JP2019044207A - Manufacturing method of nickel and cobalt sulfide - Google Patents

Manufacturing method of nickel and cobalt sulfide Download PDF

Info

Publication number
JP2019044207A
JP2019044207A JP2017165014A JP2017165014A JP2019044207A JP 2019044207 A JP2019044207 A JP 2019044207A JP 2017165014 A JP2017165014 A JP 2017165014A JP 2017165014 A JP2017165014 A JP 2017165014A JP 2019044207 A JP2019044207 A JP 2019044207A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
sulfide
seed
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017165014A
Other languages
Japanese (ja)
Inventor
幸弘 合田
Sachihiro Aida
幸弘 合田
雄大 田中
Takehiro Tanaka
雄大 田中
貴雄 大石
Takao Oishi
貴雄 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017165014A priority Critical patent/JP2019044207A/en
Publication of JP2019044207A publication Critical patent/JP2019044207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To adjust particle diameter of sulfide generated when nickel and cobalt are recovered as sulfide from a sulfuric acid aqueous solution containing nickel and cobalt using a hydrogen sulfide gas under compression.SOLUTION: There is provided a method for recovering nickel and cobalt as sulfide from a sulfuric acid aqueous solution containing nickel and cobalt using a hydrogen sulfide gas under compression in a wet type refining method of nickel oxide ore, in which a ratio of Seed injected is adjusted so that Ni concentration of a finish liquid in a reaction tank for obtaining the sulfide of nickel and cobalt is 0.3 to 0.4 g/L. The seed means a seed crystal repeated to the reaction tank.SELECTED DRAWING: Figure 2

Description

本発明は、加圧下で硫化剤を使用してニッケル等の有価金属を含む硫酸浴から、それらの有価金属を硫化物として回収する方法に関する。   The present invention relates to a method of recovering valuable metals as sulfides from a sulfuric acid bath containing valuable metals such as nickel using a sulfiding agent under pressure.

ニッケル酸化鉱を原料とするニッケル湿式製錬の分野においては近年、高温高圧を利用した酸浸出法(以下、HPAL法とよぶこともある)による低ニッケル品位ニッケル酸化鉱からの有価金属の回収が実用化されている。HPAL法によってニッケル酸化鉱より浸出されたニッケル、コバルト等の有価金属の回収については、加圧下で有価金属を含む硫酸浴に硫化水素ガスなどの硫化剤を添加することにより硫化物を生成させ、前記有価金属を硫化物として回収する方法が一般的に行われている。   In the field of nickel hydrometallurgy from nickel oxide ore, recovery of valuable metals from low nickel grade nickel oxide ore by acid leaching method (hereinafter sometimes referred to as HPAL method) using high temperature and high pressure is recently done. It has been put to practical use. For recovery of valuable metals such as nickel and cobalt leached from nickel oxide ore by HPAL method, sulfide is formed by adding a sulfiding agent such as hydrogen sulfide gas to a sulfuric acid bath containing valuable metals under pressure, A method of recovering the valuable metals as sulfides is generally performed.


効率よく硫化反応を行うための方法として、反応圧力、反応溶液のpHなどを調整する方法が知られている。 また、前記硫化反応を行う硫化反応工程は滞留時間を稼ぐために、一般的には2基以上の反応容器を直列に並べている。

Methods for adjusting the reaction pressure, the pH of the reaction solution, and the like are known as methods for efficiently performing a sulfurization reaction. In addition, in order to increase the residence time, generally, two or more reaction vessels are arranged in series in the sulfidation reaction step for performing the sulfidation reaction.


しかし、このような従来の方法では生成したニッケルおよびコバルトの硫化物の粒径の制御が困難であり、しばしばD10%で20μm以下の小さな粒径の硫化物が生成することがあった。粒径の小さな硫化物は、後工程で圧搾ろ過器などを用いて固液分離する際の脱水効率が悪いため、不純物品位に悪影響を及ぼし、水分率を上昇させる。水分率上昇は輸送コストの増加につながるため水分率は15%以下に抑えることが望まれる。

However, with such conventional methods, it is difficult to control the particle size of the formed nickel and cobalt sulfides, and often there is formed a small particle size sulfide of 20 μm or less at D 10%. Sulfide having a small particle size has a poor dewatering efficiency in solid-liquid separation using a squeeze filter or the like in a later step, which adversely affects the quality of impurities and raises the water content. Since the increase in moisture content leads to an increase in transportation costs, it is desirable to keep the moisture content at 15% or less.



このような背景から、硫化反応工程で高効率の反応を維持しつつ、生成する硫化物の粒径を容易に調整する技術が求められてきた。


From such a background, there has been a demand for a technique for easily adjusting the particle size of the formed sulfide while maintaining a highly efficient reaction in the sulfidation reaction step.

特開2010−126778号公報Unexamined-Japanese-Patent No. 2010-126778

本発明は、従来技術の問題点を解決するためのものであり、加圧下で硫化水素ガスを使用してニッケルおよびコバルトを含有する硫酸水溶液からニッケルおよびコバルトを硫化物として回収する際に、生成する硫化物の粒径を調整することができるニッケルおよびコバルト硫化物の製造方法を提供することを課題とする。   The present invention is to solve the problems of the prior art, and it is produced in recovering nickel and cobalt as sulfide from a sulfuric acid aqueous solution containing nickel and cobalt using hydrogen sulfide gas under pressure. It is an object of the present invention to provide a method for producing nickel and cobalt sulfides which can adjust the particle size of the sulfides.

本発明のニッケルおよびコバルト硫化物の製造方法は、ニッケル酸化鉱の湿式製錬方法の、加圧下で硫化水素ガスを使用してニッケルおよびコバルトを含有する硫酸水溶液からニッケルおよびコバルトを硫化物として回収する方法であって、前記ニッケルおよびコバルトの硫化物を得る反応槽での終液のNi濃度を0.3〜0.4g/Lとするように投入するSeed率を調整することを特徴としている。なお、ここでいうseedは反応槽へ繰返す種結晶を意味する。   The process for producing nickel and cobalt sulfides according to the present invention is a method for hydrosmelting nickel oxide ore, wherein hydrogen sulfide gas is used under pressure to recover nickel and cobalt as a sulfide from an aqueous solution of sulfuric acid containing nickel and cobalt. The method is characterized in that the seed ratio to be introduced is adjusted so that the Ni concentration in the final solution in the reaction vessel for obtaining sulfides of nickel and cobalt is 0.3 to 0.4 g / L. The term "seed" as used herein means a seed crystal to be repeated to the reaction vessel.

本発明は、ニッケル及びコバルトを含有する硫酸水溶液に、硫化剤を添加して加圧下にニッケル及びコバルトを含む硫化物を製造する方法であって、生成する硫化物の粒径を制御することができるニッケルおよびコバルト硫化物の製造方法を提供することができる。   The present invention is a method for producing a sulfide containing nickel and cobalt under pressure by adding a sulfiding agent to an aqueous solution of sulfuric acid containing nickel and cobalt, and controlling the particle size of the formed sulfide. It is possible to provide a process for the preparation of nickel and cobalt sulfides.

第一反応槽におけるニッケル濃度と生成硫化物の粒径との関係を示す図であるIt is a figure which shows the relationship of the nickel concentration and the particle size of the formation sulfide in a 1st reaction tank. seed率と第一反応槽におけるニッケル濃度との関係を示す図であるIt is a figure which shows the relationship between the seed rate and the nickel concentration in a 1st reaction tank. 第一反応槽におけるニッケル濃度とニッケル回収率との関係を示す図であるIt is a figure which shows the relationship between nickel concentration and nickel recovery in a 1st reaction tank.

以下、本発明実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

ニッケルおよびコバルトを含有する硫酸水溶液(以下、始液とよぶ)を2基以上の加圧反応槽が直列に連結された硫化反応工程の第一反応槽へ供給する。第一反応槽へは硫化剤として純度95−99%の硫化水素ガスを供給する。硫化反応工程では、(1)式で示されるような硫化水素ガスによる硫化反応が発生する。   An aqueous solution of sulfuric acid containing nickel and cobalt (hereinafter referred to as "starting solution") is supplied to a first reaction vessel of a sulfidation reaction step in which two or more pressurized reaction vessels are connected in series. Hydrogen sulfide gas with a purity of 95 to 99% is supplied to the first reaction vessel as a sulfiding agent. In the sulfidation reaction step, a sulfidation reaction with hydrogen sulfide gas occurs as shown in the formula (1).


MSO+HS→MS+HSO4 (1)

本発明者らは鋭意研究を重ねた結果、第一反応槽における終液のニッケル濃度が0.3g/L以下の場合に、生成硫化物の粒径がD10%で20μm以下となることを発見した(図1)。ここでいうニッケル回収率とは以下の式で定義される。

MSO 4 + H 2 S → MS + H 2 SO 4 (1)

As a result of intensive studies, the present inventors have found that when the final solution nickel concentration in the first reaction tank is 0.3 g / L or less, the particle size of the formed sulfide is 20 μm or less at D 10%. (Figure 1). The nickel recovery rate here is defined by the following equation.


ニッケル回収率=(始液容積×始液ニッケル濃度−終液容積×終液ニッケル濃度)
÷(始液容積×始液ニッケル濃度)

また、seed率を200〜300%内で制御することで第一反応槽内の終液のニッケル濃度を0.3g/L程度に調整でき(図2)、ニッケル回収率を99%以上に維持することが可能(図3)であることを見出した。ここでいうseed率とは以下の式で定義される。

Nickel recovery rate = (starting solution volume × starting solution nickel concentration-final solution volume × final solution nickel concentration)
÷ (starting solution volume × starting solution nickel concentration)

In addition, by controlling the seed rate within 200 to 300%, the nickel concentration in the final solution in the first reaction tank can be adjusted to about 0.3 g / L (FIG. 2), and the nickel recovery rate is maintained at 99% or more Found that it is possible (Figure 3). The seed rate mentioned here is defined by the following equation.

Seed率 =(seedスラリー容積×スラリー密度×スラリー固体率×スラリーNi品位)
÷(始液容積×始液ニッケル濃度)

このことから本発明者らは、投入seed量が過剰となった場合、投入したseedのうち核成長しないまま反応槽を通過する割合が多くなることが、生成硫化物の粒径を小さくする原因であると考えた。このため、投入seed量を調整することで、硫化反応工程で高いニッケル回収率を維持しながら後工程の一般的な圧搾ろ過工程でのろ過性に影響しない程度(D10%が20μm以上)にすることが可能になる。
Seed ratio = (seed slurry volume x slurry density x slurry solid ratio x slurry Ni grade)
÷ (starting solution volume × starting solution nickel concentration)

From this, the present inventors have found that, when the amount of the input seed is excessive, the ratio of passing through the reaction tank without nuclear growth among the input seed increases, which causes the particle diameter of the formed sulfide to be reduced. I thought it was. Therefore, by adjusting the input seed amount, the degree of not affecting the filterability in the general squeeze filtration step of the subsequent step while maintaining high nickel recovery rate in the sulfurization reaction step (D 10% is 20 μm or more) It becomes possible.


また、seed率を200〜300%内で制御することでニッケル回収率を98.5%以上に維持したまま第一反応槽内のニッケル濃度を0.3g/L以上に調整できることを見出した。

Moreover, it discovered that the nickel concentration in a 1st reaction tank can be adjusted to 0.3 g / L or more, maintaining a nickel recovery rate to 98.5% or more by controlling a seed rate within 200 to 300%.


seed率が200%を下回る場合、粒径は大きくなるがニッケル回収率が99%を下回る。

When the seed rate is less than 200%, the particle size is increased but the nickel recovery rate is less than 99%.


一方、seed率が300%を上回る場合、ニッケル回収率は98.5%以上となるが粒径が小さくなり、水分率が15%を超えてしまう。

On the other hand, if the seed rate exceeds 300%, the nickel recovery rate will be 98.5% or more, but the particle size will be small, and the moisture rate will exceed 15%.


seed率が高いほど第一反応槽内の終液のニッケル濃度が低くなるのは、供給される種結晶が多いほど反応が起こりやすい状態になったためと推測される。

The higher the seed rate, the lower the concentration of nickel in the final solution in the first reaction vessel, and it is presumed that the reaction is more likely to occur as the number of supplied seed crystals increases.


すなわち硫化反応工程でseed率を調整することにより、ニッケル回収率を98.5%以上に維持したまま硫化物の粒径を制御することが可能となる。

That is, by adjusting the seed rate in the sulfidation reaction step, it is possible to control the particle size of the sulfide while maintaining the nickel recovery rate at 98.5% or more.

以下本発明の実施例及び比較例を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例で用いた金属の分析方法はICP発光分析法で、また、硫化物の粒径の分析はマイクロトラック粒度分析器で行った。また、以下の例はいずれも4基の硫化反応容器を直列につないで用い連続的に硫化反応を実施したものであり、硫酸浴始液のニッケル濃度は3.5〜4.5g/L、始液の給液流量は350〜450m3/Hrで硫化反応を実施した。   Examples of the present invention and comparative examples will be described below, but the present invention is not limited by these examples. In addition, the analysis method of the metal used by the Example and the comparative example was an ICP emission analysis method, and the analysis of the particle size of sulfide was performed by the microtrack particle size analyzer. In addition, the following examples were all carried out continuously by using four sulfurization reaction vessels connected in series, and the nickel concentration of the sulfuric acid bath starting solution was 3.5 to 4.5 g / L, The sulfurization reaction was carried out at a feed flow rate of 350 to 450 m3 / hr.


(実施例1)
seed率を200〜300%に調整して硫化反応を行った。このとき、第一反応槽終液のNi濃度は0.36g/Lで、D10%は35μm、水分率は12.0%であった。また、このときの硫化反応工程でのニッケル回収率は99.0%であった。

Example 1
The sulfurization reaction was performed by adjusting the seed rate to 200 to 300%. At this time, the Ni concentration in the first reaction tank final solution was 0.36 g / L, D10% was 35 μm, and the water content was 12.0%. Moreover, the nickel recovery rate in the sulfurization reaction process at this time was 99.0%.


(比較例1)
seed率を300〜400%に調整して硫化反応を行った。このとき、第一反応槽終液のNi濃度は0.19g/Lで、D10%は12μm、水分率は15.8%であった。また、このときの硫化反応工程でのニッケル回収率は99.1%であった。

(Comparative example 1)
The sulfurization reaction was carried out by adjusting the seed rate to 300 to 400%. At this time, the Ni concentration in the first reaction tank final solution was 0.19 g / L, D10% was 12 μm, and the water content was 15.8%. Moreover, the nickel recovery rate in the sulfurization reaction process at this time was 99.1%.

以上のことから、本発明によれば、高効率のニッケル回収率を維持しつつ、発生する硫化物の粒径を制御することができることが示された。   From the above, it was shown that according to the present invention, it is possible to control the particle size of the generated sulfide while maintaining a high efficiency recovery rate of nickel.

Claims (2)

ニッケル酸化鉱の湿式製錬方法の、加圧下で硫化水素ガスを使用してニッケルおよびコバルトを含有する硫酸水溶液からニッケルおよびコバルトを硫化物として回収する方法であって、前記ニッケルおよびコバルトの硫化物を得る反応槽での終液のNi濃度を0.3〜0.4g/Lとするように投入するSeed率を調整することを特徴とする、ニッケルおよびコバルト硫化物の製造方法。なお、ここでいうseedは反応槽へ繰返す種結晶を意味する。
A method for recovering nickel and cobalt as a sulfide from a sulfuric acid aqueous solution containing nickel and cobalt using hydrogen sulfide gas under pressure according to a wet smelting method of nickel oxide ore, comprising the sulfide of nickel and cobalt A method for producing nickel and cobalt sulfide, comprising adjusting the Seed rate to be charged so that the Ni concentration of the final solution in the reaction tank is 0.3 to 0.4 g / L. The term "seed" as used herein means a seed crystal to be repeated to the reaction vessel.
前記ニッケルおよびコバルトを硫化物として回収する方法であってseed率を200〜300%とすることを特徴とする、請求項1に記載のニッケルおよびコバルト硫化物の製造方法。
The method for producing nickel and cobalt sulfide according to claim 1, wherein the method is a method for recovering the nickel and cobalt as a sulfide and setting a seed ratio to 200 to 300%.
JP2017165014A 2017-08-30 2017-08-30 Manufacturing method of nickel and cobalt sulfide Pending JP2019044207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017165014A JP2019044207A (en) 2017-08-30 2017-08-30 Manufacturing method of nickel and cobalt sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165014A JP2019044207A (en) 2017-08-30 2017-08-30 Manufacturing method of nickel and cobalt sulfide

Publications (1)

Publication Number Publication Date
JP2019044207A true JP2019044207A (en) 2019-03-22

Family

ID=65813901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165014A Pending JP2019044207A (en) 2017-08-30 2017-08-30 Manufacturing method of nickel and cobalt sulfide

Country Status (1)

Country Link
JP (1) JP2019044207A (en)

Similar Documents

Publication Publication Date Title
CA2938194C (en) Method for producing nickel powder
AU2015216321B2 (en) Production method for seed crystal used in production of hydrogen-reduced nickel powder
AU2016314002B2 (en) Process for producing nickel powder
AU2017218246B2 (en) Sulfuration treatment method, sulfide production method, and hydrometallurgical process for nickel oxide ore
JP6388043B2 (en) Sulfide production method, nickel oxide ore hydrometallurgy method
JP5125543B2 (en) Method for producing sulfide containing nickel and cobalt
WO2016139858A1 (en) Method for producing nickel sulfide and hydrometallurgical method for nickel oxide ore
US3933976A (en) Nickel-cobalt separation
CN109943733A (en) A kind of crude cobalt/nickel salt raw material efficiently separates cobalt/nickel magnesium manganese method
JP2019044207A (en) Manufacturing method of nickel and cobalt sulfide
JP2020076129A (en) Wet smelting method for nickel oxide ore suppressing precipitation of gypsum scale
JP7293873B2 (en) Method for producing nickel sulfide, hydrometallurgical method for nickel oxide ore
WO2021059940A1 (en) Method for recovering scandium, and ion exchange method
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP2017155253A (en) Production method of nickel powder
JP2021008654A (en) Nickel oxide ore exudation treatment method and wet smelting method including the same
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP6624464B2 (en) Nickel powder manufacturing method
CN115093050A (en) Treatment method of manganese-containing wastewater