaching residue is almost completely neutralized, and the impurities contained in the poor liquid are immobilized as hydroxides. The slurry containing the impurity hydroxide thus produced is transferred to the tailing dam (waste storage) as a waste slurry (tailing).

2.ニッケル酸化鉱石のスラリーの浸出処理方法
本発明の実施形態に係るニッケル酸化鉱石の浸出処理方法は、上記の湿式製錬方法のうち高圧硫酸浸出工程S2において実施される。この浸出処理方法は、その前工程の鉱石調合工程S1において調製された、アルミニウム及びマグネシウムを含有するニッケル酸化鉱石を浸出処理の対象としている。また、この浸出処理方法は、前述したように、オートクレーブと称する高温高圧下の反応容器内に装入した該ニッケル酸化鉱石を含む鉱石スラリーに対して硫酸により浸出処理を行うものであるため、ニッケルを含む浸出液と浸出残渣とからなる浸出スラリーを極めて効率よく生成することができる。
2. 2. Leaching Treatment Method for Slurry of Nickel Oxide Ore The leaching treatment method for nickel oxide ore according to the embodiment of the present invention is carried out in the high-pressure sulfuric acid leaching step S2 among the above hydrometallurgical methods. In this leaching treatment method, the nickel oxide ore containing aluminum and magnesium prepared in the ore preparation step S1 of the previous step is targeted for the leaching treatment. Further, as described above, in this leaching treatment method, the ore slurry containing the nickel oxide ore charged in the reaction vessel under high temperature and high pressure called an autoclave is leached with sulfuric acid. An leaching slurry composed of a leaching solution containing leaching liquid and a leaching residue can be produced extremely efficiently.

すなわち、この浸出処理においては、上記鉱石スラリーに対して高温高圧下で硫酸を添加することにより、下記式i〜式iiiで表される浸出反応と下記式iv〜vで表される高温熱加水分解反応とを生じさせ、これによりニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。なお、鉄イオンの固定化は完全には進行しないため、生成される浸出スラリー中の液相部分には、ニッケルやコバルト等のほかに2価と3価の鉄イオンが通常含まれている。 That is, in this leaching treatment, by adding sulfuric acid to the ore slurry under high temperature and high pressure, the leaching reaction represented by the following formulas i to iii and the high temperature thermal water addition represented by the following formulas iv to v A decomposition reaction occurs, which causes leaching of nickel, cobalt and the like as sulfates and immobilization of the leached iron sulfate as hematite. Since the immobilization of iron ions does not proceed completely, the liquid phase portion in the generated leaching slurry usually contains divalent and trivalent iron ions in addition to nickel and cobalt.

(浸出反応)
[式i]
MO+HSO→MSO+H
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す)
[式ii]
2Fe(OH)+3HSO→Fe(SO)+6H
[式iii]
FeO+HSO→FeSO+H
(Leaching reaction)
[Equation i]
MO + H 2 SO 4 → MSO 4 + H 2 O
(M in the formula represents Ni, Co, Fe, Zn, Cu, Mg, Cr, Mn, etc.)
[Equation ii]
2Fe (OH) 3 + 3H 2 SO 4 → Fe 2 (SO 4 ) 3 + 6H 2 O
[Equation iii]
FeO + H 2 SO 4 → FeSO 4 + H 2 O

(高温熱加水分解反応)
[式iv]
2FeSO+HSO+1/2O→Fe(SO)+H
[式v]
Fe(SO)+3HO→Fe+3HSO
(High temperature thermal hydrolysis reaction)
[Equation iv]
2FeSO 4 + H 2 SO 4 + 1 / 2O 2 → Fe 2 (SO 4 ) 3 + H 2 O
[Expression v]
Fe 2 (SO 4 ) 3 + 3H 2 O → Fe 2 O 3 + 3H 2 SO 4

上記の浸出反応を効率よく行うと共に原料鉱石中の鉄の大部分をヘマタイトとして固定するため、上記オートクレーブ内では反応温度を好ましくは220〜260℃程度、より好ましくは240〜255℃程度に維持して浸出処理を行う。この反応温度が220℃未満では、高温熱加水分解反応の速度が遅くなるため反応溶液中に鉄が溶存したまま残り、この鉄を除去するため後工程の浄液工程S6の負荷が増加してニッケルとの分離が困難となる。逆に、この反応温度が260℃を超えると、高温熱加水分解反応自体は促進されるものの、高温高圧浸出を行う上記オートクレーブの材質の選定が困難となり、また温度上昇に要する熱エネルギーコストが上昇する。 In order to efficiently carry out the above leaching reaction and fix most of the iron in the raw material ore as hematite, the reaction temperature is preferably maintained at about 220 to 260 ° C., more preferably about 240 to 255 ° C. in the autoclave. Leaching is performed. If the reaction temperature is less than 220 ° C., the rate of the high-temperature thermal hydrolysis reaction slows down, so that iron remains dissolved in the reaction solution, and the load of the purification step S6 in the subsequent step increases to remove the iron. It becomes difficult to separate from nickel. On the contrary, when this reaction temperature exceeds 260 ° C., the high temperature thermal hydrolysis reaction itself is promoted, but it becomes difficult to select the material of the autoclave for high temperature and high pressure leaching, and the thermal energy cost required for the temperature rise increases. To do.

上記の浸出処理に際して上記鉱石スラリーに添加する硫酸の添加量は、一般的には上記式i〜vから算出される化学量論量に比べて過剰量が添加され、例えば鉱石1トン当り150〜250kg程度の硫酸が添加される。但し、硫酸の添加量は硫酸の消費コストの観点からは極力少ないのが好ましく、鉱石1トン当りの硫酸添加量が250kgを超えると、硫酸コストが高くなりすぎるので好ましくない。逆に鉱石1トン当りの硫酸添加量が150kg未満ではニッケルの浸出が不十分になるおそれがある。 The amount of sulfuric acid added to the ore slurry during the leaching treatment is generally in excess of the stoichiometric amount calculated from the formulas i to v, for example, 150 to 1 ton of ore. About 250 kg of sulfuric acid is added. However, the amount of sulfuric acid added is preferably as small as possible from the viewpoint of the cost of consuming sulfuric acid, and if the amount of sulfuric acid added per ton of ore exceeds 250 kg, the cost of sulfuric acid becomes too high, which is not preferable. On the contrary, if the amount of sulfuric acid added per ton of ore is less than 150 kg, the leaching of nickel may be insufficient.

上記の浸出処理の対象となる原料のニッケル酸化鉱石は、リモナイト鉱やサプロライト鉱等に代表されるいわゆるラテライト鉱である。このラテライト鉱には通常はニッケルが0.8〜2.5質量%程度の含有率で、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。また、このニッケル酸化鉱石は鉄の含有量が10〜50質量%程度であり、これは主として3価の水酸化物(ゲーサイト)の形態を有しているが、一部2価の鉄がケイ苦土鉱物に含まれている。なお、原料のニッケル酸化鉱石には、上記のラテライト鉱のほか、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石である、例えば深海底に賦存するマンガン瘤等が用いられることがある。 The raw material nickel oxide ore to be leached is a so-called laterite ore represented by limonite ore and saprolite ore. This laterite ore usually contains nickel in a content of about 0.8 to 2.5% by mass as a hydroxide or a siliceous earth (magnesium silicate) mineral. In addition, this nickel oxide ore has an iron content of about 10 to 50% by mass, which mainly has the form of trivalent hydroxide (gesite), but some divalent iron is present. It is contained in Kay bitter mineral. In addition to the above-mentioned laterite ore, the raw material nickel oxide ore is an oxide ore containing valuable metals such as nickel, cobalt, manganese, and copper, for example, manganese aneurysm existing on the deep sea floor. There is.

上記の浸出処理に際しては、前工程で調製された上記ニッケル酸化鉱石を含む鉱石スラリーに対して、硫酸を添加して浸出反応を生じさせる。このスラリーの形態の鉱石スラリーは、固形分濃度(スラリー濃度とも称する)が15〜45質量%程度であることが好ましい。このスラリー濃度が15質量%未満では、所望の滞留時間を確保するために過大なオートクレーブが必要になるうえ、硫酸の添加量がこれに伴って増加するので好ましくない。逆に、このスラリー濃度が45質量%を超えると、設備の規模は小さくできるものの、高濃度スラリーの移送が困難になり、移送管内で閉塞が頻発したり、移送のために過度のエネルギーが必要になったりするので好ましくない。 In the above leaching treatment, sulfuric acid is added to the ore slurry containing the nickel oxide ore prepared in the previous step to cause an leaching reaction. The ore slurry in the form of this slurry preferably has a solid content concentration (also referred to as slurry concentration) of about 15 to 45% by mass. If the slurry concentration is less than 15% by mass, an excessive autoclave is required to secure a desired residence time, and the amount of sulfuric acid added increases accordingly, which is not preferable. On the contrary, if the slurry concentration exceeds 45% by mass, the scale of the equipment can be reduced, but the transfer of the high-concentration slurry becomes difficult, the blockage occurs frequently in the transfer pipe, and excessive energy is required for the transfer. It is not preferable because it becomes.

ところで、上記のニッケル酸化鉱石には、不純物としてアルミニウム及びマグネシウムが含まれており、これら不純物品位が原料ロットの切り替え等の理由により変動すると、固液分離工程S4以降の運転が不安定になることがあった。そこで本発明の実施形態の浸出処理方法においては、該ニッケル酸化鉱石を含んだ鉱石スラリーに添加する硫酸の添加量を、該ニッケル酸化鉱石のマグネシウム含有率に対するアルミニウム含有率の比率で定義される質量基準のAl/Mgの比(以下、Al/Mg比とも称する)に応じて増減させ、これにより浸出スラリーに含まれる浸出液の遊離硫酸濃度を所定の範囲内に調整している。 By the way, the above nickel oxide ore contains aluminum and magnesium as impurities, and if these impurity grades fluctuate due to reasons such as switching of raw material lots, the operation after the solid-liquid separation step S4 becomes unstable. was there. Therefore, in the leaching treatment method of the embodiment of the present invention, the amount of sulfuric acid added to the ore slurry containing the nickel oxide ore is defined by the ratio of the aluminum content to the magnesium content of the nickel oxide ore. The amount is increased or decreased according to the reference Al / Mg ratio (hereinafter, also referred to as Al / Mg ratio), whereby the free sulfuric acid concentration of the leachate contained in the leachate slurry is adjusted within a predetermined range.

これにより、アルミニウム浸出率を制御できるので、ニッケル酸化鉱石中のAl/Mg比が通常よりも高くなっても、後工程の固液分離工程S4において固液分離の負荷が高くなりすぎたり、その固液分離性が悪化したりする問題を抑えることができる。なお、上記のアルミニウム含有率及びマグネシウム含有率は、例えば原料のニッケル酸化鉱石に対してICP発光分析法で分析することにより求めることができる。また、上記のアルミニウム含有率及びマグネシウム含有率を、それぞれアルミニウムの含有割合(又は品位)及びマグネシウムの含有割合(品位)ということがある。更に鉱石スラリーは原料のニッケル酸化鉱石に水を添加することで作製されるので、ニッケル酸化鉱石のAl/Mg比の値は、該ニッケル酸化鉱石を含む鉱石スラリーのAl/Mg比の値と基本的には同じである。 As a result, the aluminum leaching rate can be controlled, so that even if the Al / Mg ratio in the nickel oxide ore becomes higher than usual, the load of solid-liquid separation becomes too high in the solid-liquid separation step S4 of the subsequent step, or the load thereof becomes too high. It is possible to suppress the problem of deterioration of solid-liquid separability. The aluminum content and magnesium content can be determined, for example, by analyzing the raw material nickel oxide ore by ICP emission spectrometry. Further, the above-mentioned aluminum content and magnesium content may be referred to as an aluminum content ratio (or grade) and a magnesium content ratio (grade), respectively. Furthermore, since the ore slurry is produced by adding water to the raw material nickel oxide ore, the value of the Al / Mg ratio of the nickel oxide ore is basically the value of the Al / Mg ratio of the ore slurry containing the nickel oxide ore. Is the same.

具体的に説明すると、鉱石スラリー中の固形分であるラテライト鉱等のニッケル酸化鉱石のアルミニウム含有率は通常2.0〜3.5質量%程度の範囲内であり、マグネシウム含有率は通常0.8〜1.8質量%程度の範囲内である。そのため、該ニッケル酸化鉱石のAl/Mg比は、およそ1.1〜4.4の範囲となる。この程度のAl/Mg比の範囲内でアルミニウム及びマグネシウムを含有するニッケル酸化鉱石の鉱石スラリーを高圧硫酸浸出工程S2において浸出処理したとき、ニッケル、マグネシウム、及びアルミニウムは下記式1〜式3の浸出反応により浸出され、浸出したアルミニウムは一部が下記式4の加水分解反応により固定化される。 Specifically, the aluminum content of nickel oxide ore such as laterite ore, which is a solid content in the ore slurry, is usually in the range of about 2.0 to 3.5% by mass, and the magnesium content is usually 0. It is in the range of about 8 to 1.8% by mass. Therefore, the Al / Mg ratio of the nickel oxide ore is in the range of about 1.1 to 4.4. When an ore slurry of nickel oxide ore containing aluminum and magnesium within the range of this degree of Al / Mg ratio is leached in the high pressure sulfuric acid leaching step S2, nickel, magnesium and aluminum are leached from the following formulas 1 to 3. It is leached by the reaction, and a part of the leached aluminum is immobilized by the hydrolysis reaction of the following formula 4.

[式1]
NiO+HSO=NiSO+H
[式2]
MgO+HSO=MgSO+H
[式3]
2Al(OH)+3HSO→Al(SO)+6H
[式4]
3Al(SO)+14HO→
2(HO)Al(SO)(OH)+5HSO
[Equation 1]
NiO + H 2 SO 4 = NiSO 4 + H 2 O
[Equation 2]
MgO + H 2 SO 4 = sulfonyl 4 + H 2 O
[Equation 3]
2Al (OH) 3 + 3H 2 SO 4 → Al 2 (SO 4 ) 3 + 6H 2 O
[Equation 4]
3Al 2 (SO 4 ) 3 + 14H 2 O →
2 (H 3 O) Al 3 (SO 4 ) 2 (OH) 6 + 5H 2 SO 4

上記の浸出処理では、アルミニウム浸出率が25.0%以下に抑えられるのが好ましい。このアルミニウム浸出率が25.0%を超えると浸出液中のアルミニウム濃度が過度になり、後工程の予備中和工程S3においてアルミニウム水酸化物からなる澱物の発生量が過大となり、固液分離工程S4の負荷が高くなりすぎて貴液の清澄度が悪化することがあった。また、アルミニウム水酸化物からなる澱物は、粒径が小さく比重が軽いためシックナーの沈降分離装置内において沈降しにくく、上記清澄度がより一層悪化することがあった。その結果、湿式製錬プロセス全体としての処理能力が低下することがあった。なお、アルミニウム浸出率(Al浸出率)は下記式5で定義することができる。 In the above leaching treatment, the aluminum leaching rate is preferably suppressed to 25.0% or less. If this aluminum leaching rate exceeds 25.0%, the aluminum concentration in the leachate becomes excessive, and the amount of starch composed of aluminum hydroxide becomes excessive in the preliminary neutralization step S3 of the subsequent step, resulting in a solid-liquid separation step. The load of S4 may become too high and the clarity of the noble liquid may deteriorate. Further, since the starch made of aluminum hydroxide has a small particle size and a light specific gravity, it is difficult to settle in the sedimentation separator of the thickener, and the clarity may be further deteriorated. As a result, the processing capacity of the entire hydrometallurgy process may be reduced. The aluminum leaching rate (Al leaching rate) can be defined by the following formula 5.

[式5]
Al浸出率=(単位時間当たりの浸出液生成量×浸出液中のAl質量濃度)÷(単位時間当たりのニッケル酸化鉱石処理量×ニッケル酸化鉱石のAl品位)×100
[Equation 5]
Al leachate = (amount of leachate produced per unit time x mass concentration of Al in leachate) ÷ (amount of nickel oxide ore treated per unit time x Al grade of nickel oxide ore) x 100

そこで、本発明の実施形態の浸出処理方法は、オートクレーブに装入する鉱石スラリーのAl/Mg比に応じた所定の範囲内に浸出液の遊離硫酸濃度が収まるように、該オートクレーブに添加する硫酸の添加量を調整している。例えば、該オートクレーブに装入する鉱石スラリーのAl/Mg比が増加傾向にあるときは、該オートクレーブから抜き出される浸出スラリーに含まれる浸出液の遊離硫酸濃度が減少するように硫酸の添加量を減少させ、該オートクレーブに装入する鉱石スラリーのAl/Mg比が減少傾向にあるときはその逆の操作を行う。 Therefore, in the leaching treatment method of the embodiment of the present invention, the sulfuric acid added to the autoclave is provided so that the free sulfuric acid concentration of the leachate falls within a predetermined range according to the Al / Mg ratio of the ore slurry charged in the autoclave. The amount of addition is adjusted. For example, when the Al / Mg ratio of the ore slurry charged into the autoclave tends to increase, the amount of sulfuric acid added is reduced so that the free sulfuric acid concentration of the leachate contained in the leachate slurry extracted from the autoclave is reduced. When the Al / Mg ratio of the ore slurry charged into the autoclave tends to decrease, the reverse operation is performed.

より具体的に説明すると、該オートクレーブに装入する鉱石スラリーのAl/Mg比が例えば閾値2.0に対して多いか少ないかを判断し、該Al/Mg比が2.0以上の場合は、該オートクレーブから抜き出される浸出スラリーに含まれる浸出液の遊離硫酸濃度が32g/L以上38g/L以下の範囲内となるように該オートクレーブに添加する硫酸の添加量を調整する。 More specifically, it is determined whether the Al / Mg ratio of the ore slurry charged into the autoclave is higher or lower than the threshold value of 2.0, and when the Al / Mg ratio is 2.0 or more, it is determined. The amount of sulfuric acid added to the autoclave is adjusted so that the free sulfuric acid concentration of the leachate contained in the leachate slurry extracted from the autoclave is within the range of 32 g / L or more and 38 g / L or less.

浸出液の遊離硫酸濃度を上記範囲内に調整することで、アルミニウム及びマグネシウムを含むニッケル酸化鉱石を上記オートクレーブで浸出処理したときのアルミニウム浸出率を低く抑えることができる。すなわち、上記遊離硫酸濃度が38g/Lを超えると、上記浸出処理時のアルミニウム浸出率が高くなりすぎるおそれがある。逆に、上記遊離硫酸濃度が32g/L未満では、上記ニッケル酸化鉱石を上記オートクレーブで浸出処理したときのニッケル浸出率が所望の条件を満たさなくなるおそれがある。 By adjusting the free sulfuric acid concentration of the leachate within the above range, the aluminum leachation rate when the nickel oxide ore containing aluminum and magnesium is leached by the autoclave can be suppressed to a low level. That is, if the free sulfuric acid concentration exceeds 38 g / L, the aluminum leaching rate during the leaching treatment may become too high. On the contrary, if the free sulfuric acid concentration is less than 32 g / L, the nickel leaching rate when the nickel oxide ore is leached by the autoclave may not satisfy the desired conditions.

一方、上記オートクレーブに装入する鉱石スラリー中のAl/Mg比が2.0未満の場合は、該オートクレーブで浸出処理された後に該オートクレーブから抜き出される浸出スラリーに含まれる浸出液の遊離硫酸濃度が38g/Lを超え50g/L以下、より好ましくは40g/L以上50g/L以下の範囲内となるように該オートクレーブに添加する硫酸の添加量を調整する。 On the other hand, when the Al / Mg ratio in the ore slurry charged into the autoclave is less than 2.0, the concentration of free sulfuric acid in the leachate contained in the leach slurry extracted from the autoclave after being leached in the autoclave is high. The amount of sulfuric acid added to the autoclave is adjusted so as to be in the range of more than 38 g / L and 50 g / L or less, more preferably 40 g / L or more and 50 g / L or less.

このように、鉱石スラリーのAl/Mg比が2.0未満の場合に、上記のAl/Mg比が2.0以上の場合に比べて遊離硫酸濃度を高くする理由は、この遊離硫酸濃度を上記のAl/Mg比2.0以上の場合に比べて下げると、アルミニウム浸出率は若干下がるものの、鉱石スラリー中のマグネシウム品位が上記のAl/Mg比2.0以上の場合に比べて高いため、添加した硫酸が優先的にマグネシウムに使用され、遊離硫酸濃度を下げることによるアルミニウム浸出率の低減効果が得られにくくなって、逆にニッケル浸出率が低下するからである。 As described above, the reason why the free sulfuric acid concentration is increased when the Al / Mg ratio of the ore slurry is less than 2.0 as compared with the case where the Al / Mg ratio is 2.0 or more is set in this free sulfuric acid concentration. When the Al / Mg ratio is lowered compared to the above case of 2.0 or more, the aluminum leaching rate is slightly lowered, but the magnesium grade in the ore slurry is higher than the case of the above Al / Mg ratio of 2.0 or more. This is because the added sulfuric acid is preferentially used for magnesium, and it becomes difficult to obtain the effect of reducing the aluminum leaching rate by lowering the free sulfuric acid concentration, and conversely, the nickel leaching rate is lowered.

すなわち、前述した高圧硫酸浸出工程S2で処理されるニッケル酸化鉱石のAl/Mg比が低い場合は(これはマグネシウム品位が相対的に高い場合に該当する)、上記式2の反応が優先的に進行するため、上記式3の反応を阻害したり、上記式4の反応を促進したりするため、アルミニウム浸出率が低水準になりやすい。一方、該高圧硫酸浸出工程S2で処理されるニッケル酸化鉱石のAl/Mg比が高い場合は(これはマグネシウム品位が相対的に低い場合に該当する)、上記式2が進行しても浸出液は十分な遊離硫酸濃度を維持しており、かつ該浸出液の金属イオン濃度は低いため、上記式3の反応を促進したり、上記式4反応を阻害したりするため、アルミニウム浸出率が高水準になりやすい。 That is, when the Al / Mg ratio of the nickel oxide ore treated in the above-mentioned high-pressure sulfuric acid leaching step S2 is low (this corresponds to the case where the magnesium grade is relatively high), the reaction of the above formula 2 is given priority. As it progresses, it inhibits the reaction of the above formula 3 and promotes the reaction of the above formula 4, so that the aluminum leaching rate tends to be low. On the other hand, when the Al / Mg ratio of the nickel oxide ore treated in the high-pressure sulfuric acid leaching step S2 is high (this corresponds to the case where the magnesium grade is relatively low), the leachate remains even if the above formula 2 proceeds. Since a sufficient free sulfuric acid concentration is maintained and the metal ion concentration of the leachate is low, the reaction of the above formula 3 is promoted or the reaction of the above formula 4 is inhibited, so that the aluminum leachation rate is high. Prone.

後者のように、原料のニッケル酸化鉱石のAl/Mg比が高い場合は、アルミニウム浸出率が高水準になりやすいため、浸出液中の遊離硫酸濃度の管理値をAl/Mg比が低い場合に比べて積極的に低減させる。これにより、上記式3の反応の進行を抑制したり、上記式4の反応を進行させたりすることができるので、結果的にアルミニウム浸出率が過大になるのを効果的に抑えることができる。 When the Al / Mg ratio of the raw material nickel oxide ore is high as in the latter case, the aluminum leaching rate tends to be high, so the control value of the free sulfuric acid concentration in the leachate is compared with the case where the Al / Mg ratio is low. And actively reduce it. As a result, the progress of the reaction of the above formula 3 can be suppressed and the progress of the reaction of the above formula 4 can be promoted, so that the aluminum leaching rate can be effectively suppressed as a result.

以上、本発明のニッケル酸化鉱石の浸出処理方法について実施形態に基づいて説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の代替例や変更例を含みうるものである。すなわち、本発明の権利範囲は、特許請求の範囲及びその均等の範囲に及びものである。次に、本発明の浸出処理方法について実施例を挙げてより具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。 Although the method for leaching nickel oxide ore of the present invention has been described above based on the embodiment, the present invention is not limited to the above embodiment, and various alternative examples and various alternative examples are provided without departing from the gist of the present invention. It can include modified examples. That is, the scope of rights of the present invention extends to the scope of claims and the equivalent scope thereof. Next, the leaching treatment method of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

<実施例>
Al含有率及びMg含有率がそれぞれ異なるラテライト鉱からなる試料1〜6の原料鉱石を用意し、それらの各々に対して水を添加して固形分濃度が約40質量%の鉱石スラリーを調製した。これら試料1〜6の鉱石スラリーの各々をオートクレーブに連続的に装入し、更に鉱石1トン当り200kgを目安として98%硫酸を連続的に添加して浸出温度が約253℃、浸出圧力が約4500kPaGの高温高圧条件下で硫酸浸出処理を行い、浸出スラリーを生成させた。
<Example>
Raw material ores of Samples 1 to 6 composed of laterite ore having different Al content and Mg content were prepared, and water was added to each of them to prepare an ore slurry having a solid content concentration of about 40% by mass. .. Each of the ore slurries of Samples 1 to 6 was continuously charged into the autoclave, and 98% sulfuric acid was continuously added with 200 kg per ton of ore as a guide, and the leaching temperature was about 253 ° C. and the leaching pressure was about. Sulfuric acid leaching treatment was performed under high temperature and high pressure conditions of 4500 kPaG to generate a leaching slurry.

その際、鉱石スラリーの装入流量は、該オートクレーブ内の滞留時間が60分となるように調整した。一方、硫酸の添加流量は、原料鉱石のAl/Mg比が2.0未満の場合は、オートクレーブから連続的に排出される浸出スラリーに含まれる浸出液の遊離硫酸濃度が38g/L以上50g/L以下の範囲内となるように調整し、原料鉱石のAl/Mg比が2.0以上の場合は、該浸出液の遊離硫酸濃度が32g/L以上38g/L以下の範囲内となるように調整した。 At that time, the charging flow rate of the ore slurry was adjusted so that the residence time in the autoclave was 60 minutes. On the other hand, when the Al / Mg ratio of the raw material ore is less than 2.0, the free sulfuric acid concentration of the leachate contained in the leach slurry continuously discharged from the autoclave is 38 g / L or more and 50 g / L. Adjust so that it is within the following range, and when the Al / Mg ratio of the raw material ore is 2.0 or more, adjust so that the free sulfuric acid concentration of the leachate is within the range of 32 g / L or more and 38 g / L or less. did.

このようにして各試料の原料鉱石を硫酸浸出処理して得た浸出スラリーをサンプリングし、これを濾紙を敷いたヌッチェに導入して浸出残渣を分離除去し、濾液側に回収した浸出液に含まれるアルミニウムの濃度をICP発光分析法により測定した。得られたアルミニウム濃度(質量%)を前述した式5の計算式に代入してアルミニウム浸出率を求めた。その結果を、原料鉱石のAl含有率、Mg含有率、Al/Mg比、及び浸出液の遊離硫酸濃度と共に下記表1に示す。また、鉱石原料のAl/Mg比とアルミニウム浸出率との関係を図3のグラフ上にプロットした。なお、原料鉱石のAl含有率及びMg含有率はICP発光分析法により測定し、浸出液の遊離硫酸濃度は中和滴定法により測定した。 In this way, the leachate slurry obtained by sulfuric acid leaching treatment of the raw material ore of each sample is sampled, introduced into a nutche covered with filter paper to separate and remove the leachate residue, and contained in the leachate collected on the filtrate side. The concentration of aluminum was measured by ICP emission spectrometry. The obtained aluminum concentration (mass%) was substituted into the above-mentioned formula 5 to obtain the aluminum leaching rate. The results are shown in Table 1 below together with the Al content, Mg content, Al / Mg ratio, and free sulfuric acid concentration of the leachate of the raw material ore. In addition, the relationship between the Al / Mg ratio of the ore raw material and the aluminum leaching rate was plotted on the graph of FIG. The Al content and Mg content of the raw material ore were measured by ICP emission spectrometry, and the free sulfuric acid concentration of the leachate was measured by the neutralization titration method.

Figure 2021008654
Figure 2021008654

上記表1及び図3から分かるように、原料鉱石のAl/Mg比に応じた所定の範囲内に浸出液の遊離硫酸濃度が収まるように硫酸の添加量を調整することにより、Al浸出率を25.0%以下に抑えることができた。なお、Al/Mg比2.0未満の領域でも遊離硫酸濃度を下げるとアルミニウム浸出率は若干下がると考えられるが、遊離硫酸濃度低減によってニッケル浸出率が大きく低下してしまうため、わずかにアルミニウム浸出率を下げるために遊離硫酸濃度を下げることは、一般的には経済性の観点からは許容されない。 As can be seen from Table 1 and FIG. 3, the Al leaching rate is adjusted to 25 by adjusting the amount of sulfuric acid added so that the free sulfuric acid concentration of the leachate falls within a predetermined range according to the Al / Mg ratio of the raw material ore. It was able to be suppressed to 0.0% or less. It is considered that if the free sulfuric acid concentration is lowered even in the region where the Al / Mg ratio is less than 2.0, the aluminum leaching rate is considered to decrease slightly, but since the nickel leaching rate is greatly reduced by reducing the free sulfuric acid concentration, aluminum leaching is slightly performed. Lowering the free sulfuric acid concentration to lower the rate is generally unacceptable from an economic point of view.

<比較例>
Al含有率及びMg含有率がそれぞれ異なるラテライト鉱からなる試料7〜12の原料鉱石を用意し、それらの各々に対して実施例と同様に水を添加して固形分濃度が約40質量%の鉱石スラリーを調製した。これら試料7〜12の鉱石スラリーの各々に対して、その原料鉱石のAl/Mg比の値にかかわらず、常に浸出液の遊離硫酸濃度が40g/L以上50g/L以下の範囲内となるように硫酸の添加流量を調整した以外は上記実施例と同様にして浸出処理を行った。その結果を、原料鉱石のAl含有率、Mg含有率、Al/Mg比、及び浸出液の遊離硫酸濃度と共に下記表2に示す。また、鉱石原料のAl/Mg比とアルミニウム浸出率との関係を図3のグラフ上にプロットした。
<Comparison example>
Raw material ores of Samples 7 to 12 composed of laterite ores having different Al content and Mg content were prepared, and water was added to each of them in the same manner as in Examples to obtain a solid content concentration of about 40% by mass. An ore slurry was prepared. For each of the ore slurries of these samples 7 to 12, the free sulfuric acid concentration of the leachate is always within the range of 40 g / L or more and 50 g / L or less regardless of the value of the Al / Mg ratio of the raw material ore. The leaching treatment was carried out in the same manner as in the above-mentioned example except that the addition flow rate of sulfuric acid was adjusted. The results are shown in Table 2 below together with the Al content, Mg content, Al / Mg ratio, and free sulfuric acid concentration of the leachate of the raw material ore. In addition, the relationship between the Al / Mg ratio of the ore raw material and the aluminum leaching rate was plotted on the graph of FIG.

Figure 2021008654
Figure 2021008654

上記表2及び図3から分かるように、原料鉱石のAl/Mg比の値が2.0以上になる場合においても、常に浸出液の遊離硫酸濃度が40g/L以上50g/L以下の範囲内となるように硫酸の添加流量を調整したので、Al浸出率を25.0%以下に抑えることができなかった。 As can be seen from Table 2 and FIG. 3, even when the value of the Al / Mg ratio of the raw material ore is 2.0 or more, the free sulfuric acid concentration of the leachate is always within the range of 40 g / L or more and 50 g / L or less. Since the addition flow rate of sulfuric acid was adjusted so as to be, the Al leaching rate could not be suppressed to 25.0% or less.

上記の実施例及び比較例の結果から、原料鉱石のAl/Mg比の値に応じて遊離硫酸濃度を調整することで、所望のアルミニウム浸出率が得られることが分かる。すなわち、原料鉱石のAl/Mg比により好適な遊離硫酸濃度が異なることが分かった。例えば、原料鉱石のAl/Mg比が2.0以上の場合、浸出液の遊離硫酸濃度が低下するように硫酸添加量を減らすことで、アルミニウム浸出率を低減できることが分かった。これは、遊離硫酸濃度が低下することにより、アルミニウム浸出反応が阻害されるか、若しくは硫酸アルミニウムの加水分解反応が促進されるか、又はこれら両方によるものと思われる。 From the results of the above Examples and Comparative Examples, it can be seen that the desired aluminum leaching rate can be obtained by adjusting the free sulfuric acid concentration according to the value of the Al / Mg ratio of the raw material ore. That is, it was found that the suitable free sulfuric acid concentration differs depending on the Al / Mg ratio of the raw material ore. For example, it was found that when the Al / Mg ratio of the raw material ore is 2.0 or more, the aluminum leachate rate can be reduced by reducing the amount of sulfuric acid added so as to reduce the free sulfuric acid concentration in the leachate. It is considered that this is due to the fact that the aluminum leaching reaction is inhibited by the decrease in the free sulfuric acid concentration, the hydrolysis reaction of aluminum sulfate is promoted, or both of them.

S1 鉱石調合工程
S2 高圧硫酸浸出工程
S3 予備中和工程
S4 固液分離工程
S5 中和工程
S6 浄液工程
S7 硫化工程
S8 最終中和工程
〜T シックナー
P スラリーポンプ
S1 Ore preparation process S2 High-pressure sulfuric acid leaching process S3 Pre-neutralization process S4 Solid-liquid separation process S5 Neutralization process S6 Purification process S7 Sulfurization process S8 Final neutralization process T 1 to T n thickener P slurry pump

Claims (5)

アルミニウム及びマグネシウムを含有するニッケル酸化鉱石に水を加えて調製した鉱石スラリーに硫酸を添加し、高温高圧条件下で硫酸浸出処理を施すことでニッケルを含む浸出液と浸出残渣とからなる浸出スラリーを生成する浸出処理方法であって、
前記浸出液の遊離硫酸濃度が、前記ニッケル酸化鉱石のマグネシウム含有率に対するアルミニウム含有率の比に応じた所定の範囲内に収まるように前記硫酸の添加量を調整することを特徴とするニッケル酸化鉱石の浸出処理方法。
Sulfuric acid is added to an ore slurry prepared by adding water to nickel oxide ore containing aluminum and magnesium, and sulfuric acid leaching treatment is performed under high temperature and high pressure conditions to generate a leachate slurry consisting of a leachate containing nickel and a leachate residue. It is a leaching method
The amount of the sulfuric acid added is adjusted so that the free sulfuric acid concentration of the leachate falls within a predetermined range according to the ratio of the aluminum content to the magnesium content of the nickel oxide ore. Leaching method.
前記比が増加傾向にあるときは、前記浸出液の前記遊離硫酸濃度が減少傾向となるように前記硫酸の添加量を調整することを特徴とする、請求項1に記載のニッケル酸化鉱石の浸出処理方法。 The nickel oxide ore leaching treatment according to claim 1, wherein when the ratio tends to increase, the amount of the sulfuric acid added is adjusted so that the concentration of the free sulfuric acid in the leachate tends to decrease. Method. 前記比が2.0以上の場合は前記浸出液の前記遊離硫酸濃度が32g/L以上38g/L以下の範囲内となるように前記硫酸の添加量を調整し、前記比が2.0未満の場合は前記浸出液の前記遊離硫酸濃度が38g/Lを超え50g/L以下の範囲内となるように前記硫酸の添加量を調整することを特徴とする、請求項1又は2に記載のニッケル酸化鉱石の浸出処理方法。 When the ratio is 2.0 or more, the amount of sulfuric acid added is adjusted so that the free sulfuric acid concentration of the leachate is within the range of 32 g / L or more and 38 g / L or less, and the ratio is less than 2.0. The nickel oxidation according to claim 1 or 2, wherein the amount of the sulfuric acid added is adjusted so that the concentration of the free sulfuric acid in the leachate exceeds 38 g / L and is within the range of 50 g / L or less. Ore leaching method. 前記硫酸浸出処理を、高温高圧反応用の反応容器からなるオートクレーブ内において反応温度220〜260℃で行うことを特徴とする、請求項1〜3のいずれか1項に記載のニッケル酸化鉱石の浸出処理方法。 The leaching of nickel oxide ore according to any one of claims 1 to 3, wherein the sulfuric acid leaching treatment is performed at a reaction temperature of 220 to 260 ° C. in an autoclave composed of a reaction vessel for a high-temperature and high-pressure reaction. Processing method. 原料の前記ニッケル酸化鉱石に水を加えて調製した鉱石スラリーに対して請求項1〜4のいずれか1項に記載のニッケル酸化鉱石の浸出処理方法を用いて浸出処理する高圧硫酸浸出工程と、該浸出処理により生成したニッケルを含む前記浸出液を浸出残渣から分離する固液分離工程と、該固液分離工程で得た前記浸出液に中和剤を添加して不純物を除去する中和工程と、該中和工程で不純物が除去された前記浸出液に硫化剤を添加して該ニッケルを硫化物の形態で回収する硫化工程とからなることを特徴とするニッケル酸化鉱石の湿式製錬方法。 A high-pressure sulfuric acid leaching step of leaching an ore slurry prepared by adding water to the raw material nickel oxide ore using the nickel oxide ore leaching method according to any one of claims 1 to 4. A solid-liquid separation step of separating the leachate containing nickel produced by the leachate treatment from the leachate residue, and a neutralization step of adding a neutralizing agent to the leachate obtained in the solid-liquid separation step to remove impurities. A hydrometallurgical method for nickel oxide ore, which comprises a sulfurization step of adding a sulfurizing agent to the leachate from which impurities have been removed in the neutralization step and recovering the nickel in the form of a sulfide.
JP2019123475A 2019-07-02 2019-07-02 Nickel oxide ore leaching method and hydrometallurgical method including the same Active JP7279546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123475A JP7279546B2 (en) 2019-07-02 2019-07-02 Nickel oxide ore leaching method and hydrometallurgical method including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123475A JP7279546B2 (en) 2019-07-02 2019-07-02 Nickel oxide ore leaching method and hydrometallurgical method including the same

Publications (2)

Publication Number Publication Date
JP2021008654A true JP2021008654A (en) 2021-01-28
JP7279546B2 JP7279546B2 (en) 2023-05-23

Family

ID=74199628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123475A Active JP7279546B2 (en) 2019-07-02 2019-07-02 Nickel oxide ore leaching method and hydrometallurgical method including the same

Country Status (1)

Country Link
JP (1) JP7279546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273269B1 (en) 2022-07-28 2023-05-15 住友金属鉱山株式会社 Hydrometallurgical method for nickel oxide ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194211A (en) * 1996-01-18 1997-07-29 Taiheiyo Kinzoku Kk Production of high-purity rare-earth metal oxide from oxide ore
JP2013159790A (en) * 2012-02-01 2013-08-19 Sumitomo Metal Mining Co Ltd Thickener device used in process of producing ore slurry, and method of controlling solid component ratio therefor
JP2019035113A (en) * 2017-08-16 2019-03-07 住友金属鉱山株式会社 Exudation processing method, hydrometallurgical process of nickel oxide ore
JP2019085620A (en) * 2017-11-08 2019-06-06 住友金属鉱山株式会社 Exudation treatment method, and wet refining method of nickel oxide ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194211A (en) * 1996-01-18 1997-07-29 Taiheiyo Kinzoku Kk Production of high-purity rare-earth metal oxide from oxide ore
JP2013159790A (en) * 2012-02-01 2013-08-19 Sumitomo Metal Mining Co Ltd Thickener device used in process of producing ore slurry, and method of controlling solid component ratio therefor
JP2019035113A (en) * 2017-08-16 2019-03-07 住友金属鉱山株式会社 Exudation processing method, hydrometallurgical process of nickel oxide ore
JP2019085620A (en) * 2017-11-08 2019-06-06 住友金属鉱山株式会社 Exudation treatment method, and wet refining method of nickel oxide ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273269B1 (en) 2022-07-28 2023-05-15 住友金属鉱山株式会社 Hydrometallurgical method for nickel oxide ore
WO2024024930A1 (en) * 2022-07-28 2024-02-01 住友金属鉱山株式会社 Hydrometallurgical method for nickel oxide ore
JP2024017958A (en) * 2022-07-28 2024-02-08 住友金属鉱山株式会社 Hydrometallurgical method for nickel oxide ore

Also Published As

Publication number Publication date
JP7279546B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP5516534B2 (en) Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system
JP6969262B2 (en) Hydrometallurgical method for nickel oxide ore
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
JP6747620B2 (en) Ni/Co sulfide manufacturing method and iron quality stabilizing system
JP6589950B2 (en) Leaching treatment method, nickel oxide ore hydrometallurgy method
JP2016113703A (en) Neutralization method by wet type refining of nickel oxide ore
WO2020149122A1 (en) Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
JP5971364B1 (en) Ore slurry pretreatment method, ore slurry production method
JP2019000834A (en) Solid-liquid separation method of nickel high pressure leach residue
JP2008231470A (en) Method for controlling reaction in sulphidizing process
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
WO2013187367A1 (en) Neutralization method
JP7293873B2 (en) Method for producing nickel sulfide, hydrometallurgical method for nickel oxide ore
JP6981206B2 (en) Nickel sulfate aqueous solution dezincification system and its method
JP5765459B2 (en) Nickel recovery loss reduction method, nickel oxide ore hydrometallurgy method, and sulfurization treatment system
JP7200698B2 (en) Hydrometallurgical method for nickel oxide ore
JP6996328B2 (en) Dezincification method, wet smelting method of nickel oxide ore
JP6977458B2 (en) Hydrometallurgical method for nickel oxide ore
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
JP2019214778A (en) Pretreatment method of nickel oxide ore raw material
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP2019157236A (en) Solid liquid separation treatment method, and wet refining method of nickel oxide ore
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP7147452B2 (en) Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same
JP6206518B2 (en) Neutralization treatment method, nickel oxide ore hydrometallurgy method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150