JP6996328B2 - Dezincification method, wet smelting method of nickel oxide ore - Google Patents

Dezincification method, wet smelting method of nickel oxide ore Download PDF

Info

Publication number
JP6996328B2
JP6996328B2 JP2018024228A JP2018024228A JP6996328B2 JP 6996328 B2 JP6996328 B2 JP 6996328B2 JP 2018024228 A JP2018024228 A JP 2018024228A JP 2018024228 A JP2018024228 A JP 2018024228A JP 6996328 B2 JP6996328 B2 JP 6996328B2
Authority
JP
Japan
Prior art keywords
nickel
residue
zinc
dezincification
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018024228A
Other languages
Japanese (ja)
Other versions
JP2019137903A (en
Inventor
泰輔 鶴見
道 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018024228A priority Critical patent/JP6996328B2/en
Publication of JP2019137903A publication Critical patent/JP2019137903A/en
Application granted granted Critical
Publication of JP6996328B2 publication Critical patent/JP6996328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、脱亜鉛処理方法に関するものであり、より詳しくは、ニッケル酸化鉱石の湿式製錬方法における、ニッケル、コバルト、及び亜鉛を含有する中和終液から亜鉛を分離してニッケル回収用母液を生成する脱亜鉛工程における処理方法、及びそのニッケル酸化鉱石の湿式製錬方法に関する。 The present invention relates to a dezincification treatment method, and more specifically, a mother liquor for recovering nickel by separating zinc from a neutralization final solution containing nickel, cobalt, and zinc in a hydrometallurgical method for nickel oxide ore. The present invention relates to a treatment method in a dezincification step for producing a nickel oxide ore, and a hydrometallurgical method for nickel oxide ore thereof.

ニッケル酸化鉱石の湿式製錬方法として、硫酸を用いた高圧酸浸出法(HPAL法)がある。この方法では、従来の一般的なニッケル酸化鉱の製錬方法である乾式製錬法と異なり、還元及び乾燥工程を含まず一貫した湿式工程からなるため、エネルギー的及びコスト的に有利である。また、ニッケル品位を50質量%~60質量%程度にまで高純度化したニッケルとコバルトを含む硫化物(以下、「ニッケルコバルト混合硫化物」ともいう)を得ることができるという利点を有している。 As a hydrometallurgical method for nickel oxide ore, there is a high-pressure acid leaching method (HPAL method) using sulfuric acid. This method is advantageous in terms of energy and cost because it consists of a consistent wet process that does not include a reduction and drying process, unlike the dry smelting method which is a conventional general method for smelting nickel oxide ore. Further, it has an advantage that a sulfide containing nickel and cobalt (hereinafter, also referred to as "nickel-cobalt mixed sulfide") having a high purity of nickel grade of about 50% by mass to 60% by mass can be obtained. There is.

高圧酸浸出法によるニッケル酸化鉱石の湿式製錬プロセスは、例えば下記工程を含む。(a)ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出する浸出工程
(b)得られた浸出スラリーを多段洗浄しながら、浸出残渣を分離して、ニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程
(c)浸出液のpHを調整して中和処理を施し、不純物元素を含む中和澱物を分離して、ニッケル及びコバルトを含む中和終液を得る中和工程
(d)中和終液に硫化水素ガスを添加することにより、亜鉛及び銅を含む硫化物(以下、「亜鉛硫化物」ともいう)を生成させ、その亜鉛硫化物を分離して脱亜鉛終液(ニッケル回収用母液)を得る脱亜鉛工程
(e)脱亜鉛終液に硫化水素ガスを添加することにより、ニッケル及びコバルトを含む混合硫化物を形成し、その混合硫化物を分離回収するニッケル回収工程
The hydrometallurgical process of nickel oxide ore by the high pressure acid leaching method includes, for example, the following steps. (A) Leaching step of adding sulfuric acid to a slurry of nickel oxide ore and leaching under high temperature and high pressure (b) While washing the obtained leaching slurry in multiple stages, the leaching residue is separated to remove impurity elements together with nickel and cobalt. Solid-liquid separation step to obtain a leachate containing leachate (c) The pH of the leachate is adjusted to perform neutralization treatment, and a neutralized starch containing an impurity element is separated to obtain a neutralized final liquid containing nickel and cobalt. Step (d) By adding hydrogen sulfide gas to the neutralization final solution, sulfide containing zinc and copper (hereinafter, also referred to as “zinc sulfide”) is generated, and the zinc sulfide is separated and dezincinated. Dezincination step to obtain final solution (mother solution for recovering nickel) (e) By adding hydrogen sulfide gas to the dezincinated final solution, a mixed sulfide containing nickel and cobalt is formed, and the mixed sulfide is separated and recovered. Nickel recovery process

ここで、上述した湿式製錬プロセスにおける脱亜鉛工程では、中和終液を硫化反応槽内に導入し、硫化水素ガスや水硫化ソーダ等の硫化剤を添加することによって、その中和終液中に含有される亜鉛や銅等を硫化し、その後フィルタプレス等の固液分離装置で固液分離して、亜鉛硫化物と、ニッケル及びコバルトを含むニッケル回収用母液とを得る。 Here, in the dezincification step in the wet smelting process described above, the neutralizing final liquid is introduced into the sulfurization reaction tank, and a sulfurizing agent such as hydrogen sulfide gas or sodium hydrosulfide is added to the neutralizing final liquid. Zinc and copper contained therein are sulfurized, and then solid-liquid separation is performed by a solid-liquid separation device such as a filter press to obtain zinc sulfide and a mother liquor for recovering nickel containing nickel and cobalt.

ところで、湿式製錬プロセスにより得られた混合硫化物は、さらに電気ニッケルや電気コバルトまで精製する原料として用いられる。そのため、ニッケル回収用母液を生成する脱亜鉛工程では、脱亜鉛終液中の亜鉛濃度を0.001g/L以下にまで低下させることが要求されている。 By the way, the mixed sulfide obtained by the hydrometallurgy process is used as a raw material for further refining electric nickel and electric cobalt. Therefore, in the dezincination step of producing the nickel recovery mother liquor, it is required to reduce the zinc concentration in the dezincification final solution to 0.001 g / L or less.

また、脱亜鉛工程においては、中和終液中に、生成された亜鉛硫化物の一部を繰り返して添加している(例えば、特許文献1参照)。すなわち、繰り返して添加する亜鉛硫化物は、すでに濾過装置にてろ過され、種晶として適切な数μm~十数μm程度の粒子であるため、脱亜鉛工程における処理にて生成する亜鉛硫化物の粒径をさらに成長させることになり、濾過性向上の効果がより安定して得られる。さらに、従来は、系外に排出されていた亜鉛硫化物に含まれるニッケルを工程内に繰り返すことにより、ロスしていたニッケルを回収することができ、プロセスとしてのニッケル回収ロスを低減することができる。 Further, in the dezincination step, a part of the produced zinc sulfide is repeatedly added to the neutralization final solution (see, for example, Patent Document 1). That is, since the zinc sulfide to be added repeatedly is already filtered by a filtration device and has particles of about several μm to more than ten μm suitable as seed crystals, the zinc sulfide produced by the treatment in the dezincification step. The particle size will be further increased, and the effect of improving the filterability can be obtained more stably. Furthermore, by repeating the nickel contained in the zinc sulfide discharged to the outside of the system in the process, the lost nickel can be recovered and the nickel recovery loss as a process can be reduced. can.

脱亜鉛工程においては、濾過装置に通液する際に、液中の亜鉛が脱亜鉛工程にて生成する沈殿物(脱亜鉛残渣)に含まれる硫化鉄(II)とのセメンテーション反応により硫化亜鉛として沈殿する。そのため、通常、濾過装置に通液した後の溶液は、亜鉛濃度が低下している。なお、以下では、濾過装置への通液前後で溶液中の亜鉛濃度が低下する割合を「亜鉛除去率」とする。 In the dezincification step, zinc sulfide is reacted with iron (II) sulfide contained in the precipitate (dezincination residue) generated in the dezincification step when the zinc in the liquid is passed through the filtration device. Precipitate as. Therefore, the zinc concentration of the solution after passing through the filtration device is usually low. In the following, the rate at which the zinc concentration in the solution decreases before and after passing the liquid through the filtration device is referred to as the "zinc removal rate".

しかしながら、脱亜鉛残渣中に含まれる水酸化鉄(III)量が増加した場合には、硫化亜鉛がその水酸化鉄(III)との反応によって亜鉛イオンとして液中に溶解し、亜鉛除去率が急激に低下することがある。そしてこれにより、脱亜鉛工程を経て得られる脱亜鉛終液中の亜鉛濃度が上昇し、それに伴って、ニッケル回収工程を経て回収されるニッケルコバルト混合硫化物(製品)中の亜鉛濃度が上昇することが問題となっている。 However, when the amount of iron (III) hydroxide contained in the dezincinated residue increases, zinc sulfide dissolves in the liquid as zinc ions by the reaction with the iron (III) hydroxide, and the zinc removal rate increases. It may drop sharply. As a result, the zinc concentration in the dezincified final solution obtained through the dezincification step increases, and the zinc concentration in the nickel-cobalt mixed sulfide (product) recovered through the nickel recovery step increases accordingly. Is a problem.

また、亜鉛除去率が低下すると、製品であるニッケルコバルト混合硫化物中の亜鉛濃度を顧客の求める水準以下(例えば250ppm以下)とするためには、濾過装置への通液前の段階で亜鉛濃度を通常時よりも低下させておくことが必要となり、そのためには、脱亜鉛工程における処理において硫化水素ガス等の硫化剤の添加量を増加することを要する。ところが、硫化水素ガス等の硫化剤の添加量の増加は、薬剤コストの増加のみならず、脱亜鉛残渣へのニッケルの共沈によるニッケル回収ロス量の増大を招くため、経済的な操業を妨げる原因となる。 In addition, when the zinc removal rate decreases, in order to keep the zinc concentration in the product nickel-cobalt mixed sulfide below the level required by the customer (for example, 250 ppm or less), the zinc concentration is in the stage before passing the liquid through the filtration device. Is required to be lower than usual, and for that purpose, it is necessary to increase the amount of a sulfurizing agent such as hydrogen sulfide gas added in the treatment in the dezincification step. However, an increase in the amount of sulfurizing agent added such as hydrogen sulfide gas not only increases the drug cost but also increases the amount of nickel recovery loss due to the coprecipitation of nickel in the dezincinated residue, which hinders economic operation. It causes.

以上のような実情から、ニッケル酸化鉱石の湿式製錬プロセスにおいて、脱亜鉛工程における処理での亜鉛除去率をより高く維持することができる方法が求められている。 From the above circumstances, there is a demand for a method capable of maintaining a higher zinc removal rate in the treatment in the dezincification step in the hydrometallurgical process of nickel oxide ore.

特開2010-37626号公報Japanese Unexamined Patent Publication No. 2010-37626

本発明は、このような実情に鑑みて提案されたものであり、例えばニッケル酸化鉱石の湿式製錬プロセスの脱亜鉛工程に適用できる脱亜鉛処理において、濾過装置への通液前後での亜鉛除去率を向上させ、またその高い除去率を維持することができる方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances. For example, in a dezincification treatment applicable to a dezincification step of a hydrometallurgical process of nickel oxide ore, zinc is removed before and after passing the liquid through a filtration device. It is an object of the present invention to provide a method capable of improving the rate and maintaining the high removal rate.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、脱亜鉛処理において、硫化反応後に濾過装置に通液して回収される脱亜鉛残渣の一部を、硫化反応を行う反応槽に繰り返し添加し、その際、反応容器に繰り返す脱亜鉛残渣を含むスラリー流量中の固体量が、反応容器に供給される始液1mに対して特定の範囲となるようにすることで、亜鉛除去率を向上させることができることを見出し、本発明を完成させた。 The present inventor has made extensive studies to solve the above-mentioned problems. As a result, in the dezincification treatment, a part of the dezincination residue recovered by passing the liquid through the filtration device after the sulfide reaction is repeatedly added to the reaction vessel in which the sulfide reaction is carried out, and at that time, the dezincination residue is repeatedly added to the reaction vessel. The present invention has been completed by finding that the zinc removal rate can be improved by setting the amount of solids in the flow rate of the slurry containing the above to a specific range with respect to 1 m 3 of the starting liquid supplied to the reaction vessel. I let you.

(1)本発明の第1の発明は、ニッケル、コバルト、及び亜鉛を含む溶液を始液とし、該始液に対して硫化剤を添加して硫化処理を施すことによって、亜鉛硫化物を含む残渣と、ニッケル及びコバルトを含む溶液とを得る脱亜鉛処理方法において、前記硫化処理後の溶液を濾過装置に通液させて前記亜鉛を含む残渣を回収するとともに、回収した残渣の一部を、前記始液を収容した反応容器に繰り返し添加し、その際、前記反応容器に繰り返す前記残渣を含むスラリー流量中の固体量が、前記反応容器に供給される前記始液1mに対して1g以上10g以下の範囲となるようにする、脱亜鉛処理方法である。 (1) The first invention of the present invention contains zinc sulfide by using a solution containing nickel, cobalt, and zinc as the starting solution and adding a sulfide agent to the starting solution to perform sulfide treatment. In the dezincification treatment method for obtaining a residue and a solution containing nickel and cobalt, the solution after the sulfurization treatment is passed through a filtration device to recover the zinc-containing residue, and a part of the recovered residue is collected. The amount of solid in the flow rate of the slurry containing the residue repeatedly added to the reaction vessel containing the starting solution is 1 g or more with respect to 1 m 3 of the starting solution supplied to the reaction vessel. It is a dezincification treatment method that makes the range of 10 g or less.

(2)本発明の第2の発明は、第1の発明において、前記始液には、3価の鉄が含まれており、前記硫化処理により水酸化鉄(III)として前記残渣に含有される、脱亜鉛処理方法である。 (2) In the second invention of the present invention, in the first invention, the starting liquid contains trivalent iron and is contained in the residue as iron (III) hydroxide by the sulfurization treatment. This is a dezincification treatment method.

(3)本発明の第3の発明は、ニッケル酸化鉱石のスラリーを酸浸出してニッケル及びコバルトを含む浸出液を得る浸出工程と、得られた浸出液に対して中和処理を施し不純物を除去する中和工程と、中和処理後の中和終液を始液として硫化剤を添加して硫化処理を施すことで該中和終液に含まれる亜鉛の硫化物を生成して分離する脱亜鉛工程と、脱亜鉛終液に硫化剤を添加することでニッケル及びコバルトの混合硫化物を生成して回収するニッケル回収工程と、を有するニッケル酸化鉱石の湿式製錬方法であって、前記脱亜鉛工程では、前記脱亜鉛始液を収容した反応容器に硫化剤を添加して硫化処理を施し、濾過装置に通液させて回収される亜鉛硫化物を含む残渣の一部を該反応容器に繰り返し添加し、その際、前記反応容器に繰り返す前記残渣を含むスラリー流量中の固体量が、前記反応容器に供給される前記脱亜鉛始液量1mに対して1g以上10g以下の範囲となるようにする、ニッケル酸化鉱石の湿式製錬方法である。 (3) The third invention of the present invention is a leaching step of acid leaching a slurry of nickel oxide ore to obtain a leachate containing nickel and cobalt, and neutralizing the obtained leachate to remove impurities. Dezincination to generate and separate zinc sulfide contained in the neutralizing final solution by adding a sulfide agent to the neutralizing step and the neutralizing final solution after the neutralization treatment as the starting solution and performing the sulfide treatment. A wet smelting method for nickel oxide ore, comprising a step and a nickel recovery step of producing and recovering a mixed sulfide of nickel and cobalt by adding a sulfide agent to the dezincified final solution, wherein the dezinc is dezincinated. In the step, a sulfide agent is added to the reaction vessel containing the dezincinated initial solution to perform sulfide treatment, and a part of the residue containing zinc sulfide recovered by passing the liquid through a filtration device is repeatedly put into the reaction vessel. At that time, the amount of solid in the slurry flow rate containing the residue repeated in the reaction vessel shall be in the range of 1 g or more and 10 g or less with respect to the dezincination starting liquid amount of 1 m 3 supplied to the reaction vessel. This is a wet smelting method for zinc oxide ore.

本発明によれば、ニッケル、コバルト、及び亜鉛を含む溶液に対して硫化処理を施して亜鉛を除去する脱亜鉛処理において、硫化処理後に濾過装置へ通液する前後での亜鉛除去率を向上させ、またその高い除去率を維持することができる。 According to the present invention, in the dezincification treatment of removing zinc by subjecting a solution containing nickel, cobalt, and zinc to zinc treatment, the zinc removal rate before and after passing the liquid through a filtration device after the sulfurization treatment is improved. , And its high removal rate can be maintained.

ニッケル酸化鉱石の湿式製錬プロセスの流れの一例を示す工程図である。It is a process diagram which shows an example of the flow of the wet smelting process of nickel oxide ore. 脱亜鉛処理が行われる処理設備の構成を示すブロック図である。It is a block diagram which shows the structure of the processing equipment which performs dezincification treatment. 実施例、比較例における、残渣系内繰り返し量(g/m)に対する亜鉛除去率(%)の結果を示すグラフ図である。It is a graph which shows the result of the zinc removal rate (%) with respect to the repetition amount (g / m 3 ) in a residue system in an Example and a comparative example.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

≪1.概要≫
本実施の形態に係る脱亜鉛処理方法は、ニッケル、コバルト、及び亜鉛を含む溶液を始液とし、その始液に対して硫化水素ガス等の硫化剤を添加して硫化処理を施すことによって、亜鉛を含む残渣(以下、「脱亜鉛残渣」ともいう)と、ニッケル及びコバルトを含む溶液とを得る脱亜鉛の処理方法である。
≪1. Overview ≫
In the dezincification treatment method according to the present embodiment, a solution containing nickel, cobalt, and zinc is used as the starting liquid, and a sulfide treatment such as hydrogen sulfide gas is added to the starting liquid to perform the sulfide treatment. It is a dezincification treatment method for obtaining a residue containing zinc (hereinafter, also referred to as “dezincinated residue”) and a solution containing nickel and cobalt.

この脱亜鉛処理方法は、詳しくは後述するが、例えばニッケル酸化鉱石の湿式製錬プロセスの脱亜鉛工程における処理に適用することができる。 This dezincification treatment method will be described in detail later, but can be applied to, for example, a treatment in the dezincification step of the wet smelting process of nickel oxide ore.

具体的に、本実施の形態に係る脱亜鉛処理方法においては、硫化処理後の溶液を濾過装置に通液させて亜鉛を含む脱亜鉛残渣を回収するとともに、回収した脱亜鉛残渣の一部を、始液を収容した反応容器(硫化反応槽)に繰り返し供給する。そして、そのとき、反応容器に繰り返す脱亜鉛残渣を含むスラリー流量中の固体量が、反応容器に供給される始液1mに対して1g以上10g以下の範囲となるようにする、ことを特徴としている。なお、反応容器に繰り返し供給する残渣スラリー中の固体分とは、亜鉛硫化物を含む脱亜鉛残渣をいう。 Specifically, in the dezincification treatment method according to the present embodiment, the solution after the sulfurization treatment is passed through a filtration device to recover the zinc-containing dezincination residue, and a part of the recovered dezincification residue is used. , Is repeatedly supplied to the reaction vessel (sulfurization reaction tank) containing the initial solution. At that time, the solid amount in the slurry flow rate containing the dezincinated residue repeatedly in the reaction vessel is set to be in the range of 1 g or more and 10 g or less with respect to 1 m 3 of the starting liquid supplied to the reaction vessel. It is supposed to be. The solid content in the residue slurry that is repeatedly supplied to the reaction vessel means a dezincinated residue containing zinc sulfide.

このような方法によれば、濾過装置への通液前後での亜鉛除去率を向上させ、またその高い除去率を維持して安定的に処理を行うことができる。ここで、亜鉛除去率とは、濾過装置への通液前後における溶液中の亜鉛濃度が低下する割合をいう。 According to such a method, the zinc removal rate before and after passing the liquid through the filtration device can be improved, and the high removal rate can be maintained for stable treatment. Here, the zinc removal rate means the rate at which the zinc concentration in the solution decreases before and after passing the liquid through the filtration device.

例えば、この脱亜鉛処理方法をニッケル酸化鉱石の湿式製錬プロセスにおける脱亜鉛工程に適用した場合、亜鉛除去率を有効に向上させ、安定的に処理することができるため、次工程のニッケル回収工程に供するニッケル回収用母液中の亜鉛濃度を低下させることができる。これにより、そのニッケル回収工程にて得られるニッケルコバルト混合硫化物中の亜鉛濃度を効果的に低減させることができ、高品質を維持することができる。 For example, when this dezincification treatment method is applied to the dezincification step in the hydrometallurgical process of nickel oxide ore, the zinc removal rate can be effectively improved and stable treatment can be performed. It is possible to reduce the zinc concentration in the nickel recovery mother liquor to be used. As a result, the zinc concentration in the nickel-cobalt mixed sulfide obtained in the nickel recovery step can be effectively reduced, and high quality can be maintained.

以下では、この脱亜鉛処理方法をニッケル酸化鉱石の湿式製錬プロセスにおける脱亜鉛工程に適用した場合を例に挙げてより具体的に説明する。 In the following, a case where this dezincification treatment method is applied to the dezincification step in the hydrometallurgical process of nickel oxide ore will be described more specifically.

≪2.ニッケル酸化鉱石の室式製錬プロセス≫
まず、ニッケル酸化鉱石の湿式製錬プロセスについて説明する。図1は、ニッケル酸化鉱石の湿式製錬プロセスの流れの一例を示す工程図である。なお、ニッケル酸化鉱石のスラリーを高温高圧下で硫酸により浸出する高圧酸浸出法(HPAL法)を用いたプロセスについて例示する。
≪2. Room-type smelting process for nickel oxide ore ≫
First, the hydrometallurgical process of nickel oxide ore will be described. FIG. 1 is a process diagram showing an example of the flow of a hydrometallurgical process for nickel oxide ore. A process using a high-pressure acid leaching method (HPAL method) in which a slurry of nickel oxide ore is leached with sulfuric acid under high temperature and high pressure will be exemplified.

図1に示すように、ニッケル酸化鉱石の湿式製錬プロセスは、原料のニッケル酸化鉱石のスラリー(鉱石スラリー)に硫酸を添加して高温加圧下で浸出処理を施し浸出スラリーを得る浸出工程S1と、浸出スラリーから浸出残渣を分離してニッケル及びコバルトを含む浸出液を得る固液分離工程S2と、浸出液のpHを調整して不純物元素を中和澱物スラリーとして分離する中和工程S3と、中和終液を始液として硫化剤を添加することで亜鉛の硫化物を生成させて分離除去し、ニッケル及びコバルトを含むニッケル回収用母液を得る脱亜鉛工程S4と、ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトの混合硫化物を得るニッケル回収工程S5と、を有する。 As shown in FIG. 1, the wet smelting process of nickel oxide ore is a leaching step S1 in which sulfuric acid is added to a nickel oxide ore slurry (ore slurry) as a raw material and leaching is performed under high temperature pressure to obtain a leaching slurry. In the solid-liquid separation step S2 for separating the leachate residue from the leachate slurry to obtain a leachate containing nickel and cobalt, and the neutralization step S3 for adjusting the pH of the leachate to separate the impurity elements as a neutralized starch slurry. The dezincination step S4 to obtain a nickel recovery mother liquor containing nickel and cobalt by adding a sulfide agent to the nickel recovery mother liquor by adding a sulfide agent using the Japanese final solution as the starting solution, and the sulfide agent to the nickel recovery mother liquor. The nickel recovery step S5, which obtains a mixed sulfide of nickel and cobalt by adding nickel and cobalt.

[浸出工程]
浸出工程S1では、原料のニッケル酸化鉱石を解砕分級して得られた鉱石スラリーに高温加圧下で硫酸を添加し、鉱石中のニッケル等の有価金属を浸出させる。具体的に、浸出工程S1では、オートクレーブを用い、鉱石スラリーに硫酸を添加して、温度220℃~280℃程度、圧力3MPa~5MPa程度の条件下で撹拌し、浸出液と浸出残渣とからなる浸出スラリーを生成させる。
[Leaching process]
In the leaching step S1, sulfuric acid is added to the ore slurry obtained by crushing and classifying the raw material nickel oxide ore under high temperature and pressure to leach valuable metals such as nickel in the ore. Specifically, in the leaching step S1, sulfuric acid is added to the ore slurry using an autoclave, and the mixture is stirred under conditions of a temperature of about 220 ° C. to 280 ° C. and a pressure of about 3 MPa to 5 MPa, and leaching consisting of a leachate and a leachate residue. Generate a slurry.

原料のニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ酸マグネシウム鉱物として含有される。また、鉄の含有量は10重量%~50重量%であり、主として3価の水酸化物の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。 Examples of the nickel oxide ore as a raw material mainly include so-called laterite ores such as limonite ore and saprolite ore. The nickel content of the laterite ore is usually 0.8% by weight to 2.5% by weight, and is contained as a hydroxide or a magnesium silicate mineral. The iron content is 10% by weight to 50% by weight, mainly in the form of a trivalent hydroxide, but some divalent iron is contained in the magnesium magnesium mineral.

浸出工程S1における浸出処理では、浸出反応と高温加水分解反応とが生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが含まれる。 In the leaching treatment in the leaching step S1, a leaching reaction and a high-temperature hydrolysis reaction occur, and leaching of nickel, cobalt and the like as sulfates and immobilization of the leached iron sulfate as hematite are performed. However, since the immobilization of iron ions does not proceed completely, the liquid portion of the obtained leachate slurry usually contains divalent and trivalent iron ions in addition to nickel, cobalt and the like.

[固液分離工程]
固液分離工程S2では、浸出工程S1で生成した浸出スラリーを多段洗浄して、ニッケルやコバルト等の有価金属を含む浸出液と浸出残渣とを分離する。
[Solid-liquid separation process]
In the solid-liquid separation step S2, the leachate slurry generated in the leachate step S1 is washed in multiple stages to separate the leachate containing valuable metals such as nickel and cobalt from the leachate residue.

固液分離工程S2では、例えば、浸出スラリーを洗浄液と混合した後、シックナー等の固液分離装置を用いて固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。これにより、浸出残渣に付着するニッケル分をその希釈度合に応じて減少させることができる。また、このようにシックナーを多段に連結して用いて多段洗浄しながら固液分離することにより、洗浄液、すなわち浸出液へのニッケル及びコバルトの回収率の向上を図ることができる。 In the solid-liquid separation step S2, for example, the leachate slurry is mixed with the cleaning liquid, and then the solid-liquid separation treatment is performed using a solid-liquid separation device such as a thickener. Specifically, first, the leachate slurry is diluted with a washing liquid, and then the leachate residue in the leachate slurry is concentrated as a thickener sediment. As a result, the nickel content adhering to the leachate residue can be reduced according to the degree of dilution thereof. Further, by solid-liquid separation while performing multi-stage cleaning by using the thickeners connected in multiple stages in this way, it is possible to improve the recovery rate of nickel and cobalt in the cleaning liquid, that is, the leachate.

固液分離処理における多段洗浄方法として、ニッケルを含まない洗浄液で向流に接触させる連続向流洗浄法(CCD法)を用いる。これにより、系内に新たに導入する洗浄液を削減できるとともに、ニッケル及びコバルトの回収率を高めることができる。なお、洗浄液としては、ニッケルを含まず、工程に影響を及ぼさないものを用いることができる。その中でも、pHが1~3の水溶液を用いることが好ましい。 As a multi-stage cleaning method in the solid-liquid separation treatment, a continuous countercurrent cleaning method (CCD method) in which nickel-free cleaning liquid is used to contact the countercurrent is used. As a result, the amount of cleaning liquid newly introduced into the system can be reduced, and the recovery rate of nickel and cobalt can be increased. As the cleaning liquid, a liquid that does not contain nickel and does not affect the process can be used. Among them, it is preferable to use an aqueous solution having a pH of 1 to 3.

[中和工程]
中和工程S3では、分離された浸出液の酸化を抑制しながら、得られる中和終液のpHが4以下、好ましくは3.0~3.5、より好ましくは3.1~3.2になるように、その浸出液に炭酸カルシウム等の中和剤を添加し、ニッケル回収用の母液の元となる中和終液と、不純物元素として3価の鉄を含む中和澱物スラリーとを生成させる。
[Neutralization process]
In the neutralization step S3, the pH of the obtained neutralization final solution is 4 or less, preferably 3.0 to 3.5, more preferably 3.1 to 3.2, while suppressing the oxidation of the separated leachate. A neutralizing agent such as calcium carbonate is added to the leachate to generate a neutralizing final solution that is the source of the mother liquor for recovering nickel and a neutralized starch slurry containing trivalent iron as an impurity element. Let me.

なお、中和工程S3における処理では、中和処理対象である浸出液に、固液分離工程S2にて分離された浸出残渣の一部を添加してもよい。これにより、浸出されずに浸出残渣中に移行したニッケルやコバルトの回収ロスを抑制することができる。 In the treatment in the neutralization step S3, a part of the leachate residue separated in the solid-liquid separation step S2 may be added to the leachate to be neutralized. As a result, it is possible to suppress the recovery loss of nickel and cobalt that have migrated into the leaching residue without being leached out.

中和工程S3では、このように浸出液に対し中和処理(浄液処理)を施すことで、溶液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として分離除去する。水酸化鉄等を含む中和澱物の分離においは、シックナー等の沈降分離装置を用いて行うことができ、沈降速度の促進の観点から、凝集剤や凝結剤を添加することができる。 In the neutralization step S3, impurities such as trivalent iron ions and aluminum ions remaining in the solution are separated and removed as neutralized starch by subjecting the leachate to a neutralization treatment (purification treatment) in this way. .. The odor of the neutralized sol containing iron hydroxide or the like can be separated by using a sedimentation separation device such as a thickener, and a flocculant or a coagulant can be added from the viewpoint of promoting the sedimentation rate.

中和終液は、硫酸による浸出処理(浸出工程S1)を施して得られた浸出液に基づく溶液であって、ニッケル及びコバルトを含む硫酸酸性溶液である。この中和終液は、後述する脱亜鉛工程S4、ニッケル回収工程S5における硫化反応の反応始液となるものであり、ニッケル濃度及びコバルト濃度の合計濃度としては、例えば2g/L~6g/Lの範囲である。また、この中和終液には、除去されずに残存した3価の鉄イオンに由来する水酸化鉄(III)が含まれていることがある。 The neutralization final solution is a solution based on the leachate obtained by performing the leachate treatment with sulfuric acid (leaching step S1), and is a sulfuric acid acidic solution containing nickel and cobalt. This neutralization final solution serves as a reaction starting solution for the sulfide reaction in the dezincification step S4 and the nickel recovery step S5, which will be described later, and the total concentration of the nickel concentration and the cobalt concentration is, for example, 2 g / L to 6 g / L. Is in the range of. In addition, this neutralization final solution may contain iron (III) hydroxide derived from trivalent iron ions that remain without being removed.

[脱亜鉛工程]
脱亜鉛工程S4では、中和工程S3を経て得られた中和終液を始液(脱亜鉛始液)として、硫化水素ガス等の硫化剤を添加することで硫化処理を施し、その溶液中に含まれる亜鉛を硫化物の形態として分離除去する。以下、この処理を「脱亜鉛処理」ともいう。
[Dezincification process]
In the dezincification step S4, the neutralizing final solution obtained through the neutralization step S3 is used as an initial solution (dezincification initial solution), and a sulfurizing agent such as hydrogen sulfide gas is added to perform sulfurization treatment in the solution. Zinc contained in is separated and removed in the form of sulfide. Hereinafter, this treatment is also referred to as "dezincification treatment".

中和工程S3を経て得られた中和終液には、上述のように、回収対象であるニッケル及びコバルトを含むとともに、不純物成分として亜鉛が含まれている。脱亜鉛工程S4では、中和終液からニッケル及びコバルトを回収するに先立ち、所定の条件で硫化反応を生じさせることで亜鉛の硫化物を生成させ、それを分離除去することによって、ニッケル及びコバルトを含むニッケル回収用母液を得る。 As described above, the neutralization final solution obtained through the neutralization step S3 contains nickel and cobalt to be recovered, and also contains zinc as an impurity component. In the dezincification step S4, prior to recovering nickel and cobalt from the neutralization final solution, a sulfurization reaction is generated under predetermined conditions to generate zinc sulfide, which is separated and removed to form nickel and cobalt. Obtain a nickel recovery mother liquor containing.

具体的に、脱亜鉛工程S4では、例えば、加圧された反応容器(硫化反応槽)内にニッケル、コバルト、及び亜鉛を含む中和終液を供給し、反応容器の気相中へ硫化水素ガス等を吹き込むことによって、亜鉛をニッケル及びコバルトに対して選択的に硫化し、亜鉛硫化物とニッケル回収用母液とを生成させる。そして、硫化反応後に得られたスラリーを固液分離することにより、亜鉛を分離したニッケル回収用母液を得る。 Specifically, in the dezincification step S4, for example, a neutralized final solution containing nickel, cobalt, and zinc is supplied into a pressurized reaction vessel (sulfurization reaction vessel), and hydrogen sulfide is introduced into the gas phase of the reaction vessel. By blowing gas or the like, zinc is selectively sulphurized with respect to nickel and cobalt to generate zinc sulfide and a mother liquor for recovering nickel. Then, the slurry obtained after the sulfurization reaction is solid-liquid separated to obtain a nickel recovery mother liquor from which zinc has been separated.

なお、次工程のニッケル回収工程S5においても、硫化水素ガス等の硫化剤を添加して硫化反応を生じさせることによってニッケル及びコバルトの混合硫化物を生成させるが、そのニッケル等の硫化処理に先立って行う脱亜鉛工程S4における処理では、硫化反応の条件として、ニッケルに対する硫化反応条件よりも緩和させた条件で行う。 Also in the nickel recovery step S5 of the next step, a sulfurizing agent such as hydrogen sulfide gas is added to cause a sulfurization reaction to generate a mixed sulfurized product of nickel and cobalt, but prior to the sulfurization treatment of nickel or the like. In the treatment in the dezincification step S4, the conditions for the sulfurization reaction are relaxed compared to the sulfurization reaction conditions for nickel.

ここで、脱亜鉛工程S4における脱亜鉛処理では、硫化反応により生じた亜鉛硫化物を含む残渣(脱亜鉛残渣)を分離回収したのち、その残渣の一部を反応容器に繰り返し添加するようにしている。これにより、亜鉛硫化物の生成効率を高めるとともに、濾過して残渣とニッケル回収用母液とを分離する際に濾過性を向上させることができる。 Here, in the dezincification treatment in the dezincification step S4, a residue containing zinc sulfide generated by the sulfide reaction (dezincification residue) is separated and recovered, and then a part of the residue is repeatedly added to the reaction vessel. There is. As a result, it is possible to increase the efficiency of producing zinc sulfide and improve the filterability when filtering to separate the residue from the nickel recovery mother liquor.

このとき、本実施の形態では、系内において脱亜鉛残渣を繰り返す量を特定の範囲に制御することを特徴としている。これにより、得られるニッケル回収用母液中に移行する亜鉛を低減させることができ、次工程のニッケル回収工程S5にて得られるニッケルコバルト混合硫化物中の亜鉛濃度を安定的に低減させることができる。詳しくは後述する。 At this time, the present embodiment is characterized in that the amount of repeated dezincification residue in the system is controlled within a specific range. As a result, the amount of zinc transferred to the obtained nickel recovery mother liquor can be reduced, and the zinc concentration in the nickel-cobalt mixed sulfide obtained in the nickel recovery step S5 of the next step can be stably reduced. .. Details will be described later.

[ニッケル回収工程]
ニッケル回収工程S5では、脱亜鉛工程S4を経て得られたニッケル回収用母液を始液として、その始液に対して硫化水素ガス等の硫化剤を吹き込むことにより硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの硫化物(ニッケルコバルト混合硫化物)と、ニッケルやコバルトの濃度を低い水準で安定させた貧液(硫化終液)とを生成させる。なお、ニッケル回収用母液は、ニッケル及びコバルトを含む硫酸水溶液である。
[Nickel recovery process]
In the nickel recovery step S5, the nickel recovery mother liquor obtained through the dezincification step S4 is used as the starting liquid, and a sulfurizing agent such as hydrogen sulfide gas is blown into the starting liquid to cause a sulfurization reaction to cause an impurity component. It produces a small amount of nickel and cobalt sulfide (nickel-cobalt mixed sulfide) and a poor liquid (sulfide final solution) in which the concentration of nickel and cobalt is stabilized at a low level. The nickel recovery mother liquor is a sulfuric acid aqueous solution containing nickel and cobalt.

ニッケル回収工程S5における硫化処理は、脱亜鉛工程S4における処理のように硫化反応槽等を用いて行うことができ、所定の圧力に調整された硫化反応槽内の始液に対して、その反応槽内の気相部分に硫化水素ガス等を吹き込み、溶液中にその硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、始液中に含まれるニッケル及びコバルトを硫化物として固定化して回収する。 The sulfurization treatment in the nickel recovery step S5 can be performed using a sulfurization reaction tank or the like as in the treatment in the dezincification step S4, and the reaction with respect to the initial solution in the sulfurization reaction tank adjusted to a predetermined pressure. Hydrogen sulfide gas or the like is blown into the gas phase portion in the tank, and the hydrogen sulfide gas is dissolved in the solution to cause a sulfurization reaction. By this sulfurization treatment, nickel and cobalt contained in the starting liquid are immobilized as sulfides and recovered.

なお、硫化反応の終了後においては、得られたニッケルコバルト混合硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その硫化物のみをシックナーの底部より分離回収する。一方で、水溶液成分は、シックナーの上部からオーバーフローさせて貧液として回収する。 After the completion of the sulfurization reaction, the obtained slurry containing the nickel-cobalt mixed sulfide is charged into a sedimentation separation device such as a thickener and subjected to sedimentation separation treatment, and only the sulfide is separated and recovered from the bottom of the thickener. do. On the other hand, the aqueous solution component overflows from the upper part of the thickener and is recovered as a poor liquid.

≪3.脱亜鉛工程における処理(脱亜鉛処理)について≫
上述したように、脱亜鉛工程では、中和工程S3を経て得られた中和終液を始液(脱亜鉛始液)として、その脱亜鉛始液に硫化水素ガス等の硫化剤を添加して硫化処理を施すことによって、亜鉛を含む残渣(脱亜鉛残渣)と、ニッケル及びコバルトを含む溶液(ニッケル回収用母液)とを得る。より具体的には、例えば、加圧された反応容器(硫化反応槽)内に、ニッケル、コバルト、及び亜鉛を少なくとも含む中和終液を供給し、その反応容器の気相中に硫化水素ガスを吹き込むことによって、亜鉛をニッケルやコバルトに対して選択的に硫化し、亜鉛硫化物を含む残渣とニッケル回収用母液とを生成する。
≪3. About treatment in dezincification process (dezincification treatment) ≫
As described above, in the dezincification step, the neutralization final solution obtained through the neutralization step S3 is used as the initial solution (dezincification initial solution), and a sulfurizing agent such as hydrogen sulfide gas is added to the dezincification initial solution. By subjecting it to sulfurization treatment, a zinc-containing residue (dezincinated residue) and a solution containing nickel and cobalt (nickel recovery mother liquor) are obtained. More specifically, for example, a neutralized final solution containing at least nickel, cobalt, and zinc is supplied into a pressurized reaction vessel (sulfurization reaction vessel), and hydrogen sulfide gas is supplied into the gas phase of the reaction vessel. By blowing in, zinc is selectively sulfided with respect to nickel and cobalt to form a residue containing zinc sulfide and a mother liquor for recovering nickel.

図2は、脱亜鉛工程における脱亜鉛処理が行われる処理設備の構成を示すブロック図である。脱亜鉛処理設備1においては、中和工程S3を経て移送された中和終液(脱亜鉛始液)が硫化反応槽11に供給されたのち、その反応槽11の気相部に硫化水素ガスが吹き込まれることによって硫化反応が生じ、溶液中に含まれていた亜鉛硫化物が生成する。続いて、亜鉛硫化物を含むスラリー(硫化反応スラリー)が中継層12に移送され一時的に貯留され、その後、そのスラリーがフィルタプレス等の濾過装置13に供給され、濾過処理が行われる。濾過装置13において、スラリー中に含まれていた亜鉛硫化物を含む残渣(脱亜鉛残渣)とニッケル回収用母液とが分離される。 FIG. 2 is a block diagram showing a configuration of a processing facility in which a dezincification treatment is performed in the dezincification step. In the dezincification treatment facility 1, the neutralization final solution (dezincification initial solution) transferred through the neutralization step S3 is supplied to the sulfurization reaction tank 11, and then hydrogen sulfide gas is supplied to the gas phase portion of the reaction tank 11. Sulfide reaction occurs by blowing in, and zinc sulfide contained in the solution is generated. Subsequently, a slurry containing zinc sulfide (sulfide reaction slurry) is transferred to the relay layer 12 and temporarily stored, and then the slurry is supplied to a filtration device 13 such as a filter press to perform a filtration process. In the filtration device 13, the residue containing zinc sulfide (dezincinated residue) contained in the slurry and the nickel recovery mother liquor are separated.

ここで、上述のように、分離回収された亜鉛硫化物を含む脱亜鉛残渣の一部は、硫化反応槽11に繰り返して添加される。硫化反応槽11に繰り返された脱亜鉛残渣中の亜鉛硫化物は、その硫化反応槽11内にて生じる硫化反応の種晶として働き、始液中の亜鉛の硫化物化の効率を高める。また、種晶を添加して反応させることで、生成する亜鉛硫化物の粒径を制御することもでき、濾過装置13における濾過性を向上させることができる。 Here, as described above, a part of the dezincinated residue containing the separated and recovered zinc sulfide is repeatedly added to the sulfurization reaction tank 11. The zinc sulfide in the dezincinated residue repeated in the sulfurization reaction tank 11 acts as a seed crystal of the sulfurization reaction generated in the sulfurization reaction tank 11 and enhances the efficiency of sulfurization of zinc in the starting solution. Further, by adding a seed crystal and reacting, the particle size of the zinc sulfide produced can be controlled, and the filterability in the filtration device 13 can be improved.

なお、図2に示す設備構成において、「符号14」は系内回収槽を示し、分離回収した脱亜鉛残渣のうちの系内に繰り返し添加する脱亜鉛残渣を回収し貯留するための槽である。また、「符号15」は系外排出槽を示し、分離回収した脱亜鉛残渣のうちの系外に排出する脱亜鉛残渣を回収し貯留するための槽であり、この系外排出槽15の貯留された脱亜鉛残渣は、排水処理工程を実行する処理設備に移送され排水処理に供される。 In the equipment configuration shown in FIG. 2, “reference numeral 14” indicates an in-system recovery tank, which is a tank for recovering and storing the dezincinated residue that is repeatedly added to the system among the separated and recovered dezincinated residues. .. Further, "reference numeral 15" indicates an extra-system discharge tank, which is a tank for recovering and storing the dezincinated residue discharged to the outside of the system among the separated and recovered dezincinated residues, and the storage of the extra-system discharge tank 15. The dezincinated residue is transferred to a treatment facility that executes a wastewater treatment step and is used for wastewater treatment.

さて、脱亜鉛処理設備1における濾過装置13にて回収される脱亜鉛残渣には、主に、Fe(OH)及びZnSやFeSが含まれている。Fe(OH)は、脱亜鉛工程S4の前工程である中和工程S3からの持ち込みであり、ZnS及びFeSは、脱亜鉛処理での硫化水素ガス添加による硫化反応に基づく沈殿に由来するものである。したがって、濾過装置13への通液時には、通液されるスラリー中のZn2+及びZnSと、濾過装置13を構成する濾布上の残渣に含まれるFe(OH)及びFeSとの間で、以下の2つの反応が生じている。
2Fe(OH)+ZnS+6H=2Fe2++Zn2++S+6H
・・・[式1]
Zn2++FeS=Fe2++ZnS ・・・[式2]
The dezincinated residue recovered by the filtration device 13 in the dezincification treatment facility 1 mainly contains Fe (OH) 3 and ZnS and FeS. Fe (OH) 3 is brought in from the neutralization step S3, which is a pre-step of the dezincification step S4, and ZnS and FeS are derived from the precipitation based on the sulfurization reaction due to the addition of hydrogen sulfide gas in the dezincification treatment. Is. Therefore, when the liquid is passed through the filtration device 13, between Zn 2+ and ZnS in the slurry to be passed and Fe (OH) 3 and FeS contained in the residue on the filter cloth constituting the filtration device 13. The following two reactions have occurred.
2Fe (OH) 3 + ZnS + 6H + = 2Fe 2 + + Zn 2 + + S 0 + 6H 2 O
... [Equation 1]
Zn 2+ + FeS = Fe 2+ + ZnS ... [Equation 2]

還元雰囲気となる脱亜鉛処理においては、上記[式1]の反応の方が[式2]の反応よりも速く進むと考えられる。ところが、通常は、水酸化鉄(III)が前工程(中和工程)から持ち込まれる量や脱亜鉛残渣として濾過装置13で回収される量は少量であるため、反応量としては上記[式2]の反応が[式1]の反応を上回り、濾過装置13に対する通液前後で亜鉛濃度は低下すると推測される。 In the dezincification treatment that creates a reducing atmosphere, it is considered that the reaction of the above [formula 1] proceeds faster than the reaction of the above [formula 2]. However, since the amount of iron (III) hydroxide brought in from the previous step (neutralization step) and the amount recovered by the filtration device 13 as a dezincinated residue are usually small, the reaction amount is described in the above [Formula 2]. ] Exceeds the reaction of [Equation 1], and it is presumed that the zinc concentration decreases before and after passing the liquid through the filtration device 13.

しかしながら、回収した脱亜鉛残渣の硫化反応槽11への繰り返し量が増加すると、水酸化鉄(III)の硫化反応槽11内への持ち込み量及び濾過装置13にて回収される量が増加するため、濾過装置13への通液時の上記[式1]の反応量が増加することとなり、濾過装置通液前後の亜鉛除去率は低下する。 However, when the amount of the recovered dezincinated residue repeated in the sulfide reaction tank 11 increases, the amount of iron (III) hydroxide brought into the sulfide reaction tank 11 and the amount recovered by the filtration device 13 increase. The reaction amount of the above [Equation 1] at the time of passing the liquid through the filtration device 13 will increase, and the zinc removal rate before and after passing the liquid through the filtration device will decrease.

そこで、本発明者は、鋭意検討を重ね、硫化反応槽11に供給される脱亜鉛始液量1mに対する濾過装置13にて回収された脱亜鉛残渣の系内繰り返し量(残渣系内繰り返し量)を特定の範囲とすることによって、濾過装置通液後の亜鉛除去率を安定して高く維持できることを見出した。具体的には、残渣系内繰り返し量を1g/m以上10g/m以下の範囲に調整し維持する。 Therefore, the present inventor repeated diligent studies and repeated the amount of the dezincinated residue recovered by the filtration device 13 for the dezincinated starting liquid amount of 1 m 3 supplied to the sulfide reaction tank 11 (repeated amount in the residue system). ) Is set to a specific range, and it has been found that the zinc removal rate after passing the liquid through the filtration device can be stably maintained at a high level. Specifically, the repeating amount in the residue system is adjusted and maintained in the range of 1 g / m 3 or more and 10 g / m 3 or less.

亜鉛除去率とは、濾過装置13への通液前後における溶液中の亜鉛濃度が低下する割合をいう。また、残渣系内繰り返し量とは、以下の式により表されるものである。
残渣系内繰り返し量(g/m)=[系内繰り返しスラリー流量中固体量(g/hr)]/[脱亜鉛始液流量(m/hr)]
The zinc removal rate refers to the rate at which the zinc concentration in the solution decreases before and after passing the liquid through the filtration device 13. The repeating amount in the residue system is expressed by the following formula.
Repetition amount in the residue system (g / m 3 ) = [Solid amount in the system repeat flow rate (g / hr)] / [Dezincification starting liquid flow rate (m 3 / hr)]

このような残渣系内繰り返し量を調整することによって、濾過装置13への通液前後の亜鉛除去率が増加し、濾液、すなわちニッケル回収用母液に含まれる亜鉛濃度が上昇することを抑制することができる。これにより、ニッケル回収用母液に対して硫化処理を施すことによって得られるニッケルコバルト混合硫化物(製品)の亜鉛濃度が上昇するリスクを低減することができる。また、亜鉛除去率が高く維持されることにより、ニッケルコバルト混合硫化物中の亜鉛濃度の上昇を抑えるために、硫化剤である硫化水素ガス等の使用量の増加を防ぐことができ、またそれに伴って脱亜鉛残渣に分配されてしまうニッケルの増加(ニッケルロスの増加)を防ぐことができ、効率性の高い操業を行うことができる。 By adjusting the amount of repetition in the residue system in this way, the zinc removal rate before and after passing the liquid through the filtration device 13 is increased, and the increase in the zinc concentration contained in the filtrate, that is, the nickel recovery mother liquor is suppressed. Can be done. This makes it possible to reduce the risk that the zinc concentration of the nickel-cobalt mixed sulfide (product) obtained by subjecting the nickel recovery mother liquor to sulfurization treatment increases. In addition, by maintaining a high zinc removal rate, it is possible to prevent an increase in the amount of hydrogen sulfide gas, which is a sulfide agent, in order to suppress an increase in the zinc concentration in the nickel-cobalt mixed sulfide. Along with this, it is possible to prevent an increase in nickel (increased nickel loss) that is distributed to the dezincinated residue, and it is possible to carry out a highly efficient operation.

上述のように、残渣系内繰り返し量は、1g/m以上10g/m以下の範囲に調整する。残渣系内繰り返し量が1g/m未満であると、硫化反応槽11に供給された脱亜鉛始液に添加される亜鉛硫化物の量が少なすぎるため、すなわち種晶が存在しない状態となることから、濾過装置13にてスラリーを濾過する際の濾過性が悪化してしまう。一方で、残渣系内繰り返し量が10g/mを超えると、亜鉛除去率が低下してしまう(後述する実施例にて説明する図3を参照)。 As described above, the amount of repetition in the residue system is adjusted to the range of 1 g / m 3 or more and 10 g / m 3 or less. If the repeating amount in the residue system is less than 1 g / m 3 , the amount of zinc sulfide added to the dezincification starting liquid supplied to the sulfide reaction tank 11 is too small, that is, no seed crystal is present. Therefore, the filterability when filtering the slurry by the filtration device 13 deteriorates. On the other hand, if the repeating amount in the residue system exceeds 10 g / m 3 , the zinc removal rate decreases (see FIG. 3 described in Examples described later).

以上のように、本実施の形態に係る脱亜鉛処理方法においては、硫化処理により得られた脱亜鉛残渣の一部を、脱亜鉛始液を収容した反応容器に繰り返し供給するに際し、その残渣系内繰り返し量、すなわち硫化反応槽11に繰り返す脱亜鉛残渣を含むスラリー流量中の固体量が、その硫化反応槽11に供給される脱亜鉛始液1mに対して1g以上10g以下の範囲となるように調整している。 As described above, in the dezincification treatment method according to the present embodiment, when a part of the dezincination residue obtained by the sulfide treatment is repeatedly supplied to the reaction vessel containing the dezincination starting solution, the residue system is used. The amount of internal repetition, that is, the amount of solid in the flow rate of the slurry containing the dezincinated residue repeated in the sulfide reaction tank 11, is in the range of 1 g or more and 10 g or less with respect to 1 m 3 of the dezincination starting solution supplied to the sulfide reaction tank 11. It is adjusted so as to.

このような方法によれば、大きな設備投資をすることなく、濾過装置13への通液前後での亜鉛除去率を向上させ、またその高い除去率を維持して安定的に処理を行うことができ、脱亜鉛終液やニッケル回収工程S5を経て得られるニッケルコバルト混合硫化物中の亜鉛濃度の低減し、かつ管理を容易にすることができる。この方法は、経済的な操業に大きく寄与するものであり、その工業的価値はきわめて高い。 According to such a method, it is possible to improve the zinc removal rate before and after passing the liquid through the filtration device 13 without making a large capital investment, and to maintain the high removal rate for stable treatment. It is possible to reduce the zinc concentration in the nickel-cobalt mixed sulfide obtained through the dezincification final liquid and the nickel recovery step S5, and to facilitate the management. This method greatly contributes to economic operation and its industrial value is extremely high.

以下に、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.

[実施例]
図1に示すフロー図によるニッケル酸化鉱石の湿式製錬プロセスを実行した。そして、脱亜鉛工程では、中和工程を経て得られた中和終液を始液(脱亜鉛始液)として硫化反応容器(反応槽)に供給し、その容器内圧を0.02MPaに保持するように硫化剤としての硫化水素ガスを気相部に吹き込み、亜鉛硫化物を含む残渣(脱亜鉛残渣)を生成させた。なお、硫化反応容器には、中和終液を連続的に供給し、液温度を55℃に保持しながら撹拌しつつ反応させた。
[Example]
A hydrometallurgical process of nickel oxide ore was carried out according to the flow chart shown in FIG. Then, in the dezincification step, the neutralizing final solution obtained through the neutralization step is supplied to the sulfurization reaction vessel (reaction tank) as the initial solution (dezincination initial solution), and the internal pressure of the vessel is maintained at 0.02 MPa. As described above, hydrogen sulfide gas as a sulfide agent was blown into the gas phase portion to generate a residue containing zinc sulfide (dezincinated residue). The final solution of neutralization was continuously supplied to the sulfurization reaction vessel, and the reaction was carried out while stirring while maintaining the liquid temperature at 55 ° C.

次に、得られた脱亜鉛残渣を含む溶液を濾過装置であるフィルタプレスに移送し、その脱亜鉛残渣を分離した。分離した亜鉛硫化物を含む脱亜鉛残渣において、一部はスラリーの形態で硫化反応容器に繰り返し、残りは回収した。 Next, the solution containing the obtained dezincinated residue was transferred to a filter press, which is a filtration device, and the dezincinated residue was separated. In the dezincinated residue containing the separated zinc sulfide, a part was repeated in the sulfurization reaction vessel in the form of a slurry, and the rest was recovered.

このとき、脱亜鉛残渣を含むスラリーを硫化反応容器に繰り返し添加するに際して、そのスラリー流量中の固体量が、硫化反応容器に供給される脱亜鉛始液1mに対して1g以上10g以下の範囲となるように調整し、24時間の操業を行った。なお、この脱亜鉛始液1mに対する脱亜鉛残渣の繰り返し量を「残渣系内繰り返し量」とした。
残渣系内繰り返し量(g/m)=[系内繰り返しスラリー流量中固体量(g/hr)]/[脱亜鉛始液流量(m/hr)]
At this time, when the slurry containing the dezincinated residue is repeatedly added to the sulfide reaction vessel, the amount of solid in the slurry flow rate is in the range of 1 g or more and 10 g or less with respect to 1 m 3 of the dezincinated starting liquid supplied to the sulfide reaction vessel. The operation was carried out for 24 hours. The repeated amount of the dezincinated residue with respect to 1 m 3 of the dezincinated starting solution was defined as the "repeated amount in the residue system".
Repetition amount in the residue system (g / m 3 ) = [Solid amount in the system repeat flow rate (g / hr)] / [Dezincification starting liquid flow rate (m 3 / hr)]

下記表1に、上述した実施例の条件で24時間操業を行った結果を示す。また、図3に、残渣系内繰り返し量を1g/m以上10g/m以下の範囲の数点の操業例の結果を示すグラフ図である。ここで、表1における残渣系内繰り返し量の値は、図3のグラフ図に示す1g/m以上10g/m以下の範囲の操業例の平均値である。 Table 1 below shows the results of 24-hour operation under the conditions of the above-mentioned examples. Further, FIG. 3 is a graph showing the results of several operation examples in which the repeating amount in the residue system is in the range of 1 g / m 3 or more and 10 g / m 3 or less. Here, the value of the repetition amount in the residue system in Table 1 is an average value of operating examples in the range of 1 g / m 3 or more and 10 g / m 3 or less shown in the graph of FIG.

また、表1中の「亜鉛除去率(%)」とは、濾過装置への通液前後で溶液中の亜鉛濃度が低下する割合をいい、濾過装置通液前の溶液中の亜鉛量に対する濾過装置にて除去された亜鉛量の百分率である。 The "zinc removal rate (%)" in Table 1 refers to the rate at which the zinc concentration in the solution decreases before and after the liquid is passed through the filtration device, and is filtered with respect to the amount of zinc in the solution before the liquid is passed through the filtration device. Percentage of the amount of zinc removed by the device.

また、表1中の「ニッケル沈澱率(%)」とは、脱亜鉛処理により分離された脱亜鉛残渣中に含まれるニッケル含有量をいい、以下の式により表される。
ニッケル沈殿率(%)=100-ニッケル回収用母液中のニッケル濃度/中和終液中のニッケル濃度×100
The "nickel precipitation rate (%)" in Table 1 refers to the nickel content contained in the dezincinated residue separated by the dezincification treatment, and is represented by the following formula.
Nickel precipitation rate (%) = 100-Nickel concentration in nickel recovery mother liquor / Nickel concentration in neutralization final solution x 100

また、表1中の「製品亜鉛濃度(ppm)」とは、脱亜鉛処理により得られた脱亜鉛終液(濾過装置通液後に得られた溶液)に基づいて次工程のニッケル回収工程を経て回収されたニッケルコバルト混合硫化物(製品)中の亜鉛濃度である。 The "product zinc concentration (ppm)" in Table 1 is based on the dezincified final solution (solution obtained after passing through the filtration device) obtained by the dezincification treatment, and undergoes the nickel recovery step of the next step. Zinc concentration in the recovered nickel-cobalt mixed sulfide (product).

なお、ニッケル沈澱率、製品亜鉛濃度のそれぞれの結果は、図3に示す残渣系内繰り返し量が1g/m以上10g/m以下の範囲の複数の操業例の結果の平均の値を示している。亜鉛除去率は、その複数の操業例の平均、最大、及び最小を示す。 The results of the nickel precipitation rate and the product zinc concentration show the average value of the results of a plurality of operation examples in which the repetition amount in the residue system shown in FIG. 3 is in the range of 1 g / m 3 or more and 10 g / m 3 or less. ing. The zinc removal rate indicates the average, maximum, and minimum of the multiple operation examples.

Figure 0006996328000001
Figure 0006996328000001

[比較例1]
比較例では、脱亜鉛工程において、残系内繰り返し量を脱亜鉛始液1mに対して11g以上96g以下の範囲となるようにして繰り返し、24時間の操業を行った。なお、このこと以外は、実施例1と同様に操業した。
[Comparative Example 1]
In the comparative example, in the dezincification step, the repetition amount in the residual system was repeated so as to be in the range of 11 g or more and 96 g or less with respect to 1 m 3 of the dezincination starting solution, and the operation was carried out for 24 hours. Other than this, the operation was performed in the same manner as in Example 1.

下記表2に、その比較例の条件で24時間操業を行った結果を示す。また、図3のグラフ図には、残渣系内繰り返し量を11g/m以上96g/m以下の範囲の数点の操業例の結果を併せて示す。なお、表2中の各項目の定義は、表1と同様である。 Table 2 below shows the results of 24-hour operation under the conditions of the comparative example. In addition, the graph of FIG. 3 also shows the results of several operation examples in which the repeating amount in the residue system is in the range of 11 g / m 3 or more and 96 g / m 3 or less. The definition of each item in Table 2 is the same as that in Table 1.

Figure 0006996328000002
Figure 0006996328000002

[結果]
表1に示されるように、脱亜鉛処理における残渣系内繰り返し量を1g/m~10g/mの範囲に調整して操業を行った実施例では、濾過装置での濾過前後の亜鉛除去率が76%~91%の高い割合で推移し、平均でも81%となり有効に亜鉛を除去することができた。また、脱亜鉛残渣中のニッケル沈澱率も平均で1.03%と低く、当該期間内に産出した製品の亜鉛濃度も平均で109ppmとなり規格濃度(250ppm)を上回ることは無く、品質の高い製品を産出することができた。
[result]
As shown in Table 1, in the example in which the operation was performed by adjusting the repetition amount in the residue system in the dezincification treatment to the range of 1 g / m 3 to 10 g / m 3 , zinc was removed before and after filtration by the filtration device. The rate changed at a high rate of 76% to 91%, and the average was 81%, and zinc could be effectively removed. In addition, the zinc precipitation rate in the dezincinated residue is as low as 1.03% on average, and the zinc concentration of the products produced during the period is 109 ppm on average, which does not exceed the standard concentration (250 ppm) and is a high quality product. Was able to produce.

一方で、表2に示されるように、脱亜鉛処理における残渣系内繰り返し量を11g/m~96g/mの範囲に調整して操業を行った比較例では、濾過前後の亜鉛除去率が-41%~71%という低い割合で推移し、平均では39%となり極めて低かった。また、脱亜鉛残渣中のニッケル沈澱率は平均で1.42%であり、実施例に比べて多くのニッケルが亜鉛と共に残渣中に分配されてしまいロスとなった。 On the other hand, as shown in Table 2, in the comparative example in which the operation was performed by adjusting the repeating amount in the residue system in the dezincification treatment to the range of 11 g / m 3 to 96 g / m 3 , the zinc removal rate before and after filtration. However, it remained at a low rate of -41% to 71%, and the average was 39%, which was extremely low. The nickel precipitation rate in the dezincinated residue was 1.42% on average, and more nickel was distributed in the residue together with zinc as compared with the examples, resulting in loss.

また、比較例では、当該期間内に産出した製品の亜鉛濃度は平均で173ppmとなり規格濃度(250ppm)を上回る製品が生じてしまった。そのため、製品品質を向上させるべく、硫化反応を生じさせるための硫化水素ガスの添加量を高めた。その結果、比較例の操業中における硫化水素添加当量は平均で4.02となり、実施例の操業中の硫化水素添加当量の平均3.54よりも増加した。このように、比較例では硫化水素ガスの使用量が増加したため、操業コストが増えてしまった。 Further, in the comparative example, the zinc concentration of the products produced within the period was 173 ppm on average, and some products exceeded the standard concentration (250 ppm). Therefore, in order to improve the product quality, the amount of hydrogen sulfide gas added to cause the sulfurization reaction was increased. As a result, the hydrogen sulfide addition equivalent during the operation of the comparative example was 4.02 on average, which was higher than the average 3.54 of the hydrogen sulfide addition equivalent during the operation of the example. As described above, in the comparative example, the amount of hydrogen sulfide gas used increased, so that the operating cost increased.

なお、硫化水素添加当量は、以下のように定義される。
硫化水素添加当量=[硫化水素吹き込み量(m/h)]/〔[流入亜鉛量(kg/h)]/[亜鉛原子量(g/mol)×22.4(L/mol)〕
The hydrogen sulfide addition equivalent is defined as follows.
Hydrogen sulfide addition equivalent = [Hydrogen sulfide blown amount (m 3 / h)] / [[Inflow zinc amount (kg / h)] / [Zinc atomic weight (g / mol) x 22.4 (L / mol)]

1 脱亜鉛処理設備
11 硫化反応槽(反応槽)
12 中継槽
13 濾過装置
14 系内回収槽
15 系外排出槽
1 Dezincification treatment equipment 11 Sulfurization reaction tank (reaction tank)
12 Relay tank 13 Filtration device 14 Internal recovery tank 15 External discharge tank

Claims (3)

ニッケル、コバルト、及び亜鉛を含む溶液を始液とし、該始液に対して硫化剤を添加して硫化処理を施すことによって、亜鉛硫化物を含む残渣と、ニッケル及びコバルトを含む溶液とを得る脱亜鉛処理方法において、
前記硫化処理後の溶液を濾過装置に通液させて前記亜鉛硫化物を含む残渣を回収するとともに、回収した残渣の一部を、前記始液を収容した反応容器に繰り返し添加し、
その際、前記残渣量が、前記反応容器に供給される前記始液1mに対して1g以上10g以下の範囲となるように前記反応容器に繰り返す、
脱亜鉛処理方法。
A solution containing nickel, cobalt, and zinc is used as the starting solution, and a sulfurizing agent is added to the starting solution to perform sulfurization treatment to obtain a residue containing zinc sulfide and a solution containing nickel and cobalt. In the dezincification treatment method
The solution after the sulfurization treatment was passed through a filtration device to recover the zinc sulfide-containing residue, and a part of the recovered residue was repeatedly added to the reaction vessel containing the initial solution.
At that time , the reaction vessel is repeated so that the amount of the residue is in the range of 1 g or more and 10 g or less with respect to 1 m 3 of the starting liquid supplied to the reaction vessel.
Dezincification treatment method.
前記始液には、3価の鉄が含まれており、前記硫化処理により水酸化鉄(III)として前記残渣に含有される、
請求項1に記載の脱亜鉛処理方法。
The starting liquid contains trivalent iron and is contained in the residue as iron (III) hydroxide by the sulfurization treatment.
The dezincification treatment method according to claim 1.
ニッケル酸化鉱石のスラリーを酸浸出してニッケル及びコバルトを含む浸出液を得る浸出工程と、得られた浸出液に対して中和処理を施し不純物を除去する中和工程と、中和処理後の中和終液を脱亜鉛始液として硫化剤を添加して硫化処理を施すことで該中和終液に含まれる亜鉛の硫化物を生成して分離する脱亜鉛工程と、脱亜鉛終液に硫化剤を添加することでニッケル及びコバルトの混合硫化物を生成して回収するニッケル回収工程と、を有するニッケル酸化鉱石の湿式製錬方法であって、
前記脱亜鉛工程では、前記脱亜鉛始液を収容した反応容器に硫化剤を添加して硫化処理を施し、濾過装置に通液させて回収される亜鉛硫化物を含む残渣の一部を該反応容器に繰り返し添加し、
その際、前記残渣量が、前記反応容器に供給される前記脱亜鉛始液量1mに対して1g以上10g以下の範囲となるように前記反応容器に繰り返す、
ニッケル酸化鉱石の湿式製錬方法。
A leachation step of acid leaching a slurry of nickel oxide ore to obtain a leachate containing nickel and cobalt, a neutralization step of neutralizing the obtained leachate to remove impurities, and neutralization after the neutralization treatment. A dezincification step of producing and separating zinc sulfide contained in the neutralized final solution by adding a sulfurizing agent to the final solution as a dezincifying final solution and performing a sulfurization treatment, and a sulfide agent in the dezincinated final solution. It is a hydrometallurgical method for nickel oxide ore having a nickel recovery step of producing and recovering a mixed sulfide of nickel and cobalt by adding zinc oxide.
In the dezincification step, a sulfurizing agent is added to a reaction vessel containing the dezincination starting liquid to perform sulfurization treatment, and a part of the residue containing zinc sulfide recovered by passing the liquid through a filtration device is subjected to the reaction. Repeatedly add to the container,
At that time , the reaction vessel is repeated so that the amount of the residue is in the range of 1 g or more and 10 g or less with respect to the dezincination starting liquid amount of 1 m 3 supplied to the reaction vessel.
Hydrometallurgical method for nickel oxide ore.
JP2018024228A 2018-02-14 2018-02-14 Dezincification method, wet smelting method of nickel oxide ore Active JP6996328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024228A JP6996328B2 (en) 2018-02-14 2018-02-14 Dezincification method, wet smelting method of nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024228A JP6996328B2 (en) 2018-02-14 2018-02-14 Dezincification method, wet smelting method of nickel oxide ore

Publications (2)

Publication Number Publication Date
JP2019137903A JP2019137903A (en) 2019-08-22
JP6996328B2 true JP6996328B2 (en) 2022-02-04

Family

ID=67693290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024228A Active JP6996328B2 (en) 2018-02-14 2018-02-14 Dezincification method, wet smelting method of nickel oxide ore

Country Status (1)

Country Link
JP (1) JP6996328B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2013185178A (en) 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2013185178A (en) 2012-03-06 2013-09-19 Sumitomo Metal Mining Co Ltd Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore

Also Published As

Publication number Publication date
JP2019137903A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6388043B2 (en) Sulfide production method, nickel oxide ore hydrometallurgy method
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
WO2018101039A1 (en) Ion exchange processing method, and scandium recovery method
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
US9751035B2 (en) Operation method for dezincification plant
JP2016113703A (en) Neutralization method by wet type refining of nickel oxide ore
JP5904100B2 (en) Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore
JP6996328B2 (en) Dezincification method, wet smelting method of nickel oxide ore
JP5500208B2 (en) Neutralization method
JP5660248B1 (en) Operation method of dezincification plant
JP7293873B2 (en) Method for producing nickel sulfide, hydrometallurgical method for nickel oxide ore
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
JP5637294B1 (en) Neutralization method
JP6888359B2 (en) Smelting method of metal oxide ore
JP2022055767A (en) Dezincification method, and wet smelting method of nickel oxide ore
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP7147452B2 (en) Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same
JP2019077928A (en) Neutralization treatment method and wet refining method of nickel oxide ore
JP5637293B1 (en) Neutralization method
JP2021147631A (en) Method for operating filtration machine in filtration treatment, and the filtration machine
JP5637297B1 (en) Neutralization method
JP2015105431A (en) Neutralization treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6996328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150