JP2014141408A - Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas - Google Patents

Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas Download PDF

Info

Publication number
JP2014141408A
JP2014141408A JP2014036454A JP2014036454A JP2014141408A JP 2014141408 A JP2014141408 A JP 2014141408A JP 2014036454 A JP2014036454 A JP 2014036454A JP 2014036454 A JP2014036454 A JP 2014036454A JP 2014141408 A JP2014141408 A JP 2014141408A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
sulfide gas
plant
supply pipe
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014036454A
Other languages
Japanese (ja)
Other versions
JP5708849B2 (en
Inventor
Osamu Nakai
修 中井
Satoshi Matsubara
諭 松原
Tomotaka Hirose
智孝 廣瀬
Koichi Nakagawa
幸一 中川
Masashi Nakamura
正史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014036454A priority Critical patent/JP5708849B2/en
Publication of JP2014141408A publication Critical patent/JP2014141408A/en
Application granted granted Critical
Publication of JP5708849B2 publication Critical patent/JP5708849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an effective supply of a hydrogen sulfide gas by efficiently recovering a low-concentration hydrogen sulfide gas generated at the time of the periodic checkup or the start-up of a production plant and by properly controlling the supply of the hydrogen sulfide gas into a processing plant using the same.SOLUTION: The provided hydrogen sulfide gas production plant is furnished with: a first supply pipeline 14 for supplying, into a processing plant X, a hydrogen sulfide gas obtained from a sulfur recovery facility 13; and a second supply pipeline 16 branching from a specified site 15 of the first supply pipeline 14 for feeding the hydrogen sulfide gas from the sulfur recovery facility 13 into the processing plant X. A concentration meter 22 for measuring the hydrogen sulfide gas concentration is configured within the first supply pipeline 14 on the upstream side of the branching site 15, whereas ON/OFF valves 23 and 26 for executing ON/OFF controls of the supply into the processing plant X mediated by the first supply pipeline 14 and second supply pipeline 16 are configured within the respective pipelines on the downstream side of the branching site 15. A control valve is configured between the specified branching site 15 and the ON/OFF valve 26 configured on the second supply pipeline 16.

Description

本発明は、硫化水素ガス製造プラント及び廃硫化水素ガスの回収利用方法に関し、さらに詳しくは、排出される廃硫化水素ガスを回収して硫化水素ガスを使用する処理プラントに供給することが可能な硫化水素ガス製造プラント及びその硫化水素ガス製造プラントによる廃硫化水素ガスの回収利用方法に関する。   The present invention relates to a hydrogen sulfide gas production plant and a method for recovering and using waste hydrogen sulfide gas. More specifically, the present invention can recover discharged hydrogen sulfide gas and supply it to a processing plant that uses hydrogen sulfide gas. The present invention relates to a hydrogen sulfide gas production plant and a method for recovering and using waste hydrogen sulfide gas by the hydrogen sulfide gas production plant.

例えば、ニッケル酸化鉱石の湿式製錬方法においては、ニッケル酸化鉱石の浸出液を中和して得られた溶液や不純物を除去したニッケル回収用溶液に対して、硫化水素ガスを吹き込んで金属硫化物を形成する硫化処理が行われる。   For example, in the hydrometallurgical method of nickel oxide ore, hydrogen sulfide gas is blown into the solution obtained by neutralizing the leachate of nickel oxide ore and the solution for recovering nickel from which impurities have been removed. Sulfurization treatment is performed.

このときに使用される硫化水素ガスは、例えば、図3や図4に示すような構成を有する硫化水素ガス製造プラントにより製造されている。   The hydrogen sulfide gas used at this time is manufactured by, for example, a hydrogen sulfide gas manufacturing plant having a configuration as shown in FIGS.

具体的に、図3に示す硫化水素ガス製造プラント50は、供給された硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備51と、硫化水素ガスを冷却する冷却設備52と、硫化水素ガス中に含まれる硫黄を洗浄する洗浄設備53と、洗浄後の硫化水素ガスを乾燥し水分を除去する乾燥設備54とで構成されている。また、硫化水素ガス製造プラント50は、付帯設備として、生成した硫化水素ガスを貯留する貯留設備55と、硫化水素ガスを供給する供給設備56とを備えてなる。   Specifically, the hydrogen sulfide gas production plant 50 shown in FIG. 3 includes a reaction facility 51 that generates hydrogen sulfide gas from supplied sulfur and hydrogen gas, a cooling facility 52 that cools the hydrogen sulfide gas, and a hydrogen sulfide gas. A cleaning facility 53 for cleaning sulfur contained therein, and a drying facility 54 for drying the hydrogen sulfide gas after cleaning to remove moisture. Further, the hydrogen sulfide gas production plant 50 includes a storage facility 55 that stores the generated hydrogen sulfide gas and a supply facility 56 that supplies the hydrogen sulfide gas as ancillary facilities.

硫化水素ガス製造プラント50では、活性化エネルギーを低減することを目的としてリアクター51内に触媒を使用している。また、硫化水素ガス製造プラント50では、製造した硫化水素ガスに含まれる硫黄を洗浄設備53で除去した後、乾燥設備54で水分を除去することによって水分による設備の腐食を防止している。   In the hydrogen sulfide gas production plant 50, a catalyst is used in the reactor 51 for the purpose of reducing activation energy. Further, in the hydrogen sulfide gas production plant 50, the sulfur contained in the produced hydrogen sulfide gas is removed by the cleaning equipment 53, and then the moisture is removed by the drying equipment 54, thereby preventing the equipment from being corroded by moisture.

また、硫化水素ガス製造プラント50では、製造した硫化水素ガスをコンプレッサー等の供給設備56を使用して必要な圧力まで昇圧し、昇圧させた硫化水素ガスを、例えば上述したニッケル酸化鉱石の湿式製錬方法の脱亜鉛工程や硫化工程等における硫化水素ガスを使用するプラントに供給する。   Further, in the hydrogen sulfide gas production plant 50, the produced hydrogen sulfide gas is boosted to a required pressure using a supply facility 56 such as a compressor, and the pressurized hydrogen sulfide gas is made from, for example, the above-described nickel oxide ore wet-made. Supplied to a plant that uses hydrogen sulfide gas in the dezincing process or sulfiding process of the smelting method.

硫化水素ガス製造プラント50においては、硫化水素ガスを製造する条件として、例えば、圧力が約5kPaG、温度が約380℃で運転される。この硫化水素ガス製造プラント50では、反応設備51に触媒を使用しているため、圧力、温度ともに低い条件での運転が可能となり、その点が操業上の利点となっている。   The hydrogen sulfide gas production plant 50 is operated at a pressure of about 5 kPaG and a temperature of about 380 ° C. as conditions for producing the hydrogen sulfide gas. In the hydrogen sulfide gas production plant 50, since a catalyst is used for the reaction equipment 51, it is possible to operate under conditions where both pressure and temperature are low, which is an operational advantage.

しかしながら、硫化水素ガス製造プラント50においては、反応設備51内の触媒を定期的に交換する必要があることの他に、触媒の寿命の観点から硫化水素ガスの原料である硫黄の品質を厳しく管理する必要がある。   However, in the hydrogen sulfide gas production plant 50, in addition to the need to periodically replace the catalyst in the reaction facility 51, the quality of sulfur, which is a raw material for hydrogen sulfide gas, is strictly controlled from the viewpoint of the life of the catalyst. There is a need to.

一方で、図4に示す硫化水素ガス製造プラント60は、リアクターに触媒を使用しないプラントである。硫化水素ガス製造プラント60は、図4に示すように、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備(リアクター66、クエンチタワー67、ヒーター68)61と、硫化水素ガスを冷却する冷却設備62(62A,62B)と、硫化水素ガス中の硫黄を除去し硫化水素ガスを供給するノックアウト設備63と、硫化水素ガスから除去した硫黄を回収し硫黄処理プラント等に供給するブローダウン設備64とで構成されている。また、硫化水素ガス製造プラント60は、付帯設備として、熱バランスを調整するために硫黄の温度を冷却する設備65を備える。   On the other hand, the hydrogen sulfide gas production plant 60 shown in FIG. 4 is a plant that does not use a catalyst in the reactor. As shown in FIG. 4, the hydrogen sulfide gas production plant 60 includes a reaction facility (reactor 66, quench tower 67, heater 68) 61 that generates hydrogen sulfide gas from sulfur and hydrogen gas, and cooling that cools the hydrogen sulfide gas. Facility 62 (62A, 62B), knockout facility 63 for removing sulfur in hydrogen sulfide gas and supplying hydrogen sulfide gas, and blowdown facility 64 for recovering sulfur removed from hydrogen sulfide gas and supplying it to a sulfur treatment plant or the like It consists of and. In addition, the hydrogen sulfide gas production plant 60 includes, as ancillary equipment, equipment 65 that cools the temperature of sulfur in order to adjust the heat balance.

硫化水素ガス製造プラント60では、反応設備61のリアクター66内に熔融硫黄が貯留され、下部から水素ガスを供給することにより、水素ガスが熔融硫黄を通過する間に硫化水素ガスの生成反応が進行する。なお、反応によって減少する硫黄は反応設備61上部から供給される。反応設備61にて生成した硫化水素ガスは、大部分が硫化水素であるものの、水素ガスがリアクター内を通過する際に巻き込んだ硫黄蒸気が含まれている。   In the hydrogen sulfide gas production plant 60, molten sulfur is stored in the reactor 66 of the reaction facility 61, and hydrogen gas is supplied from the lower portion, so that the generation reaction of hydrogen sulfide gas proceeds while the hydrogen gas passes through the molten sulfur. To do. In addition, sulfur reduced by the reaction is supplied from the upper part of the reaction facility 61. Although most of the hydrogen sulfide gas generated in the reaction facility 61 is hydrogen sulfide, it contains sulfur vapor that is entrained when the hydrogen gas passes through the reactor.

また、硫化水素ガス製造プラント60では、硫化水素ガスを製造する条件として、例えば、圧力が約800kPaG、温度が約470℃という高温・高圧条件で運転されている。生成した硫化水素ガスは、反応設備61を構成するクエンチタワー67を出る際に約150℃程度の温度まで下がっているが、さらに冷却設備62にて約50℃程度(供給先の設備で使用する温度)にまで冷却され、ノックアウト設備63に移送される。   Further, the hydrogen sulfide gas production plant 60 is operated under conditions of high temperature and high pressure such as a pressure of about 800 kPaG and a temperature of about 470 ° C. as conditions for producing the hydrogen sulfide gas. The generated hydrogen sulfide gas is lowered to a temperature of about 150 ° C. when it exits the quench tower 67 constituting the reaction facility 61, and is further about 50 ° C. in the cooling facility 62 (used in the supply destination facility). Temperature) and transferred to the knockout facility 63.

また、反応設備61にて発生した硫化水素ガスに含まれる硫黄の大部分は、供給先となる硫化水素ガスを使用するプラント等のコントロール弁やマニュアルバルブ等のバルブ類や、温度計や圧力計等の計器類に付着すると操業上大きな支障をきたす。そのため、ノックアウト設備63にて一度固化し、その底部に堆積した硫黄をノックアウト設備63の下部外周囲に設置されたジャケットを介してスチームで加熱することにより熔融して回収する。回収した硫黄は、ブローダウン設備64にて貯留した後に供給ポンプ69を用いて硫黄処理プラントに供給されて処理され、又は繰り返して使用される。   Further, most of the sulfur contained in the hydrogen sulfide gas generated in the reaction facility 61 is made up of valves such as control valves and manual valves in plants that use the hydrogen sulfide gas to be supplied, thermometers and pressure gauges. If it adheres to the instruments such as, it will cause a big trouble in operation. Therefore, it is solidified once in the knockout facility 63, and the sulfur deposited on the bottom thereof is melted and recovered by heating with steam through a jacket installed around the lower part of the knockout facility 63. The recovered sulfur is stored in the blow-down facility 64 and then supplied to the sulfur treatment plant using the supply pump 69 to be processed or repeatedly used.

このようにして、硫化水素ガス製造プラント60にて生成した硫化水素ガスに含まれていた硫黄がノックアウトドラムで分離された後、その硫化水素ガスが、例えば上述したニッケル酸化鉱石の湿式製錬方法の脱亜鉛工程や硫化工程等における硫化水素ガスを使用するプラントに供給される。   Thus, after the sulfur contained in the hydrogen sulfide gas produced | generated in the hydrogen sulfide gas manufacturing plant 60 was isolate | separated with the knockout drum, the hydrogen sulfide gas is the hydrometallurgy method of the nickel oxide ore mentioned above, for example Supplied to a plant that uses hydrogen sulfide gas in the dezincing process, sulfiding process, and the like.

硫化水素ガス製造プラント60においては、系内の圧力を高い状態にして運転管理されることから、コンプレッサーやチラー設備等の設備が不要となり、初期の投資を抑えることができる。さらに、上述した硫化水素ガス製造プラント50のような触媒の定期交換やそのための交換費用、硫黄の品質管理を含めたメンテナンスコストが不要となり、操業コストを低減できるという利点がある。   Since the hydrogen sulfide gas production plant 60 is operated and managed with the pressure in the system being high, facilities such as a compressor and a chiller facility become unnecessary, and initial investment can be suppressed. Further, there is an advantage that the operation cost can be reduced because the periodic replacement of the catalyst as in the hydrogen sulfide gas production plant 50 described above, the replacement cost for the catalyst, and the maintenance cost including the quality control of sulfur are unnecessary.

しかしながら、硫化水素ガス製造プラント60では、高圧、高温の条件で運転を行っているため、製造された硫化水素ガスを供給するにあたっては、供給先のプラント操業における適切な圧力にまで減圧させることが必要になる。例えば、ニッケル酸化鉱石を処理してニッケル及びコバルトを含む混合硫化物(ミックスサルファイド:MS)を生成する硫化工程におけるプラントでは、硫化水素ガスを約350kPaGの圧力として運転しており、また、硫化処理を行い中和終液に含まれる亜鉛を亜鉛硫化物とする脱亜鉛工程におけるプラントでは、硫化水素ガスを約5kPaG以下の圧力として運転している。また、硫化水素ガス製造プラント60では、高圧、高温の条件で運転されるため、ガス漏洩時の危険性が高く、硫化水素ガスに含まれる硫黄(硫黄蒸気)を冷却する設備である硫化水素ガス冷却設備62や硫化水素ガスを回収する設備であるノックアウト設備63への負荷は大きくなる。   However, since the hydrogen sulfide gas production plant 60 operates under conditions of high pressure and high temperature, when supplying the produced hydrogen sulfide gas, the hydrogen sulfide gas production plant 60 can be depressurized to an appropriate pressure in the plant operation of the supply destination. I need it. For example, in a plant in a sulfidation process in which nickel oxide ore is processed to produce a mixed sulfide (mixed sulfide: MS) containing nickel and cobalt, hydrogen sulfide gas is operated at a pressure of about 350 kPaG. In the plant in the dezincing step in which zinc contained in the neutralized final solution is converted into zinc sulfide, the hydrogen sulfide gas is operated at a pressure of about 5 kPaG or less. Further, since the hydrogen sulfide gas production plant 60 is operated under conditions of high pressure and high temperature, there is a high risk of gas leakage, and hydrogen sulfide gas that is a facility for cooling sulfur (sulfur vapor) contained in hydrogen sulfide gas. The load on the cooling facility 62 and the knockout facility 63, which is a facility for recovering hydrogen sulfide gas, increases.

また、硫化水素ガス製造プラント60では、発生した硫化水素ガス中に含まれる硫黄をノックアウト設備63にて回収除去するが、一部の硫黄は、冷却設備62において固化しその内部に固着してしまい、そのまま放置すれば操業効率を低下させる。そのため、冷却設備を複数備え、それらを交互に切り替えて使用するようにしている。   Further, in the hydrogen sulfide gas production plant 60, sulfur contained in the generated hydrogen sulfide gas is recovered and removed by the knockout facility 63, but a part of the sulfur is solidified in the cooling facility 62 and fixed inside thereof. If left as it is, the operation efficiency is lowered. Therefore, a plurality of cooling facilities are provided, and they are used by switching them alternately.

具体的には、例えば2系統の冷却設備62A,62Bを備えるようにし、その内部に固着した硫黄によって冷却能力が低下するのに伴って、使用していた冷却設備62A(内部に固着がある状態の設備)とスタンバイの冷却設備62B(内部の固着が除去された状態の設備)とを切り替える。そして、冷却能力が低下した冷却設備62Aに対しては、蒸気を使用して設備内に付着した硫黄を溶解して回収することにより、スタンバイ状態とする。これらの操作を繰り返すことにより、硫化水素ガス製造プラント60の稼働率の低下を防止している。なお、冷却設備62(62A,62B)にて熔融回収された硫黄は、ブローダウン設備64に移送され同様にして処理される。   Specifically, for example, two cooling facilities 62A and 62B are provided, and the cooling facility 62A used in the state where the cooling capacity is reduced due to sulfur fixed inside the cooling facility 62A (the state where the inside is fixed) And the standby cooling equipment 62B (equipment with the internal sticking removed). And it is set as a standby state by melt | dissolving and collect | recovering the sulfur adhering in an installation using steam about the cooling equipment 62A in which the cooling capacity fell. By repeating these operations, the operating rate of the hydrogen sulfide gas production plant 60 is prevented from decreasing. The sulfur melted and recovered by the cooling facility 62 (62A, 62B) is transferred to the blowdown facility 64 and processed in the same manner.

ところで、硫化水素ガス製造プラント60において、上述したように硫化水素ガスの製造設備が高圧、高温の条件で運転されていることから、各々のコントロールバルブやON/OFFバルブの不具合や各々の計器類の不具合を始めとして、硫化水素ガス製造設備や付帯設備からの硫化水素ガスの漏洩、硫化水素ガスに含まれる硫黄の固着による配管の閉塞等のトラブルが発生しやすいと考えられている。   By the way, in the hydrogen sulfide gas production plant 60, since the hydrogen sulfide gas production facility is operated under high pressure and high temperature conditions as described above, the malfunction of each control valve and ON / OFF valve and each instrument. It is considered that troubles such as leakage of hydrogen sulfide gas from hydrogen sulfide gas production facilities and incidental facilities and blockage of piping due to adhesion of sulfur contained in hydrogen sulfide gas are likely to occur.

また、そのようなトラブルを未然に防止するためにも、硫化水素ガス製造プラントを定期的に点検することが必要となる。   In order to prevent such troubles, it is necessary to periodically check the hydrogen sulfide gas production plant.

上述のようなトラブルが発生した場合や定期点検に際しては、ON/OFFバルブ等により硫化水素ガス製造プラントと硫化水素ガスを使用する処理プラントとを切り離した上で、その硫化水素ガス製造プラントの内部を窒素ガスで置換する必要がある。また、硫化水素ガスを使用する処理プラントにおいて何らかの不具合が発生した場合にも、ON/OFFバルブ等により硫化水素製造プラントと硫化水素ガスを使用する処理プラントと切り離した上で対応する必要がある。   When troubles such as those mentioned above occur or during periodic inspections, the hydrogen sulfide gas production plant and the processing plant using hydrogen sulfide gas are separated from each other by an ON / OFF valve or the like, and the inside of the hydrogen sulfide gas production plant Needs to be replaced with nitrogen gas. In addition, when any trouble occurs in a processing plant using hydrogen sulfide gas, it is necessary to cope with it by separating the hydrogen sulfide production plant from the processing plant using hydrogen sulfide gas by an ON / OFF valve or the like.

したがって、トラブルが発生した場合や定期点検を行った際には、濃度の低い硫化水素ガスがプラント内に存在することになる。   Therefore, when trouble occurs or when a periodic inspection is performed, hydrogen sulfide gas having a low concentration is present in the plant.

さらに、硫化水素ガスを製造する際には、立ち上げに先立って事前に硫化水素ガス製造設備やその付帯設備を窒素ガス雰囲気に置換しておく必要がある。そのため、操業を開始して硫化水素ガスが発生(製造)して間もない時点では、その硫化水素ガスの濃度は低く、硫化水素ガスを使用する処理プラントにおいても流量を調整するといった対応が必要とされている。   Furthermore, when producing hydrogen sulfide gas, it is necessary to replace the hydrogen sulfide gas production facility and its associated facilities with a nitrogen gas atmosphere in advance prior to start-up. Therefore, at the point in time when hydrogen sulfide gas is generated (manufactured) immediately after the operation is started, the concentration of the hydrogen sulfide gas is low, and it is necessary to take measures such as adjusting the flow rate even in a processing plant that uses hydrogen sulfide gas. It is said that.

これらの濃度の低い硫化水素ガスは、通常、いわゆる廃硫化水素ガスとなってロスとなる。そして、これらの廃硫化水素ガスは非常に有毒でありそのままでは大気中に放出することはできないため、フレアー設備(燃焼させて毒性を低下させる設備)や苛性ソーダ等を用いた除害設備等で処理してから排出することが必要となる。   These low-concentration hydrogen sulfide gases usually become so-called waste hydrogen sulfide gas and become a loss. Since these waste hydrogen sulfide gases are extremely toxic and cannot be released into the atmosphere as they are, they are treated with flare equipment (equipment that lowers toxicity by burning) or abatement equipment using caustic soda, etc. It is necessary to discharge after that.

ところが、フレアー設備で処理する場合には、その硫化水素ガスがSOxガスとなり、僅かとはいえ環境に対して影響を与える。一方、除害設備で無害化する場合には、苛性ソーダのような中和剤が必要となり、その中和剤も操業コストとして考慮する必要があり、操業の効率性を低下させる。   However, in the case of processing with a flare facility, the hydrogen sulfide gas becomes SOx gas, which slightly affects the environment. On the other hand, when detoxifying with a detoxification facility, a neutralizing agent such as caustic soda is required, and the neutralizing agent also needs to be considered as an operating cost, which reduces the efficiency of the operation.

そのため、これらの濃度の低い硫化水素ガスを回収して、有効に利用する方法が求められている。   Therefore, a method for recovering and effectively using these low-concentration hydrogen sulfide gases is required.

例えば、特許文献1には、ニッケル酸化鉱石を処理してMSを製造する硫化(ニッケル回収)工程において、硫化反応槽から排出される余剰の硫化水素ガスを回収する方法として、硫化水素ガスを苛性ソーダに吸収させた液(水硫化ソーダや硫化ソーダ等の形態)を通じて工程に戻し入れて硫黄分を硫化反応に利用する方法が提案されている。   For example, Patent Document 1 discloses that hydrogen sulfide gas is used as caustic soda as a method of recovering excess hydrogen sulfide gas discharged from a sulfidation reaction tank in a sulfidation (nickel recovery) process for producing MS by treating nickel oxide ore. There has been proposed a method in which the sulfur content is used for the sulfurization reaction by returning the liquid to the process through a liquid absorbed in the form (form of sodium hydrosulfide, sodium sulfide, etc.).

また、特許文献2には、脱水工程中に揮散する硫化水素ガスを、脱水工程が行われている系外で有機アミド溶媒に吸収させて回収し、回収した硫化水素をアルカリ金属硫化物の原料として重合反応に再利用する方法が公開されている。   Patent Document 2 discloses that hydrogen sulfide gas volatilized during the dehydration step is absorbed by an organic amide solvent outside the system in which the dehydration step is performed and recovered, and the recovered hydrogen sulfide is a raw material for the alkali metal sulfide. A method for reusing the polymerization reaction is disclosed.

しかしながら、これらの方法は、硫化水素をガスとして回収する方法ではなく、また、苛性ソーダや有機アミド等の回収溶媒が必要になる。   However, these methods are not methods for recovering hydrogen sulfide as a gas, and also require a recovery solvent such as caustic soda and organic amide.

さらに、特許文献3には、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、ニッケル及びコバルトを含む硫化物を製造する方法において、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、ニッケル及びコバルトの高収率を維持する方法が公開されている。具体的には、硫化水素ガス濃度が85〜90容量%の場合では反応容器内に導入するニッケル及びコバルト投入量を定常状態のときの投入量に対し質量割合で30〜35%、また水素ガス濃度が90容量%を超える場合では反応容器内に導入するニッケル及びコバルト投入量を、質量割合で55〜60%の割合に減少させるという方法である。   Furthermore, Patent Document 3 discloses a method for producing a sulfide containing nickel and cobalt by introducing a sulfuric acid aqueous solution containing nickel and cobalt and supplying a sulfurizing gas containing hydrogen sulfide in the gas phase. A method for maintaining a high yield of nickel and cobalt when the concentration of hydrogen sulfide gas in the sulfide gas supplied into the reaction vessel is reduced from 95 to 100% by volume used in the steady state of operation to a concentration lower than that. Is published. Specifically, when the hydrogen sulfide gas concentration is 85 to 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel is 30 to 35% by mass relative to the amount charged in a steady state, and hydrogen gas When the concentration exceeds 90% by volume, the amount of nickel and cobalt introduced into the reaction vessel is reduced to 55 to 60% by mass.

この方法は、定常状態よりも低い濃度となった硫化水素ガスを有効に利用することを可能にするものではあるが、硫化水素ガス製造プラント内を窒素で置換して、例えば硫化水素ガス濃度が85容量%未満にまで低下した場合には対応することができない。   Although this method makes it possible to effectively use hydrogen sulfide gas having a concentration lower than that in a steady state, the hydrogen sulfide gas production plant is replaced with nitrogen, for example, the hydrogen sulfide gas concentration is reduced. It is not possible to cope with the case where the capacity drops below 85% by volume.

特開2010−126778号公報JP 2010-126778 A 特開平09−286861号公報Japanese Patent Application Laid-Open No. 09-286861 特開2009−173983号公報JP 2009-173983 A

本発明は、このような実情に鑑みて提案されたものであり、硫化水素ガス製造プラントの定期点検時やトラブル発生時、又は立ち上げ当初において発生する濃度の低い硫化水素ガスを効率的に回収して、硫化水素ガスを使用するプラント(処理プラント)への供給を適切に制御することで、硫化水素ガスを有効に供給することができる硫化水素ガス製造プラントシステム及びその硫化水素ガス製造プラントシステムによる硫化水素ガスの回収利用方法を提供することにある。   The present invention has been proposed in view of such circumstances, and efficiently recovers low-concentration hydrogen sulfide gas generated at the time of periodic inspection of a hydrogen sulfide gas production plant, when trouble occurs, or at the beginning of startup. A hydrogen sulfide gas production plant system capable of effectively supplying hydrogen sulfide gas by appropriately controlling supply to a plant (processing plant) that uses hydrogen sulfide gas, and the hydrogen sulfide gas production plant system It is to provide a method for recovering and using hydrogen sulfide gas.

本発明に係る硫化水素ガス製造プラントシステムは、少なくとも、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備と、発生した硫化水素ガスを冷却する複数の冷却設備と、該硫化水素ガス中に含まれる硫黄を回収する硫黄回収設備とを備える硫化水素ガスの製造プラントを複数系統有する硫化水素ガス製造プラントシステムであって、それぞれの系統の硫化水素ガスの製造プラントは、上記硫黄回収設備にて硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントに供給する第1の供給配管と、上記第1の供給配管における所定の箇所で分岐し、上記硫黄回収設備からの硫化水素ガスを上記処理プラントに供給する第2の供給配管とを備え、上記第1の供給配管には、上記所定の分岐箇所よりも上記硫黄回収設備側に、硫化水素ガス濃度を測定する濃度計が設けられ、上記第1の供給配管及び上記第2の供給配管には、上記所定の分岐箇所よりも上記処理プラント側に、その供給配管を介した上記処理プラントへの硫化水素ガスの供給のON/OFFを行うON/OFFバルブが設けられ、上記所定の分岐個所と上記第2の供給配管に設けられた上記ON/OFFバルブの間にコントロールバルブが設けられていることを特徴とする。   A hydrogen sulfide gas production plant system according to the present invention includes at least a reaction facility for generating hydrogen sulfide gas from sulfur and hydrogen gas, a plurality of cooling facilities for cooling the generated hydrogen sulfide gas, and the hydrogen sulfide gas. A hydrogen sulfide gas production plant system having a plurality of hydrogen sulfide gas production plants equipped with a sulfur recovery facility for recovering sulfur contained therein, wherein the hydrogen sulfide gas production plant of each system is the above-described sulfur recovery facility. The hydrogen sulfide gas after the sulfur is recovered is branched at a first supply pipe for supplying the hydrogen sulfide gas to a treatment plant that uses the hydrogen sulfide gas, and at a predetermined location in the first supply pipe, A second supply pipe for supplying hydrogen sulfide gas to the processing plant, and the first supply pipe includes the sulfur cycle rather than the predetermined branch point. A concentration meter for measuring the hydrogen sulfide gas concentration is provided on the facility side, and the first supply pipe and the second supply pipe are provided with the supply pipe closer to the processing plant than the predetermined branch point. An ON / OFF valve for turning on / off the supply of hydrogen sulfide gas to the processing plant is provided, and between the predetermined branch point and the ON / OFF valve provided in the second supply pipe. A control valve is provided.

また、本発明に係る硫化水素ガスの回収利用方法は、少なくとも、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備と、発生した硫化水素ガスを冷却する複数の冷却設備と、該硫化水素ガス中に含まれる硫黄を回収する硫黄回収設備とを備える硫化水素ガスの製造プラントを複数系統有する硫化水素ガス製造プラントシステムにおける硫化水素ガスの回収利用方法であって、それぞれの系統の硫化水素ガスの製造プラントは、上記硫黄回収設備にて硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントに供給する第1の供給配管と、上記第1の供給配管における所定の箇所で分岐し、上記硫黄回収設備からの硫化水素ガスを上記処理プラントに供給する第2の供給配管とを備え、上記第1の供給配管には、上記所定の分岐箇所よりも上記硫黄回収設備側に、硫化水素ガス濃度を測定する濃度計が設けられ、上記第1の供給配管及び上記第2の供給配管には、上記所定の分岐箇所よりも上記処理プラント側に、その供給配管を介した上記処理プラントへの硫化水素ガスの供給のON/OFFを行うON/OFFバルブが設けられ、上記所定の分岐個所と上記第2の供給配管に設けられた上記ON/OFFバルブの間にコントロールバルブが設けられており、上記複数の製造プラントの何れかの運転停止時に、通常時に比して低濃度の硫化水素ガスが発生した場合には、運転を停止した製造プラントにおいては、該低濃度の硫化水素ガスを上記第2の供給配管を介して回収して上記処理プラントに上記コントロールバルブで流量を調整しながら供給し、他の系統の製造プラントにおいては、製造負荷を高めて製造した硫化水素ガスを第1の供給配管を介して上記処理プラントに供給することを特徴とする。   The method for recovering and using hydrogen sulfide gas according to the present invention includes at least a reaction facility for generating hydrogen sulfide gas from sulfur and hydrogen gas, a plurality of cooling facilities for cooling the generated hydrogen sulfide gas, and the hydrogen sulfide. A method for recovering and using hydrogen sulfide gas in a hydrogen sulfide gas production plant system having a plurality of hydrogen sulfide gas production plants equipped with a sulfur recovery facility for recovering sulfur contained in the gas, wherein the hydrogen sulfide gas of each system The manufacturing plant of the first supply pipe for supplying the hydrogen sulfide gas after the sulfur is recovered by the sulfur recovery facility to the processing plant using the hydrogen sulfide gas, and a predetermined value in the first supply pipe A second supply pipe that branches at a location and supplies hydrogen sulfide gas from the sulfur recovery facility to the treatment plant, and the first supply pipe includes: A concentration meter for measuring the hydrogen sulfide gas concentration is provided closer to the sulfur recovery facility than the predetermined branch point, and the first supply pipe and the second supply pipe are more than the predetermined branch point. An ON / OFF valve for turning ON / OFF the supply of hydrogen sulfide gas to the processing plant via the supply pipe is provided on the processing plant side, and is provided at the predetermined branch point and the second supply pipe. A control valve is provided between the above-mentioned ON / OFF valves, and when a hydrogen sulfide gas having a lower concentration than normal is generated when the operation of any of the plurality of manufacturing plants is stopped, the operation is started. In the production plant that has stopped, the low-concentration hydrogen sulfide gas is recovered through the second supply pipe and supplied to the processing plant while adjusting the flow rate with the control valve. In the production plant the other strains, the hydrogen sulfide gas produced by increasing the production load through the first supply pipe and supplying to the processing plant.

本発明によれば、硫化水素ガス製造プラントの定期点検時やトラブル発生時、又は立ち上げ当初において発生する濃度の低い硫化水素ガスを効率的に回収することができ、硫化水素ガスを使用するプラント(処理プラント)への供給を適切に制御することで、硫化水素ガスを有効に供給することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen sulfide gas with the low density | concentration which generate | occur | produces at the time of the periodic check of a hydrogen sulfide gas manufacturing plant, trouble generation | occurrence | production, or the start-up can be efficiently collect | recovered, and the plant using hydrogen sulfide gas By appropriately controlling the supply to the (processing plant), the hydrogen sulfide gas can be supplied effectively.

硫化水素ガス製造プラントシステムの構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of a hydrogen sulfide gas manufacturing plant system. 定期点検時やプラント立ち上げ時等において発生する低濃度の硫化水素ガスを回収して、硫化処理プラント等の処理プラントに供給する制御フロー図である。It is a control flow diagram which collects low concentration hydrogen sulfide gas generated at the time of periodic inspection, plant start-up, etc., and supplies it to a treatment plant such as a sulfidation treatment plant. 従来の硫化水素ガス製造プラントの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the conventional hydrogen sulfide gas manufacturing plant. 従来の硫化水素ガス製造プラントの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the conventional hydrogen sulfide gas manufacturing plant.

以下、本発明に係る硫化水素ガス製造プラントシステム及び硫化水素ガスの回収利用方法について、以下の順序で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
1.本発明の概要
2.硫化水素ガス製造プラントシステム
3.硫化水素ガスの回収利用方法
4.実施例
Hereinafter, the hydrogen sulfide gas production plant system and the method for recovering and using hydrogen sulfide gas according to the present invention will be described in detail in the following order. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.
1. 1. Outline of the present invention 2. Hydrogen sulfide gas production plant system How to recover and use hydrogen sulfide gas 4. Example

[1.本発明の概要]
本発明に係る硫化水素ガス製造プラントシステムは、少なくとも、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備と、発生した硫化水素ガスを冷却する複数の冷却設備と、硫化水素ガス中に含まれる硫黄を回収する硫黄回収設備とを備える硫化水素ガス製造プラント(以下、単に「製造プラント」ともいう。)を複数系統有するものである。
[1. Outline of the present invention]
A hydrogen sulfide gas production plant system according to the present invention includes at least a reaction facility for generating hydrogen sulfide gas from sulfur and hydrogen gas, a plurality of cooling facilities for cooling the generated hydrogen sulfide gas, and hydrogen sulfide gas. A hydrogen sulfide gas production plant (hereinafter also simply referred to as “production plant”) having a sulfur recovery facility for recovering sulfur.

それぞれの系統の製造プラントでは、反応設備にて発生させた硫化水素ガスを冷却設備にて冷却し、硫黄回収設備にて硫黄を回収除去した後、その得られた硫化水素ガスを硫化水素ガスを使用する処理プラント(以下、単に「処理プラント」ともいう。)に供給する。   In each production plant, the hydrogen sulfide gas generated in the reaction facility is cooled in the cooling facility, and the sulfur is recovered and removed in the sulfur recovery facility. Supplied to the processing plant to be used (hereinafter also simply referred to as “processing plant”).

本発明においては、それぞれの系統の製造プラントにおいて、硫黄回収設備により硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントに供給する第1の供給配管と、その第1の供給配管における所定の箇所で分岐して硫黄回収設備からの硫化水素ガスを処理プラントに供給する第2の供給配管とを備える。   In the present invention, the first supply pipe for supplying the hydrogen sulfide gas after the sulfur is recovered by the sulfur recovery facility to the processing plant using the hydrogen sulfide gas in the manufacturing plant of each system, and the first And a second supply pipe that branches at a predetermined location in the supply pipe and supplies hydrogen sulfide gas from the sulfur recovery facility to the treatment plant.

そして、第1の供給配管には、その所定の分岐箇所よりも硫黄回収設備側に、硫化水素ガス濃度を測定する濃度計が設けられている。また、第1の供給配管及び第2の供給配管のそれぞれには、所定の分岐箇所よりも処理プラント側に、その供給配管への硫化水素ガスの供給のON/OFFを行うON/OFFバルブが設けられている。   And the 1st supply piping is provided with the concentration meter which measures a hydrogen sulfide gas density | concentration in the sulfur recovery equipment side rather than the predetermined branch location. Each of the first supply pipe and the second supply pipe has an ON / OFF valve for turning ON / OFF the supply of hydrogen sulfide gas to the supply pipe closer to the processing plant than the predetermined branch point. Is provided.

ここで、硫化水素ガス製造プラントにおいて、所定の定期点検時や突発のトラブル発生時、又はプラント立ち上げに際しては、その硫化水素ガス製造プラントと処理プラントとを切り離した上で、硫化水素ガス製造プラントの内部を窒素ガス等によって置換する処理が行われる。定期点検時やトラブル発生時に製造プラントを停止させると、その内部には停止前に発生した硫化水素ガスが残留しているために、窒素ガスの通風によってその硫化水素ガス濃度が低くなる。また、プラント立ち上げ時においても、初期の段階では、内部に通風させた窒素ガスと混ざり合い、低濃度の硫化水素ガスが発生することになる。   Here, in a hydrogen sulfide gas production plant, when a predetermined periodic inspection, sudden trouble occurs, or when the plant is started up, the hydrogen sulfide gas production plant is separated from the processing plant, and then the hydrogen sulfide gas production plant The inside is replaced with nitrogen gas or the like. When the production plant is stopped at the time of periodic inspection or when trouble occurs, the hydrogen sulfide gas generated before the stop remains in the interior, and the concentration of the hydrogen sulfide gas decreases due to the ventilation of nitrogen gas. Further, even at the time of starting up the plant, in the initial stage, it mixes with the nitrogen gas ventilated inside, and low concentration hydrogen sulfide gas is generated.

従来、このような濃度の低い硫化水素ガスは、有効に活用されることなく、廃硫化水素ガスとして硫化水素ガス製造におけるロスとなっていた。そして、この低濃度の硫化水素ガスは、そのまま大気中に放出することができないため、フレアー設備や除害設備等を用いて処理していたが、環境に対する負荷は少なからず生じ、また苛性ソーダ等の中和剤を別途用いる必要があった。   Conventionally, hydrogen sulfide gas having such a low concentration has not been effectively used, and has been a loss in the production of hydrogen sulfide gas as waste hydrogen sulfide gas. And since this low concentration hydrogen sulfide gas cannot be released into the atmosphere as it is, it has been treated using flare equipment, abatement equipment, etc., but there is a considerable impact on the environment, and caustic soda, etc. It was necessary to use a neutralizing agent separately.

これに対して、本発明に係る硫化水素ガス製造プラントシステム及びそのプラントシステムを用いた硫化水素ガスの回収利用方法によれば、定期点検時等やプラント立ち上げ時に発生する低濃度の硫化水素ガスを効率的に回収して、硫化水素ガスを使用する処理プラントに対して有効に供給することができる。そして、このように有効活用できることから従来のようなフレアー設備や除害設備を用いた処理を要することなく、環境に対する負荷を効果的に低減できるとともに、苛性ソーダ等の中和剤を要せずコストの点においても有利である。   On the other hand, according to the hydrogen sulfide gas production plant system and the method for recovering and using hydrogen sulfide gas using the plant system according to the present invention, the low-concentration hydrogen sulfide gas generated at the time of periodic inspection or the start-up of the plant Can be efficiently recovered and effectively supplied to a processing plant using hydrogen sulfide gas. And since it can be used effectively in this way, it can effectively reduce the burden on the environment without requiring treatment using conventional flare equipment and abatement equipment, and it does not require a neutralizing agent such as caustic soda. This is also advantageous.

なお、硫化水素ガスを使用する処理プラントとしては、例えば、ニッケル酸化鉱石の湿式製錬方法における脱亜鉛工程にて用いられる脱亜鉛工程プラントや、硫化工程にて用いられる硫化工程プラント等が挙げられる。   In addition, as a processing plant which uses hydrogen sulfide gas, the dezincification process plant used in the dezincification process in the hydrometallurgy method of nickel oxide ore, the sulfidation process plant used in a sulfidation process, etc. are mentioned, for example. .

ニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石のスラリーから、例えば高温高圧浸出法(HPAL法)を用いて、ニッケル及びコバルトを回収する湿式製錬方法である。具体的に、このニッケル酸化鉱石の湿式製錬方法は、ニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出する浸出工程と、浸出スラリーを多段洗浄しながら残渣を分離しニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程と、浸出液のpHを調整して不純物元素を含む中和澱物を分離しニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程と、中和終液に対し硫化水素ガスを吹き込んで亜鉛硫化物を形成して分離しニッケル及びコバルトを含むニッケル回収用母液を得る脱亜鉛工程と、ニッケル回収用母液に対し硫化水素ガスを吹き込んでニッケル及びコバルトを含む混合硫化物を形成する硫化工程とを有する。   The nickel oxide ore wet smelting method is a hydrometallurgical method of recovering nickel and cobalt from a nickel oxide ore slurry using, for example, a high-temperature high-pressure leaching method (HPAL method). Specifically, this nickel oxide ore hydrometallurgical process consists of a leaching step of adding sulfuric acid to a nickel oxide ore slurry and leaching under high temperature and high pressure, and separating the residue while washing the leaching slurry in multiple stages to obtain nickel and cobalt. And a solid-liquid separation step for obtaining a leachate containing an impurity element, a neutralization step for adjusting the pH of the leachate to separate a neutralized starch containing an impurity element and obtaining a neutralization final solution containing zinc together with nickel and cobalt, A zinc removal process is performed by blowing hydrogen sulfide gas into the final neutralized solution to form zinc sulfide to separate and obtaining a nickel recovery mother liquor containing nickel and cobalt, and nickel sulfide by blowing hydrogen sulfide gas into the nickel recovery mother liquor. And a sulfidation step of forming a mixed sulfide containing cobalt.

ニッケル酸化鉱石の湿式製錬方法における脱亜鉛工程及び硫化工程では、各プラントにおける反応槽の気相に硫化水素ガスを吹き込んで硫化反応を生じさせることにより金属硫化物を形成する。したがって、これらの硫化水素ガスを使用する処理プラントに対して、硫化水素ガス製造プラントから正規に製造された硫化水素ガスと共に、従来は廃硫化水素ガスとして廃棄処理していた低濃度の硫化水素ガスを効率的に回収して供給することにより、硫化水素ガス製造プラントにて製造される硫化水素ガスをロスなく供給できる。また、それぞれの硫化水素ガスを使用する処理プラントにおいては、硫化水素ガスの使用コストを低減することも可能となり、効率的な湿式製錬操業を行うことができる。   In the dezincification step and the sulfidation step in the nickel oxide ore hydrometallurgy method, metal sulfide is formed by blowing hydrogen sulfide gas into the gas phase of the reaction tank in each plant to cause a sulfidation reaction. Therefore, in contrast to treatment plants that use these hydrogen sulfide gases, low-concentration hydrogen sulfide gases that were conventionally disposed of as waste hydrogen sulfide gas together with hydrogen sulfide gas that was normally produced from the hydrogen sulfide gas production plant By efficiently recovering and supplying the hydrogen sulfide gas, the hydrogen sulfide gas produced at the hydrogen sulfide gas production plant can be supplied without loss. Moreover, in the processing plant which uses each hydrogen sulfide gas, it becomes possible to reduce the use cost of hydrogen sulfide gas, and can perform efficient hydrometallurgical operation.

以下、本発明に係る硫化水素ガス製造プラントシステム及び硫化水素ガスの回収利用方法に関する具体的な実施の形態について、図面を参照しながらより具体的に説明する。なお、本実施の形態に係る硫化水素ガス製造プラントは、上述した図4に示す硫化水素ガス製造プラント60を改良したものであり、一部共通する説明は省略する。   Hereinafter, specific embodiments relating to a hydrogen sulfide gas production plant system and a method for recovering and using hydrogen sulfide gas according to the present invention will be described more specifically with reference to the drawings. Note that the hydrogen sulfide gas production plant according to the present embodiment is an improvement of the hydrogen sulfide gas production plant 60 shown in FIG. 4 described above, and a part of the description is omitted.

[2.硫化水素ガス製造プラントシステム]
図1は、硫化水素ガス製造プラントシステムの構成の一例を示す概略図である。この図1に示される硫化水素ガス製造プラントシステム1は、以下に説明する硫化水素製造プラントを複数系統有するものである。詳しくは後述するように、それぞれの系統の製造プラントは、発生させた硫化水素ガスを供給する供給配管において接続されており、それぞれの製造プラント内で発生させた硫化水素ガスを、同一の処理プラントに対して供給するようになっている。
[2. Hydrogen sulfide gas production plant system]
FIG. 1 is a schematic diagram illustrating an example of a configuration of a hydrogen sulfide gas production plant system. A hydrogen sulfide gas production plant system 1 shown in FIG. 1 has a plurality of hydrogen sulfide production plants described below. As will be described in detail later, the manufacturing plants of the respective systems are connected to the supply piping for supplying the generated hydrogen sulfide gas, and the hydrogen sulfide gas generated in each manufacturing plant is connected to the same processing plant. To supply.

なお、図1に示す硫化水素ガス製造プラントシステム1では、2系統の硫化水素ガス製造プラント(製造プラント10A、製造プラント10B)からなるものを例に挙げているが、2系統に限られるものではなく、3系統以上の複数の系統の製造プラントを有するものであってもよい。   In addition, in the hydrogen sulfide gas production plant system 1 shown in FIG. 1, a hydrogen sulfide gas production plant (manufacturing plant 10 </ b> A, production plant 10 </ b> B) is exemplified as an example, but is not limited to two systems. Alternatively, it may have a manufacturing plant of a plurality of systems of three or more systems.

以下、具体的に、硫化水素ガス製造プラントシステム1を構成する製造プラントについて説明する。なお、それぞれの製造プラントの構成は同一であるため、各製造プラントにおける同一の構成については同一の数字符号を付し、製造プラント10Aについて代表的に説明する。   Hereinafter, the manufacturing plant which comprises the hydrogen sulfide gas manufacturing plant system 1 is demonstrated concretely. In addition, since the structure of each manufacturing plant is the same, about the same structure in each manufacturing plant, the same numerical code | symbol is attached | subjected and 10 A of manufacturing plants are demonstrated typically.

<硫化水素ガス製造プラント>
硫化水素ガス製造プラント10Aは、硫化水素ガスを発生させる反応設備11Aと、発生した硫化水素ガスを冷却する複数の冷却設備12Aと、硫化水素ガス中の硫黄を回収し硫黄が除去された硫化水素ガスを供給する硫黄回収設備13Aとを備える。また、硫化水素ガス製造プラント10Aは、硫黄回収設備13Aにて硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントXに供給する第1の供給配管14Aと、第1の供給配管14Aにおける所定の箇所15Aで分岐し、硫黄回収設備13Aからの硫化水素ガスを処理プラントXに供給する第2の供給配管16Aとを備える。
<Hydrogen sulfide gas production plant>
The hydrogen sulfide gas production plant 10A includes a reaction facility 11A for generating hydrogen sulfide gas, a plurality of cooling facilities 12A for cooling the generated hydrogen sulfide gas, and hydrogen sulfide from which sulfur in the hydrogen sulfide gas is recovered and sulfur is removed. And a sulfur recovery facility 13A for supplying gas. Further, the hydrogen sulfide gas production plant 10A includes a first supply pipe 14A for supplying the hydrogen sulfide gas after the sulfur is recovered by the sulfur recovery facility 13A to the processing plant X using the hydrogen sulfide gas, And a second supply pipe 16A for branching at a predetermined location 15A in the supply pipe 14A and supplying the hydrogen sulfide gas from the sulfur recovery facility 13A to the processing plant X.

なお、その他に、硫化水素ガス製造プラント10Aは、硫黄回収設備13にて回収除去された硫黄を貯留し、硫黄を処理するプラント(硫黄処理プラント)に供給するブローダウン設備17Aと、反応設備11Aにおける熱バランスを調整するために硫黄を冷却する硫黄冷却設備18Aとを備える。   In addition, the hydrogen sulfide gas production plant 10 </ b> A stores the sulfur recovered and removed by the sulfur recovery facility 13, and supplies a blowdown facility 17 </ b> A and a reaction facility 11 </ b> A that supplies the sulfur to a plant (sulfur processing plant). And a sulfur cooling facility 18A for cooling the sulfur in order to adjust the heat balance.

(反応設備)
反応設備11Aは、例えば、リアクター19Aと、クエンチタワー20Aと、ヒーター21Aとから構成されている。反応設備11Aは、供給された硫黄と水素ガスとにより硫化水素ガス生成反応を生じさせ、硫化水素ガスを発生させる。
(Reaction equipment)
For example, the reaction equipment 11A includes a reactor 19A, a quench tower 20A, and a heater 21A. The reaction equipment 11A causes a hydrogen sulfide gas generation reaction by the supplied sulfur and hydrogen gas, and generates hydrogen sulfide gas.

より具体的に、反応設備11Aでは、リアクター19A内に熔融硫黄が貯留され、その下部から水素ガスが供給されることによって、水素ガスの上昇流が熔融硫黄を通過する間に反応が進行して硫化水素ガスが発生する。ここで発生した硫化水素ガスは、その大部分が硫化水素であるが、一部に水素ガスがリアクター19Aを通過する際に巻き込んだ硫黄蒸気が含まれている。   More specifically, in the reaction equipment 11A, molten sulfur is stored in the reactor 19A, and hydrogen gas is supplied from the lower part thereof, so that the reaction proceeds while the upward flow of hydrogen gas passes through the molten sulfur. Hydrogen sulfide gas is generated. Most of the hydrogen sulfide gas generated here is hydrogen sulfide, but part of it contains sulfur vapor that is entrained when the hydrogen gas passes through the reactor 19A.

また、反応設備11Aにおいては、温度が約470℃、圧力が約800kPaGという比較的に高温かつ高圧の条件下で運転されており、発生した硫化水素ガスも高温かつ高圧になっている。なお、反応設備11Aにおいて発生した硫化水素ガスは、供給される硫黄と熱交換が行われるため、クエンチタワー20Aを通過した際には150℃程度となっている。   Further, the reaction facility 11A is operated under relatively high temperature and high pressure conditions of a temperature of about 470 ° C. and a pressure of about 800 kPaG, and the generated hydrogen sulfide gas is also at a high temperature and a high pressure. In addition, since the hydrogen sulfide gas generated in the reaction facility 11A exchanges heat with the supplied sulfur, the temperature is about 150 ° C. when passing through the quench tower 20A.

ここで、上述のようにリアクター19Aの下部からは、熔融硫黄と反応させるための水素ガスが供給されるが、定期点検時やトラブル発生時、またはプラント立ち上げ時においては、このリアクター19Aの下部から窒素ガスが供給される。供給された窒素ガスは、反応設備11A内を通過して、冷却設備12A、硫黄回収設備13Aといった各構成設備に移行して、製造プラント10A内部を置換処理する。   Here, as described above, hydrogen gas for reacting with the molten sulfur is supplied from the lower part of the reactor 19A. However, at the time of periodic inspection, trouble occurrence, or plant startup, the lower part of the reactor 19A. Is supplied with nitrogen gas. The supplied nitrogen gas passes through the reaction equipment 11A, shifts to the respective equipment such as the cooling equipment 12A and the sulfur recovery equipment 13A, and replaces the inside of the manufacturing plant 10A.

このとき、定期点検時やトラブル発生時においては、製造プラント停止直前まで硫化水素ガスを発生していたためにその内部に硫化水素ガスが残留している。そのため、窒素ガスを製造プラント10Aに供給すると、残留した硫化水素ガスと窒素ガスとが混ざり合い、濃度の低い硫化水素ガスが生じる。また、プラント立ち上げ時においても、窒素ガスが充満した製造プラント10A内に徐々に硫化水素ガスが発生してくるようになるため、初期段階では、製造プラント10A内部に低濃度の硫化水素ガスが存在することになる。   At this time, at the time of periodic inspection or trouble occurrence, hydrogen sulfide gas is generated until immediately before the stop of the production plant, so that hydrogen sulfide gas remains in the inside. For this reason, when nitrogen gas is supplied to the manufacturing plant 10A, the remaining hydrogen sulfide gas and nitrogen gas are mixed to produce hydrogen sulfide gas having a low concentration. Further, since hydrogen sulfide gas is gradually generated in the manufacturing plant 10A filled with nitrogen gas at the time of starting the plant, in the initial stage, low concentration hydrogen sulfide gas is generated inside the manufacturing plant 10A. Will exist.

本実施の形態に係る硫化水素ガス製造プラントシステム1においては、このようにして生じた低濃度の硫化水素ガスを効率的に回収して、処理プラントXに有効に供給できるようになっている。詳しくは後述する。   In the hydrogen sulfide gas production plant system 1 according to the present embodiment, the low-concentration hydrogen sulfide gas generated in this way can be efficiently recovered and effectively supplied to the processing plant X. Details will be described later.

(冷却設備)
冷却設備12Aは、反応設備11Aにて発生した硫化水素ガスを回収する。冷却設備12Aにおける硫化水素ガスの冷却温度としては、特に限定されないが、硫化水素ガス中の硫黄分を低減する上では低い方が好ましい。具体的には、通常(冷却)水を使用していることから、約50℃程度にまで冷却される。
(Cooling equipment)
The cooling facility 12A collects hydrogen sulfide gas generated in the reaction facility 11A. The cooling temperature of the hydrogen sulfide gas in the cooling facility 12A is not particularly limited, but is preferably lower in order to reduce the sulfur content in the hydrogen sulfide gas. Specifically, since normal (cooling) water is used, it is cooled to about 50 ° C.

また、硫化水素ガス製造プラント10Aにおいては、冷却設備12Aが複数備えられている(冷却設備12A,12A,・・・,12A)。冷却設備12Aにおいては、回収した硫化水素ガス中に含まれる硫黄の一部が、設備内部(伝熱面)で固化して固着してしまう。そのため、冷却設備12Aを複数備えることによって、それらを交互に切り替えて使用することを可能にし、冷却能力の低下に伴う操業効率の低下を防止している。なお、図1に示す硫化水素ガス製造プラント10は、冷却設備12A,12Aの2系統を有する例である。 The hydrogen sulfide gas production plant 10A includes a plurality of cooling facilities 12A (cooling facilities 12A 1 , 12A 2 ,..., 12A n ). In the cooling facility 12A, a part of the sulfur contained in the recovered hydrogen sulfide gas is solidified and fixed inside the facility (heat transfer surface). Therefore, by providing a plurality of cooling facilities 12A, it is possible to alternately use them, and to prevent a decrease in operation efficiency due to a decrease in cooling capacity. The hydrogen sulfide gas production plant 10 shown in FIG. 1 is an example having two systems of cooling facilities 12A 1 and 12A 2 .

具体的に、冷却設備12A,12Aにおいては、例えばその下部周囲にジャケットが設けられており、スチームで加熱することによって固着した硫黄を熔融することが可能となっている。例えば、冷却設備12Aに硫黄が固着した場合には、冷却設備12Aの使用を停止して冷却設備12Aに切り替える。使用を停止させた冷却設備12Aでは、スチームにより固着した硫黄が熔融され回収される。 Specifically, in the cooling facilities 12A 1 and 12A 2 , for example, a jacket is provided around the lower portion thereof, and the fixed sulfur can be melted by heating with steam. For example, when the sulfur is fixed to the cooling system 12A 1 switches to cooling equipment 12A 2 stop using the cooling equipment 12A 1. In the cooling equipment 12A 1 was stopped using sulfur which is fixed by steam is being melted recovered.

ここで、冷却設備12A,12Aは、使用を一時停止した設備においても直前まで硫化水素ガスを冷却していたものであるため、その内部に高圧かつ高濃度の硫化水素ガスを保持している。そのため、内部に固着した硫黄の熔融回収処理にあたっては、その硫黄を熔融回収する冷却設備12A,12A内の硫化水素ガスを排出して、内部圧力を低下させた状態で行う必要がある。硫化水素ガス製造プラント10Aでは、このとき排出される硫化水素ガスが廃硫化水素ガスとして冷却設備12A,12Aから発生する。 Here, since the cooling facilities 12A 1 and 12A 2 have cooled hydrogen sulfide gas until just before the facilities whose use has been temporarily stopped, the high-pressure and high-concentration hydrogen sulfide gas is held in the cooling facilities 12A 1 and 12A 2. Yes. For this reason, in the melt recovery processing of sulfur fixed inside, it is necessary to discharge the hydrogen sulfide gas in the cooling facilities 12A 1 and 12A 2 for melting and recovering the sulfur and reduce the internal pressure. In the hydrogen sulfide gas production plant 10A, the hydrogen sulfide gas discharged at this time is generated from the cooling facilities 12A 1 and 12A 2 as waste hydrogen sulfide gas.

硫化水素ガス製造プラント10Aからの廃硫化水素ガスの排出態様としては、例えば、冷却設備12A,12Aにて熔融回収された硫黄と共に、後述するブローダウン設備17Aに廃硫化水素ガスを放出させて圧力を開放し、そのブローダウン設備17Aに設けられた排出口から排出する。または、冷却設備12A,12Aにて発生した廃硫化水素ガスを、冷却設備12A,12Aに設けられた排出口から直接排出してもよい。 As a discharge mode of the waste hydrogen sulfide gas from the hydrogen sulfide gas production plant 10A, for example, together with sulfur melted and recovered in the cooling facilities 12A 1 and 12A 2 , the waste hydrogen sulfide gas is discharged to the blow-down facility 17A described later. The pressure is released and discharged from the outlet provided in the blowdown equipment 17A. Or, the waste hydrogen sulfide gas generated in the cooling system 12A 1, 12A 2, may be discharged directly from the outlet provided in the cooling equipment 12A 1, 12A 2.

なお、ブローダウン設備17Aや冷却設備12A,12Aに設けられた排出口から廃硫化水素ガスを排出する場合、それらの設備の排出口と硫化水素ガスを使用する所定の処理プラントとを接続させる配管を設けることができる。これにより、その配管を介して発生した廃硫化水素ガスを有効に回収し所定の処理プラントに供給することが可能となる。 In addition, when waste hydrogen sulfide gas is discharged from the discharge ports provided in the blowdown facility 17A and the cooling facilities 12A 1 and 12A 2 , the discharge ports of those facilities are connected to a predetermined processing plant that uses the hydrogen sulfide gas. Piping can be provided. Thereby, waste hydrogen sulfide gas generated through the piping can be effectively recovered and supplied to a predetermined processing plant.

(硫黄回収設備)
硫黄回収設備(ノックアウト設備)13Aは、冷却設備12A,12Aにて冷却された硫化水素ガス中の硫黄を回収して除去する。そして、硫黄回収設備13Aは、硫黄が除去された硫化水素ガスを、硫化水素ガスを使用する処理プラントXに供給する。
(Sulfur recovery equipment)
The sulfur recovery facility (knockout facility) 13A recovers and removes sulfur in the hydrogen sulfide gas cooled by the cooling facilities 12A 1 and 12A 2 . Then, the sulfur recovery facility 13A supplies the hydrogen sulfide gas from which sulfur has been removed to the processing plant X that uses the hydrogen sulfide gas.

上述のように、反応設備11A内で発生した硫化水素ガスには、一部硫黄蒸気が含まれている。硫黄回収設備13Aでは、その硫黄蒸気を固化して底部に堆積させ、例えばその下部の外周囲に設置されたジャケットを介してスチームで加熱することによって硫黄を熔融して回収する。回収した硫黄は、後述するブローダウン設備17Aに移送する。   As described above, the hydrogen sulfide gas generated in the reaction facility 11A partially contains sulfur vapor. In the sulfur recovery facility 13A, the sulfur vapor is solidified and deposited on the bottom, and the sulfur is melted and recovered, for example, by heating with steam through a jacket installed in the outer periphery of the lower part. The recovered sulfur is transferred to a blowdown facility 17A described later.

なお、硫黄回収設備13Aから供給される硫化水素ガスの供給先となる処理プラントXとしては、上述したように、ニッケル酸化鉱石の湿式製錬方法にて用いられる硫化工程プラントや脱亜鉛工程プラント等の硫化処理プラントが挙げられる。   In addition, as the processing plant X which becomes the supply destination of the hydrogen sulfide gas supplied from the sulfur recovery facility 13A, as described above, a sulfidation process plant, a dezincification process plant, etc. used in the nickel oxide ore wet smelting method, etc. And sulfidation plants.

(第1の供給配管)
第1の供給配管14Aは、一端が硫黄回収設備13Aに接続され、他端が硫化水素ガスを使用する処理プラントXに接続されており、硫黄回収設備13Aにて硫黄が回収された後の硫化水素ガスを処理プラントXに供給する。
(First supply piping)
The first supply pipe 14A has one end connected to the sulfur recovery facility 13A and the other end connected to the processing plant X using hydrogen sulfide gas, and the sulfur after the sulfur is recovered by the sulfur recovery facility 13A. Hydrogen gas is supplied to the processing plant X.

第1の供給配管14Aには、所定の箇所15Aに分岐可能な配管接続点があり、その配管接続点において後述する第2の供給配管16Aが接続されている。   The first supply pipe 14A has a pipe connection point that can branch to a predetermined location 15A, and a second supply pipe 16A described later is connected at the pipe connection point.

また、第1の供給配管14Aには、第2の供給配管16Aとの配管接続点となる所定の箇所15Aよりも上流側、すなわち硫黄回収設備13A側に、この第1の供給配管14Aを通過して供給される硫化水素ガスの濃度を測定する濃度計22Aが設けられている。また、第1の供給配管14Aには、その所定の箇所15Aよりも下流側、すなわち処理プラントX側に、この第1の供給配管14Aを介した処理プラントへの硫化水素ガスの供給のON/OFF制御を行うON/OFFバルブ23Aが設けられている。   Further, the first supply pipe 14A passes through the first supply pipe 14A on the upstream side of the predetermined portion 15A serving as a pipe connection point with the second supply pipe 16A, that is, on the sulfur recovery facility 13A side. A concentration meter 22A for measuring the concentration of the hydrogen sulfide gas supplied is provided. In addition, the first supply pipe 14A is turned ON / OFF to supply hydrogen sulfide gas to the processing plant via the first supply pipe 14A on the downstream side of the predetermined portion 15A, that is, on the processing plant X side. An ON / OFF valve 23A for performing OFF control is provided.

硫化水素ガス製造プラントシステム1においては、製造プラント10Aの第1の供給配管14Aと製造プラント10Bの第1の供給配管14Bとが所定の箇所にて接続されており、それぞれの製造プラント10A,10B内で製造した硫化水素ガスを、それぞれの第1の供給配管14A,14Bを介して混合させて、処理プラントXに供給している。   In the hydrogen sulfide gas production plant system 1, the first supply pipe 14A of the production plant 10A and the first supply pipe 14B of the production plant 10B are connected at predetermined locations, and the respective production plants 10A, 10B. The hydrogen sulfide gas produced therein is mixed through the first supply pipes 14A and 14B and supplied to the processing plant X.

第1の供給配管14A,14Bは、連続する供給配管(以下、便宜的に「供給配管14C」とする。)を介して処理プラントXに接続されており、各製造プラント10A,10Bにおいて製造され、それぞれの第1の供給配管14A,14Bを介して混合された硫化水素ガスは、供給配管14Cを介して処理プラントXに供給されるようになっている。また、その供給配管14Cには、処理プラントXへの硫化水素ガスの供給量を制御するコントロールバルブ24が設けられ、また、そのコントロールバルブ24よりも処理プラントX側に硫化水素ガスの流量を測定する流量計25が設けられている。供給配管14Cでは、流量計25にて測定される流量に応じてコントロールバルブ24を調節することで、処理プラントへの硫化水素ガスの供給量を制御可能としている。   The first supply pipes 14A and 14B are connected to the processing plant X via continuous supply pipes (hereinafter referred to as “supply pipes 14C” for convenience), and are manufactured at the respective production plants 10A and 10B. The hydrogen sulfide gas mixed through the first supply pipes 14A and 14B is supplied to the processing plant X through the supply pipe 14C. The supply pipe 14C is provided with a control valve 24 for controlling the supply amount of hydrogen sulfide gas to the processing plant X, and the flow rate of hydrogen sulfide gas is measured closer to the processing plant X than the control valve 24. A flow meter 25 is provided. In the supply pipe 14 </ b> C, the supply amount of hydrogen sulfide gas to the processing plant can be controlled by adjusting the control valve 24 according to the flow rate measured by the flow meter 25.

(第2の供給配管)
第2の供給配管16Aは、上述したように、一端が第1の供給配管14Aにおける配管接続点となる所定箇所15Aに接続されている。また、他端が硫化水素ガスを使用する処理プラントXに接続されており、硫黄回収設備13Aにて硫黄が回収された後の硫化水素ガスを処理プラントXに供給する。
(Second supply pipe)
As described above, one end of the second supply pipe 16A is connected to a predetermined location 15A that is a pipe connection point in the first supply pipe 14A. The other end is connected to a processing plant X that uses hydrogen sulfide gas, and the hydrogen sulfide gas from which sulfur has been recovered by the sulfur recovery facility 13A is supplied to the processing plant X.

また、第2の供給配管16Aには、第1の供給配管14Aとの接続点の直後に当該第2の供給配管16Aを介した処理プラントXへの硫化水素ガスの供給のON/OFF制御を行うON/OFFバルブ26Aが設けられている。   Further, the second supply pipe 16A is provided with ON / OFF control of the supply of hydrogen sulfide gas to the processing plant X via the second supply pipe 16A immediately after the connection point with the first supply pipe 14A. An ON / OFF valve 26A for performing is provided.

この第2の供給配管16Aは、主として、定期点検時やプラント立ち上げ時において発生する低濃度の硫化水素ガスを回収して処理プラントXに供給する、いわゆる低濃度硫化水素ガス用の供給配管である。   The second supply pipe 16A is a supply pipe for so-called low-concentration hydrogen sulfide gas, which mainly collects low-concentration hydrogen sulfide gas generated at the time of periodic inspection or plant startup and supplies it to the processing plant X. is there.

第1の供給配管14Aが接続する処理プラントXと第2の供給配管16Aが接続する処理プラントXとは同一の処理プラントである。そして、定期点検時や立ち上げ時等に際して発生する低濃度の硫化水素ガスを、この第2の供給配管16Aを介して回収することによって、従来は廃硫化水素ガスとして廃棄対象となっていた低濃度硫化水素ガスを処理プラントXに有効に供給することを可能にしている。これにより、その処理プラントXへの硫化水素ガスの供給が滞ることによって処理プラントXでの処理効率が低下することを防止することができる。詳しくは後述する。   The processing plant X to which the first supply pipe 14A is connected and the processing plant X to which the second supply pipe 16A is connected are the same processing plant. Then, by recovering low concentration hydrogen sulfide gas generated at the time of periodic inspection or start-up through the second supply pipe 16A, the low concentration hydrogen sulfide gas which has been conventionally discarded as waste hydrogen sulfide gas is recovered. The hydrogen sulfide gas can be effectively supplied to the processing plant X. Thereby, it can prevent that the processing efficiency in the processing plant X falls by supply of the hydrogen sulfide gas to the processing plant X stagnating. Details will be described later.

硫化水素ガス製造プラントシステム1においては、製造プラント10Aの第2の供給配管16Aと製造プラント10Bの第2の供給配管16Bとが所定の箇所にて接続されており、それぞれの製造プラント10A,10B内で発生した低濃度の硫化水素ガスを同一の処理プラントXに供給している。   In the hydrogen sulfide gas production plant system 1, the second supply pipe 16A of the production plant 10A and the second supply pipe 16B of the production plant 10B are connected at predetermined locations, and the respective production plants 10A, 10B. The low-concentration hydrogen sulfide gas generated inside is supplied to the same processing plant X.

製造プラント10Aの第2の供給配管16Aと製造プラント10Bの第2の供給配管16Bとが接続すると、それらに連続する供給配管(以下、便宜的に「供給配管16C」とする。)を介して処理プラントXに接続されている。この供給配管16Cには、処理プラントXに供給される硫化水素ガスの圧力を測定する圧力計27と、硫化水素ガスの流量を測定する流量計28とが設けられている。さらに、供給配管16Cには、処理プラントXに対する硫化水素ガスの供給を制御するコントロールバルブ29が設けられている。   When the second supply pipe 16A of the manufacturing plant 10A and the second supply pipe 16B of the manufacturing plant 10B are connected, they are connected via a supply pipe (hereinafter referred to as “supply pipe 16C” for convenience). It is connected to the processing plant X. The supply pipe 16C is provided with a pressure gauge 27 for measuring the pressure of the hydrogen sulfide gas supplied to the processing plant X and a flow meter 28 for measuring the flow rate of the hydrogen sulfide gas. Further, a control valve 29 for controlling the supply of hydrogen sulfide gas to the processing plant X is provided in the supply pipe 16C.

このように供給配管16Cには、圧力計27、流量計28、及びコントロールバルブ29が設けられていることにより、硫化水素ガスの圧力や流量に応じてコントロールバルブ29を制御することで、適切な供給制御のもとに低濃度の硫化水素ガスを処理プラントXに供給することが可能になっている。   As described above, the supply pipe 16C is provided with the pressure gauge 27, the flow meter 28, and the control valve 29, so that the control valve 29 is controlled according to the pressure and flow rate of the hydrogen sulfide gas. Under the supply control, it is possible to supply a low concentration hydrogen sulfide gas to the processing plant X.

また、供給配管16Cには、少なくとも1つのON/OFFバルブ30が設けられており、緊急時の硫化水素ガス製造プラント10と処理プラントXとの間における低濃度の硫化水素ガスのアイソレーションを可能にしている。   In addition, at least one ON / OFF valve 30 is provided in the supply pipe 16C, and it is possible to isolate low-concentration hydrogen sulfide gas between the hydrogen sulfide gas production plant 10 and the processing plant X in an emergency. I have to.

なお、第2の供給配管16Aには、第1の供給配管14AとON/OFFバルブ26Aとの間に、コントロールバルブを設けるようにしてもよい。これにより、通常操業を行っている製造プラントにおいて、製造された硫化水素ガスの全てを第1の供給配管を介して移送させるだけでなく、第2の供給配管に設けられたコントロールバルブを調整することで、製造された硫化水素ガスの一部を第2の供給配管にも回収することが可能となる。   The second supply pipe 16A may be provided with a control valve between the first supply pipe 14A and the ON / OFF valve 26A. As a result, not only the produced hydrogen sulfide gas is transferred via the first supply pipe but also the control valve provided in the second supply pipe is adjusted in the production plant that is normally operated. Thus, a part of the produced hydrogen sulfide gas can be recovered also in the second supply pipe.

例えば、製造プラント10Aにおいて発生した低濃度の硫化水素ガスを第2の供給配管16Aを介して回収するとともに、通常操業を行っている製造プラント10Bにて製造した高濃度の硫化水素ガスの一部をそのコントロールバルブで調整して第2の供給配管16Bを介して回収する。そして、製造プラント10Aにおける低濃度の硫化水素ガスと製造プラント10Bにおける高濃度の硫化水素ガスとを混合させることによって、濃度を細かく調整した硫化水素ガスを供給することが可能となる。   For example, the low concentration hydrogen sulfide gas generated in the manufacturing plant 10A is collected through the second supply pipe 16A, and part of the high concentration hydrogen sulfide gas manufactured in the manufacturing plant 10B that is normally operated. Is adjusted by the control valve and recovered through the second supply pipe 16B. Then, by mixing the low concentration hydrogen sulfide gas in the manufacturing plant 10A and the high concentration hydrogen sulfide gas in the manufacturing plant 10B, it is possible to supply the hydrogen sulfide gas whose concentration is finely adjusted.

(ブローダウン設備)
ブローダウン設備17Aは、硫黄回収設備13Aにて硫化水素ガスから除去された硫黄を回収する。また、ブローダウン設備17Aは、冷却設備12A,12A内に固着していた硫黄を回収する。そして、ブローダウン設備17Aは、それら回収した硫黄を供給ポンプ31Aによって例えば硫黄処理プラント等に供給する。または、回収した硫黄を、再び反応設備11Aに対して供給する硫黄源として循環利用させてもよい。
(Blowdown equipment)
The blowdown facility 17A recovers sulfur removed from the hydrogen sulfide gas by the sulfur recovery facility 13A. In addition, the blowdown facility 17A collects sulfur that has adhered to the cooling facilities 12A 1 and 12A 2 . Then, the blow-down facility 17A supplies the recovered sulfur to, for example, a sulfur treatment plant by the supply pump 31A. Alternatively, the recovered sulfur may be recycled as a sulfur source to be supplied to the reaction equipment 11A again.

また、ブローダウン設備17Aには、冷却設備12A,12Aにて発生し当該ブローダウン設備17Aに放出されてきた廃硫化水素ガスを系外に排出するための排出口を設けてもよい。そして、その排出口に配管を結合し、その配管を介して廃硫化水素ガスを所定の処理プラントに供給するようにしてもよい。これにより、冷却設備12A,12Aにて生じた廃硫化水素ガスについても有効に活用することができる。 Further, the blow-down facility 17A may be provided with a discharge port for discharging waste hydrogen sulfide gas generated in the cooling facilities 12A 1 and 12A 2 and discharged to the blow-down facility 17A to the outside of the system. And piping may be couple | bonded with the discharge port, and waste hydrogen sulfide gas may be supplied to a predetermined | prescribed processing plant via the piping. Thereby, waste hydrogen sulfide gas generated in the cooling facilities 12A 1 and 12A 2 can also be effectively used.

(硫黄冷却設備)
硫黄冷却設備18Aは、反応設備11Aにおける熱バランスを調整するために硫黄を約470℃から約150℃まで冷却する。また、硫黄冷却設備18Aは、冷却した硫黄を例えばブローダウン設備17Aに供給し、冷却設備12A,12Aや硫黄回収設備13Aから回収した硫黄と共に硫黄処理プラント等に供給する。または、冷却した硫黄を循環ポンプ32Aによって再び反応設備11Aに供給する硫黄源として循環利用させてもよい。
(Sulfur cooling equipment)
The sulfur cooling facility 18A cools sulfur from about 470 ° C. to about 150 ° C. in order to adjust the heat balance in the reaction facility 11A. Further, the sulfur cooling facility 18A supplies the cooled sulfur to, for example, the blowdown facility 17A, and supplies it to the sulfur treatment plant together with the sulfur recovered from the cooling facilities 12A 1 , 12A 2 and the sulfur recovery facility 13A. Alternatively, the cooled sulfur may be recycled as a sulfur source to be supplied again to the reaction facility 11A by the circulation pump 32A.

[3.硫化水素ガスの回収利用方法]
次に、上述した硫化水素ガス製造プラントシステム1おいて発生する硫化水素ガス、特に、定期点検時や立ち上げ時等に発生する低濃度の硫化水素ガスの回収利用方法について説明する。
[3. How to recover and use hydrogen sulfide gas]
Next, a method for recovering and using the hydrogen sulfide gas generated in the hydrogen sulfide gas production plant system 1 described above, particularly the low-concentration hydrogen sulfide gas generated at the time of periodic inspection or start-up will be described.

<硫化水素ガスの回収利用方法の概要>
上述したように、硫化水素ガス製造プラントシステム1を構成する、それぞれの硫化水素ガス製造プラント10A,10Bは、硫化水素ガスを使用する処理プラントXに供給する第1の供給配管14A,14Bと、その第1の供給配管14A,14Bの所定の箇所15A,15Bから分岐した第2の供給配管16A,16Bとを備えている。そして、第1の供給配管14A,14Bには、その分岐点となる箇所15A,15Bよりも上流側に濃度計22A,22Bが設けられ、また、第1の供給配管14A,14Bと第2の供給配管16A,16Bには、その配管を介した硫化水素ガスの供給を制御するON/OFFバルブ23A,23B,26A,26Bが設けられている。
<Overview of how to recover and use hydrogen sulfide gas>
As described above, each of the hydrogen sulfide gas production plants 10A and 10B constituting the hydrogen sulfide gas production plant system 1 includes the first supply pipes 14A and 14B that supply the processing plant X using the hydrogen sulfide gas, Second supply pipes 16A and 16B branched from predetermined locations 15A and 15B of the first supply pipes 14A and 14B are provided. The first supply pipes 14A and 14B are provided with densitometers 22A and 22B on the upstream side of the branch points 15A and 15B, and the first supply pipes 14A and 14B are connected to the second supply pipes 14A and 14B. The supply pipes 16A and 16B are provided with ON / OFF valves 23A, 23B, 26A and 26B for controlling the supply of hydrogen sulfide gas through the pipes.

ここで、硫化水素ガス製造プラントシステム1において、所定の定期点検時や突発のトラブル発生時、またはプラント立ち上げに際しては、その硫化水素ガス製造プラントを停止させ、製造プラント内部を窒素ガス等によって置換する処理が行われる。すると、製造プラント内においては、発生したばかりの硫化水素ガスが残留しているために、通風させた窒素ガスと混ざり合って濃度の低い硫化水素ガス濃度が存在することになる。また、プラント立ち上げ時においても、初期の段階では、内部に通風させた窒素ガスと混ざり合い、低濃度の硫化水素ガスが発生することになる。   Here, in the hydrogen sulfide gas production plant system 1, when a predetermined periodic inspection, sudden trouble occurs, or when the plant is started up, the hydrogen sulfide gas production plant is stopped and the inside of the production plant is replaced with nitrogen gas or the like. Processing is performed. Then, since the hydrogen sulfide gas that has just been generated remains in the manufacturing plant, the hydrogen sulfide gas concentration that is mixed with the ventilated nitrogen gas and has a low concentration exists. Further, even at the time of starting up the plant, in the initial stage, it mixes with the nitrogen gas ventilated inside, and low concentration hydrogen sulfide gas is generated.

このような定期点検時や立ち上げ時に発生した低濃度の硫化水素ガスを、通常通りに供給配管を介して処理プラントXに供給させた場合、その処理プラントXにおける硫化水素ガスを用いた処理が不安定となって効果的な処理を妨げる可能性がある。また、複数系統の製造プラントを有する硫化水素ガス製造プラントシステムにおいては、正常に操業を続けている製造プラント側の操業も不安定にする可能性がある。   When the low-concentration hydrogen sulfide gas generated at the time of regular inspection or startup is supplied to the processing plant X through the supply pipe as usual, the processing using the hydrogen sulfide gas in the processing plant X is performed. It may become unstable and prevent effective processing. In addition, in a hydrogen sulfide gas production plant system having a plurality of production plants, there is a possibility that the operation on the side of the production plant that is normally operated becomes unstable.

そのため、従来ではこのような低濃度の硫化水素ガスは廃硫化水素ガスとして廃棄処理していたが、当然にその排気分が硫化水素ガスの製造ロスとなり、また除害処理に手間と費用を要していた。さらに、硫化水素ガス製造プラントシステムにおいては、硫化水素ガスの供給先である処理プラントXの操業が非効率とならないように、正常操業が可能な製造プラントの負荷を最大限に上げて操業しなければならかった。   For this reason, in the past, such low-concentration hydrogen sulfide gas was disposed of as waste hydrogen sulfide gas. Naturally, however, the exhaust gas was lost to hydrogen sulfide gas production, and labor and cost were required for the detoxification treatment. Was. Furthermore, in the hydrogen sulfide gas production plant system, the operation of the processing plant X to which hydrogen sulfide gas is supplied must be operated with the maximum load of the production plant capable of normal operation not to be inefficient. It was good.

そこで、本実施の形態においては、硫化水素ガス製造プラントシステム1を構成する何れかの製造プラントを定期点検等に基づいて操業を停止させた場合や、またはそのプラントを立ち上げるに際して、窒素ガスによる置換処理によって低濃度の硫化水素ガスが発生したときには、運転を停止させた製造プラントにおける第2の供給配管を介して、その低濃度の硫化水素ガスを回収するようにする。   Therefore, in the present embodiment, when any one of the production plants constituting the hydrogen sulfide gas production plant system 1 is stopped based on periodic inspection or the like, or when the plant is started up, nitrogen gas is used. When low-concentration hydrogen sulfide gas is generated by the replacement process, the low-concentration hydrogen sulfide gas is recovered through the second supply pipe in the production plant where the operation is stopped.

そして、第2の供給配管を介して回収した低濃度の硫化水素ガスと、正常に操業を続けている製造プラント側において製造され第1の供給配管を介して回収した硫化水素ガスとを、所定の同一の処理プラントXに対して供給する。このとき、正常に操業を続けている側の製造プラントの製造負荷(操業負荷)をやや高めて、通常よりも多い量の硫化水素ガスを製造して供給するようにする。   Then, a low-concentration hydrogen sulfide gas recovered through the second supply pipe and a hydrogen sulfide gas manufactured on the side of the manufacturing plant that has been operating normally and recovered through the first supply pipe are predetermined. To the same processing plant X. At this time, the production load (operation load) of the production plant on which the operation is normally continued is slightly increased to produce and supply a larger amount of hydrogen sulfide gas than usual.

なお、「製造負荷(操業負荷)」とは、その硫化水素ガス製造プラントにおける製造処理量をいい、「製造負荷を高める」とは、通常時(定常時)よりも多くの硫化水素ガスを製造することをいう。   “Production load (operation load)” refers to the production throughput of the hydrogen sulfide gas production plant, and “increasing production load” means producing more hydrogen sulfide gas than normal (steady). To do.

ここで、上記特許文献3において開示されているように、例えば、ニッケル酸化鉱石の湿式製錬方法における硫化工程での硫化処理では、供給される硫化水素ガス濃度が85容量%以上であれば、投入するニッケル及びコバルトの量を定常状態のときの投入量に対して質量割合で30〜35%に減少させることにより、硫化反応を効率的に生じさせて高い収率でニッケル及びコバルトの硫化物を得ることができることが分かっている。   Here, as disclosed in Patent Document 3, for example, in the sulfidation process in the sulfiding step in the hydrometallurgy method of nickel oxide ore, if the supplied hydrogen sulfide gas concentration is 85% by volume or more, The amount of nickel and cobalt to be charged is reduced to 30 to 35% by mass ratio with respect to the amount charged in a steady state, thereby efficiently producing a sulfurization reaction and high yields of nickel and cobalt sulfides. I know you can get

したがって、硫化水素ガス製造プラントシステム1において、運転を停止させた製造プラントから回収し供給した低濃度の硫化水素ガスと、正常操業を行っている製造プラントから供給した通常濃度の硫化水素ガスとを混合させて、その濃度の加重平均値が、例えば85容量%以上となるようにする。これにより、処理プラントXにおける操業効率を低下させることなく、低濃度の硫化水素ガスを含めた硫化水素ガスを有効に供給することができる。   Therefore, in the hydrogen sulfide gas production plant system 1, the low concentration hydrogen sulfide gas recovered and supplied from the production plant that has been stopped from operation and the normal concentration hydrogen sulfide gas supplied from the production plant that is operating normally are used. By mixing, the weighted average value of the concentration is, for example, 85% by volume or more. Thereby, hydrogen sulfide gas including low-concentration hydrogen sulfide gas can be effectively supplied without reducing the operation efficiency in the treatment plant X.

なお、硫化水素ガス製造プラントシステム1から供給する硫化水素ガスの濃度の加重平均値に関しては、85容量%以上とすることに限られず、供給する処理プラントXにおける反応の種類等に応じて適宜決定することができる。そして、その供給すべき硫化水素ガスの濃度の加重平均値に応じて、正常に操業を行っている製造プラントに対する負荷の増加量を決定することができる。   Note that the weighted average value of the concentration of hydrogen sulfide gas supplied from the hydrogen sulfide gas production plant system 1 is not limited to 85% by volume or more, and is appropriately determined according to the type of reaction in the processing plant X to be supplied. can do. And according to the weighted average value of the density | concentration of the hydrogen sulfide gas which should be supplied, the increase amount of the load with respect to the manufacturing plant which is operating normally can be determined.

<回収利用方法の制御フロー>
図2は、定期点検時やプラント立ち上げ時等において発生する低濃度の硫化水素ガスを回収して、硫化処理プラント等の処理プラントXに供給する制御フローである。以下、この図2に基づいて、より具体的に低濃度の硫化水素ガスを含めた硫化水素ガスの回収利用方法について説明する。
<Control flow for collection and usage>
FIG. 2 is a control flow for recovering low-concentration hydrogen sulfide gas generated during periodic inspections, plant startup, and the like and supplying the hydrogen sulfide gas to a treatment plant X such as a sulfidation treatment plant. Hereinafter, a method for recovering and using hydrogen sulfide gas including low-concentration hydrogen sulfide gas will be described more specifically based on FIG.

なお、以下の説明では、硫化水素ガス製造プラントシステム1において、製造プラント10Aの運転を定期点検等によって停止させたことにより、その、製造プラント10Aの内部に低濃度の硫化水素ガスが生じた場合を例に挙げて説明する。   In the following description, in the hydrogen sulfide gas production plant system 1, when the operation of the production plant 10A is stopped by periodic inspection or the like, low concentration hydrogen sulfide gas is generated inside the production plant 10A. Will be described as an example.

先ず、製造プラント10Aの通常操業時において、製造プラント10Aにて硫化水素ガスを製造すると(ステップS11a)、硫黄回収設備13Aから得られた硫化水素ガスを第1の供給配管14Aを介して処理プラントXに供給する(ステップS12a)。   First, when hydrogen sulfide gas is produced in the production plant 10A during normal operation of the production plant 10A (step S11a), the hydrogen sulfide gas obtained from the sulfur recovery facility 13A is treated through the first supply pipe 14A. Is supplied to X (step S12a).

一方、製造プラント10Aと共に硫化水素ガス製造プラントシステム1を構成する製造プラント10Bにおいても、その製造プラント10Bにて硫化水素ガスを製造すると(ステップS11b)、硫黄回収設備13Bから得られた硫化水素ガスを第1の供給配管14Bを介して、同一の処理プラントXに供給する(ステップS12b)。   On the other hand, also in the manufacturing plant 10B which comprises the hydrogen sulfide gas manufacturing plant system 1 with the manufacturing plant 10A, if hydrogen sulfide gas is manufactured in the manufacturing plant 10B (step S11b), the hydrogen sulfide gas obtained from the sulfur recovery equipment 13B Is supplied to the same processing plant X via the first supply pipe 14B (step S12b).

このように、通常操業時においては、製造プラント10A及び製造プラント10Bにて製造された通常の濃度の硫化水素ガスが、それぞれ第1の供給配管14A,14Bを介して同一の処理プラントXに供給されて、処理プラントX内において硫化処理等に用いられる。   Thus, during normal operation, hydrogen sulfide gas having a normal concentration produced in the production plant 10A and the production plant 10B is supplied to the same processing plant X via the first supply pipes 14A and 14B, respectively. Then, it is used in the treatment plant X for sulfidation treatment or the like.

そのため、通常操業時においては、各製造プラント10A,10Bに対する操業負荷はほぼ均等になっている。   Therefore, during normal operation, the operation load on each of the manufacturing plants 10A and 10B is almost equal.

次に、例えば製造プラント10Aにおける定期的な設備点検を行う場合や突発的なトラブル等が生じた場合には、ステップS13において、製造プラント10Aの運転を停止させて、製造プラント10A内部に窒素ガスを供給して置換処理を行う。置換処理を行うと、運転を停止する直前に発生し製造プラント10A内部残留していた硫化水素ガスが窒素ガスによって希釈され、所定の濃度よりも低い濃度の硫化水素ガスが製造プラント10Aの内部に生じる。   Next, for example, when periodic equipment inspection is performed in the manufacturing plant 10A or when a sudden trouble occurs, in step S13, the operation of the manufacturing plant 10A is stopped, and nitrogen gas is introduced into the manufacturing plant 10A. To perform replacement processing. When the replacement process is performed, the hydrogen sulfide gas generated immediately before the operation is stopped and remaining in the manufacturing plant 10A is diluted with nitrogen gas, and a hydrogen sulfide gas having a concentration lower than a predetermined concentration is generated in the manufacturing plant 10A. Arise.

そこで、窒素ガスによる置換作業を行った場合には、先ず、ステップS14にて、硫黄回収設備13Aから得られた硫化水素ガスの濃度を濃度計22Aにて測定する。   Therefore, when a replacement operation with nitrogen gas is performed, first, in step S14, the concentration of the hydrogen sulfide gas obtained from the sulfur recovery facility 13A is measured by the densitometer 22A.

次に、ステップS15にて、測定した硫化水素ガスの濃度が所定濃度以上であるか否かを判断する。すなわち、低濃度の硫化水素ガスが流れてきているか否かを判断する。   Next, in step S15, it is determined whether or not the measured concentration of hydrogen sulfide gas is equal to or higher than a predetermined concentration. That is, it is determined whether or not a low concentration hydrogen sulfide gas is flowing.

このステップS15において、硫化水素ガスの濃度が所定濃度以上であると判断された場合(Yesの場合)には、製造プラント10AにおいてはステップS12aに戻り、その硫化水素ガスを第1の供給配管14Aを介して回収して処理プラントXに供給する。また、製造プラント10BにおいてはステップS12bに戻り、通常通り、製造した硫化水素ガスを第1の供給配管14Bを介して回収して処理プラントXに供給する。   In step S15, when it is determined that the concentration of the hydrogen sulfide gas is equal to or higher than the predetermined concentration (in the case of Yes), the manufacturing plant 10A returns to step S12a to supply the hydrogen sulfide gas to the first supply pipe 14A. And is supplied to the processing plant X. In the production plant 10B, the process returns to step S12b, and the produced hydrogen sulfide gas is recovered and supplied to the processing plant X through the first supply pipe 14B as usual.

一方で、このステップS15において、硫化水素ガスの濃度が所定濃度未満であると判断された場合(Noの場合)には、窒素ガスによる置換によって製造プラント10A内に低濃度の硫化水素ガスが生じていることから、製造プラント10AにおいてはステップS16aに進み、製造プラント10BにおいてはステップS16bに進む。   On the other hand, if it is determined in step S15 that the concentration of the hydrogen sulfide gas is less than the predetermined concentration (in the case of No), a low concentration hydrogen sulfide gas is generated in the manufacturing plant 10A by replacement with nitrogen gas. Therefore, the process proceeds to step S16a in the manufacturing plant 10A, and proceeds to step S16b in the manufacturing plant 10B.

ステップS16aでは、製造プラント10Aにおいて、第1の供給配管14Aに設けられたON/OFFバルブ23Aを閉鎖し、第2の供給配管16Aに設けられたON/OFFバルブ26Aを開放する。   In step S16a, in the manufacturing plant 10A, the ON / OFF valve 23A provided in the first supply pipe 14A is closed, and the ON / OFF valve 26A provided in the second supply pipe 16A is opened.

続いて、ステップS17aに進み、製造プラント10A内に発生した低濃度の硫化水素ガスを第2の供給配管16Aにて回収し、そして次に、回収した低濃度の硫化水素ガスを第2の供給配管16Aを介して処理プラントXに供給する。   Subsequently, the process proceeds to step S17a, where the low concentration hydrogen sulfide gas generated in the manufacturing plant 10A is recovered by the second supply pipe 16A, and then the recovered low concentration hydrogen sulfide gas is supplied to the second supply pipe 16A. It supplies to the processing plant X via the piping 16A.

一方、製造プラント10Bでは、ステップS16bにおいて、その製造プラント10Bの製造負荷をやや高める。これにより、通常操業時よりも多い量の硫化水素ガスを製造する。   On the other hand, in the production plant 10B, the production load of the production plant 10B is slightly increased in step S16b. As a result, a larger amount of hydrogen sulfide gas is produced than during normal operation.

そして、続いてステップS18bに進み、製造負荷をやや高めて製造した硫化水素ガスを第1の供給配管14Bを介して処理プラントXに供給する。なお、このときの製造負荷の増加度合いに関しては、製造プラント10A及び製造プラント10Bから供給される硫化水素ガスの濃度の加重平均値に基づいて決定することができる。   Then, the process proceeds to step S18b, and the hydrogen sulfide gas manufactured with a slightly increased manufacturing load is supplied to the processing plant X via the first supply pipe 14B. The degree of increase in production load at this time can be determined based on the weighted average value of the concentration of hydrogen sulfide gas supplied from the production plant 10A and the production plant 10B.

このように、製造プラント10Aでは、低濃度の硫化水素ガスを第2の供給配管16Aを介して処理プラントXに供給し、製造プラント10Bでは、通常操業時よりも多量の硫化水素ガスを製造して第1の供給配管14Bを介して処理プラントXに供給する。   Thus, in the manufacturing plant 10A, hydrogen sulfide gas with a low concentration is supplied to the processing plant X via the second supply pipe 16A, and the manufacturing plant 10B produces a larger amount of hydrogen sulfide gas than in normal operation. To the processing plant X via the first supply pipe 14B.

このとき、ステップS19において、製造プラント10A及び製造プラント10Bから処理プラントXに対して供給される硫化水素ガスの濃度の加重平均値が85容量%以上となるように供給する。この加重平均値は、製造プラント10Aからの低濃度の硫化水素ガスと、製造プラント10Bからの通常濃度の硫化水素ガスとに基づいて、その硫化水素ガス濃度と硫化水素ガス量とから算出することができ、置換するために供給する窒素ガス量により調整することができる。なお、硫化水素ガス量等は、図1に示した硫化水素ガス製造プラントシステム1において、供給配管16Cから供給される硫化水素ガスの流量を測定する流量計28の測定値に基づいて判断することができる。   At this time, in step S19, it supplies so that the weighted average value of the density | concentration of the hydrogen sulfide gas supplied with respect to the processing plant X from the manufacturing plant 10A and the manufacturing plant 10B may be 85 volume% or more. This weighted average value is calculated from the hydrogen sulfide gas concentration and the hydrogen sulfide gas amount based on the low concentration hydrogen sulfide gas from the manufacturing plant 10A and the normal concentration hydrogen sulfide gas from the manufacturing plant 10B. The amount of nitrogen gas supplied for replacement can be adjusted. Note that the amount of hydrogen sulfide gas and the like are determined based on the measurement value of the flow meter 28 that measures the flow rate of the hydrogen sulfide gas supplied from the supply pipe 16C in the hydrogen sulfide gas production plant system 1 shown in FIG. Can do.

以上のようにして、製造プラント10A内において低濃度の硫化水素ガスが発生した場合には、第2の供給配管16Aによってその低濃度の硫化水素ガスを回収して処理プラントXに供給するようにし、一方で操業を停止させていない通常操業の製造プラント10Bにおける製造負荷をやや高めた上で多量の硫化水素ガスを製造して処理プラントXに供給する。   As described above, when low-concentration hydrogen sulfide gas is generated in the manufacturing plant 10A, the low-concentration hydrogen sulfide gas is recovered by the second supply pipe 16A and supplied to the processing plant X. On the other hand, a large amount of hydrogen sulfide gas is manufactured and supplied to the processing plant X after slightly increasing the manufacturing load in the normal operation manufacturing plant 10B in which the operation is not stopped.

このような操業を行い、加重平均値で85容量%以上の濃度の硫化水素ガスを処理プラントXに供給するように制御することで、従来は廃棄していた低濃度の硫化水素ガスを効果的に回収して、処理プラントXに有効に供給することができる。また、廃棄する硫化水素ガスがなくなるので製造ロスがなくなり、また排気処理に伴う環境に対する負荷や、廃棄処理作業とそれに伴うコストを省くことができる。   By performing such an operation and controlling the hydrogen sulfide gas having a weighted average value of 85% by volume or more to be supplied to the processing plant X, the low-concentration hydrogen sulfide gas that has been conventionally discarded can be effectively used. And can be effectively supplied to the processing plant X. In addition, since there is no hydrogen sulfide gas to be discarded, there is no production loss, and it is possible to omit the environmental burden associated with the exhaust process, the disposal process, and the associated costs.

また、硫化水素ガスの供給先である処理プラントXにおいても、製造プラントの定期点検毎に極端に供給量が低下して硫化処理等の処理効率が低下することを防止することができる。   Moreover, also in the processing plant X which is the supply destination of hydrogen sulfide gas, it is possible to prevent the supply efficiency from being extremely reduced at every periodic inspection of the manufacturing plant and the processing efficiency such as the sulfiding treatment from being lowered.

さて、説明を図2の制御フローに戻し、製造プラント10Aに対する定期点検等が終了すると、ステップS20において、製造プラント10Aを立ち上げて運転を再開する。   Now, returning the description to the control flow of FIG. 2, when the periodic inspection or the like for the manufacturing plant 10 </ b> A is completed, the manufacturing plant 10 </ b> A is started up and the operation is resumed in step S <b> 20.

立ち上げ初期においては、十分な濃度の硫化水素ガスが製造されていない。このことから、先ず、ステップS21において、製造プラント10Aにて製造され硫黄回収設備13Aから得られた硫化水素ガスの濃度を濃度計22Aにて測定する。   In the initial stage of startup, a sufficient concentration of hydrogen sulfide gas is not produced. From this, first, in step S21, the concentration of the hydrogen sulfide gas produced in the production plant 10A and obtained from the sulfur recovery facility 13A is measured by the densitometer 22A.

次に、ステップS22にて、測定した硫化水素ガスの濃度が所定濃度以上であるか否かを判断する。すなわち、低濃度の硫化水素ガスが未だ流れてきているか否かを判断する。   Next, in step S22, it is determined whether or not the measured concentration of hydrogen sulfide gas is equal to or higher than a predetermined concentration. That is, it is determined whether or not a low-concentration hydrogen sulfide gas is still flowing.

このステップS22において、硫化水素ガスの濃度が所定濃度未満であると判断された場合(Noの場合)には、未だ十分に通常の濃度の硫化水素ガスが発生していないことから、製造プラント10AにおいてはステップS17aに戻り、低濃度の硫化水素ガスを第2の供給配管16Aにて回収し、ステップS18aにて、その第2の供給配管16Aを介して処理プラントXに供給する。また、製造プラント10BにおいてはステップS18bに戻り、高い負荷の下で製造した多量の硫化水素ガスを第1の供給配管14Bを介して回収して処理プラントXに供給する。   In this step S22, when it is determined that the concentration of the hydrogen sulfide gas is less than the predetermined concentration (in the case of No), since the hydrogen sulfide gas having a normal concentration is not sufficiently generated, the production plant 10A In step S17a, the low-concentration hydrogen sulfide gas is recovered by the second supply pipe 16A, and is supplied to the processing plant X through the second supply pipe 16A in step S18a. In the manufacturing plant 10B, the process returns to step S18b, and a large amount of hydrogen sulfide gas manufactured under a high load is recovered through the first supply pipe 14B and supplied to the processing plant X.

このとき、ステップS19においては、製造プラント10Aからの低濃度の硫化水素ガスと、製造プラント10Bからの通常の硫化水素ガスとに基づいて、その硫化水素ガス濃度と硫化水素ガス量とから算出される硫化水素濃度の加重平均値が85容量%以上となるように、製造プラント10Aの反応設備11Aに供給される水素ガス量を調整する。   At this time, in step S19, the hydrogen sulfide gas concentration and the hydrogen sulfide gas amount are calculated based on the low concentration hydrogen sulfide gas from the manufacturing plant 10A and the normal hydrogen sulfide gas from the manufacturing plant 10B. The amount of hydrogen gas supplied to the reaction equipment 11A of the manufacturing plant 10A is adjusted so that the weighted average value of the hydrogen sulfide concentration is 85 volume% or more.

一方で、このステップS22にて硫化水素ガスの濃度が所定濃度以上であると判断された場合(Yesの場合)には、製造プラント10AにおいてはステップS23aに進み、製造プラント10BにおいてはステップS23bに進む。   On the other hand, if it is determined in step S22 that the concentration of the hydrogen sulfide gas is equal to or higher than the predetermined concentration (in the case of Yes), the process proceeds to step S23a in the manufacturing plant 10A, and the process proceeds to step S23b in the manufacturing plant 10B. move on.

ステップS23aでは、製造プラント10Aにおいて、第1の供給配管14Aに設けられたON/OFFバルブ23Aを開放し、第2の供給配管16Aに設けられたON/OFFバルブ26Aを閉鎖する。   In step S23a, in the manufacturing plant 10A, the ON / OFF valve 23A provided in the first supply pipe 14A is opened, and the ON / OFF valve 26A provided in the second supply pipe 16A is closed.

すなわち、通常の操業に戻り、硫黄回収設備13Aから得られた硫化水素ガスを第1の供給配管14Aを介して処理プラントXに供給する(ステップS12a)。   That is, returning to normal operation, the hydrogen sulfide gas obtained from the sulfur recovery facility 13A is supplied to the processing plant X via the first supply pipe 14A (step S12a).

一方、製造プラント10Bでは、ステップS23bにおいて、高められていた製造負荷を通常通りの負荷に戻し、硫黄回収設備13Bから得られた硫化水素ガスを第1の供給配管14Bを介して処理プラントXに供給する(ステップS12b)。   On the other hand, in the manufacturing plant 10B, in step S23b, the increased manufacturing load is returned to the normal load, and the hydrogen sulfide gas obtained from the sulfur recovery facility 13B is transferred to the processing plant X via the first supply pipe 14B. Supply (step S12b).

上述したように、硫化水素ガス製造プラントシステム1においては、以上のような制御を行うことによって、定期点検やプラント立ち上げ時等に発生する低濃度の硫化水素ガスを効果的に回収することができ、その回収した硫化水素ガスを有効に処理プラントXに供給することができる。   As described above, the hydrogen sulfide gas production plant system 1 can effectively recover low-concentration hydrogen sulfide gas generated during periodic inspections, plant startup, and the like by performing the above-described control. The recovered hydrogen sulfide gas can be effectively supplied to the processing plant X.

[4.実施例]
以下に本発明についての実施例を説明するが、本発明は下記の実施例に限定されるものではない。
[4. Example]
Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
実施例1として、図1に示す、硫化水素ガス製造プラント10A,10Bの2系統からなる硫化水素ガス製造プラントシステム1を用いて、硫化水素ガスを製造し、ニッケル酸化鉱石の湿式製錬における硫化工程を行う硫化工程プラントXに硫化水素ガスを供給する操業を行った。また、この操業においては、2系統のうちの何れかの製造プラントの定期点検時に発生した低濃度の硫化水素ガスを回収し、その回収した低濃度の硫化水素ガスを硫化処理プラントに供給する操業を行った。
Example 1
As Example 1, hydrogen sulfide gas is produced using a hydrogen sulfide gas production plant system 1 consisting of two systems of hydrogen sulfide gas production plants 10A and 10B shown in FIG. 1, and sulfide is obtained in the hydrometallurgy of nickel oxide ore. The operation for supplying hydrogen sulfide gas to the sulfidation process plant X performing the process was performed. Moreover, in this operation, the operation of recovering low-concentration hydrogen sulfide gas generated during periodic inspection of one of the two systems and supplying the recovered low-concentration hydrogen sulfide gas to the sulfidation treatment plant. Went.

具体的に、図1に示したように、硫化水素ガス製造プラント10A,10Bにおいて、硫黄回収設備13A,13Bから得られた硫化水素ガスを硫化工程プラントXに供給する第1の供給配管14A,14Bを設けるとともに、その第1の供給配管14A,14Bの所定の箇所15A,15Bにおいて分岐した第2の供給配管16A,16Bを設けた。   Specifically, as shown in FIG. 1, in the hydrogen sulfide gas production plants 10A and 10B, the first supply piping 14A for supplying the hydrogen sulfide gas obtained from the sulfur recovery facilities 13A and 13B to the sulfurization process plant X, 14B is provided, and second supply pipes 16A and 16B branched at predetermined locations 15A and 15B of the first supply pipes 14A and 14B are provided.

また、第1の供給配管14A,14Bには、その分岐箇所15A,15Bよりも上流側に、硫化水素ガス濃度を測定する濃度計22A,22Bを設けた。さらに、第1の供給配管14A,14B及び第2の供給配管16A,16Bには、その分岐箇所15A,15Bよりも下流側に、それぞれの供給配管を介した硫化工程プラントXへの硫化水素ガスの供給制御を行うON/OFFバルブ23A,23B,26A,26Bを設けた。   The first supply pipes 14A and 14B are provided with concentration meters 22A and 22B for measuring the hydrogen sulfide gas concentration upstream of the branch points 15A and 15B. Further, in the first supply pipes 14A and 14B and the second supply pipes 16A and 16B, hydrogen sulfide gas to the sulfidation process plant X via the respective supply pipes is provided downstream of the branch points 15A and 15B. ON / OFF valves 23A, 23B, 26A, and 26B for controlling the supply of the above are provided.

操業を継続させていくにあたり、2系統のうちの一方の硫化水素ガス製造プラント10A,10Bについての交互に定期的な点検を行い、その点検時には点検対象となる製造プラントの運転を停止して、窒素ガスによる置換作業を行った。このとき、窒素ガスによる置換作業において発生する濃度の低い硫化水素ガスを、その運転を停止させた製造プラントにおける第2の供給配管を介して回収した。一方で、そのとき正常に運転されている側の製造プラントについては、その製造負荷をやや高めて、多量の硫化水素ガスを製造させるようにした。   In continuing the operation, periodic inspections are alternately performed on one of the hydrogen sulfide gas production plants 10A and 10B of the two systems, and at the time of the inspection, the operation of the production plant to be inspected is stopped, Replacement with nitrogen gas was performed. At this time, the low-concentration hydrogen sulfide gas generated in the replacement work with nitrogen gas was recovered through the second supply pipe in the manufacturing plant whose operation was stopped. On the other hand, about the manufacturing plant of the side normally operated at that time, the manufacturing load was slightly increased and a large amount of hydrogen sulfide gas was produced.

そして、回収した低濃度の硫化水素ガスと、正常に運転されている製造プラントにて製造された硫化水素ガスとに基づいて、その硫化水素ガス濃度と硫化水素ガス量から加重平均した硫化水素ガス濃度が85容量%を確保できるように窒素ガス量を調整した。   Based on the recovered low-concentration hydrogen sulfide gas and the hydrogen sulfide gas produced at a normally operating production plant, the hydrogen sulfide gas is weighted and averaged from the hydrogen sulfide gas concentration and the amount of hydrogen sulfide gas. The amount of nitrogen gas was adjusted so as to ensure a concentration of 85% by volume.

また、停止していた硫化水素ガス製造プラントの立ち上げ時においても、同様に窒素ガスにより置換された硫化水素ガス製造プラントから発生する濃度の低い硫化水素ガスを回収し、正常に運転されている製造プラントから製造された硫化水素ガスと共に、その濃度とガス量から加重平均した硫化水素ガス濃度が85容量%を確保できるように水素ガス量を調整した。   In addition, even when the hydrogen sulfide gas production plant was stopped, the hydrogen sulfide gas having a low concentration generated from the hydrogen sulfide gas production plant replaced with nitrogen gas is recovered and operated normally. Together with the hydrogen sulfide gas produced from the production plant, the amount of hydrogen gas was adjusted so that 85% by volume of the hydrogen sulfide gas concentration obtained by weighted averaging from the concentration and the gas amount could be secured.

なお、それぞれの硫化水素ガス製造プラント10A,10Bの反応設備11A,11Bにおける運転圧力条件は、多少変動はあったものの、日平均値として780kPagであった。一方で、硫化水素ガスの供給先である硫化処理プラントXにおける圧力条件は280kPagであり、脱亜鉛硫化処理プラントにおける圧力条件は2kPagであった。   The operating pressure conditions in the reaction facilities 11A and 11B of the hydrogen sulfide gas production plants 10A and 10B were 780 kPag as a daily average value, although there were some fluctuations. On the other hand, the pressure condition in the sulfidation treatment plant X to which hydrogen sulfide gas was supplied was 280 kPag, and the pressure condition in the dezincification sulfidation treatment plant was 2 kPag.

以上のような構成の硫化水素ガス製造プラントシステム1により、6カ月間のオペレーションを実施した。   The operation for 6 months was carried out by the hydrogen sulfide gas production plant system 1 configured as described above.

オペレーションの結果、6ヶ月の操業期間において、硫化水素ガス製造プラント10A,10Bに対する定期点検に伴う製造プラント立ち上げや立ち下げ回数が、合計10回発生した。このとき発生した低濃度の硫化水素ガスは合計で3.1tとなり、第2の供給配管16A,16Bを介して回収することができ、その低濃度の硫化水素ガスを含めて効果的に硫化処理プラントXに供給することができた。   As a result of the operation, during the operation period of 6 months, a total of 10 times of start-up and shut-down of the production plant accompanying the periodic inspection for the hydrogen sulfide gas production plants 10A and 10B occurred. The low-concentration hydrogen sulfide gas generated at this time becomes 3.1t in total, and can be recovered through the second supply pipes 16A and 16B. The plant X could be supplied.

同時に、約3.1tにも及ぶ低濃度の硫化水素ガスを回収して供給でき、製造ロスとならなかったことにより、その硫化水素ガス3.1tを製造するのに相当する原料系の操業資材として、硫黄を約3.0t、水素ガス(メタノール)を約0.3t節約することができた。また、従来、その低濃度の硫化水素ガスを廃棄処理するために用いられていた廃棄処理系の資材として、硫化水素ガスを吸収して除害するための苛性ソーダが約4.3t不要になった。なお、従来のように廃硫化水素ガスをフレアー設備にて除害した後に大気に放出するという処理も不要になったので、環境に対する負荷も全く無かった。   At the same time, a low-concentration hydrogen sulfide gas as much as about 3.1 tons can be recovered and supplied, and since there was no production loss, a raw material-type operating material equivalent to producing 3.1 tons of the hydrogen sulfide gas As a result, it was possible to save about 3.0 tons of sulfur and about 0.3 tons of hydrogen gas (methanol). In addition, caustic soda for absorbing and removing hydrogen sulfide gas is no longer required as a waste treatment material used to dispose of the low-concentration hydrogen sulfide gas. . In addition, the conventional process of removing the waste hydrogen sulfide gas into the atmosphere after detoxifying it with the flare facility is no longer necessary, so there was no burden on the environment.

(比較例1)
比較例1では、従来の硫化水素ガス製造プラントを用いて操業を行った。
(Comparative Example 1)
In Comparative Example 1, operation was performed using a conventional hydrogen sulfide gas production plant.

その結果、冷却設備にて発生した低濃度の硫化水素ガス約3.1tは、廃硫化水素ガスとして、回収されることなく除害設備により廃棄処理が必要となった。そして、その除害設備による処理にあたり、その硫化水素ガスを吸収して除害するための約4.3tの苛性ソーダが必要となった。また、製造ロス(回収ロス)を補うために、実施例1に比して、原料系の操業資材として、硫黄約3.0t、水素約0.3tが余分に必要となってしまった。   As a result, about 3.1 t of low-concentration hydrogen sulfide gas generated in the cooling facility was discarded as waste hydrogen sulfide gas without being collected by the abatement facility. Then, about 4.3 t of caustic soda for absorbing and detoxifying the hydrogen sulfide gas is required for the treatment by the abatement equipment. Further, in order to make up for the production loss (recovery loss), as compared with Example 1, about 3.0 t of sulfur and about 0.3 t of hydrogen were required as raw material-based operation materials.

なお、フレアー設備にて硫化水素ガスを処理する場合でも、発生する硫黄酸化物(SOx)が大気に放出される可能性を有していた。   Even when hydrogen sulfide gas is processed in a flare facility, the generated sulfur oxide (SOx) has a possibility of being released to the atmosphere.

さらに、硫化水素ガス製造プラントの立ち下げ時においては、一度停止した上で窒素ガスによる置換作業が必要となったため、正常に運転している他の系統の製造プラントにおいても約10日間(1回の停止につき約1日間)に亘って、硫化水素ガスの供給を停止する必要があった。その結果、ニッケル酸化鉱石の湿式製錬における浸出工程をはじめとする一連の工程を停止することも必要となり、製造プラントの立ち上げ及び立ち下げにより、1000Ni−tもの大幅な生産量の減少となった。   Furthermore, when the hydrogen sulfide gas production plant is shut down, it must be stopped once and then replaced with nitrogen gas. Therefore, in other production plants operating normally, it takes about 10 days (once). It was necessary to stop the supply of hydrogen sulfide gas for about one day per stop). As a result, it is also necessary to stop a series of processes including the leaching process in the hydrometallurgy of nickel oxide ore, and the production and startup of the manufacturing plant has resulted in a significant decrease in production volume of 1000 Ni-t. It was.

1 硫化水素ガス製造プラントシステム、10A,10B 硫化水素ガス製造プラント、11A,11B 反応設備、12,12A,12B 冷却設備、13A,13B 硫黄回収設備、14A,14B 第1の供給配管、15A,15B 分岐箇所、16A,16B 第2の供給配管、17A,17B ブローダウン設備、18A,18B 硫黄冷却設備、19A,19B リアクター、20A,20B クエンチタワー、21A,21B ヒーター、22A,22B 濃度計、23A,23B ON/OFFバルブ、24 コントロールバルブ、25 圧力計、26A,26B ON/OFFバルブ、27 圧力計、28 流量計、29 コントロールバルブ、30 ON/OFFバルブ、31A,31B 供給ポンプ、32A,32B 循環ポンプ   DESCRIPTION OF SYMBOLS 1 Hydrogen sulfide gas manufacturing plant system, 10A, 10B Hydrogen sulfide gas manufacturing plant, 11A, 11B Reaction equipment, 12, 12A, 12B Cooling equipment, 13A, 13B Sulfur recovery equipment, 14A, 14B First supply piping, 15A, 15B Branch point, 16A, 16B second supply pipe, 17A, 17B blowdown equipment, 18A, 18B sulfur cooling equipment, 19A, 19B reactor, 20A, 20B quench tower, 21A, 21B heater, 22A, 22B densitometer, 23A, 23B ON / OFF valve, 24 control valve, 25 pressure gauge, 26A, 26B ON / OFF valve, 27 pressure gauge, 28 flow meter, 29 control valve, 30 ON / OFF valve, 31A, 31B supply pump, 32A, 32B circulation pump

Claims (14)

少なくとも、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備と、発生した硫化水素ガスを冷却する複数の冷却設備と、該硫化水素ガス中に含まれる硫黄を回収する硫黄回収設備とを備える硫化水素ガスの製造プラントを複数系統有する硫化水素ガス製造プラントシステムであって、
それぞれの系統の硫化水素ガスの製造プラントは、
上記硫黄回収設備にて硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントに供給する第1の供給配管と、
上記第1の供給配管における所定の箇所で分岐し、上記硫黄回収設備からの硫化水素ガスを上記処理プラントに供給する第2の供給配管とを備え、
上記第1の供給配管には、上記所定の分岐箇所よりも上記硫黄回収設備側に、硫化水素ガス濃度を測定する濃度計が設けられ、
上記第1の供給配管及び上記第2の供給配管には、上記所定の分岐箇所よりも上記処理プラント側に、その供給配管を介した上記処理プラントへの硫化水素ガスの供給のON/OFFを行うON/OFFバルブが設けられ、上記所定の分岐個所と上記第2の供給配管に設けられた上記ON/OFFバルブの間にコントロールバルブが設けられていることを特徴とする硫化水素ガス製造プラントシステム。
At least a reaction facility for generating hydrogen sulfide gas with sulfur and hydrogen gas, a plurality of cooling facilities for cooling the generated hydrogen sulfide gas, and a sulfur recovery facility for recovering sulfur contained in the hydrogen sulfide gas. A hydrogen sulfide gas production plant system having a plurality of hydrogen sulfide gas production plants,
Each system of hydrogen sulfide gas production plant is
A first supply pipe for supplying the hydrogen sulfide gas after sulfur is recovered by the sulfur recovery facility to a treatment plant using the hydrogen sulfide gas;
A second supply pipe that branches at a predetermined location in the first supply pipe and supplies hydrogen sulfide gas from the sulfur recovery facility to the processing plant;
The first supply pipe is provided with a concentration meter for measuring a hydrogen sulfide gas concentration on the sulfur recovery equipment side from the predetermined branch point,
In the first supply pipe and the second supply pipe, on / off of supply of hydrogen sulfide gas to the processing plant via the supply pipe is more on the processing plant side than the predetermined branch point. A hydrogen sulfide gas production plant characterized in that an ON / OFF valve is provided, and a control valve is provided between the predetermined branch point and the ON / OFF valve provided in the second supply pipe. system.
上記冷却設備において発生した廃硫化水素ガスを放出するためのブローダウン設備をさらに有し、上記ブローダウン設備の排出口から上記処理プラントに上記廃硫化水素ガスを供給する配管を有することを特徴とする請求項1記載の硫化水素ガス製造プラントシステム。   It further has a blowdown facility for discharging waste hydrogen sulfide gas generated in the cooling facility, and has a pipe for supplying the waste hydrogen sulfide gas to the treatment plant from an outlet of the blowdown facility. The hydrogen sulfide gas production plant system according to claim 1. 上記それぞれの系統の製造プラントは、他の系統の製造プラントと、それぞれ上記第1の供給配管及び第2の供給配管を介して接続されていることを特徴とする請求項1又は2記載の硫化水素ガス製造プラントシステム。   3. The sulfide according to claim 1, wherein the production plant of each system is connected to a production plant of another system via the first supply pipe and the second supply pipe, respectively. Hydrogen gas production plant system. 上記それぞれの系統の製造プラントから上記処理プラントへ供給される硫化水素ガスが混合された時の該硫化水素ガスの濃度の加重平均値が85容量%以上になるように上記コントロールバルブにより調整されていることを特徴とする請求項3記載の硫化水素ガス製造プラントシステム。   It is adjusted by the control valve so that the weighted average value of the concentration of hydrogen sulfide gas when the hydrogen sulfide gas supplied from the manufacturing plant of each system to the processing plant is mixed is 85% by volume or more. The hydrogen sulfide gas production plant system according to claim 3, wherein 上記複数の製造プラントの何れかの定期点検時やトラブル発生時、又は該製造プラントの立ち上げ時に、上記反応設備の下部から窒素ガスを供給することを特徴とする請求項1乃至4の何れか1項記載の硫化水素ガス製造プラントシステム。   5. The nitrogen gas is supplied from the lower part of the reaction facility when a periodic inspection or trouble occurs in any of the plurality of manufacturing plants or when the manufacturing plant is started up. 2. A hydrogen sulfide gas production plant system according to item 1. 上記複数の製造プラントの何れかの運転停止時に、通常時に比して低濃度の硫化水素ガスが発生した場合には、上記運転を停止した製造プラントでは、上記第1の供給配管に設けられたON/OFFバルブを閉鎖し、上記第2の供給配管に設けられたON/OFFバルブを開放することによって、上記第2の供給配管を介して上記低濃度の硫化水素ガスを回収することを特徴とする請求項1乃至5の何れか1項記載の硫化水素ガス製造プラントシステム。   When hydrogen sulfide gas having a lower concentration than normal is generated when the operation of any of the plurality of manufacturing plants is stopped, the manufacturing plant that has stopped the operation is provided in the first supply pipe. The low concentration hydrogen sulfide gas is collected through the second supply pipe by closing the ON / OFF valve and opening the ON / OFF valve provided in the second supply pipe. The hydrogen sulfide gas production plant system according to any one of claims 1 to 5. 上記処理プラントは、ニッケル酸化鉱石の湿式製錬方法において亜鉛硫化物を形成する脱亜鉛工程プラント又はニッケル及びコバルト混合硫化物を形成する硫化工程プラントであることを特徴とする請求項1乃至6の何れか1項記載の硫化水素ガス製造プラントシステム。   The said processing plant is a dezincification process plant which forms zinc sulfide in the hydrometallurgy method of nickel oxide ore, or a sulfidation process plant which forms nickel and cobalt mixed sulfide. A hydrogen sulfide gas production plant system according to any one of the preceding claims. 少なくとも、硫黄と水素ガスとにより硫化水素ガスを発生させる反応設備と、発生した硫化水素ガスを冷却する複数の冷却設備と、該硫化水素ガス中に含まれる硫黄を回収する硫黄回収設備とを備える硫化水素ガスの製造プラントを複数系統有する硫化水素ガス製造プラントシステムにおける硫化水素ガスの回収利用方法であって、
それぞれの系統の硫化水素ガスの製造プラントは、
上記硫黄回収設備にて硫黄が回収された後の硫化水素ガスを、硫化水素ガスを使用する処理プラントに供給する第1の供給配管と、
上記第1の供給配管における所定の箇所で分岐し、上記硫黄回収設備からの硫化水素ガスを上記処理プラントに供給する第2の供給配管とを備え、
上記第1の供給配管には、上記所定の分岐箇所よりも上記硫黄回収設備側に、硫化水素ガス濃度を測定する濃度計が設けられ、
上記第1の供給配管及び上記第2の供給配管には、上記所定の分岐箇所よりも上記処理プラント側に、その供給配管を介した上記処理プラントへの硫化水素ガスの供給のON/OFFを行うON/OFFバルブが設けられ、上記所定の分岐個所と上記第2の供給配管に設けられた上記ON/OFFバルブの間にコントロールバルブが設けられており、
上記複数の製造プラントの何れかの運転停止時に、通常時に比して低濃度の硫化水素ガスが発生した場合には、運転を停止した製造プラントにおいては、該低濃度の硫化水素ガスを上記第2の供給配管を介して回収して上記処理プラントに上記コントロールバルブで流量を調整しながら供給し、他の系統の製造プラントにおいては、製造負荷を高めて製造した硫化水素ガスを第1の供給配管を介して上記処理プラントに供給することを特徴とする硫化水素ガスの回収利用方法。
At least a reaction facility for generating hydrogen sulfide gas with sulfur and hydrogen gas, a plurality of cooling facilities for cooling the generated hydrogen sulfide gas, and a sulfur recovery facility for recovering sulfur contained in the hydrogen sulfide gas. A method for recovering and using hydrogen sulfide gas in a hydrogen sulfide gas production plant system having a plurality of hydrogen sulfide gas production plants,
Each system of hydrogen sulfide gas production plant is
A first supply pipe for supplying the hydrogen sulfide gas after sulfur is recovered by the sulfur recovery facility to a treatment plant using the hydrogen sulfide gas;
A second supply pipe that branches at a predetermined location in the first supply pipe and supplies hydrogen sulfide gas from the sulfur recovery facility to the processing plant;
The first supply pipe is provided with a concentration meter for measuring a hydrogen sulfide gas concentration on the sulfur recovery equipment side from the predetermined branch point,
In the first supply pipe and the second supply pipe, on / off of supply of hydrogen sulfide gas to the processing plant via the supply pipe is more on the processing plant side than the predetermined branch point. An ON / OFF valve is provided, and a control valve is provided between the predetermined branch point and the ON / OFF valve provided in the second supply pipe,
When hydrogen sulfide gas having a lower concentration than normal is generated when the operation of any one of the plurality of manufacturing plants is stopped, the low concentration hydrogen sulfide gas is removed from the first concentration in the manufacturing plant where the operation is stopped. 2 is collected through the supply pipe and supplied to the processing plant while adjusting the flow rate with the control valve. In other production plants, the hydrogen sulfide gas produced with an increased production load is supplied first. A method for recovering and utilizing hydrogen sulfide gas, characterized in that the hydrogen sulfide gas is supplied to the treatment plant via a pipe.
上記冷却設備において発生した廃硫化水素ガスを放出するためのブローダウン設備をさらに有し、上記ブローダウン設備の排出口に接続した配管により上記処理プラントへと上記廃硫化水素ガスを供給することを特徴とする請求項8記載の硫化水素ガスの回収利用方法。   The apparatus further comprises a blowdown facility for discharging waste hydrogen sulfide gas generated in the cooling facility, and supplying the waste hydrogen sulfide gas to the treatment plant through a pipe connected to an outlet of the blowdown facility. The method for recovering and using hydrogen sulfide gas according to claim 8. 上記それぞれの系統の製造プラントは、他の系統の製造プラントと、それぞれ上記第1の供給配管及び第2の供給配管を介して接続されていることを特徴とする請求項8又は9記載の硫化水素ガスの回収利用方法。   The sulfide plant according to claim 8 or 9, wherein the production plant of each system is connected to the production plant of another system via the first supply pipe and the second supply pipe, respectively. How to recover and use hydrogen gas. 上記それぞれの系統の製造プラントから上記処理プラントへ供給される硫化水素ガスを混合する時の該硫化水素ガスの濃度の加重平均値が85容量%以上になるように上記コントロールバルブで調整することを特徴とする請求項10記載の硫化水素ガスの回収利用方法。   Adjusting the control valve so that the weighted average value of the concentration of the hydrogen sulfide gas when mixing the hydrogen sulfide gas supplied from the manufacturing plant of each system to the processing plant is 85% by volume or more. The method for recovering and using hydrogen sulfide gas according to claim 10. 上記複数の製造プラントの何れかの定期点検時やトラブル発生時、又は該製造プラントの立ち上げ時に、上記反応設備の下部から窒素ガスを供給することを特徴とする請求項8乃至11の何れか1項記載の硫化水素ガスの回収利用方法。   The nitrogen gas is supplied from the lower part of the reaction facility when a periodic inspection or trouble occurs in any of the plurality of manufacturing plants or when the manufacturing plant is started up. 2. A method for recovering and using hydrogen sulfide gas according to item 1. 上記運転を停止した製造プラントにおいては、上記第1の供給配管に設けられたON/OFFバルブを閉鎖し、上記第2の供給配管に設けられたON/OFFバルブを開放することによって、上記第2の供給配管を介して上記低濃度の硫化水素ガスを回収することを特徴とする請求項8乃至12の何れか1項記載の硫化水素ガスの回収利用方法。   In the production plant that has stopped the operation, the ON / OFF valve provided in the first supply pipe is closed, and the ON / OFF valve provided in the second supply pipe is opened, whereby the first The method for recovering and using hydrogen sulfide gas according to any one of claims 8 to 12, wherein the low-concentration hydrogen sulfide gas is recovered through two supply pipes. 上記処理プラントは、ニッケル酸化鉱石の湿式製錬方法において亜鉛硫化物を形成する脱亜鉛工程プラント又はニッケル及びコバルト混合硫化物を形成する硫化工程プラントであることを特徴とする請求項8乃至13の何れか1項記載の硫化水素ガスの回収利用方法。   14. The process plant according to claim 8, wherein the treatment plant is a dezincification process plant for forming zinc sulfide or a sulfidation process plant for forming nickel and cobalt mixed sulfide in a hydrometallurgy method of nickel oxide ore. The method for recovering and using hydrogen sulfide gas according to any one of the preceding claims.
JP2014036454A 2014-02-27 2014-02-27 Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas Expired - Fee Related JP5708849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036454A JP5708849B2 (en) 2014-02-27 2014-02-27 Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036454A JP5708849B2 (en) 2014-02-27 2014-02-27 Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012170329A Division JP5494754B2 (en) 2012-07-31 2012-07-31 Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas

Publications (2)

Publication Number Publication Date
JP2014141408A true JP2014141408A (en) 2014-08-07
JP5708849B2 JP5708849B2 (en) 2015-04-30

Family

ID=51423053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036454A Expired - Fee Related JP5708849B2 (en) 2014-02-27 2014-02-27 Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas

Country Status (1)

Country Link
JP (1) JP5708849B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397995A (en) * 1977-02-04 1978-08-26 Shell Int Research Method of increasing concentration of hydrogen sulfide in acidic gas
JPH01257109A (en) * 1988-04-07 1989-10-13 Jgc Corp Production of hydrogen sulfide
JPH0255210A (en) * 1988-08-17 1990-02-23 Jgc Corp Production of hydrogen sulfide
JPH05212236A (en) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd Method for recovering hydrogen sulfide of low concentration
JPH09286861A (en) * 1996-02-21 1997-11-04 Kureha Chem Ind Co Ltd Production of polyarylene sulfide
JPH10265204A (en) * 1997-03-25 1998-10-06 Nippon Sekiyu Seisei Kk Operation of sulfur recovering device
JP2009173983A (en) * 2008-01-23 2009-08-06 Sumitomo Metal Mining Co Ltd Method for producing sulfide containing nickel and cobalt
JP2010515658A (en) * 2007-01-16 2010-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for continuously producing hydrogen sulfide
JP2010126778A (en) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd Method for producing sulfide containing nickel and cobalt
JP2010536573A (en) * 2007-08-30 2010-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing hydrogen sulfide and carbon dioxide from an acid gas stream
JP2011225908A (en) * 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd Plant for hydrometallurgy of nickel oxide ore and method of operating the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397995A (en) * 1977-02-04 1978-08-26 Shell Int Research Method of increasing concentration of hydrogen sulfide in acidic gas
JPH01257109A (en) * 1988-04-07 1989-10-13 Jgc Corp Production of hydrogen sulfide
JPH0255210A (en) * 1988-08-17 1990-02-23 Jgc Corp Production of hydrogen sulfide
JPH05212236A (en) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd Method for recovering hydrogen sulfide of low concentration
JPH09286861A (en) * 1996-02-21 1997-11-04 Kureha Chem Ind Co Ltd Production of polyarylene sulfide
JPH10265204A (en) * 1997-03-25 1998-10-06 Nippon Sekiyu Seisei Kk Operation of sulfur recovering device
JP2010515658A (en) * 2007-01-16 2010-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for continuously producing hydrogen sulfide
JP2010536573A (en) * 2007-08-30 2010-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing hydrogen sulfide and carbon dioxide from an acid gas stream
JP2009173983A (en) * 2008-01-23 2009-08-06 Sumitomo Metal Mining Co Ltd Method for producing sulfide containing nickel and cobalt
JP2010126778A (en) * 2008-11-28 2010-06-10 Sumitomo Metal Mining Co Ltd Method for producing sulfide containing nickel and cobalt
JP2011225908A (en) * 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd Plant for hydrometallurgy of nickel oxide ore and method of operating the same

Also Published As

Publication number Publication date
JP5708849B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP4888578B2 (en) Nickel oxide ore wet smelting plant and method of operation thereof
WO2011132693A1 (en) Liquid-storage device and pressure-control method thereof
EP2957541B1 (en) Plant for manufacturing hydrogen sulfide gas and method for exhausting hydrogen sulfide gas
EP2492364A1 (en) Wet smelting plant for nickel oxide ore and method for operating same
JP5494754B2 (en) Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas
JP5365708B2 (en) Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas
JP5708849B2 (en) Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas
JP5682683B2 (en) Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas
JP5700160B2 (en) Hydrogen sulfide gas production plant and hydrogen sulfide gas exhaust method
JP2013245841A (en) Method and system for utilizing waste heat in sulphuric acid production equipment
CN210656181U (en) Recovery system of cold hydrogenation tail gas condensate
KR102148785B1 (en) flushing system for TiCl4 refining apparatus using refined TiCl4
CN207645881U (en) A kind of supercritical water oxidation system
JP2020132945A (en) Sulfurization apparatus, and operation method thereof
JP7115227B2 (en) Hydrogen sulfide gas production plant, hydrogen sulfide gas production method
JP7571477B2 (en) How to drain residue from a flash vessel
JP7521413B2 (en) Method for inerting sulfurization reactors
JP7310490B2 (en) Operation method for starting up treatment in the neutralization process
CN118388074A (en) WSA (Wireless sensor array) acid making and Claus furnace external drainage treatment recovery system and method
JP2024074604A (en) Hydrogen sulfide gas detoxifying facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5708849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees