WO2024024930A1 - Hydrometallurgical method for nickel oxide ore - Google Patents

Hydrometallurgical method for nickel oxide ore Download PDF

Info

Publication number
WO2024024930A1
WO2024024930A1 PCT/JP2023/027703 JP2023027703W WO2024024930A1 WO 2024024930 A1 WO2024024930 A1 WO 2024024930A1 JP 2023027703 W JP2023027703 W JP 2023027703W WO 2024024930 A1 WO2024024930 A1 WO 2024024930A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
leaching
nickel
neutralization
nickel oxide
Prior art date
Application number
PCT/JP2023/027703
Other languages
French (fr)
Japanese (ja)
Inventor
剛 小原
浩隆 樋口
学 榎本
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2024024930A1 publication Critical patent/WO2024024930A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a hydrometallurgical method for nickel oxide ore.
  • HPAL process high pressure acid leaching method (hereinafter also referred to as "HPAL process”) using sulfuric acid has been attracting attention as a hydrometallurgical method for nickel oxide ore.
  • This method differs from the conventional pyrometallurgy method, which is a general method for smelting nickel oxide ore, because it does not include dry processes such as reduction and drying processes, and is a process consisting of an integrated wet process. This will be advantageous in terms of target and cost. It also has the advantage that it is possible to obtain a nickel-containing sulfide with an improved nickel quality of about 50% by mass.
  • nickel and cobalt are selectively recovered as sulfides, but most of the impurity elements such as iron, magnesium, manganese, and aluminum leached out in the leaching process are does not form sulfides and remains in the poor liquor after the sulfides are separated. In order to discharge this poor liquid, it is necessary to precipitate and remove the metal ions remaining in the poor liquid by neutralization treatment in the final neutralization step.
  • Patent Document 1 describes a hydrometallurgical method based on high-temperature pressure leaching to recover nickel from nickel oxide ore, simplification of the leaching step and solid-liquid separation step, and the amount of neutralizing agent consumed and the amount of sediment in the neutralization step.
  • a technique has been disclosed that provides a simple and highly efficient smelting method as a whole process by reducing the amount of smelting.
  • Patent Document 1 does not disclose any technical idea regarding reducing the amount of sulfuric acid used for leaching treatment in the leaching process.
  • hydrometallurgical smelting of nickel oxide ore it is naturally necessary to reduce the amount of neutralizing agent used without significantly reducing the actual yield of nickel. No solution has been disclosed.
  • Patent Document 2 discloses that a preliminary neutralization step is performed in which a pH adjuster is added to the leaching slurry to adjust the pH within a predetermined range. It is considered that this makes it possible to reduce the amount of neutralizing agent used in the neutralization process performed downstream of the solid-liquid separation process to some extent.
  • Patent Document 2 describes a specific neutralizing agent that makes it possible to reduce the amount of neutralizing agent used without reducing the actual yield of nickel when performing such a preliminary neutralization step. There is no mention of the type, composition, etc.
  • the present invention was proposed in view of these circumstances, and provides a method for reducing the amount of neutralizing agent used without reducing the actual yield of nickel in a hydrometallurgical process for nickel oxide ore.
  • the purpose is to provide
  • the present inventors decided to perform a preliminary neutralization process in which a pH adjuster is added to the leaching slurry obtained in the leaching process to adjust the pH within a predetermined range.
  • the inventors have discovered that the above-mentioned problems can be solved by using a "slurry for pre-neutralization treatment" whose nickel grade and magnesium grade are said to be higher than a predetermined grade as a neutralizing agent, and have completed the present invention. It's arrived. That is, the present invention provides the following.
  • a hydrometallurgical method for nickel oxide ore comprising: a pre-neutralization step in which the pH adjuster has a magnesium content of 3% by weight or more in the solid content; A hydrometallurgical smelting method for nickel oxide ore using a pre-neutralization slurry having a nickel content of 0.7% or more in solid content.
  • the amount of neutralizing agent used in the hydrometallurgical smelting process of nickel oxide ore, the amount of neutralizing agent used can be reduced without reducing the actual yield of nickel.
  • a pretreatment step is performed prior to the leaching step, and includes a first separation step of separating the coarse particles using a spiral concentrator, and a second separation step of separating the coarse particles by specific gravity using a spiral concentrator.
  • the invention (2) conventionally, although it is a part of the raw material ore and also contains a trace amount of nickel, it is not input into the leaching process as a part with a high proportion of gangue components and is used to produce the final product.
  • the parts excluded from the line can be effectively used in the pre-neutralization process, and at that time, no special additional processing is required to adapt to the pre-neutralization process, so (1) invention can be implemented more economically.
  • the amount of neutralizing agent used in the hydrometallurgical process of nickel oxide ore, can be reduced without reducing the actual yield of nickel. Accordingly, the productivity of the hydrometallurgical smelting process for nickel oxide ore can be improved.
  • FIG. 1 is an overall process diagram of a hydrometallurgical process that can be carried out using the hydrometallurgical smelting method for nickel oxide ore of the present invention.
  • FIG. 1 is a schematic diagram showing the basic configuration of a spiral concentrator that can be used in the hydrometallurgical smelting method of nickel oxide ore of the present invention.
  • 3 is a schematic diagram showing the basic configuration of a slurry separation fence provided at the end of a slurry flow path of the spiral concentrator shown in FIG. 2.
  • FIG. 1 is an overall process diagram of a hydrometallurgical process that can be carried out using the hydrometallurgical smelting method for nickel oxide ore of the present invention.
  • FIG. 1 is a schematic diagram showing the basic configuration of a spiral concentrator that can be used in the hydrometallurgical smelting method of nickel oxide ore of the present invention.
  • 3 is a schematic diagram showing the basic configuration of a slurry separation fence provided at the end of a slurry flow path of the spiral concentrat
  • FIG. 1 An example of the overall flow of the nickel oxide ore smelting process that can be carried out using the "nickel oxide ore hydrometallurgical method" of the present invention is shown in FIG. 1.
  • This hydrometallurgical smelting process includes a slurrying step S1 in which nickel oxide ore is slurried to obtain a nickel oxide ore slurry, and a pretreatment to separate and remove gangue components from the nickel oxide ore slurry obtained in the slurry step S1.
  • Treatment step S2 concentration step S3 of removing water contained in the nickel oxide ore slurry and concentrating ore components, adding sulfuric acid to the nickel oxide ore slurry that has gone through the pretreatment step S2 and concentration step S3 and leaching under high temperature and high pressure.
  • a leaching step S4 in which a leaching slurry is obtained by performing a treatment
  • a pre-neutralization step S5 in which a pH adjuster is added to the leaching slurry obtained in the leaching step S4, and a leaching slurry that has undergone the preliminary neutralization step S5 is converted into a leaching solution and a leaching residue.
  • a solid-liquid separation step S6 in which the leachate obtained in the solid-liquid separation step S6 is separated, a neutralization step S7 in which a neutralized precipitate containing impurity elements is separated to obtain a neutralized final solution containing nickel;
  • a sulfiding step S8 in which a sulfurizing agent is added to the neutralized final liquid obtained in the neutralizing step S7 to generate a nickel-containing sulfide, and a final neutralizing step S9 are sequentially performed.
  • the "hydro-smelting method for nickel oxide ore" of the present invention includes at least the leaching step S4, the pre-neutralization step S5, the solidification step A method that requires liquid separation step S6, neutralization step S7, sulfurization step S8, and final neutralization step S9, and in addition, in the pre-neutralization step S5, the magnesium grade is determined based on unique knowledge.
  • the main feature of this process is that a "pre-neutralization slurry" with specified nickel quality and nickel quality is used as a pH adjuster.
  • the slurry process S1, pretreatment process S2, and concentration process S3 are normally performed in sequence as described above. However, each of these steps is not necessarily an essential step in the "method for hydrometallurgical smelting of nickel oxide ore" of the present invention. Regardless of whether each of these upstream steps (S1 to S3) is implemented or the implementation mode of each of these upstream steps (S1 to S3), the steps after the leaching step S4 in which the "nickel oxide ore slurry" is input. Any smelting process that is carried out in a manner that satisfies the requirements of the present invention falls within the technical scope of the present invention.
  • Slurrying step S1 is a step of mixing nickel oxide ore with water to form a highly fluid nickel oxide ore slurry.
  • ore slurry that is a mixture of nickel oxide ore and water is referred to as "nickel oxide ore slurry", but “nickel oxide ore slurry” may include any other material that does not impede the effects of the present invention.
  • components other than nickel oxide ore and water may be contained.
  • the nickel oxide ore used as the raw material ore in the slurrying step S1 is an ore containing nickel and cobalt, and so-called laterite ores such as limonite ore and saprolite ore are mainly used.
  • the nickel content of laterite ore is generally 0.8% by weight or more and 2.5% by weight or less, and is contained as a hydroxide or a magnesium silicate mineral.
  • the iron content is 10% by weight or more and 50% by weight or less, and is mainly in the form of trivalent hydroxide (goethite), but some divalent iron is contained in siliceous minerals.
  • Ru In addition to such laterite ores, oxide ores containing valuable metals such as nickel, cobalt, manganese, and copper, such as manganese nodules existing in the deep seabed, are used.
  • the pretreatment step S2 is a step of performing pretreatment to improve the nickel quality of the nickel oxide ore slurry by separating and removing gangue components from the "nickel oxide ore slurry" obtained in the slurrying step S1.
  • gangue components such as iron, magnesium, manganese, and aluminum can be separated from the nickel oxide ore slurry before the treatment.
  • the "nickel oxide ore slurry" obtained in the slurrying step S1 is processed into a coarse particle portion in which the proportion of particles having a particle size of less than 45 ⁇ m is 40% by mass or less in the solid content. (hereinafter also simply referred to as “coarse grain part”) and fine grain part; and the "coarse grain part” separated in this first separation step. It is preferable to use a processing method in which a second separation step in which specific gravity separation processing is further performed is performed sequentially. In such a treatment method that performs separation treatment in stages, the fine particle portion obtained in the first separation step and the heavy specific gravity portion collected in the heavy specific gravity portion side in the second separation step are transferred to the leaching step S4.
  • the part containing a large amount of gangue components such as magnesium (light specific gravity part) that was not recovered in the heavy specific gravity part is removed from the "nickel oxide ore slurry" supplied to the leaching process S4. Separated and removed.
  • the “first separation step” in which the ore slurry of nickel oxide ore is separated into the “coarse grain part” and the “fine grain part” as described above uses at least one of a hydrocyclone and a density separator. It can be carried out.
  • This can be done using a "spiral concentrator.”
  • a “spiral concentrator” is a separation device that includes a slurry flow path 11 that is a spiral inclined slide, like the spiral concentrator 1 shown in FIG.
  • slurry separation fences 121 and 122 are installed at the end portion 12 of the slurry flow path 11, which is a region near the end of the slurry flow path 11. These two fences separate the spiral slurry flow path.
  • slurry separation fences 121 and 122 are installed in a structure that allows their installation positions to be variably adjusted along the direction perpendicular to the flow direction of the slurry.
  • the heavy specific gravity portion of the nickel oxide ore slurry is collected inside the first slurry separation fence and the second slurry separation fence.
  • the other part (light specific gravity part) containing a large amount of gangue components such as magnesium is collected outside the second slurry separation fence (Tail part, hereinafter referred to as "Tail").
  • the magnesium quality of the slurry (light specific gravity part) collected in the "tail" changes depending on the position of the slurry separation fence at the outlet of the spiral concentrator.
  • the second slurry separation fence 122 is installed at a position where the width of the tail basin zone 125 is 30% or more of the total width of the slurry flow path.
  • the magnesium content in the slurry (light specific gravity part) recovered is 3% or more.
  • the amount of sulfuric acid used in the leaching process S4 and the amount of neutralizing agent used in the final neutralization process S9 can be effectively reduced. can be done.
  • the concentration step S3 is a step in which the "nickel oxide ore slurry" that has undergone the pretreatment step S2 is concentrated by solid-liquid separation means such as a thickener (sedimentation separator). In this step, the "nickel oxide ore slurry" is concentrated to a solid content of 40% by mass or more. Thereby, the ore processing ability in the leaching step S4 can be further improved.
  • leaching process In the leaching step S4, sulfuric acid is added to the "nickel oxide ore slurry" that has passed through the pretreatment step S2 and the concentration step S3, and the ore slurry is stirred while pressurized at a high temperature of 220°C to 280°C to form a leaching solution.
  • This is a step of performing a leaching treatment to generate a leaching slurry consisting of a leaching residue.
  • this leaching treatment can be performed by charging the above-mentioned "oxidized ore slurry" into a pressurized leaching reaction vessel such as an autoclave.
  • nickel oxide ore also contains impurities such as iron, magnesium, manganese, and aluminum, and since these impurities are also leached out by sulfuric acid, this method is used to increase the actual yield of nickel and cobalt to be recovered. It is necessary to add an excessive amount of sulfuric acid to the leaching process. In particular, when ore with a high magnesium grade is input, the amount of sulfuric acid required increases, and the supply cannot keep up, resulting in a decrease in the nickel leaching rate. On the other hand, by sufficiently separating and removing gangue components from the "nickel oxide ore slurry" supplied to the leaching step S4 in the pretreatment step S2, the above-mentioned excessive use of sulfuric acid can be suppressed.
  • Pre-neutralization step S5 is a step in which a pH adjuster is added to the leaching slurry obtained in leaching step S4 to neutralize free sulfuric acid.
  • a pH adjuster is added to the leaching slurry obtained in leaching step S4 to neutralize free sulfuric acid.
  • sulfuric acid in excess of the stoichiometric amount of sulfuric acid required for leaching valuable metals is usually introduced into the autoclave, so the leaching slurry contains excess sulfuric acid that did not participate in the leaching reaction. Contained in the form of residual free acid. Therefore, conventionally, in this preliminary neutralization step S5, the pH of the leaching slurry was adjusted to 2.5 to 3.4 by adding calcium carbonate slurry or the like as a pH adjusting agent.
  • a "pre-neutralization treatment method” in which the magnesium grade and nickel grade are specified within a predetermined range based on unique knowledge is used as a pH adjuster.
  • Slurry was used as a pH adjuster.
  • this "pre-neutralization slurry” may have a magnesium content of 3% by weight or more in the solid content and a nickel content of 0.7% or more in the solid content.
  • Stone (Mg,Fe) 3 Si 2 O 5 (OH) 4 ) can be mentioned.
  • Serpentinite containing metal elements other than magnesium and iron is generally available at low cost, and also contains nickel and cobalt, which have properties similar to iron.
  • Nickel and cobalt are also convenient as raw materials for obtaining sulfides containing nickel (and cobalt), which will be described later.
  • serpentinites have a high magnesium content and some have a high nickel content, but they can be used in combination with other magnesium sources and nickel sources, if necessary.
  • the slurry for pre-neutralization treatment after blending has a magnesium content of 3% by weight or more in the solid content and a nickel content of 0.7% or more in the solid content, thereby reducing waste while minimizing waste. , benefits such as savings in neutralizing agents and increased nickel recovery can be enjoyed.
  • the preliminary neutralization treatment in the second separation step of the pretreatment step S2 the slurry separated and collected from the outer circumference of the spiral concentrator, that is, the slurry (light specific gravity part) collected in the "Tail" is used as the slurry for solid content.
  • the magnesium content in the slurry is 3% by weight or more, and the nickel content in the solid content is 0.7% or more.
  • the slurry can be directly fed into the preliminary neutralization step S5. can.
  • the pretreatment step S2 is a treatment performed for the purpose of separating and removing various gangue components including magnesium from the nickel oxide ore slurry input to the leaching step S4. Even if the slurry is separated as a gangue component, if it contains nickel and magnesium above a specified value, it can be used as a pH adjuster to be added to the pre-neutralization process. It has been found that the effect of reducing the overall amount of sulfuric acid and neutralizing agent used is effective. By not introducing slurry with a high magnesium grade into the leaching step S4, it is expected that the amount of chemicals will be reduced, and the nickel leaching rate of the ore slurry will increase.
  • the slurry (light specific gravity part) recovered in the "Tail” also contains nickel, so if the liquid is not sent to the leaching step S4, the nickel production amount will decrease accordingly.
  • the magnesium oxide in the slurry (light specific gravity part) recovered in the above-mentioned "Tail” can be used as a pH adjuster (neutralizing agent), and nickel is leached out at that time.
  • the Ni leaching rate in the pre-neutralization step S5 is lower than the leaching rate in the leaching step S4, a slurry in which the nickel content in the solid content is 0.7% or more is introduced into the pre-neutralization step S5.
  • the total difference in profit and loss between the chemical reduction effect of the present invention and the nickel production amount in the existing mining area compared to normal operation is calculated based on the magnesium grade of the "pre-neutralization slurry" which is input as a pH adjuster into the pre-neutralization step S5.
  • the research conducted by the present inventors has revealed that if the ratio is 3% or more, there will be an economical improvement.
  • the solid-liquid separation step S6 is a step in which the leaching slurry that has undergone the preliminary neutralization step S5 is washed in multiple stages, and the leaching solution containing impurity elements in addition to nickel and cobalt is separated from the leaching residue.
  • the solid-liquid separation step S6 can be performed, for example, by mixing the leaching slurry with the cleaning liquid and then performing solid-liquid separation treatment using solid-liquid separation equipment such as a thickener.
  • the cleaning liquid cleaning water
  • the cleaning liquid is not particularly limited, but it is preferable to use one that does not contain nickel and does not affect the process.
  • the cleaning liquid preferably, the poor liquid obtained in the subsequent sulfurization step S8 can be repeatedly used.
  • the neutralization step S7 is a step of adjusting the pH of the leachate separated in the solid-liquid separation step S6, separating the neutralized precipitate containing impurity elements, and obtaining a neutralized final solution containing nickel and cobalt. .
  • the pH of the resulting neutralized final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3.2, a neutralizing agent such as calcium carbonate is added to the leachate to produce a neutralized final solution and a neutralized precipitate slurry containing trivalent iron, aluminum, etc. as impurity elements.
  • impurities are removed as a neutralized precipitate in this way, and a neutralized final liquid is generated which becomes a mother liquid for nickel recovery.
  • the sulfiding step S8 is a step in which a sulfurizing agent is added to the mother liquor for nickel recovery to separate it into nickel sulfide and poor liquor.
  • a sulfurizing agent such as hydrogen sulfide gas is blown into the neutralized final solution, which is a mother liquor for nickel recovery, to cause a sulfiding reaction, thereby producing sulfides containing nickel (and cobalt) (hereinafter simply " (also called nickel sulfide) and poor liquor.
  • the neutralized final solution which is the mother liquor for nickel recovery
  • this mother liquor for nickel recovery may contain several g/L of impurity components such as iron, magnesium, and manganese, but these impurity components have low stability as sulfides (recovery nickel and cobalt), they are not contained in the produced nickel sulfide.
  • Nickel recovery equipment includes, for example, a sulfurization reaction tank that performs a sulfurization reaction by blowing hydrogen sulfide gas etc. into the neutralized final liquid, which is the mother liquid, and a solid-liquid separation tank that separates and recovers nickel sulfide from the liquid after the sulfurization reaction. Equipped with.
  • the solid-liquid separation tank is composed of, for example, a thickener, and performs sedimentation separation treatment on the slurry containing nickel sulfide after the sulfurization reaction, thereby separating and recovering the nickel sulfide precipitate from the bottom of the thickener. .
  • the aqueous solution component is allowed to overflow and is recovered as a poor solution.
  • the recovered poor solution is a solution with an extremely low concentration of valuable metals such as nickel, and contains impurity elements such as iron, magnesium, and manganese that remain without being sulfurized. This poor liquid is transferred to the final neutralization step S9, which will be described later, and is rendered harmless.
  • the final neutralization step S9 is a neutralization treatment (detoxification treatment) in which the poor liquid containing impurity elements such as iron, magnesium, and manganese discharged in the sulfurization step S8 is adjusted to a predetermined pH range that satisfies the discharge standards. ).
  • the leaching residue discharged from the solid-liquid separation process in the solid-liquid separation step S6 can also be treated.
  • the method of detoxification treatment in the final neutralization step S9 is not particularly limited, but may include, for example, adding a neutralizing agent such as calcium carbonate (limestone) slurry or calcium hydroxide (slaked lime) slurry. can be adjusted within a predetermined range.
  • the "pre-neutralization step S5 performed on the upstream side, as described above, the "pre-neutralization By using “slurry” as a pH adjusting agent, the amount of neutralizing agent such as slaked lime used in the final neutralization step S9 can be reduced.
  • impurity elements such as magnesium and manganese contained in the ore slurry can be reduced.
  • concentration of these elements contained in the poor liquid can be reduced, and thereby also the amount of the neutralizing agent used for the neutralization treatment in the final neutralization step S9 can be reduced.
  • Example 1 As shown below, nickel oxide ore was subjected to a hydrometallurgical process according to the process diagram shown in FIG. That is, first, as an ore slurry pretreatment step S2, a nickel oxide ore slurry obtained by slurrying nickel oxide ore having the composition shown in Table 1 below is subjected to a hydrocyclone (manufactured by Salter Cyclone, SC1030-P type). The underflow discharged from the hydrocyclone was then supplied to a density separator (manufactured by CS, 6 ⁇ 6 type) to undergo specific gravity separation. Note that these separation processing steps are referred to as a first separation step. Through the separation treatment in this first separation step, an ore slurry (coarse particle portion) was obtained in which the content of particles with a particle size of less than 45 ⁇ m in the underflow solid content of the density separator was 25% by mass.
  • a hydrocyclone manufactured by Salter Cyclone, SC1030-P type
  • the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone at the discharge port is 30% relative to the total width of the slurry flow path.
  • % slurry separation fence slurry separation fence 122 in Figures 2 and 3
  • An ore slurry containing solid content with a nickel grade of 0.86% and a magnesium grade of 3.2% as the slurry (hereinafter referred to as "Tail slurry") separated and recovered from the outer peripheral area (Tail basin zone). I got it. Note that this separation process is referred to as a second separation process.
  • the ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to the leaching step.
  • the above-mentioned "Tail slurry" obtained in the second separation step is used as a slurry for pre-neutralization treatment, and is subjected to the necessary pH adjustment to the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization process as part of the agent.
  • the reduction amount of sulfuric acid in the leaching process in which ore slurry was supplied and the reduction amount of slaked lime in the final neutralization step were 3.34t/Ni-t of sulfuric acid and 0.20t/Ni-t of slaked lime. became.
  • the amount of Ni recovered in Table 2 indicates the ratio of the amount of recovered Ni when the amount of Ni recovered in the same operation in the existing mining area without separating and recovering "Tail Slurry" is set as 100. It is.
  • Example 2 The same operation as in Example 1 was performed to obtain an ore slurry (coarse particle portion) in which the content of particles with a particle size of less than 45 ⁇ m in the underflow solid content of the density separator was 30% by mass in the first separation step. Ta.
  • the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tailing basin zone at the outlet is 40% relative to the total width of the slurry flow path.
  • the slurry is supplied to a spiral concentrator (manufactured by Autotech) in which the position of the second slurry separation fence (slurry separation fence 122 in FIGS. 2 and 3) is adjusted so that the width of the slurry is 10%, and specific gravity separation is performed.
  • An ore slurry containing solids with a grade of 0.88% and a magnesium grade of 4.1% was obtained. Note that this separation process is referred to as a second separation process.
  • the ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment.
  • all of the above-mentioned "Tail slurry" obtained in the second separation step is used as a slurry for pre-neutralization treatment, and is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
  • Example 3 The same operation as in Example 1 was performed to obtain an ore slurry (coarse particle portion) in which the content of particles with a particle size of less than 45 ⁇ m in the underflow solid content of the density separator was 35% by mass in the first separation step. Ta.
  • the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone at the outlet is 50% relative to the total width of the slurry flow path.
  • the slurry is supplied to a spiral concentrator (manufactured by Autotech Co., Ltd.) in which the position of the second slurry separation fence (slurry separation fence 122 in Figures 2 and 3) is adjusted so as to have a width of An ore slurry containing solids with a grade of 0.83% and a magnesium grade of 5.2% was obtained. Note that this separation process is referred to as a second separation process.
  • the ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment.
  • all of the above-mentioned "Tail slurry" obtained in the second separation step is used as slurry for pre-neutralization treatment, and the pH is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
  • the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone is 25% of the total width of the slurry channel.
  • the slurry is supplied to a spiral concentrator (manufactured by Autotech) in which the position of the second slurry separation fence (slurry separation fence 122 in FIGS. 2 and 3) is adjusted so that specific gravity separation is performed, and the tail slurry has a nickel grade of 0.
  • An ore slurry containing a solids content of .83% and a magnesium grade of 2.5% was obtained. Note that this separation process is referred to as a second separation process.
  • the ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment.
  • all of the above-mentioned "Tail slurry" obtained in the second separation step is used as slurry for pre-neutralization treatment, and the pH is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
  • the reduction amount of sulfuric acid in the leaching process in which ore slurry was supplied and the reduction amount of slaked lime in the final neutralization step were 2.26 t/Ni-t of sulfuric acid and 0.08 t/Ni-t of slaked lime.
  • the amount of Ni recovered in the existing mining area will drop by more than 5%, resulting in an economic loss.
  • Spiral concentrator 11 Slurry channel 12 End of slurry channel 121, 122 Slurry separation fence 123 Concentrate basin zone 124 Intermediate distribution basin zone 125 Tailing basin zone S1 Slurrying process S2 Pretreatment process S3 Concentration process S4 Leaching process S5 Preliminary Neutralization process S6 Solid-liquid separation process S7 Neutralization process S8 Sulfurization process S9 Final neutralization process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The purpose of the present invention is to reduce the amount of neutralizing agent used in a hydrometallurgical process of nickel oxide ore without lowering the recovery of nickel. The present invention provides a hydrometallurgical method for nickel oxide ore, the hydrometallurgical method comprising a leaching step S4, a preliminarily neutralization step S5, a solid-liquid separation step S6 for a leachate slurry after the preliminarily neutralization step S5, a neutralization step S7 for achieving a final neutralized solution that contains nickel by separating a neutralized sediment that contains impurity elements by adjusting the pH of the leachate, a sulfurization step S8, and a final neutralization step S9. In the preliminarily neutralization step S5, a slurry for a preliminarily neutralization treatment is used as a pH adjusting agent, the slurry having a magnesium content in the solid content of 3% by weight or more and a nickel content in the solid content of 0.7% by weight or more.

Description

ニッケル酸化鉱石の湿式製錬方法Hydrometallurgical smelting method for nickel oxide ore
 本発明は、ニッケル酸化鉱石の湿式製錬方法に関する。 The present invention relates to a hydrometallurgical method for nickel oxide ore.
 近年、ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いた高温加圧酸浸出法(High Pressure Acid Leach(以下、「HPALプロセス」とも言う))が注目されている。この方法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬方法とは異なり、還元及び乾燥工程等の乾式工程を含まず、一貫した湿式工程からなるプロセスであるため、エネルギー的及びコスト的に有利となる。又、ニッケル品位を50質量%程度まで向上させたニッケルを含む硫化物を得ることができるという利点も有している。 In recent years, a high pressure acid leaching method (hereinafter also referred to as "HPAL process") using sulfuric acid has been attracting attention as a hydrometallurgical method for nickel oxide ore. This method differs from the conventional pyrometallurgy method, which is a general method for smelting nickel oxide ore, because it does not include dry processes such as reduction and drying processes, and is a process consisting of an integrated wet process. This will be advantageous in terms of target and cost. It also has the advantage that it is possible to obtain a nickel-containing sulfide with an improved nickel quality of about 50% by mass.
 「HPALプロセス」等のニッケル酸化鉱石の湿式製錬方法においては、ニッケル酸化鉱石から金属を浸出させる浸出工程において、回収対象であるニッケルやコバルト以外にも、鉄、マグネシウム、マンガン、アルミニウム等の不純物元素も硫酸によって浸出されるため、浸出処理においては過剰の硫酸が必要であった。 In hydrometallurgical smelting methods for nickel oxide ores such as the HPAL process, in addition to the nickel and cobalt to be recovered, impurities such as iron, magnesium, manganese, and aluminum are Excess sulfuric acid was required in the leaching process because the elements were also leached out by the sulfuric acid.
 又、ニッケルやコバルトを回収する硫化工程では、ニッケルとコバルトが選択的に硫化物として回収されるが、浸出工程における浸出処理で浸出された鉄、マグネシウム、マンガン、アルミニウム等の不純物元素の大部分は硫化物を形成せず、硫化物を分離した後の貧液中に残留することとなる。この貧液を排出するためには、最終中和工程において、貧液中に残留した金属イオンを中和処理により沈殿除去する必要がある。 In addition, in the sulfidation process that recovers nickel and cobalt, nickel and cobalt are selectively recovered as sulfides, but most of the impurity elements such as iron, magnesium, manganese, and aluminum leached out in the leaching process are does not form sulfides and remains in the poor liquor after the sulfides are separated. In order to discharge this poor liquid, it is necessary to precipitate and remove the metal ions remaining in the poor liquid by neutralization treatment in the final neutralization step.
 特許文献1には、ニッケル酸化鉱石からニッケルを回収する高温加圧浸出に基づく湿式製錬方法において、浸出工程と固液分離工程の簡素化、中和工程での中和剤消費量及び澱物量の削減等によって、プロセス全体として簡素で且つ高効率な製錬方法を提供する技術が開示されている。しかしながら、特許文献1には、浸出工程における浸出処理に用いる硫酸の使用量の低減についての技術思想は開示されていない。又、ニッケル酸化鉱石の湿式製錬において、中和剤の使用量を低減させるにあたっては、当然に、ニッケルの実収率をほとんど低下させずに行うことが求められるが、この点についても具体的な解決手段は開示されていない。 Patent Document 1 describes a hydrometallurgical method based on high-temperature pressure leaching to recover nickel from nickel oxide ore, simplification of the leaching step and solid-liquid separation step, and the amount of neutralizing agent consumed and the amount of sediment in the neutralization step. A technique has been disclosed that provides a simple and highly efficient smelting method as a whole process by reducing the amount of smelting. However, Patent Document 1 does not disclose any technical idea regarding reducing the amount of sulfuric acid used for leaching treatment in the leaching process. In addition, in hydrometallurgical smelting of nickel oxide ore, it is naturally necessary to reduce the amount of neutralizing agent used without significantly reducing the actual yield of nickel. No solution has been disclosed.
 尚、特許文献2には、浸出スラリーにpH調整剤を添加してpHを所定範囲内に調整する予備中和工程を行うことが開示されている。これにより、固液分離工程よりも下流側で行われる中和工程での中和剤の使用量をある程度低減することは可能と考えられる。しかしながら、特許文献2には、そのような予備中和工程を行う場合において、ニッケルの実収率を低下させずに中和剤の使用量を低減させることが可能となる具体的な中和剤の種類や組成等については、何ら言及されていない。 Incidentally, Patent Document 2 discloses that a preliminary neutralization step is performed in which a pH adjuster is added to the leaching slurry to adjust the pH within a predetermined range. It is considered that this makes it possible to reduce the amount of neutralizing agent used in the neutralization process performed downstream of the solid-liquid separation process to some extent. However, Patent Document 2 describes a specific neutralizing agent that makes it possible to reduce the amount of neutralizing agent used without reducing the actual yield of nickel when performing such a preliminary neutralization step. There is no mention of the type, composition, etc.
特開2005-350766号公報Japanese Patent Application Publication No. 2005-350766 特開2020-180317号公報Japanese Patent Application Publication No. 2020-180317
 本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石の湿式製錬プロセスにおいて、ニッケルの実収率を低下させずに中和剤の使用量を低減させることができる方法を提供することを目的とする。 The present invention was proposed in view of these circumstances, and provides a method for reducing the amount of neutralizing agent used without reducing the actual yield of nickel in a hydrometallurgical process for nickel oxide ore. The purpose is to provide
 本発明者らは、ニッケル酸化鉱石の湿式製錬プロセスにおいて、浸出工程で得た浸出スラリーにpH調整剤を添加してpHを所定範囲内に調整する予備中和工程を行うこととし、その際に用いる中和剤として、ニッケル品位及びマグネシウム品位が所定品位以上とされている「予備中和処理用スラリー」を用いることによって、上記課題を解決することができることを見出し、本発明を完成するに至った。即ち、本発明は以下のものを提供する。 In the hydrometallurgical process of nickel oxide ore, the present inventors decided to perform a preliminary neutralization process in which a pH adjuster is added to the leaching slurry obtained in the leaching process to adjust the pH within a predetermined range. The inventors have discovered that the above-mentioned problems can be solved by using a "slurry for pre-neutralization treatment" whose nickel grade and magnesium grade are said to be higher than a predetermined grade as a neutralizing agent, and have completed the present invention. It's arrived. That is, the present invention provides the following.
 (1) ニッケル酸化鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施すことによって浸出スラリーを得る浸出工程と、前記浸出スラリーにpH調整剤を添加する予備中和工程と、前記予備中和工程を経た前記浸出スラリーを、浸出液と浸出残渣とに分離する固液分離工程と、前記浸出液のpHを調整して不純物元素を含む中和澱物を分離してニッケルを含む中和終液を得る中和工程と、前記中和終液に硫化剤を添加することでニッケルを含む硫化物を生成させる硫化工程と、前記硫化工程から排出された貧液を回収して無害化する最終中和工程と、を含んでなる、ニッケル酸化鉱石の湿式製錬方法であって、前記予備中和工程においては、前記pH調整剤として、固形分中のマグネシウム含有量が3重量%以上であり、固形分中のニッケル含有量が0.7%以上である、予備中和処理用スラリーを用いる、ニッケル酸化鉱石の湿式製錬方法。 (1) A leaching step in which a leached slurry is obtained by adding sulfuric acid to a nickel oxide ore slurry and performing leaching treatment under high temperature and high pressure, a preliminary neutralization step in which a pH adjuster is added to the leached slurry, and a preliminary neutralization step in which a pH adjuster is added to the leached slurry; A solid-liquid separation step in which the leaching slurry that has undergone the immersion step is separated into a leaching solution and a leaching residue, and a neutralized final solution containing nickel is obtained by adjusting the pH of the leaching solution and separating a neutralized precipitate containing impurity elements. a sulfurization step in which a sulfide containing nickel is produced by adding a sulfurizing agent to the neutralized final solution, and a final step in which the poor solution discharged from the sulfurization step is recovered and rendered harmless. A hydrometallurgical method for nickel oxide ore, comprising: a pre-neutralization step in which the pH adjuster has a magnesium content of 3% by weight or more in the solid content; A hydrometallurgical smelting method for nickel oxide ore using a pre-neutralization slurry having a nickel content of 0.7% or more in solid content.
 (1)の発明によれば、ニッケル酸化鉱石の湿式製錬プロセスにおいて、ニッケルの実収率を低下させずに中和剤の使用量を低減させることができる。 According to the invention (1), in the hydrometallurgical smelting process of nickel oxide ore, the amount of neutralizing agent used can be reduced without reducing the actual yield of nickel.
 (2) ハイドロサイクロン及び/又はデンシティセパレーターを利用して、水分を加えてスラリー化した前記ニッケル酸化鉱石から、粒径が45μm以下の粒子の割合が40重量%以下である粗粒部を分離回収する第1の分離工程と、前記粗粒部をスパイラルコンセントレーターによって比重分離する第2の分離工程と、を含んでなる前処理工程が、前記浸出工程に先行して行われ、前記予備中和処理用スラリーは、前記前処理工程において、前記スパイラルコンセントレーターの外周部から分離回収されたスラリーである、(1)に記載のニッケル酸化鉱石の湿式製錬方法。 (2) Using a hydrocyclone and/or a density separator, separate and collect the coarse particles in which the proportion of particles with a particle size of 45 μm or less is 40% by weight or less from the nickel oxide ore that has been slurried by adding moisture. A pretreatment step is performed prior to the leaching step, and includes a first separation step of separating the coarse particles using a spiral concentrator, and a second separation step of separating the coarse particles by specific gravity using a spiral concentrator. The hydrometallurgical method for nickel oxide ore according to (1), wherein the processing slurry is a slurry separated and recovered from the outer periphery of the spiral concentrator in the pretreatment step.
 (2)の発明によれば、従来、原料鉱石の一部であり、微量のニッケルも含む部分でありながら、脈石成分の割合が高い部分として、浸出工程に投入されずに最終製品の生産ラインから除外されている部分を、予備中和工程で有効活用することができ、しかも、その際に、予備中和工程に適応させるための特段の追加の加工処理を要しないので、(1)の発明を、より経済的に実施することができる。 According to the invention (2), conventionally, although it is a part of the raw material ore and also contains a trace amount of nickel, it is not input into the leaching process as a part with a high proportion of gangue components and is used to produce the final product. The parts excluded from the line can be effectively used in the pre-neutralization process, and at that time, no special additional processing is required to adapt to the pre-neutralization process, so (1) invention can be implemented more economically.
 本発明によれば、ニッケル酸化鉱石の湿式製錬プロセスにおいて、ニッケルの実収率を低下させずに中和剤の使用量を低減させることができる。そして、これにより、ニッケル酸化鉱石の湿式製錬プロセスの生産性を向上させることができる。 According to the present invention, in the hydrometallurgical process of nickel oxide ore, the amount of neutralizing agent used can be reduced without reducing the actual yield of nickel. Accordingly, the productivity of the hydrometallurgical smelting process for nickel oxide ore can be improved.
本発明のニッケル酸化鉱石の湿式製錬方法を用いて実施することができる湿式製錬プロセスの全体工程図である。1 is an overall process diagram of a hydrometallurgical process that can be carried out using the hydrometallurgical smelting method for nickel oxide ore of the present invention. 本発明のニッケル酸化鉱石の湿式製錬方法に用いることができるスパイラルコンセントレーターの基本構成を示す模式図である。FIG. 1 is a schematic diagram showing the basic configuration of a spiral concentrator that can be used in the hydrometallurgical smelting method of nickel oxide ore of the present invention. 図2のスパイラルコンセントレーターのスラリー流路末端部に設けられるスラリー分離柵の基本構成を示す模式図である。3 is a schematic diagram showing the basic configuration of a slurry separation fence provided at the end of a slurry flow path of the spiral concentrator shown in FIG. 2. FIG.
 以下、本発明の「ニッケル酸化鉱石の湿式製錬方法」について、具体的な実施形態を詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, specific embodiments of the "method for hydrometallurgical smelting of nickel oxide ore" of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention.
 <ニッケル酸化鉱石の湿式製錬方法>
 本発明の「ニッケル酸化鉱石の湿式製錬方法」を用いて行うことができるニッケル酸化鉱石の製錬プロセスの全体工程としての流れは、一例として、図1に示す通りである。この湿式製錬プロセスは、ニッケル酸化鉱石をスラリー化してニッケル酸化鉱石スラリーを得るスラリー化工程S1、スラリー化工程S1で得たニッケル酸化鉱石スラリーから、脈石成分を分離除去する前処理を行う前処理工程S2、ニッケル酸化鉱石スラリーに含まれる水分を除去して鉱石成分を濃縮する濃縮工程S3、前処理工程S2及び濃縮工程S3を経たニッケル酸化鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施すことによって浸出スラリーを得る浸出工程S4、浸出工程S4で得た浸出スラリーにpH調整剤を添する予備中和工程S5、予備中和工程S5を経た浸出スラリーを、浸出液と浸出残渣とに分離する固液分離工程S6、固液分離工程S6で得た浸出液のpHを調整して不純物元素を含む中和澱物を分離してニッケルを含む中和終液を得る中和工程S7、中和工程S7で得た中和終液に硫化剤を添加することでニッケルを含む硫化物を生成させる硫化工程S8、及び、最終中和工程S9が順次行われるプロセスである。
<Hydrometallurgical method of nickel oxide ore>
An example of the overall flow of the nickel oxide ore smelting process that can be carried out using the "nickel oxide ore hydrometallurgical method" of the present invention is shown in FIG. 1. This hydrometallurgical smelting process includes a slurrying step S1 in which nickel oxide ore is slurried to obtain a nickel oxide ore slurry, and a pretreatment to separate and remove gangue components from the nickel oxide ore slurry obtained in the slurry step S1. Treatment step S2, concentration step S3 of removing water contained in the nickel oxide ore slurry and concentrating ore components, adding sulfuric acid to the nickel oxide ore slurry that has gone through the pretreatment step S2 and concentration step S3 and leaching under high temperature and high pressure. A leaching step S4 in which a leaching slurry is obtained by performing a treatment, a pre-neutralization step S5 in which a pH adjuster is added to the leaching slurry obtained in the leaching step S4, and a leaching slurry that has undergone the preliminary neutralization step S5 is converted into a leaching solution and a leaching residue. a solid-liquid separation step S6 in which the leachate obtained in the solid-liquid separation step S6 is separated, a neutralization step S7 in which a neutralized precipitate containing impurity elements is separated to obtain a neutralized final solution containing nickel; This is a process in which a sulfiding step S8 in which a sulfurizing agent is added to the neutralized final liquid obtained in the neutralizing step S7 to generate a nickel-containing sulfide, and a final neutralizing step S9 are sequentially performed.
 本発明の「ニッケル酸化鉱石の湿式製錬方法」は、上記のニッケル酸化鉱石の製錬プロセスを構成する各工程(S1~S9)のうち、少なくとも、浸出工程S4、予備中和工程S5、固液分離工程S6中和工程S7、硫化工程S8、及び、最終中和工程S9を行うことを必須とする方法であって、尚且つ、予備中和工程S5において、独自の知見に基づいてマグネシウム品位とニッケル品位とを特定した「予備中和処理用スラリー」を、pH調整剤として用いるようにしたことを主たる特徴とするプロセスである。 The "hydro-smelting method for nickel oxide ore" of the present invention includes at least the leaching step S4, the pre-neutralization step S5, the solidification step A method that requires liquid separation step S6, neutralization step S7, sulfurization step S8, and final neutralization step S9, and in addition, in the pre-neutralization step S5, the magnesium grade is determined based on unique knowledge. The main feature of this process is that a "pre-neutralization slurry" with specified nickel quality and nickel quality is used as a pH adjuster.
 尚、浸出工程S4に投入する「ニッケル酸化鉱石スラリー」を製造するための上流側の工程として、通常、上記の通り、スラリー化工程S1、前処理工程S2、及び、濃縮工程S3が順次行われるが、これらの各工程は、本発明の「ニッケル酸化鉱石の湿式製錬方法」においては必ずしも必須の工程ではない。これらの各上流工程(S1~S3)の実施の有無、或いは、これらの各上流工程(S1~S3)の実施態様に関わらず、「ニッケル酸化鉱石スラリー」が投入される浸出工程S4以降の工程を、本願発明の要件を充足する態様で行う製錬プロセスであれば、全て、本発明の技術的範囲となる。 As an upstream process for producing the "nickel oxide ore slurry" to be input to the leaching process S4, the slurry process S1, pretreatment process S2, and concentration process S3 are normally performed in sequence as described above. However, each of these steps is not necessarily an essential step in the "method for hydrometallurgical smelting of nickel oxide ore" of the present invention. Regardless of whether each of these upstream steps (S1 to S3) is implemented or the implementation mode of each of these upstream steps (S1 to S3), the steps after the leaching step S4 in which the "nickel oxide ore slurry" is input. Any smelting process that is carried out in a manner that satisfies the requirements of the present invention falls within the technical scope of the present invention.
 [スラリー化工程]
 スラリー化工程S1は、ニッケル酸化鉱石を水と混合して、流動性の高いニッケル酸化鉱石スラリーとする工程である。尚、本明細書においては、ニッケル酸化鉱石と水との混合物である鉱石スラリーのことを、「ニッケル酸化鉱石スラリー」と称するが、「ニッケル酸化鉱石スラリー」には、本発明の効果を阻害しない限りにおいて、ニッケル酸化鉱石及び水以外の成分が含有されていてもよい。
[Slurry process]
Slurrying step S1 is a step of mixing nickel oxide ore with water to form a highly fluid nickel oxide ore slurry. In this specification, ore slurry that is a mixture of nickel oxide ore and water is referred to as "nickel oxide ore slurry", but "nickel oxide ore slurry" may include any other material that does not impede the effects of the present invention. To the extent possible, components other than nickel oxide ore and water may be contained.
 スラリー化工程S1において原料鉱石として用いられるニッケル酸化鉱石は、ニッケルやコバルトを含有する鉱石であり、主としてリモナイト鉱及びサプロライト鉱等の所謂ラテライト鉱が用いられる。ラテライト鉱のニッケル含有量は、一般的には0.8重量%以上2.5重量%以下であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。又、鉄の含有量は、10重量%以上50重量%以下であり、主として3価の水酸化物(ゲーサイト)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。又、このようなラテライト鉱の他に、ニッケル、コバルト、マンガン、銅等の有価金属を含有する酸化鉱石、例えば深海底に賦存するマンガン瘤等が用いられる。 The nickel oxide ore used as the raw material ore in the slurrying step S1 is an ore containing nickel and cobalt, and so-called laterite ores such as limonite ore and saprolite ore are mainly used. The nickel content of laterite ore is generally 0.8% by weight or more and 2.5% by weight or less, and is contained as a hydroxide or a magnesium silicate mineral. In addition, the iron content is 10% by weight or more and 50% by weight or less, and is mainly in the form of trivalent hydroxide (goethite), but some divalent iron is contained in siliceous minerals. Ru. In addition to such laterite ores, oxide ores containing valuable metals such as nickel, cobalt, manganese, and copper, such as manganese nodules existing in the deep seabed, are used.
 [前処理工程]
 前処理工程S2は、スラリー化工程S1で得た「ニッケル酸化鉱石スラリー」から脈石成分を分離除去することによって、当該ニッケル酸化鉱石スラリーのニッケル品位を高める前処理を行う工程である。前処理工程S2において、上記の前処理をニッケル酸化鉱石スラリーに施すことによって、当該処理前のニッケル酸化鉱石スラリーから、鉄、マグネシウム、マンガン、アルミニウム等の脈石成分を分離することができる。
[Pre-treatment process]
The pretreatment step S2 is a step of performing pretreatment to improve the nickel quality of the nickel oxide ore slurry by separating and removing gangue components from the "nickel oxide ore slurry" obtained in the slurrying step S1. In the pretreatment step S2, by subjecting the nickel oxide ore slurry to the above-mentioned pretreatment, gangue components such as iron, magnesium, manganese, and aluminum can be separated from the nickel oxide ore slurry before the treatment.
 前処理工程S2は、具体的には、スラリー化工程S1で得た「ニッケル酸化鉱石スラリー」を、45μm未満の粒径を有する粒子の割合が固形分中の40質量%以下である粗粒部(本明細書において、以下、単に「粗粒部」とも言う)と、細粒部とに分離する第1の分離工程と、この第1の分離工程で分離した「粗粒部」に対して更に比重分離処理を行う第2の分離工程とを、順次行う処理方法によることが好ましい。このように段階的に分離処理を行う処理方法においては、第1の分離工程で得た細粒部と、第2の分離工程において重比重部側に回収した重比重部とを、浸出工程S4に供給する。そして、第2の分離工程において、重比重部側に回収されなかった、マグネシウム等の脈石成分を多く含む部分(軽比重部)は、浸出工程S4に供給する「ニッケル酸化鉱石スラリー」からは分離除去される。 Specifically, in the pretreatment step S2, the "nickel oxide ore slurry" obtained in the slurrying step S1 is processed into a coarse particle portion in which the proportion of particles having a particle size of less than 45 μm is 40% by mass or less in the solid content. (hereinafter also simply referred to as "coarse grain part") and fine grain part; and the "coarse grain part" separated in this first separation step. It is preferable to use a processing method in which a second separation step in which specific gravity separation processing is further performed is performed sequentially. In such a treatment method that performs separation treatment in stages, the fine particle portion obtained in the first separation step and the heavy specific gravity portion collected in the heavy specific gravity portion side in the second separation step are transferred to the leaching step S4. supply to. Then, in the second separation process, the part containing a large amount of gangue components such as magnesium (light specific gravity part) that was not recovered in the heavy specific gravity part is removed from the "nickel oxide ore slurry" supplied to the leaching process S4. Separated and removed.
 (第1の分離工程)
 ニッケル酸化鉱石の鉱石スラリーを、上述したように「粗粒部」と、「細粒部」とに分離する「第1の分離工程」は、ハイドロサイクロン、デンシティセパレーターの少なくとも1つを使用して行うことができる。
(First separation step)
The "first separation step" in which the ore slurry of nickel oxide ore is separated into the "coarse grain part" and the "fine grain part" as described above uses at least one of a hydrocyclone and a density separator. It can be carried out.
 (第2の分離工程)
 第1の分離工程で分離した「粗粒部」から、ニッケルに対してマグネシウムの比率が大きく、比重の軽い脈石成分を選択的に除去する比重分離処理を更に行う「第2の分離工程」は、「スパイラルコンセントレーター」を用いて行うことができる。「スパイラルコンセントレーター」とは、図2に示すスパイラルコンセントレーター1のように、螺旋状の傾斜滑り台であるスラリー流路11を備える分離装置である。スラリー流路11の末端近傍域であるスラリー流路末端部12には、図3に示すようにスラリー分離柵121、122が設置されていて、これらの2つの柵により、螺旋状のスラリー流路11の内側から順に、濃縮物(Conc)流域帯123、中間物(Mids)流域帯124、テーリング(Tail)流域帯125の3つのスラリーの回収路が形成されている。尚、スラリー分離柵121、122はスラリーの流れ方向に直交する方向に沿ってその設置位置を可変的に調整することが可能な構造で設置されている。ニッケル酸化鉱石スラリーの重比重部は、第1のスラリー分離柵と第2のスラリー分離柵の内側に回収される。マグネシウム等の脈石成分を多く含むそれ以外の部分(軽比重部)は、は第2のスラリー分離柵の外側(Tail部分。以下「Tail」)に回収される。
(Second separation step)
A "second separation step" in which a specific gravity separation process is further performed to selectively remove gangue components with a high ratio of magnesium to nickel and a light specific gravity from the "coarse grains" separated in the first separation step. This can be done using a "spiral concentrator." A "spiral concentrator" is a separation device that includes a slurry flow path 11 that is a spiral inclined slide, like the spiral concentrator 1 shown in FIG. As shown in FIG. 3, slurry separation fences 121 and 122 are installed at the end portion 12 of the slurry flow path 11, which is a region near the end of the slurry flow path 11. These two fences separate the spiral slurry flow path. Three slurry recovery paths are formed in order from the inside of 11: a concentrate (Conc) basin zone 123, an intermediate (Mids) basin zone 124, and a tailing (Tail) basin zone 125. Note that the slurry separation fences 121 and 122 are installed in a structure that allows their installation positions to be variably adjusted along the direction perpendicular to the flow direction of the slurry. The heavy specific gravity portion of the nickel oxide ore slurry is collected inside the first slurry separation fence and the second slurry separation fence. The other part (light specific gravity part) containing a large amount of gangue components such as magnesium is collected outside the second slurry separation fence (Tail part, hereinafter referred to as "Tail").
 このようにして、スパイラルコンセントレーターによって軽比重の脈石成分を優先的に分離して除去するようにすることで、鉱石スラリー中の脈石成分、特にマグネシウムを含む粒子をより効率的に分離除去することができる。この時、スパイラルコンセントレーターの排出口のスラリー分離柵の位置によって、「Tail」に回収されるスラリー(軽比重部)のマグネシウム品位が変化する。具体的には、テーリング(Tail)流域帯125の幅が、スラリー流路の全幅に対して30%以上の幅となる位置に、と第2のスラリー分離柵122を設置することで「Tail」に回収されるスラリー(軽比重部)中のマグネシウム品位が3%以上になる。この「Tail」に回収されるスラリー(軽比重部)を、浸出工程S4に払出さないことで浸出工程S4における硫酸使用量や最終中和工程S9における中和剤の使用量を効果的に低減させることができる。 In this way, by preferentially separating and removing gangue components with light specific gravity using the spiral concentrator, gangue components in the ore slurry, especially particles containing magnesium, can be separated and removed more efficiently. can do. At this time, the magnesium quality of the slurry (light specific gravity part) collected in the "tail" changes depending on the position of the slurry separation fence at the outlet of the spiral concentrator. Specifically, the second slurry separation fence 122 is installed at a position where the width of the tail basin zone 125 is 30% or more of the total width of the slurry flow path. The magnesium content in the slurry (light specific gravity part) recovered is 3% or more. By not discharging the slurry (light specific gravity part) collected in this "Tail" to the leaching process S4, the amount of sulfuric acid used in the leaching process S4 and the amount of neutralizing agent used in the final neutralization process S9 can be effectively reduced. can be done.
 [濃縮工程]
 濃縮工程S3は、前処理工程S2を経た「ニッケル酸化鉱石スラリー」を、シックナー(沈降分離装置)等の固液分離手段によって濃縮する工程である。この工程において、「ニッケル酸化鉱石スラリー」は、固形分40質量%以上に濃縮される。これにより、浸出工程S4での鉱石処理能力を更に向上させることができる。
[Concentration process]
The concentration step S3 is a step in which the "nickel oxide ore slurry" that has undergone the pretreatment step S2 is concentrated by solid-liquid separation means such as a thickener (sedimentation separator). In this step, the "nickel oxide ore slurry" is concentrated to a solid content of 40% by mass or more. Thereby, the ore processing ability in the leaching step S4 can be further improved.
 [浸出工程]
 浸出工程S4は、前処理工程S2及び濃縮工程S3を経た、「ニッケル酸化鉱石スラリー」に硫酸を添加し、220℃~280℃の高い温度条件下で加圧しながら鉱石スラリーを攪拌し、浸出液と浸出残渣とからなる浸出スラリーを生成させる浸出処理を行う工程である。この浸出処理は、具体的は、上記の「酸化鉱石スラリー」を、オートクレーブ等の加圧浸出反応容器に投入することによって行うことができる。
[Leaching process]
In the leaching step S4, sulfuric acid is added to the "nickel oxide ore slurry" that has passed through the pretreatment step S2 and the concentration step S3, and the ore slurry is stirred while pressurized at a high temperature of 220°C to 280°C to form a leaching solution. This is a step of performing a leaching treatment to generate a leaching slurry consisting of a leaching residue. Specifically, this leaching treatment can be performed by charging the above-mentioned "oxidized ore slurry" into a pressurized leaching reaction vessel such as an autoclave.
 ここで、浸出工程S4における硫酸の添加量としては、従来、一般的には、過剰量が用いられていた。ニッケル酸化鉱石には、ニッケルやコバルト以外にも、鉄、マグネシウム、マンガン、アルミニウム等の不純物も含まれ、これら不純物も硫酸により浸出されるため、ニッケルやコバルト等の回収対象の実収率を高めるために過剰量の硫酸を添加して浸出処理を行う必要がある。特にマグネシウム品位が高い鉱石が投入されると必要な硫酸量が多くなり供給が追い付かずニッケル浸出率が低下してしまう。これに対して、前処理工程S2において、浸出工程S4に供給する「ニッケル酸化鉱石スラリー」から脈石成分を十分に分離除去しておくことによって、上記の硫酸の過剰使用を抑えることができる。 Here, as the amount of sulfuric acid added in the leaching step S4, an excessive amount has conventionally been generally used. In addition to nickel and cobalt, nickel oxide ore also contains impurities such as iron, magnesium, manganese, and aluminum, and since these impurities are also leached out by sulfuric acid, this method is used to increase the actual yield of nickel and cobalt to be recovered. It is necessary to add an excessive amount of sulfuric acid to the leaching process. In particular, when ore with a high magnesium grade is input, the amount of sulfuric acid required increases, and the supply cannot keep up, resulting in a decrease in the nickel leaching rate. On the other hand, by sufficiently separating and removing gangue components from the "nickel oxide ore slurry" supplied to the leaching step S4 in the pretreatment step S2, the above-mentioned excessive use of sulfuric acid can be suppressed.
 [予備中和工程]
 予備中和工程S5は、浸出工程S4で得た浸出スラリーにpH調整剤を添加して遊離硫酸を中和する工程である。浸出工程S4では、通常、有価金属の浸出に必要な硫酸の化学量論量よりも過剰の硫酸をオートクレーブに導入しているので、浸出スラリーには、浸出反応に関与しなかった余剰の硫酸が残留遊離酸の形態で含まれている。そこで、従来においては、この予備中和工程S5では、pH調整剤として炭酸カルシウムスラリー等を添加することによって浸出スラリーのpHを2.5~3.4に調整していた。
[Preliminary neutralization process]
Pre-neutralization step S5 is a step in which a pH adjuster is added to the leaching slurry obtained in leaching step S4 to neutralize free sulfuric acid. In the leaching step S4, sulfuric acid in excess of the stoichiometric amount of sulfuric acid required for leaching valuable metals is usually introduced into the autoclave, so the leaching slurry contains excess sulfuric acid that did not participate in the leaching reaction. Contained in the form of residual free acid. Therefore, conventionally, in this preliminary neutralization step S5, the pH of the leaching slurry was adjusted to 2.5 to 3.4 by adding calcium carbonate slurry or the like as a pH adjusting agent.
 これに対して、本発明の「ニッケル酸化鉱石の湿式製錬方法」においては、pH調整剤として、独自の知見に基づいてマグネシウム品位とニッケル品位とを所定範囲に特定した「予備中和処理用スラリー」を、pH調整剤として用いるようにした。この「予備中和処理用スラリー」は、具体的には、固形分中のマグネシウム含有量が3重量%以上であり、固形分中のニッケル含有量が0.7%以上であればよい。例えば、このような組成に係る要件を満たすものであり、本発明の「ニッケル酸化鉱石の湿式製錬方法」において、「予備中和処理用スラリー」の材料として用いることできる鉱石の一例として、蛇紋石((Mg,Fe)Si(OH))を挙げることができる。蛇紋岩は、マグネシウムや鉄以外の金属元素も含有するものが一般に安価に入手可能であり、鉄と性質の似通ったニッケルやコバルトも含有する。ニッケルやコバルトは、後述するニッケル(及びコバルト)を含む硫化物を得る原料としても好都合である。又、蛇紋岩は、マグネシウムの含有量が大きいもの、ニッケルの含有量が大きいものが存在するが、必要に応じてその他のマグネシウム源、ニッケル源と調合して用いることもできる。調合後の予備中和処理用スラリーは固形分中のマグネシウム含有量を3重量%以上、固形分中のニッケル含有量を0.7%以上となるようにすることで、廃滓を少なく抑えながら、中和剤の節約やニッケルの回収量の増加といった利点を享受することができる。 On the other hand, in the "hydro-smelting method for nickel oxide ore" of the present invention, a "pre-neutralization treatment method" in which the magnesium grade and nickel grade are specified within a predetermined range based on unique knowledge is used as a pH adjuster. Slurry" was used as a pH adjuster. Specifically, this "pre-neutralization slurry" may have a magnesium content of 3% by weight or more in the solid content and a nickel content of 0.7% or more in the solid content. For example, as an example of an ore that satisfies such compositional requirements and can be used as a material for the "pre-neutralization slurry" in the "hydro-smelting method for nickel oxide ore" of the present invention, Stone ((Mg,Fe) 3 Si 2 O 5 (OH) 4 ) can be mentioned. Serpentinite containing metal elements other than magnesium and iron is generally available at low cost, and also contains nickel and cobalt, which have properties similar to iron. Nickel and cobalt are also convenient as raw materials for obtaining sulfides containing nickel (and cobalt), which will be described later. Also, some serpentinites have a high magnesium content and some have a high nickel content, but they can be used in combination with other magnesium sources and nickel sources, if necessary. The slurry for pre-neutralization treatment after blending has a magnesium content of 3% by weight or more in the solid content and a nickel content of 0.7% or more in the solid content, thereby reducing waste while minimizing waste. , benefits such as savings in neutralizing agents and increased nickel recovery can be enjoyed.
 又、上述した実施態様で、第1の分離工程と、第2の分離工程と、を含んでなる前処理工程S2が、浸出工程S4に先行して行われる場合であれば、予備中和処理用スラリーとして、は、前処理工程S2の第2の分離工程において、スパイラルコンセントレーターの外周部から分離回収されたスラリー、即ち、「Tail」に回収されるスラリー(軽比重部)を、固形分中のマグネシウム含有量が3重量%以上であり、固形分中のニッケル含有量が0.7%以上である「予備中和処理用スラリー」として、そのまま、予備中和工程S5に投入することができる。 In addition, in the embodiment described above, if the pretreatment step S2 including the first separation step and the second separation step is performed prior to the leaching step S4, the preliminary neutralization treatment In the second separation step of the pretreatment step S2, the slurry separated and collected from the outer circumference of the spiral concentrator, that is, the slurry (light specific gravity part) collected in the "Tail" is used as the slurry for solid content. The magnesium content in the slurry is 3% by weight or more, and the nickel content in the solid content is 0.7% or more.The slurry can be directly fed into the preliminary neutralization step S5. can.
 ここで、前処理工程S2は、浸出工程S4に投入するニッケル酸化鉱石スラリーから、マグネシウムを含む各種の脈石成分を分離除去することを目的として行われる処理であるが、本発明者は、このように脈石成分として分離されたスラリーであっても、所定値以上のニッケルとマグネシウムを含有する物であれば、これを、予備中和工程に投入するpH調整剤として利用することで、プロセス全体での硫酸及び中和剤の使用量の削減効果が有効になることを見出した。マグネシウム品位の高いスラリーを浸出工程S4に投入しないことで、薬剤の削減が見込まれ、鉱石スラリーのニッケル浸出率は上昇する。一方で前処理工程S2の第2の分離工程において、「Tail」に回収されるスラリー(軽比重部)もニッケルを含むので、浸出工程S4に送液しない場合その分、ニッケル生産量は減ることになるが、上述の「Tail」に回収されるスラリー(軽比重部)中の酸化マグネシウムはpH調整剤(中和剤)として利用が可能で、その際にニッケルが浸出する。予備中和工程S5でのNi浸出率は浸出工程S4での浸出率よりも低いが、予備中和工程S5に、固形分中のニッケル含有量が0.7%以上であるスラリーを投入することで、前処理工程S2での脈石の分離回収に伴うニッケル生産量の減少はほとんど抑えられる。本発明による薬剤削減効果と既存鉱区におけるニッケル生産量の通常操業時とのそれぞれの差損益の合計は、pH調整剤として予備中和工程S5に投入する「予備中和処理用スラリー」のマグネシウム品位が3%以上であれば、経済的に好転することが、本発明者らの研究により明らかになっている。 Here, the pretreatment step S2 is a treatment performed for the purpose of separating and removing various gangue components including magnesium from the nickel oxide ore slurry input to the leaching step S4. Even if the slurry is separated as a gangue component, if it contains nickel and magnesium above a specified value, it can be used as a pH adjuster to be added to the pre-neutralization process. It has been found that the effect of reducing the overall amount of sulfuric acid and neutralizing agent used is effective. By not introducing slurry with a high magnesium grade into the leaching step S4, it is expected that the amount of chemicals will be reduced, and the nickel leaching rate of the ore slurry will increase. On the other hand, in the second separation step of the pretreatment step S2, the slurry (light specific gravity part) recovered in the "Tail" also contains nickel, so if the liquid is not sent to the leaching step S4, the nickel production amount will decrease accordingly. However, the magnesium oxide in the slurry (light specific gravity part) recovered in the above-mentioned "Tail" can be used as a pH adjuster (neutralizing agent), and nickel is leached out at that time. Although the Ni leaching rate in the pre-neutralization step S5 is lower than the leaching rate in the leaching step S4, a slurry in which the nickel content in the solid content is 0.7% or more is introduced into the pre-neutralization step S5. Therefore, the decrease in nickel production due to the separation and recovery of gangue in the pretreatment step S2 can be almost suppressed. The total difference in profit and loss between the chemical reduction effect of the present invention and the nickel production amount in the existing mining area compared to normal operation is calculated based on the magnesium grade of the "pre-neutralization slurry" which is input as a pH adjuster into the pre-neutralization step S5. The research conducted by the present inventors has revealed that if the ratio is 3% or more, there will be an economical improvement.
 [固液分離工程]
 固液分離工程S6は、予備中和工程S5を経た浸出スラリーを、多段で洗浄しながら、ニッケル及びコバルトのほか不純物元素を含む浸出液と、浸出残渣とを分離する工程である。固液分離工程S6は、例えば、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離設備により固液分離処理を施すことによって行うことができる。又、洗浄液(洗浄水)としては、特に限定されないが、ニッケルを含まず、工程に影響を及ぼさないものを用いることが好ましい。例えば、洗浄液として、好ましくは、後工程の硫化工程S8で得られる貧液を繰り返して利用することができる。
[Solid-liquid separation process]
The solid-liquid separation step S6 is a step in which the leaching slurry that has undergone the preliminary neutralization step S5 is washed in multiple stages, and the leaching solution containing impurity elements in addition to nickel and cobalt is separated from the leaching residue. The solid-liquid separation step S6 can be performed, for example, by mixing the leaching slurry with the cleaning liquid and then performing solid-liquid separation treatment using solid-liquid separation equipment such as a thickener. Further, the cleaning liquid (cleaning water) is not particularly limited, but it is preferable to use one that does not contain nickel and does not affect the process. For example, as the cleaning liquid, preferably, the poor liquid obtained in the subsequent sulfurization step S8 can be repeatedly used.
 [中和工程]
 中和工程S7は、固液分離工程S6にて分離された浸出液のpHを調整し、不純物元素を含む中和澱物を分離して、ニッケルやコバルトを含む中和終液を得る工程である。具体的に、中和工程S7では、分離された浸出液の酸化を抑制しながら、得られる中和終液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加して、中和終液と不純物元素として3価の鉄やアルミニウム等を含む中和澱物スラリーとを生成させる。中和工程S7では、このようにして不純物を中和澱物として除去し、ニッケル回収用の母液となる中和終液を生成させる。
[Neutralization process]
The neutralization step S7 is a step of adjusting the pH of the leachate separated in the solid-liquid separation step S6, separating the neutralized precipitate containing impurity elements, and obtaining a neutralized final solution containing nickel and cobalt. . Specifically, in the neutralization step S7, while suppressing oxidation of the separated leachate, the pH of the resulting neutralized final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3.2, a neutralizing agent such as calcium carbonate is added to the leachate to produce a neutralized final solution and a neutralized precipitate slurry containing trivalent iron, aluminum, etc. as impurity elements. In the neutralization step S7, impurities are removed as a neutralized precipitate in this way, and a neutralized final liquid is generated which becomes a mother liquid for nickel recovery.
 [硫化工程]
 硫化工程S8は、上記のニッケル回収用の母液に硫化剤を添加して、ニッケル硫化物と貧液とに分離する工程である。硫化工程S8では、ニッケル回収用の母液である中和終液に対して、硫化水素ガス等の硫化剤を吹き込んで硫化反応を生じさせ、ニッケル(及びコバルト)を含む硫化物(以下、単に「ニッケル硫化物」ともいう)と貧液とを生成させる。
[Sulfurization process]
The sulfiding step S8 is a step in which a sulfurizing agent is added to the mother liquor for nickel recovery to separate it into nickel sulfide and poor liquor. In the sulfiding step S8, a sulfurizing agent such as hydrogen sulfide gas is blown into the neutralized final solution, which is a mother liquor for nickel recovery, to cause a sulfiding reaction, thereby producing sulfides containing nickel (and cobalt) (hereinafter simply " (also called nickel sulfide) and poor liquor.
 ニッケル回収用の母液である中和終液は、浸出液から中和工程S7を経て不純物成分が低減された硫酸溶液である。尚、このニッケル回収用母液には、不純物成分として鉄、マグネシウム、マンガン等が数g/L程度含まれている可能性があるが、これら不純物成分は、硫化物としての安定性が低く(回収するニッケル及びコバルトに対して)、生成するニッケル硫化物に含有されることはない。 The neutralized final solution, which is the mother liquor for nickel recovery, is a sulfuric acid solution in which the impurity components are reduced through the neutralization step S7 from the leachate. Note that this mother liquor for nickel recovery may contain several g/L of impurity components such as iron, magnesium, and manganese, but these impurity components have low stability as sulfides (recovery nickel and cobalt), they are not contained in the produced nickel sulfide.
 硫化工程S8における硫化処理は、ニッケル回収設備にて実行される。ニッケル回収設備は、例えば、母液である中和終液に対して硫化水素ガス等を吹き込んで硫化反応を行う硫化反応槽と、硫化反応後液からニッケル硫化物を分離回収する固液分離槽とを備える。固液分離槽は、例えばシックナー等によって構成され、ニッケル硫化物を含んだ硫化反応後のスラリーに対して沈降分離処理を施すことで、沈殿物であるニッケル硫化物をシックナーの底部より分離回収する。一方で、水溶液成分はオーバーフローさせて貧液として回収する。尚、回収した貧液は、ニッケル等の有価金属濃度の極めて低い溶液であり、硫化されずに残留した鉄、マグネシウム、マンガン等の不純物元素を含む。この貧液は、後述する最終中和工程S9に移送されて無害化処理される。 The sulfurization process in the sulfurization step S8 is performed in a nickel recovery facility. Nickel recovery equipment includes, for example, a sulfurization reaction tank that performs a sulfurization reaction by blowing hydrogen sulfide gas etc. into the neutralized final liquid, which is the mother liquid, and a solid-liquid separation tank that separates and recovers nickel sulfide from the liquid after the sulfurization reaction. Equipped with. The solid-liquid separation tank is composed of, for example, a thickener, and performs sedimentation separation treatment on the slurry containing nickel sulfide after the sulfurization reaction, thereby separating and recovering the nickel sulfide precipitate from the bottom of the thickener. . On the other hand, the aqueous solution component is allowed to overflow and is recovered as a poor solution. The recovered poor solution is a solution with an extremely low concentration of valuable metals such as nickel, and contains impurity elements such as iron, magnesium, and manganese that remain without being sulfurized. This poor liquid is transferred to the final neutralization step S9, which will be described later, and is rendered harmless.
 [最終中和工程]
 最終中和工程S9は、硫化工程S8にて排出された鉄、マグネシウム、マンガン等の不純物元素を含む貧液に対して、排出基準を満たす所定のpH範囲に調整する中和処理(無害化処理)を施す工程である。この最終中和工程S9では、固液分離工程S6における固液分離処理から排出された浸出残渣も併せて処理することもできる。最終中和工程S9における無害化処理の方法、即ち、pHの調整方法としては、特に限定されないが、例えば炭酸カルシウム(石灰石)スラリーや水酸化カルシウム(消石灰)スラリー等の中和剤を添加することによって所定の範囲に調整することができる。
[Final neutralization step]
The final neutralization step S9 is a neutralization treatment (detoxification treatment) in which the poor liquid containing impurity elements such as iron, magnesium, and manganese discharged in the sulfurization step S8 is adjusted to a predetermined pH range that satisfies the discharge standards. ). In this final neutralization step S9, the leaching residue discharged from the solid-liquid separation process in the solid-liquid separation step S6 can also be treated. The method of detoxification treatment in the final neutralization step S9, that is, the method of adjusting pH, is not particularly limited, but may include, for example, adding a neutralizing agent such as calcium carbonate (limestone) slurry or calcium hydroxide (slaked lime) slurry. can be adjusted within a predetermined range.
 本発明の「ニッケル酸化鉱石の湿式製錬方法」においては、上流側で行われる予備中和工程S5において、上述の通り、マグネシウム品位とニッケル品位とを所定範囲に特定した「予備中和処理用スラリー」を、pH調整剤として用いることにより、最終中和工程S9での用いる消石灰等の中和剤の使用量を削減することできる。 In the "hydro-smelting method for nickel oxide ore" of the present invention, in the preliminary neutralization step S5 performed on the upstream side, as described above, the "pre-neutralization By using "slurry" as a pH adjusting agent, the amount of neutralizing agent such as slaked lime used in the final neutralization step S9 can be reduced.
 又、浸出工程S4における浸出処理に供する鉱石スラリーに対して、上述した前処理工程S2において特定の前処理を施すことにより、その鉱石スラリーに含まれるマグネシウムやマンガン等の不純物元素を低減させることができる。これにより、貧液中に含まれるこれらの元素濃度を減少させることができ、これによっても、最終中和工程S9における中和処理に用いる中和剤使用量を低減させることができる。 Furthermore, by subjecting the ore slurry to be subjected to leaching treatment in the leaching step S4 to a specific pretreatment in the pretreatment step S2 described above, impurity elements such as magnesium and manganese contained in the ore slurry can be reduced. can. Thereby, the concentration of these elements contained in the poor liquid can be reduced, and thereby also the amount of the neutralizing agent used for the neutralization treatment in the final neutralization step S9 can be reduced.
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by showing examples, but the present invention is not limited to the following examples.
 [実施例1]
 以下に示すように、図1に示す工程図からなるニッケル酸化鉱石の湿式製錬処理を行った。即ち、先ず、鉱石スラリーの前処理工程S2として、下記表1に示す組成を有するニッケル酸化鉱石をスラリー化して得られたニッケル酸化鉱石スラリーを、ハイドロサイクロン(ソルターサイクロン社製,SC1030-P型)へ供給して分級分離処理を施し、続いて、ハイドロサイクロンから排出されたアンダーフローを、デンシティセパレーター(シーエフエス社製,6×6型)へ供給して比重分離処理を施した。尚、これらの分離処理の工程を第1の分離工程とする。この第1の分離工程における分離処理により、デンシティセパレーターのアンダーフロー固形分中における粒径45μm未満の粒子の含有量が25質量%である鉱石スラリー(粗粒部)を得た。
[Example 1]
As shown below, nickel oxide ore was subjected to a hydrometallurgical process according to the process diagram shown in FIG. That is, first, as an ore slurry pretreatment step S2, a nickel oxide ore slurry obtained by slurrying nickel oxide ore having the composition shown in Table 1 below is subjected to a hydrocyclone (manufactured by Salter Cyclone, SC1030-P type). The underflow discharged from the hydrocyclone was then supplied to a density separator (manufactured by CS, 6×6 type) to undergo specific gravity separation. Note that these separation processing steps are referred to as a first separation step. Through the separation treatment in this first separation step, an ore slurry (coarse particle portion) was obtained in which the content of particles with a particle size of less than 45 μm in the underflow solid content of the density separator was 25% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、第1の分離工程を経て分離された粗粒部の鉱石スラリーを20%の固形分濃度で、排出口におけるテーリング(Tail)流域帯の幅が、スラリー流路の全幅に対して30%の幅となるように第2のスラリー分離柵(図2、3におけるスラリー分離柵122)の位置を調整したスパイラルコンセントレーター(オートテック社製)に供給して比重分離を行い、スパイラルコンセントレーターの外周部(テーリング(Tail)流域帯)から分離回収されたスラリー(以下、「Tailスラリー」と言う)として、ニッケル品位が0.86%、マグネシウム品位が3.2%の固形分を含む鉱石スラリーを得た。尚、この分離処理の工程を第2の分離工程とする。 Next, the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone at the discharge port is 30% relative to the total width of the slurry flow path. % slurry separation fence (slurry separation fence 122 in Figures 2 and 3) and conducts specific gravity separation. An ore slurry containing solid content with a nickel grade of 0.86% and a magnesium grade of 3.2% as the slurry (hereinafter referred to as "Tail slurry") separated and recovered from the outer peripheral area (Tail basin zone). I got it. Note that this separation process is referred to as a second separation process.
 上述した第1の分離工程で分離された細粒部の鉱石スラリー、及び、第2の分離工程で分離された重比重部の鉱石スラリーは、浸出工程に供給した。一方で、第2の分離工程で得た上記の「Tailスラリー」は、全て、予備中和処理用スラリーとして、予備中和工程での目標pH(約3.1)に対して必要なpH調整剤の一部として、予備中和工程に投入した。 The ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to the leaching step. On the other hand, the above-mentioned "Tail slurry" obtained in the second separation step is used as a slurry for pre-neutralization treatment, and is subjected to the necessary pH adjustment to the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization process as part of the agent.
 表2に示す通り、鉱石スラリーを供給した浸出工程における浸出処理での硫酸削減量、最終中和工程の消石灰の削減量は硫酸3.34t/Ni-t、消石灰0.20t/Ni-tとなった。既存鉱区のNi回収量は5%程度低下するものの経済的には利益が発生する。尚、表2におけるNi回収量は、既存鉱区において、「Tailスラリー」の分離回収を行わずに同様の操業を行った場合におけるNi回収量を100とした場合における、回収量の比率を示すものである。 As shown in Table 2, the reduction amount of sulfuric acid in the leaching process in which ore slurry was supplied and the reduction amount of slaked lime in the final neutralization step were 3.34t/Ni-t of sulfuric acid and 0.20t/Ni-t of slaked lime. became. Although the amount of Ni recovered in the existing mining area will decrease by about 5%, there will be economic benefits. The amount of Ni recovered in Table 2 indicates the ratio of the amount of recovered Ni when the amount of Ni recovered in the same operation in the existing mining area without separating and recovering "Tail Slurry" is set as 100. It is.
 [実施例2]
 実施例1と同様の操作を行い、第1の分離工程において、デンシティセパレーターのアンダーフロー固形分中における粒径45μm未満の粒子の含有量が30質量%である鉱石スラリー(粗粒部)を得た。
[Example 2]
The same operation as in Example 1 was performed to obtain an ore slurry (coarse particle portion) in which the content of particles with a particle size of less than 45 μm in the underflow solid content of the density separator was 30% by mass in the first separation step. Ta.
 次に、第1の分離工程を経て分離された粗粒部の鉱石スラリーを20%の固形分濃度で、排出口におけるテーリング(Tail)流域帯の幅が、スラリー流路の全幅に対して40%の幅となるように第2のスラリー分離柵(図2、3におけるスラリー分離柵122)の位置を調整したスパイラルコンセントレーター(オートテック社製)に供給して比重分離を行い、Tailスラリーとしてニッケル品位が0.88%、マグネシウム品位が4.1%の固形分を含む鉱石スラリーを得た。尚、この分離処理の工程を第2の分離工程とする。 Next, the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tailing basin zone at the outlet is 40% relative to the total width of the slurry flow path. The slurry is supplied to a spiral concentrator (manufactured by Autotech) in which the position of the second slurry separation fence (slurry separation fence 122 in FIGS. 2 and 3) is adjusted so that the width of the slurry is 10%, and specific gravity separation is performed. An ore slurry containing solids with a grade of 0.88% and a magnesium grade of 4.1% was obtained. Note that this separation process is referred to as a second separation process.
 上述した第1の分離工程で分離された細粒部の鉱石スラリー、及び、第2の分離工程で分離された重比重部の鉱石スラリーは、鉱石に対する浸出処理を施す浸出工程に供給した。一方で、第2の分離工程で得た上記の「Tailスラリー」は、その全てを予備中和処理用スラリーとして、予備中和工程での目標pH(約3.1)に対して必要なpH調整剤の一部とする態様で、予備中和工程に投入した。 The ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment. On the other hand, all of the above-mentioned "Tail slurry" obtained in the second separation step is used as a slurry for pre-neutralization treatment, and is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
 表2に示す通り、鉱石スラリーを供給した浸出工程における浸出処理での硫酸削減量、最終中和工程の消石灰の削減量は硫酸5.40t/Ni-t、消石灰0.45t/Ni-tとなった。既存区のNi回収量は4%程度低下するものの経済的には利益が発生する。 As shown in Table 2, the reduction amount of sulfuric acid in the leaching process in which ore slurry was supplied and the reduction amount of slaked lime in the final neutralization step were 5.40 t/Ni-t of sulfuric acid and 0.45 t/Ni-t of slaked lime. became. Although the amount of Ni recovered in the existing area will decrease by about 4%, there will be economic benefits.
 [実施例3]
 実施例1と同様の操作を行い、第1の分離工程において、デンシティセパレーターのアンダーフロー固形分中における粒径45μm未満の粒子の含有量が35質量%である鉱石スラリー(粗粒部)を得た。
[Example 3]
The same operation as in Example 1 was performed to obtain an ore slurry (coarse particle portion) in which the content of particles with a particle size of less than 45 μm in the underflow solid content of the density separator was 35% by mass in the first separation step. Ta.
 次に、第1の分離工程を経て分離された粗粒部の鉱石スラリーを20%の固形分濃度で、排出口におけるテーリング(Tail)流域帯の幅が、スラリー流路の全幅に対して50%の幅となるように第2のスラリー分離柵(図2、3におけるスラリー分離柵122)の位置を調整したスパイラルコンセントレーター(オートテック社製)に供給して比重分離を行い、Tailスラリーとしてニッケル品位が0.83%、マグネシウム品位が5.2%の固形分を含む鉱石スラリーを得た。尚、この分離処理の工程を第2の分離工程とする。 Next, the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone at the outlet is 50% relative to the total width of the slurry flow path. The slurry is supplied to a spiral concentrator (manufactured by Autotech Co., Ltd.) in which the position of the second slurry separation fence (slurry separation fence 122 in Figures 2 and 3) is adjusted so as to have a width of An ore slurry containing solids with a grade of 0.83% and a magnesium grade of 5.2% was obtained. Note that this separation process is referred to as a second separation process.
 上述した第1の分離工程で分離された細粒部の鉱石スラリー、及び、第2の分離工程で分離された重比重部の鉱石スラリーは、鉱石に対する浸出処理を施す浸出工程に供給した。一方で、第2の分離工程で得た上記の「Tailスラリー」は、その全てを予備中和処理用スラリーとして、予備中和工程での目標pH(約3.1)に対して必要なpH調整剤の一部とする態様で、予備中和工程に投入した。 The ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment. On the other hand, all of the above-mentioned "Tail slurry" obtained in the second separation step is used as slurry for pre-neutralization treatment, and the pH is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
 表2に示す通り、鉱石スラリーを供給した浸出工程における浸出処理での硫酸削減量、最終中和工程の消石灰の削減量は硫酸8.45t/Ni-t、消石灰0.82t/Ni-tとなった。既存鉱区のNi回収量は4%程度低下するものの経済的には利益が発生する。 As shown in Table 2, the amount of sulfuric acid reduced in the leaching process in which ore slurry was supplied and the amount of slaked lime reduced in the final neutralization step were 8.45 t/Ni-t of sulfuric acid and 0.82 t/Ni-t of slaked lime. became. Although the amount of Ni recovered in the existing mining area will decrease by about 4%, there will be economic benefits.
 [比較例1]
 表1に組成を示したニッケル酸化鉱石をスラリー化し、実施例1と同様の操作を行い、第1の分離工程においてデンシティセパレーターのアンダーフロー固形分中における粒径45μm未満の粒子の含有量が25質量%である鉱石スラリー(粗粒部)を得た。
[Comparative example 1]
The nickel oxide ore whose composition is shown in Table 1 is slurried, and the same operation as in Example 1 is carried out, and in the first separation step, the content of particles with a particle size of less than 45 μm in the underflow solid content of the density separator is 25 μm. An ore slurry (coarse grain portion) having a mass % was obtained.
 次に、第1の分離工程を経て分離された粗粒部の鉱石スラリーを20%の固形分濃度で、テーリング(Tail)流域帯の幅が、スラリー流路の全幅に対して25%の幅となるように第2のスラリー分離柵(図2、3におけるスラリー分離柵122)の位置を調整したスパイラルコンセントレーター(オートテック社製)に供給して比重分離を行い、Tailスラリーとしてニッケル品位が0.83%、マグネシウム品位が2.5%の固形分を含む鉱石スラリーを得た。尚、この分離処理の工程を第2の分離工程とする。 Next, the coarse ore slurry separated through the first separation step is prepared with a solid content concentration of 20%, and the width of the tail basin zone is 25% of the total width of the slurry channel. The slurry is supplied to a spiral concentrator (manufactured by Autotech) in which the position of the second slurry separation fence (slurry separation fence 122 in FIGS. 2 and 3) is adjusted so that specific gravity separation is performed, and the tail slurry has a nickel grade of 0. An ore slurry containing a solids content of .83% and a magnesium grade of 2.5% was obtained. Note that this separation process is referred to as a second separation process.
 第1の分離工程で分離された細粒部の鉱石スラリー、及び、第2の分離工程で分離された重比重部の鉱石スラリーは、鉱石に対する浸出処理を施す浸出工程に供給した。一方で、第2の分離工程で得た上記の「Tailスラリー」は、その全てを予備中和処理用スラリーとして、予備中和工程での目標pH(約3.1)に対して必要なpH調整剤の一部とする態様で、予備中和工程に投入した。 The ore slurry in the fine grain portion separated in the first separation step and the ore slurry in the heavy specific gravity portion separated in the second separation step were supplied to a leaching step in which the ore was subjected to leaching treatment. On the other hand, all of the above-mentioned "Tail slurry" obtained in the second separation step is used as slurry for pre-neutralization treatment, and the pH is adjusted to the required pH for the target pH (approximately 3.1) in the pre-neutralization step. It was added to the pre-neutralization step as part of the regulator.
 鉱石スラリーを供給した浸出工程における浸出処理での硫酸削減量、最終中和工程の消石灰の削減量は硫酸2.26t/Ni-t、消石灰0.08t/Ni-tとなった。既存鉱区のNi回収量は5%以上低下して経済的には損失が発生する。 The reduction amount of sulfuric acid in the leaching process in which ore slurry was supplied and the reduction amount of slaked lime in the final neutralization step were 2.26 t/Ni-t of sulfuric acid and 0.08 t/Ni-t of slaked lime. The amount of Ni recovered in the existing mining area will drop by more than 5%, resulting in an economic loss.
 このように、比較例1では、浸出工程における硫酸使用量、及び、最終中和工程におけ
る消石灰使用量は低減できるものの、通常操業時との差損益が悪化した。
As described above, in Comparative Example 1, although the amount of sulfuric acid used in the leaching step and the amount of slaked lime used in the final neutralization step could be reduced, the difference in profit and loss from normal operation worsened.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から分かるように、ニッケル実収率は、スパイラルコンセントレーターで回収されるマグネシウム品位が多くなると高くなる。同時に通常操業時よりも薬剤削減効果が大きくなり、薬剤使用量を抑えることができた。最終的にニッケル生産量は減少するものの薬剤削減との合計差損益は利益が生じる。 As can be seen from the results shown in Table 2, the actual nickel yield increases as the magnesium grade recovered by the spiral concentrator increases. At the same time, the chemical reduction effect was greater than during normal operation, and the amount of chemicals used could be reduced. Although nickel production will ultimately decrease, the total difference from the reduction in chemicals will result in a profit.
 1          スパイラルコンセントレーター
 11         スラリー流路
 12         スラリー流路末端部
 121、122    スラリー分離柵
 123        濃縮物流域帯
 124        中間物流域帯
 125        テーリング流域帯
 S1         スラリー化工程
 S2         前処理工程
 S3         濃縮工程
 S4         浸出工程
 S5         予備中和工程
 S6         固液分離工程
 S7         中和工程
 S8         硫化工程
 S9         最終中和工程
1 Spiral concentrator 11 Slurry channel 12 End of slurry channel 121, 122 Slurry separation fence 123 Concentrate basin zone 124 Intermediate distribution basin zone 125 Tailing basin zone S1 Slurrying process S2 Pretreatment process S3 Concentration process S4 Leaching process S5 Preliminary Neutralization process S6 Solid-liquid separation process S7 Neutralization process S8 Sulfurization process S9 Final neutralization process

Claims (2)

  1.  ニッケル酸化鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施すことによって浸出スラリーを得る浸出工程と、
     前記浸出スラリーにpH調整剤を添加する予備中和工程と、
     前記予備中和工程を経た前記浸出スラリーを、浸出液と浸出残渣とに分離する固液分離工程と、
     前記浸出液のpHを調整してニッケルを含む中和終液を得る中和工程と、
     前記中和終液に硫化剤を添加することでニッケルを含む硫化物を生成させる硫化工程と、
     前記硫化工程から排出された貧液を回収して無害化する最終中和工程と、
     を含んでなる、ニッケル酸化鉱石の湿式製錬方法であって、
     前記予備中和工程においては、前記pH調整剤として、固形分中のマグネシウム含有量が3重量%以上であり、固形分中のニッケル含有量が0.7%以上である、予備中和処理用スラリーを用いる、
     ニッケル酸化鉱石の湿式製錬方法。
    a leaching step of obtaining a leaching slurry by adding sulfuric acid to a nickel oxide ore slurry and subjecting it to leaching treatment under high temperature and pressure;
    a preliminary neutralization step of adding a pH adjuster to the leaching slurry;
    a solid-liquid separation step of separating the leaching slurry that has undergone the preliminary neutralization step into a leaching solution and a leaching residue;
    a neutralization step of adjusting the pH of the leachate to obtain a neutralized final solution containing nickel;
    a sulfurizing step of producing nickel-containing sulfide by adding a sulfurizing agent to the neutralized final solution;
    a final neutralization step in which the poor liquid discharged from the sulfurization step is recovered and rendered harmless;
    A hydrometallurgical method for nickel oxide ore, comprising:
    In the pre-neutralization step, the pH adjuster is a pre-neutralization agent having a magnesium content of 3% by weight or more in the solid content and a nickel content of 0.7% or more in the solid content. using slurry,
    Hydrometallurgical method for nickel oxide ore.
  2.  ハイドロサイクロン及び/又はデンシティセパレーターを利用して、水分を加えてスラリー化した前記ニッケル酸化鉱石から、粒径が45μm以下の粒子の割合が40重量%以下である粗粒部を分離回収する第1の分離工程と、前記粗粒部をスパイラルコンセントレーターによって比重分離する第2の分離工程と、を含んでなる前処理工程が、前記浸出工程に先行して行われ、
     前記予備中和処理用スラリーは、
     前記前処理工程において、前記スパイラルコンセントレーターの外周部から分離回収されたスラリーである、
     請求項1に記載のニッケル酸化鉱石の湿式製錬方法。
    The first step is to separate and recover a coarse particle portion in which the proportion of particles with a particle size of 45 μm or less is 40% by weight or less from the nickel oxide ore that has been slurried by adding water using a hydrocyclone and/or a density separator. A pretreatment step is performed prior to the leaching step, which includes a separation step of
    The slurry for preliminary neutralization treatment is
    In the pre-treatment step, the slurry is separated and collected from the outer periphery of the spiral concentrator.
    The hydrometallurgical method of nickel oxide ore according to claim 1.
PCT/JP2023/027703 2022-07-28 2023-07-28 Hydrometallurgical method for nickel oxide ore WO2024024930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120949A JP7273269B1 (en) 2022-07-28 2022-07-28 Hydrometallurgical method for nickel oxide ore
JP2022-120949 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024930A1 true WO2024024930A1 (en) 2024-02-01

Family

ID=86321998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027703 WO2024024930A1 (en) 2022-07-28 2023-07-28 Hydrometallurgical method for nickel oxide ore

Country Status (2)

Country Link
JP (2) JP7273269B1 (en)
WO (1) WO2024024930A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098061A1 (en) * 2004-03-31 2005-10-20 Pacific Metals Co., Ltd. Leaching method and recovering method for nickel or cobalt
JP2007077459A (en) * 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk Method for recovering nickel or cobalt
JP2013095971A (en) * 2011-11-01 2013-05-20 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2015000835A (en) * 2013-06-17 2015-01-05 住友金属鉱山株式会社 Method for manufacturing hematite and the same hematite
JP2019065341A (en) * 2017-09-29 2019-04-25 住友金属鉱山株式会社 Hydrometallurgical process for nickel oxide ore
JP2020028858A (en) * 2018-08-23 2020-02-27 住友金属鉱山株式会社 Final neutralization method in wet refining process for nickel oxide ore
JP2020076129A (en) * 2018-11-08 2020-05-21 住友金属鉱山株式会社 Wet smelting method for nickel oxide ore suppressing precipitation of gypsum scale
JP2020158819A (en) * 2019-03-26 2020-10-01 住友金属鉱山株式会社 Refining method of nickel hydroxide
JP2021008654A (en) * 2019-07-02 2021-01-28 住友金属鉱山株式会社 Nickel oxide ore exudation treatment method and wet smelting method including the same
JP2021030101A (en) * 2019-08-15 2021-03-01 住友金属鉱山株式会社 Neutralization treatment method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098061A1 (en) * 2004-03-31 2005-10-20 Pacific Metals Co., Ltd. Leaching method and recovering method for nickel or cobalt
JP2007077459A (en) * 2005-09-15 2007-03-29 Taiheiyo Kinzoku Kk Method for recovering nickel or cobalt
JP2013095971A (en) * 2011-11-01 2013-05-20 Sumitomo Metal Mining Co Ltd Hydrometallurgical process of nickel oxide ore
JP2015000835A (en) * 2013-06-17 2015-01-05 住友金属鉱山株式会社 Method for manufacturing hematite and the same hematite
JP2019065341A (en) * 2017-09-29 2019-04-25 住友金属鉱山株式会社 Hydrometallurgical process for nickel oxide ore
JP2020028858A (en) * 2018-08-23 2020-02-27 住友金属鉱山株式会社 Final neutralization method in wet refining process for nickel oxide ore
JP2020076129A (en) * 2018-11-08 2020-05-21 住友金属鉱山株式会社 Wet smelting method for nickel oxide ore suppressing precipitation of gypsum scale
JP2020158819A (en) * 2019-03-26 2020-10-01 住友金属鉱山株式会社 Refining method of nickel hydroxide
JP2021008654A (en) * 2019-07-02 2021-01-28 住友金属鉱山株式会社 Nickel oxide ore exudation treatment method and wet smelting method including the same
JP2021030101A (en) * 2019-08-15 2021-03-01 住友金属鉱山株式会社 Neutralization treatment method

Also Published As

Publication number Publication date
JP7273269B1 (en) 2023-05-15
JP2024018929A (en) 2024-02-08
JP2024017958A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP5867768B2 (en) Method of recovering chromite particles from nickel oxide ore and hydrometallurgical equipment of nickel oxide ore in the hydrometallurgy of nickel oxide ore
EP2910655B1 (en) Wet-mode nickel oxide ore smelting method
JP5403033B2 (en) Method for hydrometallizing nickel oxide ore
EP3296410B1 (en) Mineral ore slurry pretreatment method, and method for manufacturing mineral ore slurry
EP3133177B1 (en) Wet-mode nickel oxide ore smelting method
JP6969262B2 (en) Hydrometallurgical method for nickel oxide ore
JP2015206068A5 (en)
EP3252176B1 (en) Ore slurry pre-treatment method and ore slurry manufacturing method
JP6661926B2 (en) Method of treating ore slurry, method of hydrometallurgy of nickel oxide ore
WO2024024930A1 (en) Hydrometallurgical method for nickel oxide ore
JP6977458B2 (en) Hydrometallurgical method for nickel oxide ore
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
WO2021193424A1 (en) Treatment method for ore slurry, and hydrometallurgical method for nickel oxide ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846660

Country of ref document: EP

Kind code of ref document: A1